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Abstract 

 

This paper presents predictions made for stress relaxation tests carried out by Garcia 

(1996) in the edometric apparatus in a soft organic clay from Rio de Janeiro, Brazil. 

The predictions were made based on the framework of the model developed by 

Martins (1992), as modified by Alexandre (2006), and in agreement with concepts 

and ideas developed by Terzaghi (1941), Taylor (1942) and others. The differential 

equation of the stress relaxation test, its solution, the assessment of the parameters of 

the model as well as predictions made for all tests are shown in this paper. It is shown 

that satisfactory agreement between predictions and tests results were obtained for the 

soft clay tested by Garcia (1996). In addition, discussions about stress relaxation tests 

carried out under different conditions (triaxial and hydrostatic) and about the variation 

of K
0
 during stress relaxation and secondary consolidation are also presented in this 

paper. 
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Introduction 

 

Concrete, steel, wood and glass as well as soils and rocks, among other materials, 

present stress relaxation.  

 

In general terms, stress relaxation is the decrease of stress with time at constant strain 

and temperature and, according to Sheahan (1998), it is the least understood of the 

time effects in soils. Nevertheless, understanding stress relaxation is important, as for 

example, Coulomb’s law of friction for soils depends on the normal effective stress. 

In addition, it would be interesting to know if horizontal stresses vary in time behind 

rigid restrained retaining walls. The understanding of stress relaxation is also 

important because it adds to the understanding of the general behavior of the soil. 

 

The study presented herein deals with the stress relaxation of saturated clays under 

various stress conditions as well as under drained and undrained conditions. In more 

specific terms, this study aims at answering the following questions regarding the 

stress relaxation of a saturated clay: 

 

! What is the mechanism behind the decrease in stress with time? 

! Is there an end for stress relaxation? and; 

! How stress relaxation progresses with time? 

 

To answer these questions, the model developed by Martins (1992) for saturated 

normally consolidated clayey soils, as modified by Alexandre (2006), is used.  
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Regarding the predictions presented in this paper for the stress relaxation tests carried 

out by Garcia (1996) in the edometer apparatus, it must be mentioned that they are not 

really true predictions as they were made after the execution of the tests. In addition, 

the results of these tests were used for deriving the parameters of the model. 

Nevertheless, they are predictions in the sense that they are not fittings to the 

experimental stress relaxation data. 

 

The next section presents a brief description of works carried out by other 

investigators regarding stress relaxation, followed by the introduction of basic 

concepts of Martins’s Model and the analytical study of the stress relaxation. 

Subsequently, the parameters of the model are derived and predictions are made for 

the tests carried out by Garcia (1996). Closing this paper, a comparison between the 

predictions and tests, discussions and considerations regarding various other stress 

and drainage conditions, and the variation of K
0
 during stress relaxation and 

secondary consolidation in the edometer are presented. 

 

Previous Studies and Approaches 

 

It seems that Taylor (1943) was the first investigator to carry out stress relaxation 

tests in the triaxial apparatus. In Taylor (1955), data from 13 stress relaxation tests 

carried out during the final stages of shear tests on the Boston Blue Clay are 

presented. By using a proving ring in the tests the investigator was able to assess 

strain rates during the execution of the tests.  

 

Among the tests reported in Taylor (1955), Tests 26 and 28 are specially worth 

commenting on. Test 26 lasted for about 3,600 minutes reaching a strain rate of about 

9x10
-6

 %/min when it was terminated and presented a decrease in the deviatoric stress 

of about 31%. On the other hand, Test 28 reached a strain rate of about 1.2x10
-5

 

%/min when it was terminated and presented a decrease in the deviatoric stress of 

about 27%. More importantly, differently from Test 26, in Test 28, the deviatoric 

stress seamed to have reached a stationary value. Also according to Taylor (1955), the 

decrease in shearing strength for the Boston Blue Clay was about 9% per log cycle.  

 

Other investigators that carried out stress relaxation tests in the triaxial apparatus 

comprise Saada (1962), Wu et al. (1962), Murayama and Shibata (1964), Lacerda and 

Houston (1973), Murayma et al. (1974), Akai et al. (1975), Hicher (1988), Silvestri et 

al. (1988) and Sheahan (1991). In general, what is observed during stress relaxation is 

that the deviatoric stress decreases through time until a stationary value is reached and 

that pore-pressures decrease slightly. Representing time in the horizontal axis in a log 

scale and the deviatoric stress in the vertical axis, the deviatoric stress x time (log 

scale) curve in most relaxation tests present an initial convex portion that is followed 

by what appears to be approximately a straight line.  

 

Apart from tests carried out in the triaxial apparatus under deviatoric stresses, other 

types of stress relaxation tests were carried out by other investigators. Some of these 

special relaxation tests will be described in the sequence. 

 

Arulanandan et al. (1971) carried out triaxial tests on specimens of the San Francisco 

Bay Mud, in which, after the consolidation phase, the drainage was closed and the 

pore-pressures were measured through time. What was observed was that the pore-
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pressure increased with time. They also observed that the longer the soil was allowed 

to undergo secondary consolidation the lower was the generation of pore-pressure. 

They reported that similar observations were made by Bjerrum et al. (1958), 

Campanella (1965) and Walker (1969). Although Walker (1969) has attributed the 

effect to the arresting of secondary consolidation, Bjerrum et al. (1958) attributed the 

effect to the diffusion of water through the membrane. Holzer et al. (1973) also 

observed the same pore-pressure generation pattern as Arulunandan et al (1971) and 

also ascribed the generation to the arresting of secondary consolidation. Thomasi 

(2000) and Dos Santos (2006) also observed that same pore-pressure pattern. 

 

As volumetric strains were not allowed and the pore-pressure increased with time, 

these tests can be considered as relaxation tests under hydrostatic conditions as the 

mean effective normal stress decreases in time under constant strain and temperature 

conditions.  

 

Stress relaxation tests carried out in a Constant Rate of Strain edometer apparatus on 

Sarapui River clay specimens by Lima (1993) showed similar results as those carried 

out by Arulanandan et al. (1971).  

 

Garcia (1996) carried out drained stress relaxation tests on an organic clay from Barra 

da Tijuca, Rio de Janeiro. These tests were carried out preventing the specimens from 

undergoing secondary consolidation by means of load cells/proving rings attached to 

the edometer apparatus. After the “end” of primary consolidation, the load 

cell/proving ring was positioned in such a way to prevent the loading arm to move 

freely, imposing a stress relaxation in the edometer under drained conditions. The 

Figure below shows the apparatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Apparatus for the execution of relaxation tests in the edometer (modified 

from Aguiar, 2008). 

 

The tests carried out by Garcia (1996) lasted from about 10,000 to 80,000 minutes. A 

typical result is shown in the figure below. 

Loading Arm 

Proving Ring 
Edometer Cell 
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Figure 2 – Typical Result of drained stress relaxation test in the edometer from Garcia 

(1996). 

 

As it can be seen above, the stress x time (log scale) plot is similar in shape to the 

tests carried out in the triaxial apparatus, although it can be seen that a very smooth 

concave curve appears at the latter portion of the plot. 

 

Aguiar (2008) and Andrade (2009) also carried out similar tests as Garcia (1996) and 

obtained similar results although for a clay from Santos, in the state of São Paulo, 

Brazil.  

 

Regarding models for explaining time-dependent behavior, one of the main models is 

the Rate Process Theory. This theory was developed in the area of knowledge called 

physical chemistry and was originally intended for assessing the speed with which 

chemical reactions occur. Various investigators such as Murayama and Shibata 

(1958), Mitchell (1964), Anderson and Douglas (1970) and others applied the Rate 

Process Theory to soil creep with success. Of particular interest is the work of 

Lacerda and Houston (1973) where the rate process theory is applied to the stress 

relaxation problem. Because of its complexity it will not be presented herein. For the 

fundamentals of the theory it is recommended the study of Glasstone et al. (1940) as 

well as Mitchell (1964). 

 

Other models intended for explaining time-dependent behavior include visco-elastic, 

visco-plastic or visco-elasto-plastic models combined or not to the Rate Process 

Theory or making use of the c"#  concept. Some of the models in this category are 

described in Murayama and Shibata (1958, 1961, 1964), Mesri et al (1981), Adachi 

and Okano (1974), Sekigushi (1984) and Kutter and Sathialingam (1992). As it will 

be seen in the following section the model developed by Martins’s (1992) falls into 

this category. 

 

Some concepts of Martins's Model (1992) 

 

According to Terzaghi (1941), the contact between clay particles would be of two 

types. Terzaghi called the contact types “solid bonds” and “film bonds”. In his view, 
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both contacts would be able to transmit effective stresses and would result from the 

adsorbed water layers that surround the clay particles. The “solid bonds” would result 

from the contact between the adsorbed water layers in the immediate vicinity of the 

clay particle, which, according to Terzaghi, would be in the solid state. The “film 

bonds” would result from the contact between adsorbed water layers which would not 

be in the solid state but which would possess a viscosity higher than of the viscosity 

of the free water (by free water it should be understood the water that flows out of the 

pores of soil during seepage or consolidation).  

 

Having this picture in mind, Martins (1992) assumes as a hypothesis that the shear 

strength of a saturated normally consolidated clay has two components, the frictional 

resistance and the viscous resistance. 

