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TRANSPORT SEMIGROUP ASSOCIATED TO POSITIVE BOUNDARY

CONDITIONS OF UNIT NORM: A DYSON-PHILLIPS APPROACH

LUISA ARLOTTI & BERTRAND LODS

Abstract. We revisit our study of general transport operator with general force field and general

invariant measure by considering, in the L1 setting, the linear transport operator TH associated

to a linear and positive boundary operator H of unit norm. It is known that in this case an ex-

tension of TH generates a substochastic (i.e. positive contraction) C0-semigroup (VH (t))t>0 . We

show here that (VH (t))t>0 is the smallest substochastic C0-semigroup with the above mentioned

property and provides a representation of (VH (t))t>0 as the sum of an expansion series similar to

Dyson-Phillips series. We develop an honesty theory for such boundary perturbations that allows

to consider the honesty of trajectories on subintervals J ⊆ [0,∞). New necessary and sufficient

conditions for a trajectory to be honest are given in terms of the aforementioned series expansion.

AMS Subject Classifications (2000): 47D06, 47N55, 35F05, 82C40

Key words: Transport equation, boundary conditions, substochastic semigroups, honesty theory.

1. Introduction

We investigate here the well-posedness (in the sense of semigroup theory) in L1(Ω, dµ) of the

general transport equation

∂tf(x, t) + F (x) · ∇xf(x, t) = 0 (x ∈ Ω, t > 0), (1.1a)

supplemented by the abstract boundary condition

f|Γ−
(y, t) = H(f|Γ+

)(y, t), (y ∈ Γ−, t > 0), (1.1b)

and the initial condition

f(x, 0) = f0(x), (x ∈ Ω). (1.1c)

Here Ω is a sufficiently smooth open subset of RN endowed with a positive Radon measure µ, Γ±

are suitable boundaries of the phase space and the field F is globally Lispchitz and divergence

free with respect to µ, in the sense that µ is a measure invariant by the (globally defined) flow

associated to F . Our main concern here is the influence of the boundary conditions (1.1b) and we

treat here the delicate case of a boundary operator

H : L1
+ → L1

−

1
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which is linear, positive, bounded (L1
± being suitable trace spaces corresponding to the boundaries

Γ±, see Section 2 for details) and of unit norm

‖H‖B(L1
+
,L1

−
) = sup

f∈L1
+
,‖f‖

L1
+
=1

‖Hf‖L1
−
= 1. (1.2)

Our motivation for studying such a problem is the study of kinetic equation of Vlasov-type for

which the phase space Ω is a cylindrical domain Ω = D × RN ⊂ R2N ( D being a sufficiently

smooth open subset of RN ) and the field F is given by

F (x) = (v,F(x, v)) for any x = (x, v) ∈ Ω (1.3)

F : Ω → RN is a time independent force field. The simplest (but already very rich) example of such

a kinetic equation is the so-called free-streaming equation for which F = 0. Boundary conditions in

such kinetic equations are usually modeled by a boundary operator H which relates the incoming

and outgoing boundary fluxes of particles; the form of this operator depends on the gas-surface

interaction (see [13] for more details on such a topic).

The mathematical study of the aforementioned problem has already a long story starting from

the seminal paper [10] who considered the case in which µ is the Lebesgue measure and the so-

called ‘no re-entry’ boundary conditions (i.e. H = 0 in (1.1b)). More general fields and boundary

conditions (but still mostly associated with the Lebesgue measure) have been considered in [11].

The free-streaming case (i.e. F (x, v) = (v, 0)) received much more attention, starting from [20],

where the free streaming transport operator associated to different boundary operators H is deeply

investigated (see also [17] for general boundary conditions). Recently, transport operators associated

to general external fields and general measures, with general bounded boundary conditions have

been thoroughly investigated by the authors in collaboration with J. Banasiak in a series of papers

[1, 2, 3] that contain both a generalization of the theory developed in the free streaming case and

some new results. Summarizing the known results on this topic, one can say that the transport

operator associated to H , that we shall denote TH (see Section 2 for a precise definition) is the

generator of a strongly continuous semigroup when the boundary operator H is a contraction (and

also for some very peculiar multiplying boundary conditions, [20, 17, 2, 3, 12]).

A very interesting and important case, both from the mathematical and physical point of view,

arises whenever H is a positive boundary operator of unit norm (see (1.2)). In such a case, one

can not state a priori that TH generates a C0-semigroup in L1(Ω, dµ). Nevertheless, since for each

r ∈ [0, 1) the operator Hr := rH is a strict contraction, the transport operator THr
associated

to Hr does generate a C0- semigroup (Vr(t))t>0. These semigroups are substochastic, i. e. they

are positive contraction semigroups and one can show that the strong limit limrր1− Vr(t) := VH(t)

exists and defines a C0-semigroup in L1(Ω, dµ). Its generator A is then an extension of TH and a

natural question is to recognize if A = TH or not. For conservative conditions, i.e. if

‖Hf‖L1
−
= ‖f‖L1

+
∀f ∈ L1

+
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it is known that the semigroup (V (t))t>0 is conservative if and only if A = TH . On the contrary,

whenever A ) TH a mass loss occurs, i.e. there exists nonnegative f such that ‖VH(t)f‖ < ‖f‖ for

some t > 0.

As first observed in [5], such a problematic is very similar to what occurs in the so-called sub-

stochastic theory of additive perturbations of semigroups, (see the monograph [9]), where one is

faced with the following problem: let (T,D(T )) be the generator of a substochastic C0-semigroup

(GT (t))t>0 in X = L1(Σ, dν) (where (Σ, ν) is a given measure space) and let (B,D(B)) be a

non-negative linear operator in X such that D(T ) ⊆ D(B) and
∫
Σ(T + B)fdν 6 0 for all

f ∈ D(T )+ = D(T ) ∩ X+. Then for any 0 < r < 1 operator (T + rB,D(T )) generates a C0-

semigroup (Gr(t))t>0. These semigroups are such that the strong limit lim
rր1−

Gr(t) := GK(t) exists

and the family (GK(t))t>0 is a C0-semigroup generated by an extension K of T +B. In the context

of additive perturbations of substochastic semigroups a complete characterization of K is given;

it is shown that (GK(t))t>0 is the smallest (in the lattice sense) C0-semigroup generated by an

extension of T + B. Moreover GK(t) can be written as the sum of a strongly convergent series of

linear positive operators (Dyson-Phillips expansion series) and a satisfying honesty theory, dealing

with the mass carried by individual trajectories, has been developed [9, 6, 19]. Such a honesty

theory for additive perturbation has been based mainly on the so-called resolvent approach (i.e. on

the study of the resolvent of (λ − K)−1) and such a resolvent approach has been applied to the

boundary perturbation case in [5, 18]. Recently a new approach to honesty has been proposed,

based now on the semigroup approach and the fine properties of the Dyson-Phillips iterated [6].

Such an approach is equivalent to the resolvent one but its main interest lies in the fact that it is

robust enough to be applied to other kind of problems in which the resolvent approach would be

inoperative (e.g. for non-autonomous families [7] or integrated semigroups [8]).

In the present paper we want to recognize that a fully similar study can be carried out for the

operator TH . Notice that several results concerning the transport operator TH and the semigroup

(VH(t))t>0 are already available in the literature. A complete characterization of A is given in [2]

where it is shown that A is an extension of TH ; the study of conservative boundary conditions has

been performed, in the free-streaming case, in [5] and, for general force fields, in [2]. The general

case of boundary operators with unit norm has been handled with in [18] where a detailed honesty

theory has been performed. Nevertheless the obtained results are not so satisfying as those obtained

in the substochastic theory of additive perturbations of semigroups. In particular the question of

whether (VH(t))t>0 is the smallest substochastic C0-semigroup generated by an extension of TH

remains open and the honesty theory performed in [2, 18] is based on the resolvent approach only.

The objective of the present paper is to fill this blank. In particular, the main novelty of the

paper lies in the following:

i) First, we prove that indeed the semigroup (VH(t))t>0 is the smallest (in the lattice sense)

substochastic C0-semigroup generated by an extension of TH .
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ii) Second, and more important, we develop a ’semigroup approach’ to the honesty theory of

boundary perturbations, exploiting the recent results in [3] which allow to provide a charac-

terization of the semigroup (VH(t))t>0 as an expansion series, similar to the Dyson-Phillips

arising in the additive perturbation case. While the resolvent approach allows to establish

necessary and sufficient conditions for a trajectory to be honest (i. e. honest on [0,∞)) the

new semigroup approach allows to establish more general necessary and sufficient conditions

for a trajectory to be honest on a subinterval J ⊆ [0,∞). We strongly believe that such a

semigroup approach has its own interest and that, as it occurs for additive perturbation [7], it

could hopefully be extended to deal with non-autonomous problems.

To be more precise, the contents of the paper are as follows. In Section 2 we introduce the

necessary notation and define the transport operator TH . This section is mainly taken from the

recent contributions [2, 3]. In Section 3 we establish the most important properties of the semigroup

(VH(t))t>0 and its generator, in particular showing that (VH(t))t>0 is the smallest substochastic

C0-semigroup generated by an extension of TH . In Section 4 we develop the honesty theory for

boundary perturbations, introducing first useful functionals and defining then the concept of honesty

of trajectories on subintervals J ⊆ [0,∞). We obtain also necessary and sufficient conditions for

the honesty in the spirit of [2, Section 6] and [18] not only using the usual resolvent approach but

also using the series approach introduced in [6]. In Section 6 two well-known examples are revisited

using our new approach, that allows us to deduce new interesting properties.

