
HAL Id: hal-00879835
https://hal.science/hal-00879835

Submitted on 5 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Step Control and Threshold Crossing Detection in
SystemC AMS 2.0

Liliana Lilibeth Andrade Porras, Torsten Maehne, Marie-Minerve Louërat,
François Pêcheux

To cite this version:
Liliana Lilibeth Andrade Porras, Torsten Maehne, Marie-Minerve Louërat, François Pêcheux. Time
Step Control and Threshold Crossing Detection in SystemC AMS 2.0. Huitième colloque du GDR
SOC-SIP du CNRS, Jun 2013, Lyon, France. pp.3. �hal-00879835�

https://hal.science/hal-00879835
https://hal.archives-ouvertes.fr

Time Step Control and Threshold Crossing

Detection in SystemC AMS 2.0

Liliana Andrade, Torsten Maehne, Marie-Minerve Louërat et François Pêcheux

Laboratoire d’Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie (UPMC), Paris, France

WWW : http://www-soc.lip6.fr/, E-mail : liliana.andrade@lip6.fr

Abstract—The SystemC AMS 2.0 standard [1] published
in March 2013 by the AMS Working Group (AMSWG),
considerably extends the TDF execution semantics and pro-
poses new language constructs to support dynamic and reactive
behaviors. This paper presents two examples detailing the use-
fulness of Dynamic TDF and showing the dedicated constructs
that allow time step variations during simulation. The goal of
this paper is to demonstrate how these new capabilities im-
prove simulation accuracy while maintaining a high execution
performance by avoiding unnecessary computations.

Index Terms—SystemC AMS 2.0, Dynamic Timed Data Flow,
variable time step control, threshold detection, AMS system
modeling.

I. Introduction

The AMS extensions for SystemC [1] provide a uniform

and standardized methodology for modeling and simulation

of heterogeneous and embedded Analog/Mixed-Signal (AMS)

systems at higher levels of abstraction. They were created

in response to needs from telecommunication, automotive,

and semiconductor industries [2]. The extensions are built on

top of the SystemC Language Standard [3] and support the

different Models of Computation (MoC) shown in Figure 1.

The Timed Data Flow (TDF) MoC allows the discrete-

time modeling and efficient simulation of signal processing

algorithms and communication systems at functional and

architectural level, the Linear Signal Flow (LSF) MoC

supports the modeling of continuous-time behaviors and the

Electrical Linear Network (ELN) MoC enables the modeling

of electrical networks.

In the SystemC AMS 1.0 standard [4], the TDF MoC,

which is based on the Synchronous Data Flow (SDF)

formalism, is described as a discrete-time modeling style

that considers data as a signal, which values are sampled

with a constant time step [2]. A TDF model contains a

set of modules, which read and write a fixed number of

samples (corresponding to rates) from each of its input ports

and to each of its output ports, respectively. Fixed time

steps and rates during simulation cause difficulties when

modeling complex multi-disciplinary systems because it is

seldom necessary to change parameters such as the sampling

time step and the rate of samples consumed or produced by

a particular module during simulation. Another difficulty

is that the time management in TDF models is entirely

This work is supported by the European project CATRENE
CA701 − H-INCEPTION.

Synchronization Layer

Time-domain and small-signal frequency-domain simulation infrastructure

Static Scheduler Linear DAE solver

Custom modules

Ports

Signals

Laplace Transfer Functions

State-Space Equations

Electrical Linear

Networks (ELN)

AMS methodology-specific elements

Elements for AMS design refinement, etc.

(Dynamic) Timed

Data Flow (TDF)

Linear Signal

Flow (LSF)

Primitives

Ports

Signals

Transaction-level

modeling (TLM).

Cycle/Bit-accurate

modeling.

Etc.

SystemC

methodology-

specific elements
Primitives

Terminals

Nodes

Mixed-Signal Virtual Prototypes written by the user

SystemC Language Standard (IEEE Std. 1666-2011)

Figure 1. Architecture of SystemC AMS 2.0

under the responsibility of the user, who has to ensure

that each signal in the model is finely sampled to obtain

accurate simulation results and occasionally this can result

in a significant simulation overhead.

To address this problem, Barnasconi et al. [5] introduced

dynamic capabilities to change key properties in the TDF

models such as the time step, rate, or delay attributes of the

TDF ports and modules during execution. They presented use

cases, requirements, basic execution semantics, and language

constructs of a Dynamic Timed Data Flow (DTDF) MoC

extension. This idea was recently formalized in the SystemC

AMS 2.0 Standard [1]. The user is provided with new member

functions that allow him to dynamically change the TDF

attributes at specific times during simulation; new classes,

which enable continuous-time and discrete-time decoupling

of TDF clusters; a new template class to define the default

interpolation mechanism for the continuous-time decoupling

port; new TDF port classes and member functions to enable

event-driven TDF module activation; new members functions

to set and get the maximum timestep used in modules and

ports; new member functions to return the last timestep value

used and to return the maximum value of the simulation time.