 

The frictional resistance would develop between Terzaghi's “solid bonds” and it 

would be a function of the shear strain. The viscous resistance would develop 

between Terzaghi's “film bonds” and it would be a function of the strain rate. The 

equation for the shear strength would then be: 

 

" = " s + " v = # $ % tg # & mob +' e( ) % ˙ (     (1) 

 

Where: 

 

"
s
 is the solid component of the shear stresses; 

"
v
 is the viscous component of the shear stresses; 

"#  is the normal effective stress; 

" # 
mob

is the mobilized effective angle of internal friction; 

e( )  is the coefficient of viscosity of the adsorbed water layer that surrounds the clays 

particles (a function of void ratio for a normally consolidated clay); and 
˙   is the strain rate 

 

The normal effective stress, "# , is taken as the difference between the normal total 

stress, , and pore-pressure, u .  

 

Another hypothesis of the model is that the pore-pressure that develops in a shear test 

would be a function of the shear strain as shown by Lo (1969a, 1969b). In addition, it 

is assumed in the model that normalization is valid. In other words, both frictional and 

viscous resistances are proportional to the consolidation pressure, "'c, and are 

functions of the Over Consolidation Ratio (OCR). 

 

Equation (1) is similar to the equation proposed by Taylor (1948), reproduced below: 

 

s = " ff + pi( ) # tg$ + f
%&s
%t

' 

( 
) 

* 

+ 
, 

- 

. 
/ 

0

1
2    (2) 

 

Where: 

 

s is the shearing strength; 

" ff is the normal effective stress in the failure plane at failure; 
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pi  is the intrinsic pressure; 

"  is the friction angle; and 

"#
s

"t
is the shear strain rate 

 

Martins (1992) used the tests carried out by Lacerda (1976) on the San Francisco Bay 

Mud to assess the validity of the proposed model. Without going into much detail in 

this section, Martins (1992) was able to assess the magnitude of the stress decay that 

occurred in the relaxation tests carried out by Lacerda (1992), showing that there is a 

stationary value for the stress relaxation and, therefore, that the process has an end.  

 

One of the problems with Martins’s model is that the relaxation is supposed to be 

instantaneous, what does not occur.  

 

Another problem in the model is that, because Equation (1) is written in terms of 

shear stresses, the hydrostatic relaxation observed by Arulanandan et al. (1971) and 

others cannot be macroscopically explained.  

 

To overcome this problem it was suggested by Martins that Equation (1) could be 

generalized for the normal stresses. In this regard, Thomasi (2000) carried out similar 

tests as Arulanandan et al. (1971), confirming the possibility of generalizing the 

normal effective stress equations as proposed by Martins. As the tests carried out by 

Thomasi (2000) were carried out with water as the triaxial chamber fluid, although 

carried out with 2 latex membranes coated with silicon grease, diffusion of water was 

suspected in two tests. Dos Santos (2006) repeated the tests carried out by Thomasi 

(2000) using silicon oil as the triaxial chamber fluid confirming the conclusions made 

by Thomasi (2000). 

 

The concepts introduced in this section were intended to provide the minimum 

information for the development of the stress relaxation study, presented in the next 

section. For a better understanding of this model the reader is referred to Martins 

(1992), Martins et al. (2001), Santa Maria et el. (2010) and Santa Maria e al. (2012). 

 

 

Mechanism of the Stress Relaxation Under Edometric Conditions 

 

General Considerations 

 

According to a proposition made by Martins, which is in agreement with the 

suggestion made by Terzaghi (1941), the generalized Equation (1) for the normal 

effective stress would be: 

 
"# = "#

s
+ "#

v
     (3) 

 

Where: 

 
"#  is the normal effective stress; 

"# 
s
 is the normal effective stress that develops in the “solid” contacts between 

particles and it is a function of the void ratio (or strain) and of the Over Consolidation 

Ratio (OCR); and 
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" # 
v
 is the normal effective stress that develops in the “viscous” contacts between 

particles and it is a function of the void ratio (or volumetric strain), OCR and the 

strain rate. 

 

Considering Equation (3) and an axial symmetry stress state such as in the one 

represented in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Stress state under axial symmetry conditions. 

 

It can be shown that the state of stress in the “solid” and “viscous” components of the 

effective stresses, in addition to Equations (1) and (3) can be represented by the 

following equations: 

 

" # 
s

=
" # 
1s

+ " # 
3s

2

$ 

% 
& 

' 

( 
) +

" # 
1s
* " # 

3s

2

$ 

% 
& 

' 

( 
) + cos 2 +,( )   (4) 

"
s
=

# $ 
1s
% # $ 

3s

2

& 

' 
( 

) 

* 
+ , sen 2 ,-( )     (5) 

" # 
v

=
" # 
1v

+ " # 
3v

2

$ 

% 
& 

' 

( 
) +

" # 
1v
* " # 

3v

2

$ 

% 
& 

' 

( 
) + cos 2 +,( )   (6) 

"
v

=
# $ 
1v
% # $ 

3v

2

& 

' 
( 

) 

* 
+ , sen 2 ,-( )     (7) 

 

Where the indexes “s” and “v” represent the “solid” and the “viscous” components of 

the stresses and the indexes “1” and “3” represent the major and minor principle 

stresses. In the above equations and for a given plane, "  is the angle between the 

direction perpendicular to the plane considered and the plane where "# 
1
 acts.  

 

Considering again Equation (3), it can be seen that, for a given strain, the higher the 

strain rate the greater the viscous stress component and the normal effective stress. 

This equation is in agreement with experimental data from triaxial and edometric 

stress. Examples of this experimental observation are the triaxial tests carried out by 

"´1 

"´3 "´3 

"´1 

"´1s 

"´3s "´3s 

"´1s 

"´1v 

"´3v "´3v 

"´1v 

= + 
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Vaid and Campanella (1977) and the edometric tests carried out by Leroueil (1985) as 

shown below. 

 

 

                
Figures 4 and 5. Examples of the effect of strain rate on triaxial tests (Vaid and 

Campanella, 1977) and on edometric tests (Leroueil et al., 1985). 

 

As any test is carried out at a given strain rate, according to Equation (3), there will 

always be an additional resistance to compression. However, if a test could be made 

with strain rate equal to zero, the only resistance measured would be the resistance 

from the “solid component” as this component is, by hypothesis, independent of the 

strain rate. 

 

Limiting the discussion to edometric compression, according to Equation (3), 

Constant Rate of Strain edometric tests in saturated normally consolidated clay 
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specimens would present vertical strain x normal effective stress curves such as the 

ones represented in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Schematic representation of Equation (3) for edometric conditions on 

normally consolidated saturated clay specimens with different strain rates. 

 

As can be seen on Figure 6, the higher the strain rate the greater the normal effective 

stress for a given strain. Also, according to Figure 6 and Equation (3), for a test with 

strain rate equal to zero (if such a test could be carried out), there is a unique e  x "#  

compression curve. The figure above is similar to the one idealized by Taylor (1943) 

and by Bjerrum (1967). However, the main difference between these figures is that in 

Figure 6 there is a curve that is independent of rate effects. The curve for which the 

strain rate is equal to zero was proposed by Martins and represents the end of all 

rheological processes in his model.  

 

Experimental evidences of the existence of the “zero” strain rate line are provided in 

Martins (1997), Andrade (2009) and Feijó (1991). 

 

Martins et al. (1997) presents long-term consolidation tests on fabricated clayey soils 

that lasted between about 2 years showing that secondary consolidation ends and 

therefore showing that there must be a zero strain rate compression curve such as the 

one presented on Figure 6.  
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Figure 7 – Long-term consolidation tests carried out by Martins (1997). 

 

Martins carried out long-term consolidation tests that lasted up to 5 years on natural 

clays from Rio de Janeiro showing that the same reasoning applies also to natural 

clays. The figure showing the consolidation curve, reproduced from Andrade (2009) 

is presented below. 

 
Figure 8 – Long-term consolidation tests carried out by Martins (Apud Andrade, 

2009). 

 

The shape of the edometric curves obtained by Martins are in agreement with the 

shape of the curves of the long term consolidation curves carried out by Bishop and 

Lovenbury (1969) on the Pancone clay that lasted for about 400 days. 
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In addition to the long-term consolidation tests, other experimental evidences of the 

zero strain rate compression curve comes from Feijó (1991), who carried out long-

term edometric unload stages with different OCR’s on specimens of the Sarapui River 

clay that lasted up to about 200 days. The results of the tests show that for OCR’s less 

than 2 from the “end” of primary consolidation line, the specimens show a primary 

expansion following by a recompression. For specimens with OCR’s greater than 6, 

the specimens showed a primary expansion followed by a secondary expansion. For 

specimens with OCR’s between 2 and 6 the specimens showed a primary expansion 

only, with the expansion ceasing after about 200,000 minutes (approximately 140 

days). The void ratio x time curves for the various OCR’s generated are shown in the 

figure below. 

 

 
Figure 9 – Test results from Feijo (1991), Apud Martins et al. (1997). 

 

 

Based on Figure 9 and in the light of the results of the Sarapui River clay, the zero 

strain rate curve for this clay would be the curve relative to an OCR a little bit higher 

than 2 from the “end” of primary line. 