2. Preliminaries

In the present section, we introduce the general mathematical framework we shall consider in

the sequel. The material from this section is mainly taken from [1, 2] and we refer to these two

contributions for further properties of abstract transport operators. We begin with the rigorous

definition of the transport operator TH associated to bounded boundary operator H.

2.1. Definition of the transport operator TH . In this paper we consider transport operators

associated to general external fields and general measures, according to the theory developed in

two recent contribution [1],[2]. More precisely, given a smooth open subset Ω of RN , we consider a

time independent globally Lipschitz vector field F : RN → RN so that, for any x ∈ Ω, the Cauchy

problem

dX

dt
(t) = F (X(t)), ∀t ∈ R ; X(0) = x ∈ Ω (2.1)

admits a unique global solution

(x, t) ∈ Ω× R 7−→ Φ(x, t) ∈ RN ,

that allows to define a flow (Tt)t∈R given by Tt = Φ(·, t). As in [1], we assume that there exists a

Radon measure µ over RN which is invariant under the flow (Tt)t∈R, i.e.

µ(TtA) = µ(A) for any measurable subset A ⊂ RN and any t ∈ R. (2.2)
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Of course, solutions to (2.1) do not necessarily belong to Ω for all times, leading to the definition

of stay times of the characteristic curves in Ω: for any x ∈ Ω, define

τ±(x) = inf{s > 0 ; Φ(x,±s) /∈ Ω}, (2.3)

with the convention that inf ∅ = ∞. This allows to represent Ω as Ω = Ω± ∪Ω±∞ where

Ω± = {x ∈ Ω ; τ±(x) <∞}, and Ω±∞ = {x ∈ Ω ; τ±(x) = ∞}.

Moreover, we define the incoming and outgoing boundaries as

Γ± := {y ∈ ∂Ω ; ∃x ∈ Ω, τ±(x) <∞ and y = Φ(x,±τ±(x)) } . (2.4)

The definition of the stay time τ± extends then to Γ± by setting simply τ±(y) = 0 and τ∓(y) =

τ+(x)+τ−(x) for any y ∈ Γ± with y = Φ(x,±τ±(x)). Notice that, with the above definition, τ∓(y)

is well defined (i.e. the definition does not depend on the choice of x ∈ Ω±) and τ∓(y) is nothing

but the length of the characteristic curves having y as its left (respectively right) end-point. We

finally set

Γ±∞ = {y ∈ Γ± ; τ∓(y) = ∞}.

With such notations, one can prove (see [1, Section 2]) the existence of unique positive Borel

measures µ± on Γ± such that the measure µ on Ω± is identified to the product measure of µ± with

the Lebesgue measure on R (see [1, Proposition 2.10]). The construction of such measures allow to

define the trace spaces

L1
± = L1(Γ±, dµ±)

with the usual norm. In the Banach space

X := L1(Ω, dµ)

endowed with its usual norm, we can define the maximal transport operator (Tmax,D(Tmax)) as

follows (see [1, Theorem 3.6])

Definition 2.1. Given f ∈ L1(Ω, dµ), f belongs to the domain D(Tmax) of Tmax if and only if

there exists g ∈ L1(Ω, dµ) and a representative f ♯ of f (i.e. f ♯(x) = f(x) for µ-a.e. x ∈ Ω) such

that, for µ-almost every x ∈ Ω and any −τ−(x) < t1 6 t2 < τ+(x) one has

f ♯(Φ(x, t1))− f ♯(Φ(x, t2)) =

∫ t2

t1

g(Φ(x, s))ds. (2.5)

In this case, we set Tmaxf = g.

Remark 2.1. Notice that the above operator Tmax is well-defined, i.e. Tmaxf does not depend on

the representative f ♯. Finally, we wish to emphasize the fact that the domain D(Tmax) is precisely

the set of functions f ∈ L1(Ω, dµ) that admit a representative which is absolutely continuous along

almost any characteristic curve.
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With the above definition, each function f ∈ D(Tmax) is such that the limits

B
+f(y) := lim

s→0+
f ♯(Φ(y,−s)) and B

−f(y) := lim
s→0+

f ♯(Φ(y, s))

exist for almost µ±-every y ∈ Γ± [1, Proposition 3.16, Definition 3.17]. Notice that the traces B
±f

of a given f ∈ D(Tmax) does not necessarily belong to L1
±. Nevertheless one can prove the following

[2, Theorem 3.1, Proposition 3.2, Corollary 2.1] :

Theorem 2.1. Define the following measures over Γ±:

dξ±(y) = min (τ∓(y), 1) dµ±(y), y ∈ Γ±.

Then, for any f ∈ D(Tmax), the trace B
±f belongs to Y± := L1(Γ±, dξ±) with

‖B±f‖Y±
6 ‖f‖X + ‖Tmaxf‖X , f ∈ D(Tmax).

Moreover

W :=
{
f ∈ D(Tmax) ; B

−f ∈ L1
−

}
=
{
f ∈ D(Tmax) ; B

+f ∈ L1
+

}

and the Green formula
∫

Ω

Tmaxfdµ =

∫

Γ−

B
−fdµ− −

∫

Γ+

B
+f dµ+. (2.6)

holds for any f ∈ W .

We are then in position to define the transport operator associated to a bounded boundary

operator as follows:

Definition 2.2. For any bounded linear operator

H ∈ B(L1
+, L

1
−)

we define the transport operator (TH ,D(TH)) associated to the boundary condition H as:

D(TH) = {f ∈ D(Tmax) ; B
+f ∈ L1

+ and B
−f = HB

+f},

THf = Tmaxf ∀f ∈ D(TH).
(2.7)

2.2. Construction of the semigroup associated to boundary operator with unit norm.

We begin by introducing several notations, taken from [2]. For any λ > 0 one defines the following

operators



Mλ : Y− −→ Y+

u 7−→ [Mλu] (y) = u(Φ(y,−τ−(y))) exp (−λτ−(y))χ{τ−(y)<∞}, y ∈ Γ+ ;




Ξλ : Y− −→ X

u 7−→ [Ξλu] (x) = u(Φ(x,−τ−(x))) exp (−λτ−(x))χ{τ−(x)<∞}, x ∈ Ω ;




Gλ : X −→ L1
+

f 7−→ [Gλf ] (z) =

∫ τ−(z)

0

f(Φ(z,−s)) exp(−λs)ds, z ∈ Γ+ ;
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and 



Cλ : X −→ X

f 7−→ [Cλf ] (x) =

∫ τ−(x)

0

f(Φ(x,−s)) exp(−λs)ds, x ∈ Ω

where χA denotes the characteristic function of a set A. One has the following where T0 denotes

the transport operator associated to the boundary operator H ≡ 0:

Lemma 2.1. For any λ > 0, the following hold:

(1) Mλ ∈ B(Y−, Y+). Moreover, given u ∈ Y−, Mλu ∈ L1
+ if and only if u ∈ L1

−.

(2) Ξλ ∈ B(Y−, X). Moreover, the range of Ξλ is a subset of D(Tmax) with

TmaxΞλu = λΞλu, B
−Ξλu = u, B

+Ξλu =Mλu, ∀u ∈ Y− (2.8)

(3) Gλ ∈ B(X,L1
+). Moreover, Gλ is surjective.

(4) Cλ ∈ B(X) with range included in D(T0). Moreover, Cλ = (λ− T0)
−1 and

Gλf = B
+Cλf for any f ∈ X.

Notice that, if H ≡ 0, it is not difficult to check that (T0,D(T0)) is the generator of a C0-

semigroup (U0(t))t>0 given by

U0(t)f(x) = f(Φ(x,−t))χ{t<τ−(x)}(x), (x ∈ Ω, f ∈ X). (2.9)

In all the sequel, we shall assume that H : L1
+ → L1

− is a positive boundary operator of unit

norm, i.e.

H ∈ B(L1
+, L

1
−) ; Hf > 0 ∀f ∈ L1

+, f > 0 ; ‖H‖B(L1
+
,L1

−
) = sup

‖f‖
L1
+
=1

‖Hf‖L1
−
= 1. (2.10)

Under such an assumption, for any 0 6 r < 1, the boundary operator Hr := rH is dissipative with

‖Hr‖B(L1
+
,L1

−
) = r < 1;

it is then well-known [2, Corollary 4.1] that the transport operator THr
generates a positive con-

traction semigroup (Vr(t))t>0 for any 0 6 r < 1. From [2, Theorem 6.2], one has the following:

Theorem 2.2. Let H satisfy Assumption 2.10. Then, for any t > 0 and any f ∈ X the limit

VH(t)f = limrր1 Vr(t)f exists in X and defines a substochastic semigroup (VH(t))t>0. If (A,D(A))

is the generator of (VH(t))t>0, then its resolvent is given by

(λ−A)−1f = lim
rր1

(λ−THr
)−1f = Cλf +

∞∑

n=0

ΞλH(MλH)nGλf for any f ∈ X, λ > 0, (2.11)

where the series converges in X. Moreover, A is an extension of TH ; more precisely

D(TH) ⊂ D(A) ⊂ D(Tmax) with Af = Tmaxf ∀f ∈ D(A)

and

D(TH) =
{
ϕ ∈ D(A) ; B+ϕ ∈ L1

+

}
=
{
ϕ ∈ D(A) ; B−ϕ ∈ L1

−

}
= D(A) ∩ W
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3. A new characterization of (VH(t))t>0

In this section, we present a new characterization as well as practical expression of the semigroup

(VH(t))t>0. Indeed in the following Theorem 3.1 we are able to prove that (VH(t))t>0 is the smallest

substochastic C0-semigroup generated by an extension of TH , while in Theorem 3.2 we show that

(VH(t))t>0 can be written as the sum of a strongly convergent series. We first need to recall the

definition of transport operator associated to an unbounded boundary operator. Precisely, let us

introduce E as the space of elements (ψ+, ψ−) ∈ Y+ × Y− such that ψ+ −Mλψ− ∈ L1(Γ+, dµ+) for

some/all λ > 0. We equip E with the norm

‖(ψ+, ψ−)‖E := ‖ψ+‖Y+
+ ‖ψ−‖Y−

+ ‖ψ+ −M1ψ−‖L1
+

that makes it a Banach space. Then, one has the following generalization of Definition 2.2:

Definition 3.1. Given a possibly unbounded operator K from Y+ to Y−, we denote by D(K) its

domain and G (K) its graph. If G (K) ⊂ E we can define the transport operator TK associated to the

boundary operator K by TKf = Tmaxf for any f ∈ D(TK), where

D(TK) =

{
f ∈ D(Tmax) ; (B

+f,B−f) ∈ G (K)

}
.