Some of the new member functions described in the

standard [1], which allow TDF models to dynamically

manage the change of its attributes are presented below:

– accept_attribute_changes(): marks a TDF module to

accept attribute changes caused by others TDF modules,

which are part of the same TDF cluster.

http://www-soc.lip6.fr/
liliana.andrade@lip6.fr

in_val
tstep_ctrlsource out in

Figure 2. Structural composition of the time step controller

tsnext

dfin

dt

tsmax

diffmax
0

Figure 3. Representation of the linear equation used to calcule tsnext

– does_attributes_changes(): marks a TDF module to

allow it to make itself attribute changes after all

change_attributes() callbacks of the current cluster have

been executed.

– change_attributes(): provides a context to change

attributes in the TDF module and its ports.

– request_next_activation(): overrides the propagated

time step defined by the function set_timestep() of the

TDF modules and ports for the next module activation.

– set_max_timestep(): defines the maximum time step

between two consecutive samples.

II. Time Step Controller

The structural composition shown in Figure 2 is described

in this section. It is presented a mechanism that determines

the timestep ts required to correctly sample a continuous

and differentiable input signal in_val. We establish that the

required ts to sample the input signal at the time point ti+1,

will depend on the slope value of the input signal calculated

between two samples taken at the time points ti and ti−1. This

behavior, corresponding to the linear equation y = mx + b

plotted in Figure 3, can be expressed mathematically by

Eq. (1), where the x coordinate corresponds to the difference

value of the input signal with respect to the time
df in

dt
, the y

coordinate corresponds to the time step for the time point

ti+1, and the cut-off points of the straight line with the x and

y coordinates correspond with the maximum difference in

amplitude diffmax and the maximum time step tsmax allowed

in the model, respectively.

tsnext = −

(

tsmax

diffmax

)
∣

∣

∣

∣

∣

df in

dt

∣

∣

∣

∣

∣

+ tsmax (1)

The equation indicates that if the change of the input signal

with respect to time is increasing, then the next time step

will be decreasing to ensure that all the variations of the

signal will be sufficiently sampled. An implementation in

SystemC AMS for the time step controller module is shown

in Listing 1.

1 class tstep_ctrl : public sca_tdf::sca_module {
2

3 /* ... Port declarations ...*/
4 /* ... Parameter constructor ... */
5 /* ... Initializations ... */
6

7 void set_attributes() {
8 does_attribute_changes();
9 accept_attribute_changes();

10 }
11

12 void change_attributes() {
13 double dy = in_val − in_prev;
14 double dx = t_val − t_prev;
15 double ts_next;
16 double diff_max = amp_max / ts_max;
17

18 if (dx == 0.0) ts_next = ts_min;
19 else ts_next = ts_max * (1 − (fabs(dy/dx)/diff_max));
20

21 if (ts_next > ts_max) ts_next = ts_max;
22 if (ts_next < ts_min) ts_next = ts_min;
23 set_max_timestep(ts_next, sc_core::SC_SEC);
24 }
25

26 void processing() {
27 /* ... reading and writting port values ... */ }
28 };

Listing 1. Time step controller implementation.

In the set_attributes() context (Listing 1, lines 7-10), the

module is enabled to change its attributes and in the

change_attributes() context (Listing 1, lines 12-24), the next

time step (Listing 1, lines 18/19) that will be used as an

attribute of the set_max_timestep() function (Listing 1, line 23)

can be calculated. In general, the controller module sets the

maximum time step that can be used during the next cluster

activation.

III. Threshold Crossing Detection

To establish the exact time stamp at which an input signal

crosses a threshold value called reference, it is necessary to

ensure that if the input signal approaches this reference, the

time step is made smaller and thereby it becomes possible to

determine much more exactly the crossing instant. As in the

SystemC AMS 1.0 standard it is not possible to implement

such variation of the time step, the designer is forced to select

a time step small enough to ensure the accuracy of the results.