 

Now consider a standard consolidation test, where, after the “end” of primary 

consolidation when the excess pore-pressure is practically zero, a soil specimen is at 

Point A on Figure 6, where its strain rate is ˙ " 
3
. According to the concepts introduced 

by Martins, the rheological process represented by segment AB would be secondary 

consolidation, segment AC represents stress relaxation and segment AD represents a 

“mixed” condition between secondary consolidation and stress relaxation. Because 

the rheological process represented by segment AD involves some deformation 

during the process it can be seen as an “imperfect” stress relaxation.  

 

Similar curves as the ones represented in Figure 6 could be established for hydrostatic 

or triaxial compression where similar secondary consolidation, creep and stress 

relaxation processes could be also represented.  

 

As it will be shown further ahead regarding edometric compression, secondary 

consolidation and stress relaxation can be seen as particular cases of the “imperfect” 
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stress relaxation process. For clarity reasons, the “imperfect” stress relaxation case 

will be presented after a discussion about the “perfect” stress relaxation and 

secondary consolidation processes. 

 

Considering the secondary consolidation process represented by segment AB in 

Figure 6, at Point A, the soil possesses a “solid” effective stress " # 
sA

 and a “viscous” 

effective stress " # 
vA

, relative to the curve with strain rate equal to ˙ " 
3
. With the passage 

of time, the soil experience a compression and is between Point A and Point B. 

Naming this point as Point E, at this point, the solid and viscous stresses are " # 
sE

 and 

" # 
vE

. From the geometry of Figure 6, at Point E, the soil possesses a greater solid 

stress than at Point A and a smaller solid stress than at Point B. Because of Equation 

(3), the viscous stress will have the opposite trend. At Point E, the viscous stress will 

be smaller than at Point A and greater than at Point B, where the strain rate is zero. 

Because the viscous resistance is assumed to be proportional to the strain rate, at Point 

E, the strain rate is smaller than at Point A and greater than at Point B, where the 

strain rate is zero. 

 

Having this process in mind, secondary consolidation as stated before is the process 

of transference of viscous stresses to solid stresses under constant vertical effective 

stress and temperature. With the passage of time, the progress of secondary 

consolidation imposes the increase of strain and the decrease of the strain rate until 

the curve with strain rate equal to zero is reached. When the soil reaches this line, the 

process comes to and end. 

 

In opposition to the secondary consolidation process, the “perfect” stress relaxation 

process, represented by segment AC, is the decrease of vertical stress at constant 

strain and temperature. According to Equation (3), a specimen of soil at Point A, if 

prevented from undergoing secondary consolidation, will have to “march” to the left 

of Point A, towards the zero strain rate curve by reducing the effective stress until 

Point C is reached. Because of Equation (3), from the moment the specimen is 

prevented to deform, the strain rate and the viscous resistance have to drop to zero 

instantaneously. In other words, the “perfect” stress relaxation, in accordance to 

Martins’s model is considered instantaneous. As the proposition made by Alexandre 

(2006) only describes the state of stress incorporating a normal effective stress 

component of viscous nature, Martins’s model as modified by Alexandre (2006) is 

also not able to explain the “perfect” stress relaxation process. 

 

The “imperfect” stress relaxation process 

 

According to Figure 6, the “imperfect” stress relaxation case is a “mixed” case in the 

sense that some deformation occurs during the stress decay.  

 

For deducing the differential equation of the “imperfect” stress relaxation process, the 

set-up conceived by Garcia will be considered first.  

 

Figure 10 below presents the schematic structural system of the “imperfect” stress 

relaxation test carried out by Garcia (1996) in the edometric apparatus. 
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Figure 10 – Schematic structural system of the “imperfect” stress relaxation test as 

carried out by Garcia (1996). 

 

 

Considering the shear stresses in the specimen on a plane where its normal makes an 

angle of 45
o
 with the direction of the major principal effective stress, "# 

1
, the 

following equation can be written: 

 

" =
#
1
$#

3

2

%

&
'

(

)
* = " s � " v =

+ # 
1s
$ + # 

3s

2

% 

& 
' 

( 

) 
* +

+ # 
1v
$ + # 

3v

2

% 

& 
' 

(

)
*   (8) 

 

The equation above can be obtained by combining equations (1), (5) and (7). 

 

Multiplying Equation (8) by 2 one gets: 

 

"
1
#"

3( ) = $ " 
1s
# $ " 

3s( ) + $ " 
1v
# $ " 

3v( )   (9) 

 

Which, by its turn can be re-written as: 

 

"
1
#"

3( ) = $ " 
1s

+ $ " 
1v( ) # $ " 

3s
+ $ " 

3v( )     (10) 

 

Considering that the coefficient of earth pressure at rest, K
0
, can be represented by:  

 

K
0

=
" # 
3

" # 
1

=
" # 
3s

+ " # 
3v

" # 
1s

+ " # 
1v

     (11) 

 

The following can be written: 

 

"
1
#"

3) = $"
1s

+ $ " 
1v( ) #K0

% $ " 
1s

+ $ " 
1v( )    (12) 

 

 

Equation (12) can be re-written as: 

 

"
1
#"

3
= $"

1s
+ $ " 

1v( ) % 1#K0( )    (13) 

 

Considering that at the “end” of primary consolidation, the excess pore-pressure is 

practically zero, follows that: 

 

l
s
 lpr  

lp  

P  Fpr  

F
s
 

O 
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" # $ " = $ " 
s
+ $ " 

v
    (14) 

 

In this particular case, K
0
 can also be written in terms of total stress, such that: 

 

K
0
"
#
3

#
1

      (15) 

 

Combining Equations (13) and (15) yields: 

 

"
1
#K

0
$"

1
="

1
$ 1#K

0
= %"

1s
+ % " 

1v( ) $ 1#K0( )   (16) 

 

Which can be simplified to become: 

 

"
1

= # " 
1s

+ # " 
1v

     (17) 

 

Equation (17) is the nuclei of the differential equation of the “imperfect” stress 

relaxation process. In other words, the stress relaxation process under edometric 

conditions consist of a stress decay in "# 
1
 only. The complete differential equation is 

obtained by combining Equation (17) with the functions that describe the solid and 

the viscous components of the normal effective stress and the function that describes 

how the total normal stress varies with the rigidity of the system in the edometric 

apparatus. 

 

For " # 
1s

, the following can be written at Point A:  

 
" # 
1s

= " # 
1sA

+ E
ed
$%    (18) 

Where: 

 
" # 
1sA

is the solid component of the normal effective stress at Point A; 

E
ed

 is the edometric modulus for a given stress range at the vicinity of Point A; and  

" is the vertical strain in relation to Point A. 

 

For " # 
1v

, based on the findings of Martins (1992) and Alexandre (2000, 2006), in a 

first approximation, the following can be written: 

 

" # 
1v

= K $ ˙ % ( )
n

     (19) 

Where: 

 

K  and n  are constants to be determined experimentally (being K a function of the 

void ratio and OCR); and 
˙ "  is the strain rate 

 

For discussions about the non-linear viscosity function the reader is referred to 

Martins (1992), Alexandre (2000), Martins et al (2001), Santa Maria (2010) and Santa 

Maria (2012). 

 

Therefore Equation (17) can be written as: 
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"
1

= # " 
1sA

+ E
ed
$% + K $ ˙ % ( )

n

     (20) 

 

Considering Figure (10), considerations of static equilibrium yields the following 

equation for the total normal stress: 

 

"
1
t( ) =

P # lp $ Fpr # lpr

ls # As

     (21) 

 

Where: 

 

"
1
t( )  is the total normal stress as a function of the time t ; 

P  is the dead weight applied at the end of the loading arm of the edometric apparatus; 

Fpr is the force measured in the proving ring; and; 

A
s
 is the area of the cross section of the specimen of soil to be tested. 

 

For t = 0, the force measured at the proving ring is zero and therefore:  

 

"
1
0( ="

0
=
P # lp

ls # As

      (22) 

 

Combining Equations (20) and (21) follows that: 

 

"
1
t( ) =

P # lp $ Fpr # lpr

ls # As

= % " 
1sA + Eed #& + K # ˙ & ( )

n
  (23) 

 

Assuming that for small displacements and strains the load measured on the proving 

ring is proportional to the vertical displacements on the proving ring, one may write 

the following: 

 

 

Fpr = k " x       (24) 

Where: 

k  is the constant of the proving ring; 

x  is the displacement experienced by the proving ring as a result of a force Fpr  acting 

on it. 

 

Considering also that the vertical strain and vertical strain rate can be written as: 

 

" =
x
s

H
s

 and ˙ " =
d

dt

x
s

H
s

# 

$ 
% 

& 

' 
( =

1

H
s

)
dx

s

dt

# 

$ 
% 

& 

' 
(    (25) and (26) 

 

Where: 

 

x
s
 is the vertical displacement of the top surface of soil specimen in relation to the 

bottom surface; 

H
s
 is the height of soil specimen at the beginning of the stress relaxation test; and 

t  is time since the beginning of the stress relaxation. 