We then have the following

Lemma 3.1. Let K be an unbounded operator as in Definition 3.1. For any λ > 0, the following

are equivalent

(1) (I −MλK) : D(K) 7→ L1
+ is bijective;

(2) (λI − TK) : D(TK) 7→ X is bijective.

Proof. According to [2, Lemma 4.2], for any λ > 0 one has [I −MλK]D(K) = L1
+ if and only if

[λI −TK]D(TK) = X . Therefore we have only to prove that, given λ > 0, (I −MλK) : D(K) 7→ L1
+

is injective if and only if (λI − TK) : D(TK) 7→ X is injective.

Assume now that (λI − TK) : D(TK) 7→ X is injective and let ψ ∈ D(K) be a solution to

(I − MλK)ψ = 0. Set f = ΞλKψ. One deduces from Lemma 2.1 (2) (with u = Kψ) that

f ∈ D(Tmax) with Tmaxf = λf , B−f = Kψ and B
+f = MλKψ = ψ. In other words, f ∈ D(TK)

is a solution to the equation (λ − TK)f = 0 and therefore f = 0. Since ψ = B
+f , one gets ψ = 0

and (I −MλK) : D(K) 7→ L1
+ is injective. Conversely, assume (I −MλK) : D(K) 7→ L1

+ to be

injective and let f ∈ D(TK) be a solution to (λ − TK)f = 0. According to [2, Theorem 3.2] (see

also Lemma 2.1 (2)), f ∈ D(Tmax) with B
+f ∈ D(K), and f = ΞλKB

+f . Setting then ψ = B
+f ,

one has ψ ∈ D(K) and (I −MλK)ψ = 0. By assumption, ψ = 0 and, since f = ΞλKψ, f = 0 and

(λI − TK) : D(TK) 7→ X is injective. This proves the desired equivalence. �

With this in hands, one can prove the following which somehow characterizes the class of oper-

ators sharing the properties of the generator A (recall that, according to Theorem 2.2, A satisfies

the following properties (a)–(c)):
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Proposition 3.1. Let A0 be the generator of a strongly continuous substochastic semigroup

(V (t))t>0 in X. Assume further that

(a) D(TH) ⊆ D(A0) ⊆ D(Tmax)

(b) A0f = Tmaxf for any f ∈ D(A0)

(c) D(TH) = {f ∈ D(A0) : B
+f ∈ L1

+} = {f ∈ D(A0) : B
−f ∈ L1

−}.

Then there exists a boundary linear operator H0 from Y+ to Y− with the following properties:

(i) L1
+ = D(H) ⊆ D(H0) with H0ψ = Hψ for any ψ ∈ L1

+

(ii) A0 = TH0

(iii) for any λ > 0 the mapping (I −MλH0) : D(H0) 7→ L1
+ is bijective, and

(λ −A0)
−1f = Cλf + ΞλH0(I −MλH0)

−1Gλf. (3.1)

(iv) for any λ > 0, u ∈ L1
+, u > 0 one has

(I −MλH0)
−1u > 0 H0(I −MλH0)

−1u > 0 (3.2)

Proof. First of all observe that the trace mapping B
+ : D(A0) → Y+ is injective. Indeed let

f ∈ D(A0) be such that B
+f = 0. Then assumption (c) ensures that f ∈ D(TH), so that

B
−f = HB

+f = 0. In particular, ‖(B+f,B−f)‖E = 0 and one deduces from [2, Corollary 3.1] that

f = 0. Let us now introduce the set

E0 := Range(B+|D(A0)) = {ψ ∈ Y+ : ∃g ∈ D(A0) such that ψ = B
+g}

so that B+ : D(A0) → E0 ⊆ Y+ is bijective. This allows to define an unbounded linear boundary

operator H0 : D(H0) → Y− as follows:

D(H0) = E0 and H0ψ = B
−g ∀ψ ∈ E0

where g is the unique element of D(A0) such that B+g = ψ. Let us prove that H0 satisfies points

(i)− (iv).

(i) Let h ∈ L1
+ and λ > 0 be given. Setting u = (I −MλH)h ∈ L1

+, by Lemma 2.1 (3), there

exists g ∈ X such that Gλg = u. Setting thenf = Cλg + ΞλHh one clearly has f ∈ D(Tmax).

Moreover B
+f = Gλg +MλHh = u + MλHh = h and B

−f = Hh = HB
+f . In other words,

f ∈ D(TH) ⊆ D(A0). Consequently, h ∈ E0 with H0h = Hh and (i) is proved.

(ii) To prove point (ii), it is enough to show that D(A0) = D(TH0
). From the definition of H0 and

the assumption D(A0) ⊆ D(Tmax), one sees that

D(A0) ⊆ {f ∈ D(Tmax) ; B
+f ∈ D(H0) , B

−f = H0B
+f} = D(TH0

).

Conversely, let f ∈ D(Tmax) with B
+f ∈ D(H0) and B

−f = H0B
+f . By definition of H0 and

since D(H0) = E0, there exists g ∈ D(A0) such that B+g = B
+f and B

−g = H0B
+f = B

−f . Set

h = f − g. One has h ∈ D(Tmax) with B
+h = B

−h = 0 and again, we can invoke [2, Corollary 3.1]

to state that h = 0, i.e. f = g ∈ D(A0), proving the second inclusion.
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(iii) Since A0 is the generator of a substochastic semigroup we can state that for any λ > 0 and

f ∈ X there exists a unique g ∈ D(A0) such that (λ−A0)g = f , with moreover g > 0 if f > 0. This

means that for any λ > 0 and f ∈ X there exists a unique g ∈ D(Tmax), such that B+g ∈ D(H0)

with g solution to the boundary value problem:

(λ− Tmax)g = f B
−g = H0B

+g. (3.3)

From [2, Theorem 3.2], such a solution g is given by

g = Cλf + ΞλB
−g = Cλf + ΞλH0B

+g, (3.4)

and, in particular, u := B
+g ∈ D(H0) satisfies (I−MλH0)u = Gλf. Since (λI−TH0

) : D(TH0
) → X

is bijective, one deduces from Lemma 3.1 that (I −MλH0) : D(H0) → L1
+ is bijective. Then,

u = B
+g = (I −MλH0)

−1Gλf which, from (3.4), shows that the solution to (3.3) becomes

g = Cλf + ΞλH0(I −MλH0)
−1Gλf

which is nothing but (3.1).

(iv) Let now λ > 0 and u ∈ L1
+ with u > 0 be given. Consider then the function gλ defined as

follows:

gλ(x) =





(1 + λ)τ−(x) + 1

τ−(x) + τ+(x)
exp(−τ+(x))u(Φ(x, τ+(x)) if τ−(x) + τ+(x) <∞,

(1 + λ) exp(−τ+(x))u(Φ(x, τ+(x)) if τ−(x) = ∞ and τ+(x) <∞,

0 if τ+(x) = ∞.

One can check easily that gλ ∈ X , gλ > 0 with Gλgλ = u. Setting now

fλ = (λ−A0)
−1gλ = Cλgλ + ΞλH0(I −MλH0)

−1Gλgλ

one sees that fλ is nonnegative, with B
+fλ = (I −MλH0)

−1Gλgλ = (I −MλH0)
−1u > 0; B−fλ =

H0(I −MλH0)
−1Gλgλ = H0(I −MλH0)

−1u > 0 which proves the result. �

The above Proposition allows to prove that (VH(t))t>0 is the smallest substochastic semigroup

generated by an extension of TH . More precisely we have

Theorem 3.1. Let (V (t))t>0 be a strongly continuous substochastic semigroup in X with generator

A0 which satisfies the conditions (a)-(c) of Proposition 3.1. Then, for any t > 0 one has V (t) >

VH(t), i.e. V (t)f > VH(t)f for any nonnegative f ∈ X. In other words, (VH(t))t>0 is the smallest

substochastic semigroup generated by an extension of TH .

Proof. According to the previous Proposition 3.1, there exists an extension H0 of H so that the

generator A0 of the semigroup (V (t))t>0 coincides with the transport operator TH0
, and formula

(3.1) holds. Now, since H0h = Hh for any h ∈ L1
+, we have, for 0 < r < 1 and Hr = rH :

(I −MλH0)
−1 − (I −MλHr)

−1 =
[
(I −MλH0)

−1(I −MλHr)− I
]
(I −MλHr)

−1

= (I −MλH0)
−1(I −MλHr − I +MλH0)(I −MλHr)

−1

= (1− r)(I −MλH0)
−1MλH(I −MλHr)

−1
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where we used that the range of (I −MλHr)
−1 is L1

+. One deduces easily from this that

H0(I −MλH0)
−1 −Hr(I −MλHr)

−1

= (1− r)
(
H0(I −MλH0)

−1MλH(I −MλHr)
−1 +H(I −MλHr)

−1
)
.