For example, if an input signal with variable frequency is

considered, the time step selected will have to be chosen

based on the maximum frequency value of the signal to fulfill

the Nyquist-Shannon sampling theorem. Consequently, there

will be oversampling in signal parts, where the frequency

value is lower.

in_val
tstep_ctrlsource out in

ref_val

threshold

detector
reference

out

in

ref

out

ts

out

ts

out_val

ts_val

Figure 4. Structural composition of the threshold crossing detector

With the advent of the SystemC AMS 2.0 standard, it has

become possible to define all the necessary conditions for

adapting the time step value in the measure in which the input

signal approaches from below or above the reference. To

describe this behavior, two additional references are defined

for setup a window in which the time will be decreased or

increased in terms of the proximity of the input signal to the

threshold. Outside of this window, the time step used can be

either a value originally given by the designer or it can be a

value set by another module such as the controller module

presented in the Section II.

Figure 4 shows the structural composition used to im-

plement this behavior. Inside the change_attributes() context

(Listing 2, lines 12-23) of the threshold detector module

implementation, it is necessary to define a function to

calculate the next time step (Listing 2, lines 18-20) which

will be used as argument in the request_next_activation() function

(Listing 2, line 21).

1 class threshold_detector : public sca_tdf::sca_module {
2

3 /* ... Port declarations ...*/
4 /* ... Parameter constructor ... */
5 /* ... Initializations ... */
6

7 void set_attributes() {
8 does_attribute_changes();
9 accept_attribute_changes();

10 }
11

12 void change_attributes() {
13 ...
14 if (get_time() == sc_core::SC_ZERO_TIME) ts_init = ts_val;
15 else ts_init = get_max_timestep().to_seconds();
16

17 if (!((in_val < ref_min) || (in_val > ref_max))) {
18 /* ... Calculating ts_init variation based on the proximity of the
19 input signal with respect to the reference ... */
20 ts_next = /* ... ts_init variation ... */
21 request_next_activation(ts_next, sc_core::SC_SEC); }
22 }
23

24 void processing() {
25 /* ... reading and writting port values ... */ }
26 };

Listing 2. Threshold crossing detector implementation.

Figure 5. Threshold crossing detection results

The simulation results are shown in Figure 5, where the

reference value is a constant signal set to 1.0[v] and the

input is a sinusoidal signal with variable frequency and an

amplitude set to 4.0[v]. The first trace allows to verify that

the number of samples increases when the input signal is

close to the reference; the second trace shows the detection

result that is zero only when the input signal is below the

reference; and the third trace shows the time step variation

with respect to the simulation time.

IV. Conclusions

The paper presents some of the new features introduced

by the SystemC AMS 2.0 standard. The described examples

allow to verify how it is possible to change one important

parameter associated to TDF models. It has been shown

that time step variations in real models can be controlled

dynamically during simulation to achieve accurate results.

The implementations presented were developed using an

early alpha version of Fraunhofer SystemC-AMS 2.0 [6],

which has not yet been released for public use, but promises

to expand the capabilities of SystemC AMS to model and

simulate multi-disciplinary systems.

References

[1] ASI SystemC AMSWG, Standard SystemC AMS extensions language

reference manual, version 2.0, Accellera Systems Initiative, Mar. 19,
2013. [Online]. Available: http://www.accellera.org/.

[2] M. Barnasconi, C. Grimm, M. Damm, K. Einwich, M.-M. Louërat,
T. Maehne, F. Pêcheux, and A. Vachoux, SystemC AMS extensions

user’s guide, Open SystemC Initiative (OSCI), Mar. 8, 2010. [Online].
Available: http://www.systemc.org/.

[3] IEEE Computer Society, 1666-2005 IEEE standard SystemC language

reference manual, IEEE, Mar. 31, 2006, isbn: 0-7381-4871-7.
[4] OSCI AMS Working Group, Standard SystemC AMS extensions

language reference manual, version 1.0, Open SystemC Initiative,
Mar. 8, 2010. [Online]. Available: http://www.systemc.org/.

[5] M. Barnasconi, K. Einwich, C. Grimm, T. Maehne, and A. Vachoux,
“Advancing the SystemC analog/mixed-signal (AMS) extensions,
Introducing dynamic timed data flow”, OSCI, Tech. Rep., Sep. 2011,
10 pp. [Online]. Available: http://www.accellera.org/resources/articles/
amsdynamictdf (visited on 04/26/2013).

[6] Fraunhofer SystemC-AMS, Fraunhofer IIS, Design Automation Divi-
sion EAS. [Online]. Available: http://systemc-ams.eas.iis.fraunhofer.
de/ (visited on 04/29/2013).

http://www.accellera.org/
http://www.systemc.org/
http://www.systemc.org/
http://www.accellera.org/resources/articles/amsdynamictdf
http://www.accellera.org/resources/articles/amsdynamictdf
http://systemc-ams.eas.iis.fraunhofer.de/
http://systemc-ams.eas.iis.fraunhofer.de/

	I Introduction
	II Time Step Controller
	III Threshold Crossing Detection
	IV Conclusions