 16 

 

The following can be written: 

 

P " lp # k " x " lpr
ls " As

= $ % 
1sA + Eed "

xs

Hs

& 

' 
( 

) 

* 
+ + K "

1

Hs

"
dxs

dt

& 

' 
( 

) 

* 
+ 

n

   (27) 

 

From the geometry of the “imperfect” stress relaxation test (Figure 10), assuming a 

rotation of the loading arm as a rigid body, follows that x  and x
s
 are related by the 

following equation: 

 

x =
lpr

ls
" xs      (28) 

 

Therefore the differential equation of the “imperfect” stress relaxation process under 

edometric conditions is: 

 

P " lp # k " lpr
2
ls( ) " xs

ls " As

= $ % 
1sA + Eed "

xs

Hs

& 

' 
( 

) 

* 
+ + K "

1

Hs

"
dxs

dt

& 

' 
( 

) 

* 
+ 

n

 (29) 

 

Equation (29) is similar to the differential equation of the undrained creep in the 

triaxial apparatus as obtained by Alexandre (2006).   

 

For brevity, the mathematical deduction of the solution of Equation (29) will be 

omitted and the solution will be presented below: 

 

For t = 0, at the beginning of the “imperfect” stress relaxation process follows that 

x
s
= 0, Fpr = 0 e 

dxs

dt
= Hs "

P " lp
ls " As

#

$
%

&

'
( ) *+

1sA

K

,

-

.

.

.

.

/

0

1
1
1
1

1

n

and therefore the solution to Equation 

(29) for these initial conditions is: 

 

x
s

t( ) =
A

" B 

# 

$ 
% 

& 

' 
( )

D

" B 

# 

$ 
% 

& 

' 
( *

1

D

A

# 

$ 
% 

& 

' 
( 

1)n

n

# 

$ 
% 

& 

' 
( 

+
1) n

n

# 

$ 
% 

& 

' 
( 

" B * t

D

+ 

, 

- 
- 

. 
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0 
0 

n

1)n

# 

$ 
% 

& 

' 
( 

   (30) 

 

Where t is the time since the beginning of the stress relaxation process and A , B, C , 
"B  and D are auxiliary variables defined as below: 

 

A =
P " lp

ls " As

# $%
1sA =%1 # $%

1sA = $% vA , B =
k " lpr ls( )

2

As

, C =
E
ed

H
s

, "B = C + B( )  and 

D = K "
1

H
s

# 

$ 
% 

& 

' 
( 

n
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As it will be shown later, an expression of interest is the expression of the rate of 

displacement of the soil specimen as a function of time as given below: 

 

˙ x 
s

=
1

D

A

" 

# 
$ 

% 

& 
' 

1(n

n

" 

# 
$ 

% 

& 
' 

+
1( n

n

" 

# 
$ 

% 

& 
' )

* B ) t

D

+ 

, 

- 
- 

. 

/ 

0 
0 

1

1(n

" 

# 
$ 

% 

& 
' 

    (31) 

 

Considering the equation below: 

 

 " # t( ) = " # 
s
+ " # 

v
= " # 

1sA
+ E

ed
$% + K ˙ % n = " # 

1sA
+ E

ed
$
x
s

H
s

& 

' 
( 

) 

* 
+ + K $

1

H
s

$
dx

s

dt

& 

' 
( 

) 

* 
+ 

n

 

 (32) 

 

The expression of the normal effective stress decay with time is given by: 
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(33) 

 

The second term to the right of the equal sign in Equation (33) is the gain in the solid 

component of the effective stress that occurs during the process. The last term to the 

right of the equal sign in Equation (33) is the stress decay in the viscous component of 

the effective normal stress. 

 

Substituting t = 0 in Equation (33) follows that: 

 

" # 0( ) =
P $ lp

lcp $ As

=#
0
      (34) 

 

Which is the initial stress condition at the beginning of the “imperfect” stress 

relaxation process and is independent of the rigidity of the system. Evaluating the 

limit when t"#  in Equation (33) follows that: 

 

lim " # t( )
t$%

=#
1sA +

Eed

Hs

& 

' 
( 

) 

* 
+ ,

#
0
- " # 

1sA

k , lpr ls( )
2

As

+
Eed

Hs

& 

' 
( 

) 

* 
+ 

   (35) 
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A schematic representation of the variation of the solid and viscous components of the 

normal effective stress as well as the variation of the total normal stress with time is 

presented in the figure below. 

 
Figure 11 - Schematic representation of the imperfect stress relaxation under 

edometric conditions.  

 

As shown on Figure 11, the stress decay is due to the decrease of the viscous 

component in time with only a small portion of the viscous component transferred to 

the solid component of the effective stress. 

 

The effect of the rigidity of the system can be assessed by making all the other 

variables constant and varying k  on Equation 33. The greater the rigidity the faster 

the process, which is in accordance to Martins’s model. Making k"#  on Equation 

(35) yields " # = " # 
1sA

, which is also in accordance to the model. 

 

On the other hand, when making k" 0 the other particular case obtained in the 

simplified secondary consolidation equation. This equation is simplified because, as 

the void ratio decrease, the viscosity is expected to increase, and in the derivation of 

the differential equation it is assumed that the viscosity remains constant through the 

entire process. Furthermore, the edometric modulus is also considered constant in the 

derivation of the differential equation. The simplified secondary consolidation process 

is illustrated in the figure below. 
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Figure 12 - Schematic representation of the simplified secondary consolidation 

process under edometric conditions.  

 

When k  is made equal to zero on Equation (35) it can be seen that   $( ) =
0
, which 

is the particular case of secondary consolidation. This condition is represented by the 

horizontal solid line on Figure 12. In this particular case, the viscous component of 

the effective normal stress is entirely transferred to the solid component of the 

effective stress. This condition is represented by the curves with small circles and 

small squares on Figure 12, respectively the viscous and solid components. 

 

Beside these differences, the “imperfect” stress relaxation and the secondary 

consolidation processes have one element in common: the shape of the ˙ x 
s
 (log scale) 

x t (log scale) curve, represented by Equation (31).  

 

As can be seen on the figure below, for a constant E
ed

, the initial portion of the ˙ x 
s
 

(log scale) x t (log scale) curve is convex and the latter portion of the curve is 

approximately a straight line, which slope is "1/ 1" n) . The effect of the rigidity, k , 

on Equation (31) is such that, having all the other parameters the same, the curve is 

displaced to the left for increasing values of k .  
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Figure 13 – Shape of the rate of displacement (log scale) x time (log scale) curve. 

 

On the other hand, the effect of the initial viscous component, " # 
v
 ( " # 

v
=#

1
$ " # 

1sA
), on 

Equation (31) is such that, having all the other parameters the same, the curve is 

displaced in the way showed in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Shape of the rate of displacement (log scale) x time (log scale) curve for 

different values of " # 
v
 and same E. 

 

The reason for having both the creep and the stress relaxation processes the same ˙ x 
s
 

(log scale) x t (log scale) curve shape is that, in the light of the model, the “imperfect” 

stress relaxation process occurs because of the actual rigidity of the system combined 

to a creep process. If the “perfect” stress relaxation process were to occur, the stresses 

would have to decrease instantaneously in the soil as well as in the system. Because 

the actual rigidity/compressibility of the system, the stress decrease leads to a 

variation in strain in both the system and in the soil. Therefore, some strain would 

have to occur in the soil for a zero period of time. In other words, the rate of 

displacement would be infinite, leading to an infinite viscous resistance, which cannot 

happen. The instantaneous decrease in stress is prevented by the viscous resistance, 

˙ x 
s
 (log scale) 

 

t  (log scale) 
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which continues to be mobilized at the beginning of the stress relaxation process. The 

viscous resistance “holds” the stress decrease, by means of having a strain rate. As 

time passes both the system and the soil deform, making the system and the “solid” 

stress to gain part of the viscous component. When this happens, the viscous 

component decrease by means of a decrease in the strain rate. The process continues 

until all the viscous component is transferred to system and soil and the strain rate 

drops to zero at the “zero” strain rate line. The proportion of the viscous component 

gained by the “solid” component and the system is related to the rigidity of the system 

and the edometric modulus of the soil. If the system is far more rigid than the soil, a 

greater proportion of the viscous component goes to the system, otherwise, the soil 

receives a greater proportion of the viscous component. 

 

Although not easily identifiable, the presence of creep can be seen on Equation (30), 

which is the solution of the differential equation of the “imperfect” stress relaxation 

process. A typical plot of the development of displacements in the soil specimen 

through time in both arithmetic and logarithm scales are presented below. 

 
Figure 15 – Strain x time curve – Arithmetic scales. 

 
Figure 16 – Strain x time (log scale). 
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This pattern of deformation resembles the latter portions of the curves of the long-

term consolidation tests carried out by Martins (1997), on the latter portions of the 

curves of the long-term consolidation tests and drained creep triaxial tests carried-out 

by Bishop and Lovenbury (1969) or on undrained creep triaxial tests carried out by 

Christensen and Wu (1964). 

 

Finally, it must be said that, because at the “end” of primary consolidation the excess 

pore-pressure is almost zero, the solution of the differential equation could be 

represented in terms of total stresses. The solution of the “imperfect” stress relaxation 

process in terms of total stress can be obtained using the left-hand side of Equation 

(29) combined to Equation (30).  