Recalling that (λ − THr
)−1f = Cλf + ΞλHr(I −MλHr)

−1Gλf (see [2, Eq. (4.6)]), by virtue of

(3.1) one has then, for any f ∈ X ,

(λ−A0)
−1f − (λ− THr

)−1f = ΞλH0(I −MλH0)
−1Gλf − ΞλHr(I −MλHr)

−1Gλf

= (1− r)Ξλ

(
H0(I −MλH0)

−1MλH(I −MλHr)
−1 +H(I −MλHr)

−1
)
Gλf.

If f > 0, according to Proposition 3.1 (iv), we get (λ−A0)
−1f > (λ− THr

)−1f for any 0 < r < 1.

This inequality together with (2.11) allow to state that (λ − A0)
−1 > (λ − A)−1 which gives the

result according to the exponential formula. �

We recall now the recent result of the first author [3] about the construction of a suitable strongly

continuous family of bounded linear operators in X . First, let

D0 = {f ∈ D(Tmax) : B
±f = 0}.

The subset D0 is dense in X (see [3, Proposition 1]). Remember that the semigroup (U0(t))t>0 is

defined through (2.9). Now, one introduces the following

Definition 3.2. For any t > 0, we define the family (Uk(t))k∈N by induction as follows: if f ∈ D0,

t > 0 and k > 1, one sets

Uk(t)f(x) =




H(B+Uk−1(t− τ−(x))f)(Φ(x,−τ−(x))) ∀x ∈ Ω, with τ−(x) 6 t,

0 ∀x ∈ Ω with τ−(x) > t.
(3.5)

Moreover, for t = 0, we set Uk(0)f = 0 for any k > 1 and any f ∈ X.

Remark 3.1. In other words, if we put Ωt := {x ∈ Ω : x = Φ(y, s),y ∈ Γ−, 0 < s < t ∧ τ+(y)},

then [Uk(t)f ](x) may be different from zero only for x ∈ Ωt, being Uk(t)f(Φ(y, s)) = H(B+Uk−1(t−

s)f)(y).

Remark 3.2. Notice that, given f ∈ D0 and t > 0, one has
(∫ t

0 Uk(s)fds
)
(x) = 0 for any x ∈ Ω

with τ−(x) > t. In particular,

B
+

(∫ t

0

Uk(s)fds

)
(z) = 0 ∀z ∈ Γ+ ; τ−(z) > t , k > 1. (3.6)

The properties of the family (Uk(t))t>0, for given k > 1, have been established in [3]. In

particular, for any f ∈ D0 and any t > 0, one has Uk(t)f ∈ X with

‖Uk(t)f‖X 6 ‖H‖k
B(L1

+
,L1

−
)‖f‖X = ‖f‖X ∀k > 1.

Since D0 is dense in X , one can extend Uk(t) in a bounded linear operator in X , still denoted Uk(t)

such that

‖Uk(t)‖B(X) 6 1.
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Moreover, one has the following

Proposition 3.2. For any k > 1, the family (Uk(t))t>0 enjoys the following properties:

(1) (Uk(t))t>0 is a strongly continuous family of operators in X.

(2) For all f ∈ D0 and t > 0 one has Uk(t)f ∈ D(Tmax) with TmaxUk(t)f = Uk(t)Tmaxf .

(3) For all f ∈ D0 and t > 0 the traces B±Uk(t)f ∈ L1
± and the mappings t 7→ B

±Uk(t)f ∈ L1
±

are continuous.

(4) For any f ∈ X, t > 0 and s > 0 we have Uk(t+ s)f =
∑k

j=0 Uj(t)Uk−j(s)f .

(5) For all f ∈ X and t > 0 one has
∫ t

0
Uk(s)fds ∈ D(Tmax) with

Tmax

∫ t

0

Uk(s)fds = Uk(t)f.

Moreover, B±
(∫ t

0
Uk(s)fds

)
∈ L1

± and

HB
+

(∫ t

0

Uk−1(s)fds

)
= B

−

(∫ t

0

Uk(s)fds

)
. (3.7)

(6) For any f ∈ X and λ > 0, setting gk :=
∫∞

0 exp(−λt)Uk(t)fdt, one has gk ∈ D(Tmax) with

Tmaxgk = λgk for k > 1, while Tmaxg0 = λg0 − f ;

and B
+gk = (MλH)kGλf ∈ L1

+ for any k > 0 while B
−g0 = 0 and B

−gk = HB
+gk−1 if

k > 1.

(7) For any nonnegative f ∈ X and any t > 0 and n > 1 one has

n∑

k=0

‖Uk(t)f‖X = ‖f‖X −

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

+
n−1∑

k=0

[∥∥∥∥HB
+

∫ t

0

Uk(s)fds

∥∥∥∥
L1

−

−

∥∥∥∥B+

∫ t

0

Uk(s)fds

∥∥∥∥
L1

+

]
.

(3.8)

In particular,

n∑

k=0

‖Uk(t)f‖X 6 ‖f‖X −

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

6 ‖f‖X . (3.9)

The above listed properties allow to give a characterization of the semigroup (VH(t))t>0 in terms

of a strongly convergent expansion series, reminiscent to classical Dyson-Phillips expansion series

for additive perturbation:

Theorem 3.2. For any f ∈ X and any t > 0, one has

VH(t)f =

∞∑

k=0

Uk(t)f. (3.10)
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Proof. For any f ∈ X and any t > 0, set V (t)f =
∑∞

k=0 Uk(t)f. Notice that the series is convergent

in X and the family (V (t))t>0 defines a substochastic C0-semigroup in X (see [3, Theorem 4.3] for

details). Let us prove that V (t) = VH(t) for all t > 0. Let f ∈ X and λ > 0 be fixed. Set, for any

k > 1,

gk =

∫ ∞

0

exp(−λt)Uk(t)fdt.

Proposition 3.2 asserts that gk ∈ D(Tmax) and satisfies Tmaxgk = λgk for any k > 1. According to

[2, Theorem 2.1] we deduce that, for k > 1, gk = ΞλHB
+gk−1 = ΞλH(MλH)k−1Gλf . Summing

this identity, we get that
∫ ∞

0

exp(−λt)W (t)fdt =

∞∑

k=0

gk = Cλf +

∞∑

k=0

ΞλH(MλH)kGλf.

Since this last expression coincides with (λ − A)−1f , one deduces from the injectivity of Laplace

transform that V (t)f = VH(t)f for any t > 0. �

An immediate consequence of the above Theorem 3.2 is given in the following

Corollary 3.1. For any f ∈ X and λ > 0, as n → ∞, the sum

n∑

k=0

∫ ∞

0

exp(−λt)Uk(t)fdt

converges to (λ−A)−1f in the graph norm of A.

We end this section with a technical result that complements Proposition 3.2 and shall be useful

in the sequel

Lemma 3.2. Let f ∈ X be nonnegative and t > 0 be given. For any z ∈ Γ+ and any k > 1 it holds
[
B
+

∫ t

0

Uk(s)fds

]
(z) 6

[
HB

+

∫ t

0

Uk−1(s)fds

]
(Φ(z,−τ−(z)).

Proof. Let k > 1 and z ∈ Γ+ be given. If τ−(z) > t, one gets from (3.6) that

B
+

(∫ t

0

Uk(s)fds

)
(z) = 0

from which the conclusion clearly holds. Now, if τ−(z) 6 t, set y = Φ(z,−τ−(z)) ∈ Γ−. Since∫ t

0
Uk(s)fds ∈ D(Tmax) with Tmax

∫ t

0
Uk(s)fds = Uk(t)f , one deduces from Definition 2.1 (see also

[1, Theorem 3.6]) that
∫ t2

t1

[Uk(t)f ](Φ(y, s))ds =

[∫ t

0

Uk(s)fds

]
(Φ(y, t1))−

[∫ t

0

Uk(s)fds

]
(Φ(y, t2))

for any 0 < t1 < t2 < τ+(y) = τ−(z) 6 t. In particular, for nonnegative f we get
[∫ t

0

Uk(s)fds

]
(Φ(y, t2)) 6

[∫ t

0

Uk(s)fds

]
(Φ(y, t1)) ∀0 < t1 < t2 < τ+(y) = τ−(z) 6 t.

Letting t1 → 0+ and t2 → τ+(y) and since z = Φ(y, τ+(y)), we get
[
B
+

∫ t

0

Uk(s)fds

]
(z) 6

[
B
−

(∫ t

0

Uk(s)fds

)]
(y).

Using now (3.7) and the fact that y = Φ(z,−τ−(z)) we get the conclusion. �
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4. Honesty theory

4.1. On some functionals. For any f ∈ D(Tmax) we define

a(f) = −

∫

Ω

Tmaxfdµ.

while, for any f ∈ W , we set

a0(f) =

∫

Γ+

B
+fdµ+ −

∫

Γ−

HB
+fdµ−.

Clearly a : D(Tmax) → R is a linear functional with |a(f)| 6 ‖Tmaxf‖X for any f ∈ D(Tmax). Here

we are interested in the restriction of a to D(A), that we still denote by a. Since A generates a

positive contraction semigroup (VH(t))t>0 we have

a(f) = −

∫

Ω

Afdµ = lim
t→0+

t−1

∫

Ω

(f − VH(t)f) dµ > 0 ∀f ∈ D(A)+ := D(A) ∩X+.

Hence a : D(A) → R is a positive linear functional. Furthermore a is continuous in the graph norm

of A and its restriction to D(TH) is equal to the restriction of a0 to D(TH). Indeed, according to

Green’s formula (2.6) for all f ∈ D(TH) we have

a(f) =

∫

Γ+

B
+fdµ+ −

∫

Γ−

B
−fdµ− =

∫

Γ+

B
+fdµ+ −

∫

Γ−

HB
+fdµ− = a0(f).

This basic observation allows to formulate an equivalent to [6, Proposition 4.5] in this boundary

perturbation context. Precisely, one has

Proposition 4.1. For all f ∈ D(A) there exists

lim
t→0+

1

t

∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)
=: â(f) (4.1)

with |â(f)| 6 2(‖f‖X + ‖Af‖X). Furthermore, if f ∈ D(A)+, then

0 6 â(f) 6 a(f) 6 ‖Tmaxf‖. (4.2)

The proof of Proposition 4.1 is based upon the following

Lemma 4.1. For any f ∈ X and t > 0 one has
∣∣∣∣∣
∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6 ‖f‖X. (4.3)

If f ∈ D(A) then one also has
∣∣∣∣∣
∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6 2t (‖f‖X + ‖Tmaxf‖X) . (4.4)
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Proof. For simplicity, for any fixed t > 0, we set

Gk(f) =

∫ t

0

Uk(s)fds ∀k > 1.

According to Proposition 3.2 (5), Gk(f) ∈ D(Tmax) for any f ∈ X , k > 1 with moreover B+Gk(f) ∈

L1
+, i.e. Gk(f) ∈ W . We begin with assuming f ∈ X+ and t > 0. One can reformulate (3.8) as

n−1∑

k=0

a0 (Gk(f)) = ‖f‖X −

n∑

k=0

‖Uk(t)f‖X − ‖B+Gn(f)‖L1+ 6 ‖f‖X (4.5)

Therefore, we can see that (
∑n

k=0 a0 (Gk(f)))n is an increasing bounded sequence whose limit

satisfies
∞∑

k=0

a0 (Gk(f)) 6 ‖f‖X −
∞∑

k=0

‖Uk(t)f‖X . (4.6)

Now, for general f ∈ X , since Gk(f) ∈ W , we deduce from [2, Proposition 2.2] that |Gk(f)| ∈ W

and, since Uk(s) (0 < s < t, k > 0) is a positive operator, the inequalities

|a0 (Gk(f))| 6 a0 (|Gk(f)|) 6 a0 (Gk(|f |)) ∀k > 1

hold. This, together with (4.6) yields (4.3). Before proving (4.4), one notices that the right-hand

side of (4.6) for f > 0 is

∫

Ω

(
f −

∞∑

k=0

Uk(t)f

)
dµ =

∫

Ω

(f − VH(t)f) dµ = −

∫

Ω

A

(∫ t

0

VH(s)fds

)
dµ

where we used Theorem 3.2 and the well-know fact (see [16, Lemma 1.3, p. 50]) that, for any

C0-semigroup (VH(t)t>0 with generator A, one has
∫ t

0 VH(s)fds ∈ D(A) with A
(∫ t

0 VH(s)fds
)
=

VH(t)f − f for any t > 0 and any f ∈ X . Since moreover VH(t)f − f =
∫ t

0
VH(s)Afds if f ∈ D(A),

one gets

∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)
6 a

(∫ t

0

VH(s)fds

)
= −

∫

Ω

(∫ t

0

VH(s)Afds

)
dµ ∀f ∈ D(A) ∩X+.

(4.7)

Let us now fix f ∈ D(A) and set g := (I − A)f = g+ − g−, where g+ and g− denote respectively

the positive and negative parts of g. Put also f±
1 = (I −A)−1g± so that f = f+

1 − f−
1 , where f±

1

are belonging to D(A)+ (notice that f±
1 do not necessarily coincide with the positive and negative

parts f± of f). One has

‖Af±
1 ‖X 6 ‖f±

1 ‖X + ‖g±‖X 6 2‖g±‖X .

Recalling that Af±
1 = Tmaxf

±
1 and using formula (4.7) we get

∞∑

k=0

a0

(∫ t

0

Uk(s)f
±
1 ds

)
6 −

∫

Ω

(∫ t

0

VH(s)Af±
1 ds

)
dµ

6

∫ t

0

‖VH(s)Tmaxf
±
1 ‖ds 6 t‖Tmaxf

±
1 ‖X 6 2t‖g±‖X
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where we used that the semigroup (VH(t))t>0 is substochastic. Finally, noticing that
∣∣∣∣∣
∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6
∞∑

k=0

a0

(∫ t

0

Uk(s)f
+
1 ds

)
+

∞∑

k=0

a0

(∫ t

0

Uk(s)f
−
1 ds

)

we obtain (4.4) since ‖g+‖X + ‖g−‖X = ‖g‖X 6 ‖f‖X + ‖Tmaxf‖X . �

Proof of Proposition 4.1. Using Lemma 4.1 together with a repeated use of Proposition 3.2 (4), it

is not difficult to resume the proof of [6, Proposition 4.5] to get the result. We only mention here

that the equivalent of [6, Eq. (4.14)] in our context is

∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)
= lim

τ→0+

1

τ

∞∑

k=0

a0

(∫ τ

0

Uk(r)

(∫ t

0

VH(s)fds

)
dr

)
. (4.8)

Details are omitted. �

As an immediate consequence of Proposition 4.1 we deduce the following

Corollary 4.1. For any f ∈ X, t > 0 and λ > 0 one has

â

(∫ t

0

VH(s)fds

)
=

∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)
, (4.9)

and

â

(
(λ −A)−1f

)
=

∞∑

k=0

(∫

Γ+

(MλH)kGλfdµ+ −

∫

Γ−

H(MλH)kGλfdµ−

)
. (4.10)

Proof. Identity (4.9) is simply deduced from (4.8) and the definition (4.1). Regarding (4.10), observe

that for any f ∈ X , and λ > 0 one has

(λ−A)−1f =

∫ ∞

0

exp(−λt)VH(t)fdt = λ

∫ ∞

0

exp(−λt)

(∫ t

0

VH(s)fds

)
dt.

Therefore, from (4.9),

â

(
(λ−A)−1f

)
= λ

∫ ∞

0

exp(−λt)â

(∫ t

0

VH(s)fds

)
dt

= λ

∫ ∞

0

exp(−λt)

∞∑

k=0

a0

(∫ t

0

Uk(s)fds

)
dt.

Setting, gk =

∫ ∞

0

exp(−λt)Uk(t)fdt and φk(t) =

∫ t

0

Uk(s)fds, one deduces from Proposition 3.2

(6) that, for any k > 1

λ

∫ ∞

0

exp(−λt)B+φk(t)dt = B
+ gk = (MλH)kGλf,

and, recalling that a0(φk(t)) =

∫

Γ+

B
+φk(t)dµ+ −

∫

Γ−

HB
+φk(t)dµ− we get (4.10). �
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Remark 4.1. In the free-streaming context, the identity (4.10) shows that the functional â co-

incides with the functional cλ defined in [18]. In particular, this shows that the functional cλ of

[18] does not depend on λ, answering the question left open in [18, Remark 17]. Moreover, by

Proposition 4.1, we see that the functionals cλ and ĉ of [18] (corresponding respectively to our â

and a) are positive functionals such that cλ(ϕ) 6 ĉ(ϕ) for all ϕ ∈ D(A)+ which extends the result

of [18, Remark 17] valid only for ϕ ∈ (λ −A)−1X+.

Proposition 4.1 allows to define a third linear positive functional Θ : D(A) → R by setting

Θ(f) = a(f)− â(f) for any f ∈ D(A).

Clearly, the functional Θ is continuous in the graph norm of D(A). Other properties of Θ are stated

here below.

Corollary 4.2. For any f ∈ X, t > 0 and λ > 0 one has

Θ

(∫ t

0

VH(s)fds

)
= lim

n→∞

∫

Γ+

B
+

(∫ t

0

Un(s)fds

)
dµ+, (4.11)

and

Θ
(
(λ−A)−1f

)
= lim

n→∞

∫

Γ+

(MλH)nGλfdµ+. (4.12)

In particular, both the limits appearing in (4.11) and (4.12) exist and are finite for any f ∈ X.

Proof. As in the proof of Corollary 4.1, for fixed f ∈ X , λ > 0 and t > 0 set

gk =

∫ ∞

0

exp(−λt)Uk(t)fdt and φk(t) =

∫ t

0

Uk(s)fds, k > 0.

Notices that φk(t) ∈ W for any t > 0 and any k > 1. One checks then easily thanks to Proposition

3.2 (7) that, for any n > 1

n∑

k=0

a (φk(t)) =

n−1∑

k=0

a0 (φk(t)) +

∫

Γ+

B
+φn(s)dµ+.

One deduces easily (4.11) from this last identity combined with (4.9) and the fact that (
∑n

k=0 φk(t))n
converges to

∫ t

0 VH(s)fds in the graph norm of A. In the same way, noticing that for any n ∈ N

one has
n∑

k=0

a (gk) =
n−1∑

k=0

a0 (gk) +

∫

Γ+

B
+gndµ+,

one readily gets (4.12) using now (4.10) together with the fact that (
∑n

k=0 gk)n converges to (λ−

A)−1f in the graph norm of A as n→ ∞ (see Corollary 3.1). �

The above results yield the following

Proposition 4.2. For any f ∈ D(TH) one has â(f) = a(f) = a0(f). Consequently,

Θ(f) = 0 ∀f ∈ D
(
TH
)
. (4.13)
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Proof. By definition and since Θ is continuous over D(A) endowed with the graph norm, it is

enough to prove that â(f) = a(f) for any f ∈ D(TH). For any λ > 0, since the operator Gλ :

X → L1
+ is surjective, one deduces from (4.12) that the limit limn→∞

∫
Γ+

(MλH)
n
hdµ+ exists and

is finite for any h ∈ L1
+. Now, given f ∈ D(TH), set g = (λ − A)f . Since B

+f ∈ L1
+ the limit

limn→∞

∫
Γ+

(MλH)nB+fdµ+ exists and is finite while, from f = (λ−A)−1g one deduces that

n−1∑

k=0

(MλH)kGλg = B
+f − (MλH)nB+f.