 

Predictions 

 

The soil tested  

 

The site where the samples for the testing were taken is located in the Barra da Tijuca 

area, in Rio de Janeiro, Brazil. 

 

The soil profile at the site consisted of a 3 m layer of peat followed by 10 m of a very 

soft organic clay, which in turn is underlain by 3 m of compact sand and residual soil. 

The ground water table was encountered at the ground surface. 

 

The soil tested was a very soft dark grey organic clay containing shell fragments 

obtained from a depth of 4 m below ground surface using an Osterberg sampler with a 

length of 900 mm and a diameter of 125 mm. For this soil, Liquidity Limit varied 

from about 163 % to 314 %, Plastic Limit varied from about 36 % to 140 %, Specific 

Gravity varied from 2.3 to 2.6 and Natural Water Content varied from about 132 % to 

249 %. Pre-consolidation pressure was about 20 kPa.  

 

Regarding the tests carried out by Garcia, the initial conditions were as shown in the 

table below: 

 

Test Number Water Content (%) Total Unit Weight (kN/m
3
) Void Ratio 

01 194 12.5 5.05 

02 185 12.8 4.75 

03 165 12.9 4.29 

04 178 12.8 4.59 

06 175 13.0 4.44 

Table 1 – Initial Conditions of the tests specimens. 

 

All the tests were conducted in a room with temperature control (20±1.5)
o
 C and 

water collected from the same borehole as the sample was used in the tests in order to 

avoid problems related to the chemistry of the water and the adsorbed double layer. 

Saturation degree was essentially 100 % for all test specimens. 

 

Assessment of the parameters of the model 
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The figure below shows the lines of equal strain rates obtained by Garcia (1996) from 

the data of the stress relaxation and secondary consolidation tests carried out by him 

as well as the assessed zero strain rate line. 

 

 
Figure 17 – Lines of equal strain rates for the Barra da Tijuca clay. 

 

Based on Martins’s experience on the Sarapui River clay, the “end” of secondary 

consolidation line can be considered to lay approximately at an OCR of about 2.2 

from the “end” of primary line. This line is also presented on Figure 17.  

  

Once assessed the zero strain rate line, the initial solid normal effective stress, " # 
1s

, and 

its respective edometric modulus, E
ed

, can be assessed for each stress relaxation test. 

Table 2 below presents these values. 

 

Test Relaxation Stage (kPa) "#
1s
kPa) E

ed
kPa) 

01 50 

02 50 

03 50 

04 50 

22.7 114.3 

01 100 

04 100 
45.5 378 

01 200 

04 200 
90.9 965 

01 400 181.8 1626 

Table 2 – Assessed " # 
1s

 and E
ed

 for each stress relaxation test. 

 

As the zero strain rate line is associated with the solid component of the normal 

effective stress, the viscous component, for a given strain, can be assessed by 

subtracting the solid effective stress from the effective stress for a curve with a given 

strain rate. With the viscous components and their respective strain rates, the viscous 

component function can be assessed. 
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This assessment resulted in the following viscous effective stress function for the 

range of consolidation stresses of the stress relaxation tests.  

 
Figure 18 – Assessed viscous function. 

 

For carrying out the predictions of the stress relaxation tests, the only missing 

component is the rigidity of the system. This can be done based on the figure below. 

 
Figure 19 – Compression curve showing the stress relaxation tests. 
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With the variation in strain and the variation in normal stress experienced at each 

stress relaxation test and with the dimensions of the consolidation apparatus the 

equivalent k  values were assessed. For the consolidation apparatus used, lp =1.00m , 

lpr = 0.535m , l
s
= 0.10m , A

s
= 0.004m

2  and H
s

= 20mm  (initial value of the 

thicknesses of the samples at the start of the consolidation tests). Table 3 below 

presents the k value for each test.  

 

Test Relaxation Stage (kPa) k kN /m)  
01 50 72.7 

01 100 153.0 

01 200 245.5 

01 400 417.0 

02 50 198.7 

03 50 12.6 

04 50 50.0 

04 100 26.14 

04 200 381.9 

Table 3 – Assessment of the rigidity of the system. 

 

With the parameters of the model as assessed above, the following predictions were 

made using Equation (33). 
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Figure 20 to 28 – Prediction for the relaxation tests carried by Garcia (1996). 

 

Another comparison between predictions and tests results can be made if 

displacements are measured during stress relaxation. The following plot shows the 
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comparison between the rate of displacement x time from prediction and from the 

available tests data from Garcia (1996). 
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Figure 29 to 35 – Comparison of rate of displacement x time for available data from 

Garcia (1996). 

 

Discussions 

 

Viscous Component 

 

As can be seen on Figure 18, the power law function adjusts well to the experimental 

data relative to the viscous components, as the coefficient of correlation demonstrates. 
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In addition, it can be shown that all the viscous component functions can be 

normalized as assumed in the model. The normalized viscous component function for 

this clay is: 

 

" # 
1v

" # 
1s

=13.698 $ ˙ % 0.1835 with R2 = 0.974    (36) 

 

Rigidity of the System 

 

Garcia (1996) mentions the use of load cells and proving rings but he does not 

indicate which one was used for each test or its characteristics.  

 

Although a more detailed discussion about the rigidity of the system is not possible 

for the reasons explained above, plots of variation of the force in the load cell/proving 

ring x displacement of the top surface of the soil specimens show that some 

accommodation occurs during the stress relaxation. However, the hypothesis of a 

constant k  was found to be reasonable. In addition, as can be seen on Table 2, k  

varies from test to test. This probably reflects the rigidity of the entire system and not 

only the rigidity of the load cell or proving ring used.  

 

 

Predictions of the “Imperfect” Stress Relaxation Tests 

 

As can be seen of Figures 20 to 28, except for the Relaxation Stage from 50 kPa of 

Test 02, in general, the predictions and tests results are in good agreement both 

qualitatively and quantitatively. 

 

In addition, as can be seen in Figures 29 to 35 there is good agreement between the 

rate of displacement x time plots of predictions and tests results.  

 

Although both the predictions and tests results curves present themselves initially 

convex, becoming concave in the latter part of the curves, the tests results curves are 

smoother than the prediction curves. The reason for this is unknown, although it is 

suspected that the discrepancy may be related to the following: 

 

- The viscous component function: The power law function, although it fits the 

experimental data well, may not be representative for strain rates below 1x10
-9

 

s
-1

. In other words, perhaps a better function for representing the viscous 

component may improve the predictions; 

- The rigidity of the system: The variation of the rigidity of the system during 

the tests (although not very significant) may have an impact on the predictions 

as it was assumed a constant k  for each stress relaxation test; 

- The assumption related to the rheological behavior of the model: Equation 

(20) can be seen to be similar to the equation of a Kelvin-Voigt model, 

although with a non-linear viscous function. Therefore, the discrepancies may 

be related to a missing element (i.e. a missing spring or dashpot in series or 

parallel);  

- The assumption regarding " # 
3v

: As the radial strains are prevented in the 

edometer, there are no strain rates in the radial direction in macroscopic terms. 

Therefore, the effective normal stress is assumed equal to " # 
3s

 throughout the 

entire process. However, in microscopic terms, there may be a " # 
3v

. If there is 
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" # 
3v

, the differential equation obtained may be considered approximate in this 

regard and a more “exact” equation may be able to provide better predictions. 

 

In face of the reasons mentioned above, more experimental and theoretical research is 

necessary.  

 

Additional Discussions 

 

The Coefficient of earth pressure at rest, K
0
 

 

The last of the reasons for explaining the difference between predictions and tests 

results is related to the discussion about the variation of the coefficient of earth 

pressure at rest with time and, as shown by Schmertmann (1983), no definitive answer 

exists yet for this question. 

 

As per Equation (11), K
0
=

"#
3

"#
1

=
"#
3s

+ " # 
3v

" # 
1s

+ " # 
1v

. Therefore, as the viscous component of 

the normal effective stress vary in time, K
0
 is expected to vary in time as well. 

 

In this study, as in macroscopic terms there is no strain rate in the radial direction, it is 

assumed that "  
3v

= 0. Assuming that there is a K
0
 line where the strain rate is equal 

to zero, just like the zero strain rate compression line, it can be assumed that for this 

line: 

 

 

K
0s

=
" # 
3s

" # 
1s

      (37) 

 

In other words, K
0s

 is independent of time. Equation (11) can be combined to 

Equation (37) to produce the following equation. 

 

K
0
=
K
0s
" #$

1s
+ 0

# $ 
1s

+ # $ 
1v

=
K
0s
" # $ 

1s

# $ 
1s

+ # $ 
1v

     (38) 

 

Considering stress relaxation first, as " # 
1s

 remains approximately constant throughout 

the process while " # 
1v

 drops to zero, K
0
, according to equation (38) is expected to 

increase with time to the value K
0

= K
0s

=
K
0s
" # $ 

1s

# $ 
1s

=
# $ 
3s

# $ 
1s

. 