Therefore, the sequence

(
n−1∑

k=0

∫

Γ+

(MλH)kGλgdµ+

)

n

is converging. In particular,

lim
n→∞

∫

Γ+

(MλH)nGλgdµ+ = 0.

From (4.12), this limit coincides with Θ
(
(λ−A)−1g

)
= Θ(f) which shows the result. �

Now one proves that, somehow, (4.13) is a characterization of D(TH), at least for nonnegative

f :

Proposition 4.3. If f ∈ D(A)+ is such that Θ(f) = 0, then, f ∈ D( TH ).

Proof. The proof is inspired by the analogous result for additive perturbation [19, Proposition 1.6].

Let f ∈ D(A)+ be given such that Θ(f) = 0, i.e. â(f) = a(f). Since λ(λ − A)−1f → f in the

graph norm of D(A) as λ→ ∞, we get that

lim
λ→∞

Θ
(
λ(λ −A)−1f

)
= Θ(f) = 0.

Now, since

Θ
(
λ(λ −A)−1f

)
= lim

n→∞
λ

∫

Γ+

(MλH)
n
Gλfdµ+

we see that, for any ε > 0 we can find λ > 1 and N > 1 such that

‖λ(λ−A)−1Tmaxf − Tmaxf‖X < ε ; ‖λ(λ−A)−1f − f‖X < ε

and

∫

Γ+

(MλH)
n
Gλfdµ+ <

ε

λ
∀n > N. (4.14)

For such λ > 1 and N > 1, we construct a sequence (ϕn) in W with the following properties

B
−ϕn = 0; B

+ϕn = (MλH)nGλf ; ‖ϕn‖X 6 ‖(MλH)nGλf‖L1
+

and ‖Tmaxϕn‖X 6 ‖(MλH)nGλf‖L1
+
.

The existence of such a sequence is ensured by [2, Proposition 2.3]. Then, for any n > 1, we set

un = Cλf +

n−1∑

k=0

ΞλH(MλH)kGλf − ϕn.
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Clearly, un ∈ D(Tmax) for any n > 1 with

Tmaxun = λ

(
Cλf +

n−1∑

n=0

ΞλH(MλH)nGλf

)
− f − Tmaxϕn;

B
+un =

n−1∑

k=0

(MλH)kGλf and B
−un =

n−1∑

k=0

H(MλH)kGλf = HB+un

i.e. un ∈ D(TH) for all n > 1. Considering that (λ−A)−1f = Cλf +
∑∞

k=0 ΞλH(MλH)kGλf , we

can choose n > N such that
∥∥∥(λ−A)−1f − Cλf −

∑n−1
k=0 ΞλH(MλH)kGλf

∥∥∥
X
<

ε

λ2
. With such

choice, since λ(λ −A)−1Tmaxf = λ2(λ −A)−1f − λf , we check that

‖λun − f‖X 6 ‖λ(un − (λ −A)−1f)‖X + ‖λ(λ−A)−1f − f‖X < 4ε

and ‖λTmaxun − Tmaxf‖X < 4ε.

Since λun ∈ D(TH), this shows that f ∈ D( TH ). �

4.2. Honesty criteria. Here we want to improve the honesty theory developed in [18]. First of all

we adapt the definition of honesty, established in the additive perturbation framework in [19, 6].

Definition 4.1. Let f ∈ X+ be given. Let J ⊆ [0,∞) be an interval. Then, the trajectory

(VH(t)f)t>0 is said to be honest on J if

‖VH(t)f‖X = ‖VH(s)f‖X − â

(∫ t

s

VH(r)fdr

)
, ∀ s, t ∈ J, s 6 t.

The trajectory is said to be honest if it is honest on [0,∞). The whole C0-semigroup (VH(t))t>0

will be said honest if all the trajectories are honest.

In the following, we establish thanks to the representation series (3.10) an approach to honesty on

subinterval J ⊆ [0,∞) which is completely new in the context of boundary perturbation. The proof

is inspired by the recent similar results obtained in the additive perturbation framework thanks to

Dyson-Phillips series (see the concept of so-called ’mild honesty’ in [6, Section 4]). More precisely,

we have the following honesty criteria, analogous to [6, Theorem 4.8]:

Theorem 4.1. Given f ∈ X+ and J ⊆ [0,∞), the following statements are equivalent

1) the trajectory (VH(t)f)t>0 is honest on J ;

2) lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
L1

+

= 0 for any s, t ∈ J, s 6 t;

3)

∫ t

s

VH(r)fdr ∈ D(TH ) for any s, t ∈ J, s 6 t;

4) the set

(
B
+

∫ t

s

Un(r)fdr

)

n

is relatively weakly compact in L1
+ for any s, t ∈ J, s 6 t.
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Proof. Let f ∈ X+, J ⊆ [0,∞) and s, t ∈ J, s 6 t be given. Recall that

a

(∫ t

s

VH(r)fdr

)
= ‖VH(s)f‖X − ‖VH(t)f‖X .

so that, according to Definition 4.1, the trajectory (VH(t)f)t>0 is honest on J if and only if

Θ

(∫ t

s

VH(r)fdr

)
= 0 ∀s, t ∈ J, s 6 t.

According to (4.11), this is equivalent to 2), i.e. 1) ⇔ 2). Since moreover
∫ t

s
VH(r)fdr ∈ D(A)+,

statements 1) and 3) are equivalent by virtue of Corollary 4.13 and Proposition 4.3. Clearly 2)

implies 4). Assume now that the set
(
B
+
∫ t

s
Un(r)fdr

)
n
is relatively weakly compact in L1

+. Let

us show that limn→∞ ‖B+
∫ t

s
Un(r)fdr‖L1

+
= 0. According to (4.11), the limit

lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
L1

+

:= ℓ(s, t)

exists. By Theorem 2.1, we also have
∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
Y+

6

∥∥∥∥
∫ t

s

Un(r)fdr

∥∥∥∥
X

+

∥∥∥∥Tmax

∫ t

s

Un(r)fdr

∥∥∥∥
X

=

∥∥∥∥
∫ t

s

Un(r)fdr

∥∥∥∥
X

+ ‖Un(t)f‖X − ‖Un(s)f‖X ,

and, since the series
∑

n

∫ t

s
Un(r)fdr,

∑
n Un(s)f and

∑
n Un(t)f are converging (towards∫ t

s
VH(r)fdr, VH(s)f and VH(t)f respectively), one deduces that the right-hand-side is converging

to 0 as n→ ∞ and

lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
Y+

= 0. (4.15)

Now, by assumption 4), there exists a subsequence
(
B
+
∫ t

s
Unk

(r)fdr
)
k
which converges weakly

to, say, gs,t ∈ L1
+. For any i ∈ N we set Γi,+ = {z ∈ Γ+ : τ−(z) >

1
i
} and denote by χi the

characteristic function of the set Γi,+. Then for any i ∈ N, the limit

lim
k→∞

∫

Γi,+

B
+

∫ t

s

Unk
(r)fdrdµ+ = lim

k→∞

∫

Γ+

χi(z)

(
B
+

∫ t

s

Unk
(r)fdr

)
(z)dµ+(z) =

∫

Γi,+

gs,tdµ+.

Thus, from (4.15),

lim
k→∞

∫

Γi,+

B
+

∫ t

s

Unk
(r)fdr dξ+ = 0 ∀i ∈ N.

Since, for any fixed i ∈ N and any z ∈ Γi,+ one has dξ+(z) >
1
i
dµ+(z) so that

∫

Γi,+

gs,tdµ+ = 0.

Since gs,t is nonnegative on Γ+ =
⋃∞

i=1 Γi,+, we deduce that gs,t(z) = 0 for µ+-almost every z ∈ Γ+.

In other words, the unique possible weak limit is gs,t = 0 and therefore ℓ(s, t) = 0, i.e. 2) holds. �
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Remark 4.2. We deduce directly from the above, with J = [0,∞) that the C0-semigroup

(VH(t))t>0 is honest if and only if limn→∞ ‖B+
∫ t

0
Un(s)fds‖L1

+
= 0 for any f ∈ X and t > 0.

Remark 4.3. Recall that in [19], in the free-streaming case, the defect function [0,∞) ∋ t→ ηf (t)

has been defined, for each fixed f ∈ (λ−A)−1X+, by ηf (t) := ‖VH(t)f‖ − ‖f‖+ cλ(
∫ t

0 VH(s)fds).

We have already observed (see Remark 4.1) that cλ of [19] corresponds to our functional â. Hence

the defect function can be defined for each fixed f ∈ X+, as

ηf (t) = −Θ

(∫ t

0

VH(s)fds

)
= − lim

n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

.

Such a representation of ηf allows to deduce immediately that the mapping t→ ηf (t) is nonpositive

and nonincreasing. Moreover, if the trajectory (VH(t)f)t>0 is not honest then there exists t0 > 0

such that ηf (t) = 0 for 0 6 t 6 t0 and ηf (t) < 0 for all t > t0. Setting g = VH(t0)f ∈ X+. Then

for any t > 0 one has

ηf (t+ t0) = −Θ

(∫ t+t0

0

VH(s)fds

)

= −Θ

(∫ t0

0

VH(s)fds

)
−Θ

(∫ t+t0

t0

VH(s)fds

)
= −Θ

(∫ t

0

VH(s)gds

)
= ηg(t) < 0,

i.e., with the terminology of [19], the trajectory (VH(t)g)t>0 is immediately dishonest.

For any subinterval J ⊆ [0,∞) we denote by

XJ := {f ∈ X+ ; (VH(t)f)t>0 is honest on J }

and, whenever J = [0,∞), we simply denote Xh = X[0,∞) the set of initial positive data giving rise

to honest trajectories. Moreover, arguing exactly as in [6, Proposition 3.13], one sees that Xh is

invariant under (VH(t))t>0. Moreover, arguing exactly as in [19, Proposition 2.4], one has

Proposition 4.4. For any subinterval J ⊆ [0,∞), one has X̂J := span(XJ) = XJ −XJ is a closed

lattice ideal of X whose positive cone is XJ . In particular, X̂h = span(Xh) is a closed lattice ideal

in X which is invariant under (VH(t))t>0 and (X̂h)+ = Xh.

We recall now that a positive semigroup (T (t))t>0 in X is said to be irreducible if there is no

trivial closed ideal of X (i.e. different from X and {0}) which is invariant under T (t) for all t > 0.

We have then the following to be compared to [18, Theorem 19 & Remark 20]:

Proposition 4.5. Let g ∈ X+, g 6= 0 such that the trajectory (VH(t)g)t>0 is honest.

(1) If (VH(t))t>0 is irreducible then the whole semigroup (VH(t))t>0 is honest.

(2) If g is quasi-interior then the whole semigroup (VH(t))t>0 is honest.

Proof. Let g 6= 0 such that (VH(t)g)t>0 is honest be given.

(1) One has then X̂h 6= {0}. Since X̂h is an ideal invariant under (VH(t))t>0, if (VH(t))t>0 is

irreducible, this shows that necessarily X̂h = X and, in particular, X+ = Xh.

(2) If g is quasi-interior, since g ∈ X̂h one has X̂h = X and the conclusion follows. �
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We have the following practical criterion extending [18, Theorem 2.1 & Corollary 2.3]

Proposition 4.6. Assume that there exists some quasi-interior h ∈ L1
+ such that

H h(Φ(z,−τ−(z)))χ{τ−(z)<∞} 6 h(z) for almost every z ∈ Γ+. (4.16)

Then, the whole semigroup (VH(t))t>0 is honest.

Proof. Let h ∈ L1
+ satisfying the above assumption be given. Define then

f(x) =





τ−(x)

τ−(x) + τ+(x)
exp(−τ+(x))h(Φ(x, τ+(x)) if τ−(x) + τ+(x) <∞,

exp(−τ+(x))h(Φ(x, τ+(x)) if τ−(x) = ∞ and τ+(x) <∞,

and f chosen freely on Ω+∞ in such a way that f ∈ X is quasi-interior. One sees easily (see [2,

Proposition 2.3] for details) that B+f = h. Moreover, since τ±(xt) = τ±(x)± t and Φ(xt, τ+(xt)) =

Φ(x, τ+(x)) for any x ∈ Ω, t > 0, xt = Φ(x,−t), one checks easily that, for any x ∈ Ω+, it holds

U0(t)f(x) =





τ−(x)− t

τ−(x) + τ+(x)
exp(−t− τ+(x))h(Φ(x, τ+(x))χ{t<τ−(x)} if x ∈ Ω+ ∩Ω−,

exp(−t− τ+(x))h(Φ(x, τ+(x)) if x ∈ Ω+ ∩Ω−∞.

Therefore, one sees that for any t > 0, U0(t)f(x) 6 f(x) for almost every x ∈ Ω+. Let t > 0 be

fixed. According to Lemma 3.2, one has
[
B
+

∫ t

0

U1(s)fds

]
(z) 6

[
HB

+

∫ t

0

U0(s)fds

]
(Φ(z,−τ−(z)) ∀z ∈ Γ+.

Since U0(s)f 6 f on Ω+ we get
[
B
+

∫ t

0

U1(s)fds

]
(z) 6 t

[
H B

+f
]
(Φ(z,−τ−(z)) = tH h(Φ(z,−τ−(z))) ∀z ∈ Γ+.

From (4.16), one gets therefore
[
B
+

∫ t

0

U1(s)fds

]
(z)χ{τ−(z)<∞} 6 th(z) for a. e. z ∈ Γ+.

Recalling that
[
B
+
∫ t

0
U1(s)fds

]
(z) = 0 if τ−(z) > t, we get therefore that

[
B
+

∫ t

0

U1(s)fds

]
(z) 6 th(z) for a. e. z ∈ Γ+.

Repeating the argument, one gets that
[
B
+

∫ t

0

Un(s)fds

]
(z) 6

tn

n!
h(z) ∀t > 0, n > 1, for a. e. z ∈ Γ+.

This shows that, for any t > 0,
∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

6
tn

n!
‖h‖L1

+
−→ 0 as n→ ∞

which, according to Theorem 4.1, the trajectory (VH(t)f)t>0 is honest. Since f is quasi-interior,

Proposition 4.5 yields the conclusion. �
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Besides the semigroup approach that we developed in the previous lines, it is also possible to

develop a resolvent approach to honesty, as the one developed in [18] for the free-streaming case

and in [5] for conservative boundary conditions. Such an approach provides necessary and sufficient

conditions for a trajectory to be honest which are different from the one listed above. They can

be seen as the analogue of [6, Theorem 3.5 & Theorem 3.11] which are established in the additive

perturbation framework. Since we decided to mainly focus on the semigroup approach, we only

state the result for the sake of completeness but omit the details of the proof which can be adapted

without major difficulty from [18] and [6]:

Theorem 4.2. Given f ∈ X+, the following statements are equivalent

1) the trajectory (VH(t)f)t>0 is honest;

2) Θ
(
(λ−A)−1f

)
= 0 for all/some λ > 0;

3) limn→∞ ‖(MλH)nGλf‖L1
+

= 0 for all/some λ > 0;

4) (λ−A)−1f ∈ D(TH ) for all/some λ > 0;

5) the set ((MλH)nGλf))n is relatively weakly compact in L1
+ for all/some λ > 0.

In particular, the whole C0-semigroup (VH(t))t>0 is honest if and only if A = TH .

Remark 4.4. It is possible to provide sufficient conditions for a trajectory to be honest which are

reminiscent to those given in [19, Proposition 2.6]. Namely,

(1) given f ∈ X+, if there exists λ > 0 such that (MλH)Gλf 6 Gλf , then the trajectory

(VH(t)f)t>0 is honest;

(2) if g ∈ D(TH) is such that THg 6 λg for some λ > 0, then g ∈ X+ and the trajectory

(VH(t)g)t>0 is honest.

5. Some examples

We illustrate here our approach by two examples. These two examples are dealing with the free-

streaming equation conservative boundary and, as so, have already been dealt with in our previous

contribution [5]. The scope here is to show that our new approach, based upon the semigroup

representation (3.10), allows not only to recover, by different means, the results of [5], but also to

characterize, in both examples, new interesting properties.

5.1. An instructive one dimensional example revisited. We revisit here a one-dimensional

example introduced in [20, Example 4.12, p. 76]. This example has been revisited recently in both

[5, 18]. Given two real nondecreasing real sequences (ak)k>0 and (bk)k>0 with

ak < bk < ak+1 ∀k > 0, lim
k→∞

ak = ∞

set

Ω =

∞⋃

k=0

(ak, bk) =:

∞⋃

k=0

Ik.
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We assume then µ to be the Lebesgue measure on R and consider the constant field F : R → R

given by F (x) = 1 for all x ∈ R. In such a case, the flow Φ(x, t) is given by

Φ(x, t) = x+ t for any x, t ∈ R,

and

Γ− = {ak, k ∈ N}, Γ+ = {bk, k ∈ N}, τ−(x) = x− ak ∀ak < x < bk, k ∈ N.

The measures dµ± are then the counting measures over Γ±. We define then H ∈ B(L1
+, L

1
−) by

Hψ(ak) =




0 if k = 0,

bk−1 if k > 0
(5.1)

for any ψ ∈ L1
+. It is clear that H is a positive boundary operator with unit norm. We then explicit

the strongly family of operators {(Uk(t))t>0 ; k ∈ N} as defined in Definition 3.2. To this aim for

any k ∈ N, set ∆k = bk − ak. For f ∈ D0 and t > 0 one easily sees that

U0(t)f(x) =




f(x− t) if 0 < t < x− ak,

0 otherwise,
(5.2)

which yields

B
+U0(t)f(bk) =




f(bk − t) if 0 < t < ∆k,

0 otherwise.
(5.3)

By induction one can easily show that for n > 1, k > 0, ak < x < bk one has

Un(t)f(x) =





f(bk−n − ak + x+
∑k−1

j=k−n+1 ∆j − t) if k > n

and x− ak +
∑k−1

j=k−n+1 ∆j < t < x− ak +
∑k−1

j=k−n ∆j ,

0 otherwise

(5.4)

so that

B
+Un(t)f(bk) =




f(bk−n +

∑k
j=k−n+1 ∆j − t) if k > n and

∑k
j=k−n+1 ∆j < t <

∑k
j=k−n ∆j ,

0 otherwise.

(5.5)

Because of this we have for all f ∈ X

B
+

(∫ t

0

Un(s)fds

)
(bk) =





∫ bk−n

ak−n∨(bk−n+
∑

k
j=k−n+1

∆j−t)

f(s)ds if k > n and t >
∑k

j=k−n+1 ∆j ,

0 otherwise.

(5.6)

Now we are able to prove the following where (VH(t))t>0 is the C0-semigroup constructed through

Theorem 2.2 and given by VH(t) =
∑∞

n=0 Un(t) (t > 0):
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Proposition 5.1. The C0-semigroup (VH(t))t>0 is honest if and only if

∆ :=

∞∑

k=0

(bk − ak) = ∞ (5.7)

If ∆ <∞, define

Jk :=

[ ∞∑

j=k+1

∆j ,

∞∑

j=k

∆j

]
⊂ [0,∞) for any k ∈ N.