 

On the other hand, during secondary consolidation, " # 
1

= " # 
1s

+ " # 
1v
$#

1
 remains 

constant throughout the process as the viscous component is entirely transferred to the 

solid component. Because " # 
1s

 increases and " # 
1v

 decreases with time while "# 
1
 remains 

constant, the denominator of Equation (38) remains constant while the numerator 

increases with time. Therefore K
0
 increases with time during secondary consolidation 

as well. The expression for the variation of K
0
 with time can be obtained by 

combining equations (18), (19), (25), (26), (30), (31) and (38).A schematic plot of K
0
 

with time is presented in the figure below: 
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Figure 36 – Schematic representation of the variation of K

0
 during secondary 

consolidation with time according to Equation (38). 

 

As "# 
1
 remains constant while " # 

3
= " # 

3s
 is increasing during secondary consolidation, 

the shear stresses are relaxing with time, as suggested by Taylor and Merchant (1940). 

 

This trend of increase of K
0
 as a consequence of the model appears to be in 

agreement with the experimental data from Lacerda (1976) and from Kavazanjian and 

Mitchell (1984). 

 

On the other hand, if a strain rate and a viscous component are considered to exist in 

microscopic terms in the radial direction it can be shown that K
0
 decreases. For this 

case, considering that the edometric condition could be seen (in a very simplified 

way) equivalent to a process where first the sample deforms under a drained 

deviatoric stress condition followed by a radial drained compression that would lead 

to zero radial strain, K
0
 assumes the following equation: 

 

K
0

=
" # 
3

" # 
1

=
K
0s
$ " # 

1s
+ % n

$ " # 
1v

" # 
1s

+ " # 
1v

    (39) 

 

Where "  is the drained Poisson ratio and n  is the exponent of the power function that 

represents the viscous component of the normal effective stress.  

 

Although a viscous component is considered to exist in microscopic terms in the 

radial direction, for this case, the differential equation (29) and its solution remain 

unaltered. 

 

Experimental evidences showing the decrease of K
0
 with time also exists (i.e. Santa 

Maria, 2002). 

 

The results shown in Santa Maria (2002) and well as the ones obtained by Lacerda 

(1976) and Kavazanjian and Mitchell (1984) may not be confirmed or refuted as some 
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deformation always occurs in these tests in the radial direction. As the deformation 

occurs in time, a strain rate and viscous component will always exists, possibly 

leading to the observations made by the investigators. Although no definite 

conclusion can be reached at the present it is possible that the model developed by 

Martins (1992) may have the tools for clarifying this problem. 

 

Although it is not possible to conclude if K
0
 will increase or decrease during 

secondary consolidation, it is possible to show that the solid octahedric effective 

stresses increase, which is consistent with the decrease in volume that occur during 

secondary consolidation. 

 

Despite of the problem regarding the possible increase or decrease ofK
0
, as shown by 

Equations (38) and (39), it is our opinion that K
0
 increases with time during 

secondary consolidation. For a discussion about these reasons the reader is referred to 

Lacerda and Martins (1985). 

 

Stress Relaxation Under Triaxial Conditions 

 

In order to explain the mechanics of the stress relaxation in the triaxial apparatus it is 

first necessary to explain what would happen in CIU test in a saturated normally 

consolidated clay in agreement with the model developed by Martins (1992).  

 

A Conventional CIU Test in a Normally Consolidated Clay according to Martins’s 

Model 

 

In a CIU test the soil is sheared at a given strain rate with closed drainage (constant 

void ratio for a saturated clay) after been consolidated to a given consolidation 

pressure, " # 
c
. As the strain rate is constant, plots of strain versus time and strain rate 

versus time of a typical test would be the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 37 and 38 – Plots of strain x time and strain rate x time for constant rate of 

strain test 

 

It is important to note that at the beginning of the test, at point A of the above plots, 

although the strain is zero, the strain rate is not zero. Therefore, as both strain rate and 

void ratio remains constant throughout the shearing phase, the viscous resistance 

would be fully mobilized at the start of the test and would remain constant throughout 

! 

time 

A 

time 

strain rate 

A 
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the entire test (assuming that the coefficient of viscosity, " e) , is independent of the 

shear strains).  

 

On the other hand, as the frictional resistance is assumed to be a function of the shear 

strain only and as the clay is assumed to be normally consolidated, it would increase 

from zero (for " = 0) at the beginning of the test to a maximum value at failure for a 

given shear strain, " f . 

 

The resultant deviatoric stress x strain curve is obtained combining the viscous and 

the frictional resistances. As the viscous resistance is instantaneously mobilized, the 

initial part of the stress-strain curve would be a vertical line coinciding with the 

deviatoric stress axis. From this point on, the frictional resistance is mobilized, from 

zero for shear strain equal to zero to a maximum value at failure, for strain equal to 

" f . The following plot illustrates the deviatoric stress x strain curve for two tests 

consolidated to the same consolidation pressure but sheared with two different strain 

rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 – Deviatoric stress x strain for two tests with different strain rates. 

 

The curve with strain rate equal to zero is the curve that would be obtained provided a 

test specimen consolidated to the same consolidation pressure as the other two tests 

and with strain rate equal to zero could be carried out. For this curve, as the strain rate 

is null, no viscous resistance exists, and therefore all resistance is of frictional nature. 

The instantaneous mobilization of viscosity for tests with strain rates ˙ " 
1
 and ˙ " 

2
are 

represented in the figure by segments OA1 and OA2, respectively.  The deviatoric 

stress x strain curve for strain rate equal to zero is similar in concept to the zero strain 

rate compression curve and to the K
0
 with zero strain rate (K

0s
). They all represent 

the component of the behavior of the material that does not depend on the strain rate.  

 

The behavior of the pore-pressure would be similar to the behavior of the frictional 

resistance, that is to say that the pore-pressure increases from zero (for " = 0) at the 

beginning of the test to a maximum value at failure for a given shear strain. As the 

pore-pressure is assumed to be independent of the strain rate, any test, irrespective of 

the strain rate with which was carried out would develop the same pore-pressure 

curve. Therefore, for the tests with strain rates ˙ " 
1
 and ˙ " 

2
represented above, the 

following unique pore-pressure x strain curve would be obtained. 
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Figure 40 – Pore-pressure development during shear 

 

The hypothesis of the pore-pressure as an unique function of strain is consistent with 

the proposition and findings of Lo (1969a, 1969b) and the observation of Lacerda 

(1976). However, other investigators such as Richardson (1963), Richardson and 

Whitman (1963), Ladd et al (1972), Hight (1982), Berre and Bjerrum (1973) and 

others, as shown in Sheahan et al (1996), have observed an increase in pore-pressure 

during shear with the decrease in strain rate. In this regard, it is believed in the present 

work that the increase in pore-pressure during shear with decreasing strain rate is 

related to the arrest of secondary consolidation as observed by Arulanandan et al 

(1971).  

 

This increase of pore-pressure with time will also be addressed in this paper after the 

next section. 

 

The mechanism of the Stress Relaxation test under triaxial conditions 

 

In general a stress relaxation carried out in the triaxial apparatus begins as a regular 

consolidated undrained triaxial test sheared at a given strain rate and after a given 

strain is reached the triaxial press is stopped. From this point on, the specimen is 

maintained approximately at a constant strain state while the stress decays with time.  

 

According to Martins’s model, if the rigidity of the system were infinite, the stress 

decay would have to be instantaneous. However this does not happen and the stress 

decay occurs in time. Having in mind the edometric case it is possible that the stress 

relaxation under triaxial conditions occurs in time because of the rigidity of the 

system as well. 

 

As in the edometric case, follows that the deviatoric stress can be written as: 

  

"
1
#"

3( ) = $ " 
1s
# $ " 

3s( ) + $ " 
1v
# $ " 

3v( )    (10 bis) 

 

Assuming that the solid deviatoric stress can be represented by (without implying 

elastic behavior): 

 

 
˙ "  

! 

u 

" f  

Independent of the strain rate in 

accordance to Lo (1969a, 1969b) 
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 " # 
1s
$ " # 

3s( ) =#
dsA

+ E %& =#
dsA

+ E % x
s
/H

s( )    (40) 

 

Where: 

 

"
dsA

is the solid effective stress at the beginning of the stress relaxation test; 

E  is a modulus (assumed to be constant within a stress range); 

x
s
 is the vertical displacement experienced by the soil specimen; and 

H
s
 is the height of soil specimen. 

 

And that the viscous stress difference can be written as: 

 

"#
1v
$ "#

3v
= K % ˙ &n

= K % ˙ x 
s

H
s

n

             (41) 

 

Equation (10) be re-written as: 

 

"
1
#"

3( ) ="
dsA

+ E $ x
s

H
s( ) + K $ ˙ x 

s
H

s( )
n

    (42) 

 

Considering also that the rigidity of the system is such that is can be represented by: 

 

F = k " x
s
      (43) 

 

The deviatoric stress applied to the soil specimen can be represented by: 

 

"
1
#"

3
="

dA
# k $ x

s
/A

s
     (44) 

 

Where: 

 

A
s
 is the area of the cross section of the soil specimen; and 

"
dA

 is the initial deviatoric stress at the beginning of the stress relaxation. 

 

Therefore the differential equation of the “imperfect” stress relaxation process under 

triaxial conditions is: 

 

"
dA
# k $ x

s
/ A

s
="

dsA
+ E $ x

s
H

s( ) + K $ ˙ x 
s

H
s( )

n

   (45) 

 

Equation (45) is similar to Equation (29) developed for the “imperfect” stress 

relaxation process under edometric conditions.  

 

For t = 0, at the beginning of the “imperfect” stress relaxation process follows that 

x
s

= 0, F = 0  and ˙ x 
s

= H
s
"
#
dA
$#

dsA

K

% 

& ' 
( 

) * 

1

n

. Using the new auxiliary functions below: 

A = "
dA
#"

dsA( , B =
k

A
s

, C =
E

H
s

, " B = C + B( )  and D = K "
1

H
s

# 

$ 
% 

& 

' 
( 

n

 

Follows that the solution of the differential equation is Equation (30) reproduced 

below: 

 



 41 

x
s
t( ) =

A

" B 

# 

$ 
% 

& 

' 
( )

D

" B 

# 

$ 
% 

& 

' 
( *

1

D

A

# 

$ 
% 

& 

' 
( 

1)n

n

# 

$ 
% 

& 

' 
( 

+
1) n

n

# 

$ 
% 

& 

' 
( 

" B * t

D

+ 

, 

- 
- 

. 

/ 

0 
0 

n

1)n

# 

$ 
% 

& 

' 
( 

   (30 bis) 

And the expression for the rate of displacement is also Equation (31) reproduced 

below as well: 
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    (31 bis) 

Also, the stress decay function shown below will be similar to Equation (33): 
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(46) 

 

Where t is the time since the beginning of the stress relaxation process. 

 

The second term to right of the equal sign in Equation (46) is the variation in the solid 

component of the deviatoric stress that occurs during the process. The last term to the 

right of the equal sign in Equation (46) is the stress decay in the viscous component of 

the deviatoric stress. 

 

Substituting t = 0 in Equation (46) follows that: 

 
" # 0( =#

dA
      (47) 

 

Which is the initial stress condition at the beginning of the “imperfect” stress 

relaxation process and is independent of the rigidity of the system. Evluating the limit 

when t"#  in Equation (46) follows that: 

 

lim " # t( )
t$%

=#
dsA

+
E

H
s

& 

' 
( 

) 

* 
+ ,

#
dA
-#

dsA

E

H
s

+
k

A
s

& 

' 

( 
( 
( 
( 

)

*

+
+
+
+

    (48) 

 

If the system were “perfectly” rigid, which no actual system is, the process would be 

instantaneous. The effect of the rigidity of the system can be assessed by making all 

the other variables constant and varying k  on Equation (46). The greater the rigidity 
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the faster the process. Making k"#  on Equation (48) yields " # =#
dsA

, which is in 

accordance to the model. 

 

The equations above can be used for predicting the “imperfect” stress relaxation 

process provided the viscous and solid components of the effective stress as well as 

the rigidity of the system are known.  

 

It is worth noting that because the differential equation was developed in terms of 

deviatoric stresses the pore-pressure does not influence the process and need not to be 

accounted for. 

 

As there is no stress relaxation campaign in the published literature where all the 

elements required for making predictions can be assessed, no prediction could be 

made at the moment to assess the validity of the proposed equations. However, a 

preliminary check can be made by using Equation (31) and Test 26 carried out by 

Taylor (1955) in the same way the comparison for the rate of displacement x time plot 

was made for the available data from Garcia (1996). 

 

This is only possible because Taylor used a proving ring and measured displacement 

as well as force during the stress relaxation. The data presented in the figure below 

comes from Figure 17 of Taylor (1955). 

 
Figure 41 – Stain rate x time plot for Test 26 carried out by Taylor (1955). 

 

As can be seen on the figure above the strain rate x time curve when plotted in a bi-

log scale presents itself initially slightly convex and the later portion of the plots is 

approximately linear. Fitting a straight line through the 8 last points as shown by the 

dashed line in Figure 41, it is possible to calculate the value of n . As the slope of this 

line is about -1.05, n  can be assessed to be about 0.048. This n value however should 

be considered as an exercise only, as it was assessed based on a single stress 

relaxation test that lasted for less than about 4,000 minutes. 
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As this test is the only that can provide some data that can be interpreted in the light 

of the concepts presented in this paper, it is premature to present conclusions about 

the applicability of the model regarding stress relaxation under triaxial conditions. 

The only conclusion that can be made is that the strain rate x time curve has a similar 

shape as Equation (31) and therefore the model may also be able to explain the stress 

relaxation under triaxial conditions. 

 

In order to better investigate the applicability of the proposed equations is necessary 

to carry out more stress relaxation tests where the rigidity of the system is assessed 

and the displacements of the specimen during the process are measured.  

 

One may argue that the system rigidity should be as high as possible in order to 

approximate the tests conditions to the theoretical condition of the “perfect” stress 

relaxation condition. By doing so, although getting closer to the perfect condition, the 

ability to measure accurately the stress decay decreases with increasing rigidity. In 

addition, no real structure/material have infinite rigidity, and because of this reason, 

the “imperfect” stress relaxation can be seen as more representative of an actual 

engineering problem.  

 

The tests also need to last longer in order to observe if the last portion of the 

deviatoric stress x time plot is concave and asymptotic to a limiting (stationary) value 

as predicted by the equations.  

 

Stress Relaxation Under Hydrostatic Conditions 

 

Stress relaxation tests as the ones carried out by Arulanandan et al (1971), Holzer et 

al. (1973), Thomasi (2000), Dos Santos (2006) and Lima (1993) may also be 

interpreted using the framework of the model developed by Martins (1992) as 

modified by Alexandre (2000).  

 

As mentioned in the previous sections, it is suspected that the rigidity of the system is 

responsible for the stress relaxation to occur through time. The comparison of the 

predictions and the test data carried by Garcia (1996) and the strain rate x time curve 

of Test 26 carried by Taylor (1955) support this tentative conclusion.  

 

Having this in mind, it is possible that the stress relaxation under hydrostatic 

conditions may be due to the effect of the rigidity of the system. In this case, however, 

the responsible may be the water that fills the voids of the soil as it will be explained 

below. 

 

The hydrostatic stress relaxation test as carried by Arulanandan et al. (1971) have two 

stages. The first state is the hydrostatic consolidation and the second stage is the 

closing of the drainage line and the observation of the pore-pressure build-up with 

time.  

 

If, after the “end” of primary consolidation, the drainage line was not closed, the soil 

would be allowed to undergo secondary (hydrostatic) consolidation and the process 

would end in the same way the edometric secondary consolidation in accordance to 

the model ends: by transferring the viscous component entirely to the solid 

component of the effective stress and reaching the zero strain rate hydrostatic 
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compression line. However, when the drainage is closed, the viscous component 

cannot transfer to the solid component and nor can it transfer to the total stress, which 

is held constant. Therefore the viscous component of the hydrostatic effective stress 

has to be transferred to the pore-pressure.  

 

In detail the process would be the following: 

 

After the “end” of primary consolidation, the excess pore-pressure is approximately 

zero and the soil is undergoing secondary consolidation at an ever decreasing strain 

rate until, in accordance to Martins’s model, the process stop at the zero strain rate 

line (the end of secondary consolidation line). Therefore, if the drainage is closed at a 

point in time after the “end” of primary consolidation, having the soil specimen a 

volumetric strain rate just before that, the soil will posses a viscous hydrostatic 

component of the effective stress.  

 

After the drainage is closed, the volumetric strain rate has to drop to zero immediately 

and so the viscous hydrostatic component. As the total stress is held constant it cannot 

increase in time. On the other hand, because the solid component of the effective 

stress is a function of the void ratio this component cannot change as well. Therefore 

the pore-pressure has to increase to the same magnitude of the viscous component of 

the hydrostatic effective stress at the moment the drainage is closed.  

 

Again, according to Martins’s model (1996), the normal effective stress decay (and 

the pore-pressure build-up) is predicted to be instantaneous, what does not occur. 

Therefore, for the pore-pressure to build-up in time, in accordance to the mechanisms 

developed for the edometric and triaxial stress relaxation process, there must be some 

rigidity in the system that makes the process develop through time. It is suspected that 

the compressibility of the water is responsible for this effect. 

 

Considering that the build up in pore-pressure is related to the change in the volume 

of water as below: 

 

"u =
"vw

v
0
# n

s
#Cw

=
$
vol

n
s
#C

w

     (49) 

 

Where: 

 

"u  is the variation in pore-pressure; 

"v
w

is the variation in the volume of water; 

v
0
is the initial volume of the soil specimen before closing the drainage; 

"
vol

=
#v

w

v
0

 is the volumetric strain under undrained conditions. 

n
s
 is the porosity of the soil specimen; and 

C
w

is the compressibility of the water that fills the voids of the soil specimen. 

 

Considering also that the change in the solid hydrostatic component of the effective 

stress is proportional to the change in volume of the soil specimens as below: 
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      (50) 

 

Where: 

 

" #$ 
s
 is the variation in the solid hydrostatic component of the normal effective stress; 

"v  is the variation in the volume of the soil specimen; 

v
0
is the initial volume of the soil specimen before the closing of the drainage; and 

C
ss

 is the compressibility of the soil specimen. 