Then, given f ∈ X+, the trajectory (VH(t)f)t>0 is honest on Jk if and only if

∫ bk

ak

f(s)ds = 0

which is equivalent to f(s) = 0 for almost every s ∈ Ik.

Remark 5.1. The first part of the Proposition is a well-known fact, first proven in [20] and revisited

recently in [5, 18]. The second part, on the contrary, is new to our knowledge and provides a criterion

for ’local’ honesty.

Proof. Thanks to formula (5.6) we can state that for all f ∈ X+, n > 1 and t > 0
∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

=
∞∑

k=0

[∫ bk

ak∨(bk+
∑k+n

j=k+1
∆j−t)

f(s)ds

]
χ{t>

∑k+n

j=k+1
∆j}

6

∞∑

k=0

∫ bk

ak

f(s)ds = ‖f‖X .

(5.8)

Assume first that ∆ = +∞. In such a case for any f ∈ X+, k ∈ N we have:

lim
n→∞

[∫ bk

ak∨(bk+
∑k+n

j=k+1
∆j−t)

f(s)ds

]
χ{t>

∑k+n

j=k+1
∆j}

= 0

which, thanks to the dominated convergence theorem yields

lim
n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

= 0.

By virtue of Corollary 4.2 the trajectory (VH(t)f)t>0 is then honest. Since f ∈ X+ is arbitrary,

the semigroup itself is honest.

Now consider the case ∆ < +∞. In such a case, given k0 ∈ N, let t ∈ Jk0
⊆ [0,∆] ⊆ [0,∞). It

is easy to see that

lim
n→∞

[∫ bk

ak∨(bk+
∑k+n

j=k+1
∆j−t)

f(s)ds

]
χ{t>

∑k+n

j=k+1
∆j}

=





0 if k = 0, . . . , k0 − 1 > 0,∫ bk

ak

f(s)ds ifk > k0 + 1,

while

lim
n→∞

[∫ bk0

ak0
∨(bk0+

∑k0+n

j=k0+1
∆j−t)

f(s)ds

]
χ
{t>

∑k0+n

j=k0+1
∆j}

=

∫ bk0

(bk0+
∑

∞
j=k0+1

∆j−t)

f(s)ds.

Then, from the dominated convergence theorem and (5.8)) we get
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lim
n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

=

∫ bk0

(bk0+
∑

∞
j=k0+1

∆j−t)

f(s)ds+

∞∑

k=k0+1

∫ bk

ak

f(s)ds.

Therefore, for any t1, t2 ∈ Jk0
with t1 < t2 one has

lim
n→∞

∥∥∥∥B+

∫ t2

t1

Un(s)fds

∥∥∥∥
L1

+

=

∫ (bk0+
∑

∞
j=k0+1

∆j−t1)

(bk0+
∑

∞
j=k0+1

∆j−t2)

f(s)ds 6

∫ bk0

ak0

f(s)ds

where the last inequality is an identity if t1 =
∑∞

j=k0+1 ∆j and t2 =
∑∞

j=k0
∆j . Using Corollary

4.2 again, this shows that the trajectory (VH(t)f)t>0 is honest on Jk0
if and only if

∫ bk0
ak0

f(s)ds = 0

and, being f nonnegative, this is equivalent to f(s) = 0 for almost every s ∈ Ik0
. �

Remark 5.2. As an immediate consequence of the obtained result we can state the following: if

∆ <∞, then no trajectory (VH(t)f)t>0 (f ∈ X+) is honest on an interval J ⊇ [0,∆].

Remark 5.3. Finally observe that, in case ∆ < +∞, for all f ∈ X and t > ∆ one has VH(t)f ≡ 0.

Indeed for t > ∆ one has U0(t)f ≡ 0. Furthermore for any n > 1, k > 0, one has t >
∑k+n

j=k ∆j .

This implies Un(t)f(x) = 0 for all n > 1, f ∈ D0 and x ∈ Ω which gives the result.

5.2. Kinetic equation with specular reflections. In this second example, we consider the

physically relevant case of free-streaming semigroup associated to specular reflections. Such a

model, as well-known [3], is strongly related to the so-called billiard flow which is a well-known

dynamical system studies in ergodic theory [14]. We do not provide here any new honesty criterion

but show how the result we obtained before yields possibly new property of the billiard flow. More

precisely, we consider now a transport equation in RN with N = 2d, d ∈ N and consider then

Ω = D × Rd

where D is a smooth open bounded and convex subset of Rd. Any x ∈ Ω can be written x = (x, v),

with x ∈ D, v ∈ Rd and consider the measure dµ(x) = dx ⊗ d̺(v), where d̺ is a positive Radon

measure onRd with support V . We assume for simplicity that V and d̺ to be orthogonally invariant.

Assume the field F : x ∈ RN → RN to be given by F (x) = (v, 0) for all x = (x, v) ∈ Rd × Rd.

Classically, the associated flow is given by Φ(x, t) = (x+ vt, v) for all x = (x, v) and t ∈ R. In this

case,

Γ± = {y = (x, v) ∈ ∂D × V ; ±v · n(x) > 0} , dµ±(y) = |v · n(x)|d̺(v)dσ(x)

where n(x) denotes the outward normal unit vector at x ∈ ∂D and dσ(·) is the Lebesgue surface

measure on ∂D. We consider here the boundary operator H to be associated by the specular

reflection, i.e.

Hψ(y) = ψ(x, v − 2(v · n(x))n(x)), ψ ∈ L1
+, y = (x, v) ∈ Γ−.

It is known that H is a positive and conservative operator, i.e. ‖Hψ‖L1
−

= ‖ψ‖L1
+
for any non-

negative ψ ∈ L1
+. In particular, H has unit norm. As in the previous example, let us characterize
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the families (Uk(t))t>0, k ∈ N. Observe that for x = (x, v) ∈ D × V we can define the sequence of

rebound times :

t1(x) = τ−(x), t2(x) = t1(x) + τ−(x1) . . . tk(x) = tk−1(x) + τ−(xk−1) =
k−1∑

j=1

τ−(xj)

where , setting x0 = x, x0 = x, v0 = v, one has, for any j = 1, . . . , k:

xj = (xj , vj) ∈ Γ+, with xj = xj−1 − τ−(xj−1)vj−1,∈ ∂D,

vj = vj−1 − 2(vj−1 · n(xj−1))n(xj−1).

With this notations, setting also t0 = 0, we have for any f ∈ D0, k > 0, x = (x, v) ∈ Ω

Uk(t)f(x) = f(xk − (t− tk(x))vk, vk)χ{tk(x)6t<tk+1(x)}.

Recall that VH(t) =
∑

k Uk(t) and, since for a given t > 0 and a given x ∈ Ω, there exists a unique

k ∈ N such that t ∈ [tk(x), tk+1(x)], one has VH(t)f(x) = Uk(t)f(x) (of course, such k depends on

x). This implies that, for any t > 0,

VH(t)f = f ◦ ϑt

where {ϑt; t ∈ R} is the one-parameter group of transformations on D × V corresponding to the

so-called billiard flow [14] (see also [4]). The following is taken from [20, 5] and is proven through

the resolvent approach:

Proposition 5.2. Assume that dσ(∂D) < ∞. If there exists some nonnegative ψ ∈ L1(V, d̺(v))

with ψ(v) = ψ(|v|) for any v ∈ V and

∫

V

(1 + |v|)ψ(|v|)d̺(v) <∞

then the semigroup (VH(t))t>0 is honest.

Proof. The proof follows from Proposition 4.6 since, as in [18, Corollary 2.3], the mapping h(x, v) =

ψ(|v|) provides a quasi-interior element of L1
+ satisfying (4.16). �

Remark 5.4. From Remark 4.2 we deduce that for any t > 0 and f ∈ X+

lim
k→∞

∥∥∥∥B+

∫ t

0

Uk(s)fds

∥∥∥∥
L1

+

= 0,

i.e.

lim
k→∞

∫

Γ+

(∫ t∧tk+1(x)

tk(x)

f(xk − vk(s− tk(x))vk, vk)ds

)
χ{tk(x)<t}dµ+(x) = 0.

We wonder if such a property of the billiard flow is known in the literature.
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(1970), 185–233.

[11] R. Beals, V. Protopopescu, Abstract Time-dependent Transport Equations J. Math. Anal. Appl., 121

(1987), 370–405.

[12] M. Boulanouar, New results in abstract time-dependent transport equations Transport Theory Statist.

Phys., 40 (2011), 85–125.

[13] C. Cercignani, The Boltzmann Equation and its Applications, Springer Verlag, 1988.

[14] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer Verlag, 1982.

[15] R. Dautray, J. L. Lions, Mathematical analysis and numerical methods for science and technology. Vol.

6: Evolution problems II, Berlin, Springer, 2000.

[16] K. J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer, New-York,

2000.

[17] B. Lods, Semigroup generation properties of streaming operators with noncontractive boundary conditions,

Math. Comput. Modelling 42 (2005) 1441–1462.

[18] M. Mokhtar-Kharroubi, On collisionless transport semigroups with boundary operators of norm one, J.

Evolution Equations, 8 (2008), 327-362.

[19] M. Mokhtar-Kharroubi, J.Voigt, On honesty of perturbed substochastic C0-semigroups in L1-spaces,

J. Operator Theory, (2009).

[20] J. Voigt, Functional analytic treatment of the initial boundary value for collisionless gases, München,

Habilitationsschrift, 1981.
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