 

And that the equation that relates total stress, effective stress with its two components 

(the solid and viscous components) and the pore-pressure can be expressed by: 
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s
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v
� u     (51) 

 

The differential equation of the hydrostatic stress relaxation process can be 

represented by: 
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    (52) 

 

Where the viscous hydrostatic component of the effective stress can be represented by 

a power law of the volumetric strain rate, ˙ " 
vol

. Assuming that the very small variation 

in volume of the soil specimen (under undrained conditions) is due to the equally 

small variation in volume of the water under the excess pore-pressure u , follows that 

Equation (52) can be re-written as: 
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Where: 

 

e  is the void ratio; and 

"
vol

=
#v

ss

v
0

=
#v

w

v
0

 is the volumetric strain under undrained conditions. 

 

The solution of Equation (53) is: 
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Where: 

 

Eeq =
1

Css

+
e +1( )
e "Cw

 is the “equivalent” deformation modulus; and 
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" # 
si
 is the initial value of the solid hydrostatic component of the normal effective 

stress at the moment of closing the drainage. 

 

The strain rate expression for the hydrostatic case is: 
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   (55) 

 

Equations (54) and (55) are the expressions of the volumetric strain and volumetric 

strain rate versus time and are similar to the displacement and rate of displacement 

versus time expressions of the previous triaxial and edometric cases.  

 

Considering that "
vol

=
#v

ss

v
0

=
#v

w

v
0

, the expression of the pore-pressure build-up in 

time, obtained from combining Equations (54) and (49), is given below: 
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 (56) 

 

 Typical plots of pore-pressure build-up in time according to the Equation (56) with 

arithmetic and log scales for the time axis are presented below: 
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Figures 42 and 43 – Pore-pressure build-up x time in arithmetic and log scales. 

 

The plots presented in Figures 42 and 43 are similar to Figures (15) and (16) for the 

strain x time plot of the creep process. 

 

Equation (56) could be used to predict pore-pressure build-up in time provided the 

viscous and solid components of the hydrostatic effective stress as well as the 

compressibility of the water are known. However, considering the published tests 

available in the technical literature, in addition to the lack of information that could be 

used for deriving the required parameters, the following three difficulties arise: 

 

- The assessment of the compressibility of the water: As shown in Fredlund 

(1976), the compressibility of the water containing only 1% of dissolved gas is 

3 orders of magnitude less than the compressibility of the water with no 

dissolved gas; 

- Non-uniformity of the viscous normal effective stress after consolidation: 

After the “end” of primary consolidation when the drainage is closed, there 

will be a distribution of void ratio across the sample, where smaller void ratios 

are expected near the drainage frontier and greater void ratios as expected at 

the “undrained” axis (case of cylindrical specimens) or plane. In addition, the 

strain rates will also vary across the specimen when the drainage is closed and 

therefore it is likely that the viscous effective stresses are unevenly distributed 

across the specimen. As the pore-pressure has to be the same everywhere in 

the specimen when the stationary pore-pressure is reached, it is expected that 

the build-up process will be even more delayed the greater the dispersion of 

the “local” viscous component is in relation to the average or “global” viscous 

component; and 

- The occurrence of diffusion: Diffusion of water through the latex membrane 

occurs due to the difference in water pressure on opposite sides of the 

membrane.  
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The last of the difficulties may be overcome by using “mercury jackets”/”mercury 

sleeves” or the like. The effects of the second difficulty listed above may be reduced 

by making two build-up stages. The first stage is expected to last considerably more 

than the second, as after the first stage, the viscous component of the effective stress 

is likely more evenly distributed. The first difficulty is, however, the more 

problematic, as with a quantity of dissolved gas as little as 1% the compressibility of 

the water drops 3 orders of magnitude.  

 

Because of the reasons explained above, predictions of the pore-pressure build-up 

may be very difficult to make. Despite of this, a check similar to the one done for 

Tests 26 carried out by Taylor (1955) can be made.  

 

Although the measurement of the change in volume expected for the water during the 

pore-pressure build-up is not feasible, the rate of increase in pore-pressure may be 

used for this matter.  

 

As can be seen on Equation (49) the build-up in pore-pressure is directly proportional 

to the volumetric strain of the water under undrained conditions and inversely 

proportional to the porosity of the specimen and the compressibility of the water. 

Therefore, because of Equation (49), the volumetric strain rate is directly proportional 

to the rate of increase of pore-pressure in time. In other words, a plot of du dt (log 

scale) x time (time in log scale) similar in shape to the plot of the variation of the 

strain rate (or rate of displacement) x time as represented by Figures 29 to 35 (the 

tests from Garcia, 1996) and Figure 41 (Test 26 from Taylor 1955) must exist for 

Equation (53) to be valid.  

 

This was done for one test carried out for one by Arunalandan et al (1971) and 

another carried out by Holzer et al. (1973). These two tests were selected for this 

assessment as they were carried out using a mercury sleeve, which prevents the 

process of diffusion from occurring. They were also carried out on the same soil, the 

San Francisco Bay Mud. 

 
Figure 44 – Plots of du/dt (log scale) x time (log scale) for the tests carried out by 

Arunalandan et al (1971) and Holzer et al. (1973). 
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As can be seen, Figure 44 resembles Figure 14 corroborating the impression that the 

pore-pressure increase through time can be explained by the model proposed by 

Martins (1992) as modified by Alexandre (2006) when the “rigidity” of the system is 

taken into account (in this case is the inverse of the compressibility of the water).  

 

As the compressibility of the water that fills the voids of the soil is expected to be 

similar for these tests carried on the San Francisco Bay Mud, it would be expected 

that the du/dt (log scale) x time (log scale) curves would line up one on “top” of the 

other as they did.  

 

Furthermore, as the stabilized pore-pressure from the test carried out by Arunalandan 

et al. (1971) is greater than the one from the test carried by Holzer et al. (1973), it 

would be expected that the du/dt (log scale) x time (log scale) curve from 

Arulanandan et al. (1971) would be displaced along the “straight” line but would be 

higher than the curve from Holzer et al. (1973), as it did as well. Fitting a straight line 

as shown by the dashed line in Figure 44, it is possible to calculate the value of n . As 

the slope of this line is about -1.4, n  can be assessed to be about 0.284. This n value 

however should be considered as an exercise only, as it was assessed based on two 

tests. 

 

Despite of this agreement between the model and the experimental data, more 

hydrostatic and other undrained stress relaxation tests such as the ones mentioned in 

the previous sections are necessary for better assessing the applicability of the 

proposed equation. These tests are recommended to be designed to account for the 

possible problems listed in this section and are also recommended to last longer in 

order to better define the latter portion of the stress relaxation x time and pore-

pressure variation x time plots.  

 

 

Summary 

 

In regard to the predictions made for the “imperfect” stress relaxation tests carried out 

by Garcia (1996) the following may tentatively be concluded: 

 

- The power law function of the strain rate for representing the viscous 

component of the effective stress seams to fit well the experimental data; 

- The stress relaxation process occurs through time because of the 

rigidity/compressibility of the system and because of the occurrence of creep; 

- The predictions made agree reasonably well with the experimental data both 

qualitatively and quantitatively;  

 

In regard to the model developed by Martins (1992) and the modification proposed by 

Alexandre (2006): 

 

- The framework of the model is based on physical reasoning and allows for a 

unified approach for describing time-dependent processes such as creep and 

stress relaxation under various stress and drainage conditions; 

- The zero strain rate lines (for edometric or hydrostatic and other lines) are the 

lines that limit the time-dependent processes. This concept, developed by 
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Martins, which was verified experimentally for several clays, allows for the 

prediction of limit pore-pressure increase and limit deformations in the soil 

mass putting an end to time-dependent processes; 

- The creep and the “perfect” stress relaxation processes can be seen as 

particular cases of the general “imperfect” stress relaxation process. In this 

view, by making negligible the rigidity, the approximate creep process is 

obtained. By making infinite the rigidity, the “perfect” stress relaxation 

process is obtained. More importantly, the rigidity of the system, which is 

always present in actual engineering applications was considered and 

incorporated in analysis of time-dependent processes such creep and stress 

relaxation. 

 

In regard to the conjectures developed in this paper: 

 

- Two expressions forK
0
as a function of the viscous and solid components of 

the effective stress were developed. In the first equation, where no 

macroscopic lateral deformation is considered for the edometric compression, 

K
0
is expected to increase both during secondary consolidation and stress 

relaxation. In the second equation, where the microscopic deformation of the 

soil specimen under edometric compression is considered, K
0
 is expected to 

decrease both during secondary consolidation and stress relaxation; 

- The differential equations of the “imperfect” stress relaxation tests under 

triaxial and hydrostatic (undrained) conditions were obtained as well their 

respective solutions; 

- Experimental data from Taylor (1955), Arulanandan et al. (1971) and Holzer 

et al. (1973) seem to corroborate the impression that the model proposed by 

Martins (1992) as modified by Alexandre (2006) can be applied for explaining 

the stress relaxation under triaxial and hydrostatic conditions; 

 

Despite of the promising preliminary assessment carried out for the proposed equation 

for the triaxial and hydrostatic stress relaxation processes, more, longer and specially 

designed stress relaxation tests are required for a better assessment of the validity of 

the proposed equations. The basic requirements of these tests were outlined in this 

paper.  
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