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TRANSPORT SEMIGROUP ASSOCIATED TO POSITIVE BOUNDARY
CONDITIONS OF UNIT NORM: A DYSON-PHILLIPS APPROACH

LUISA ARLOTTI & BERTRAND LODS

ABSTRACT. We revisit our study of general transport operator with general force field and general
invariant measure by considering, in the L! setting, the linear transport operator Tz associated
to a linear and positive boundary operator H of unit norm. It is known that in this case an ex-
tension of Ty generates a substochastic (i.e. positive contraction) Cop-semigroup (Vi (t))e>0. We
show here that (Vi (t))¢>0 is the smallest substochastic Cp-semigroup with the above mentioned
property and provides a representation of (Vi (t));>0 as the sum of an expansion series similar to
Dyson-Phillips series. We develop an honesty theory for such boundary perturbations that allows
to consider the honesty of trajectories on subintervals J C [0,00). New necessary and sufficient

conditions for a trajectory to be honest are given in terms of the aforementioned series expansion.

AMS Subject Classifications (2000): 47D06, 47N55, 35F05, 82C40

Key words: Transport equation, boundary conditions, substochastic semigroups, honesty theory.

1. INTRODUCTION

We investigate here the well-posedness (in the sense of semigroup theory) in L'(€2,du) of the

general transport equation
O f(x,t) + F(x) Vi f(x,t) =0 (xe, t>0), (1.1a)
supplemented by the abstract boundary condition

fie (y,t) = H(fir )y, 1), (yeT-,t>0), (1.1b)
and the initial condition
f(x,0) = fo(x), (x € Q). (1.1c)

Here Q is a sufficiently smooth open subset of RV endowed with a positive Radon measure p, I'4
are suitable boundaries of the phase space and the field .# is globally Lispchitz and divergence
free with respect to p, in the sense that p is a measure invariant by the (globally defined) flow
associated to .#. Our main concern here is the influence of the boundary conditions (LID]) and we

treat here the delicate case of a boundary operator

H: L —1L'
1
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which is linear, positive, bounded (L} being suitable trace spaces corresponding to the boundaries

Iy, see Section 2 for details) and of unit norm

[Hll e 0y = sup  [[Hf|p =1 (1.2)
FELL Il =1

Our motivation for studying such a problem is the study of kinetic equation of Vlasov-type for
which the phase space Q is a cylindrical domain @ = D x RN ¢ R2Y ( D being a sufficiently
smooth open subset of RY) and the field .% is given by

F(x) = (v,F(z,v)) forany x=(z,v)€ (1.3)

F : @ — RY is a time independent force field. The simplest (but already very rich) example of such
a kinetic equation is the so-called free-streaming equation for which F = 0. Boundary conditions in
such kinetic equations are usually modeled by a boundary operator H which relates the incoming
and outgoing boundary fluxes of particles; the form of this operator depends on the gas-surface
interaction (see [13] for more details on such a topic).

The mathematical study of the aforementioned problem has already a long story starting from
the seminal paper [10] who considered the case in which p is the Lebesgue measure and the so-
called ‘no re-entry’ boundary conditions (i.e. H = 0 in (L1D)). More general fields and boundary
conditions (but still mostly associated with the Lebesgue measure) have been considered in [I1].
The free-streaming case (i.e. % (z,v) = (v,0)) received much more attention, starting from [20],
where the free streaming transport operator associated to different boundary operators H is deeply
investigated (see also [I7] for general boundary conditions). Recently, transport operators associated
to general external fields and general measures, with general bounded boundary conditions have
been thoroughly investigated by the authors in collaboration with J. Banasiak in a series of papers
[ 2, B] that contain both a generalization of the theory developed in the free streaming case and
some new results. Summarizing the known results on this topic, one can say that the transport
operator associated to H, that we shall denote Ty (see Section 2 for a precise definition) is the
generator of a strongly continuous semigroup when the boundary operator H is a contraction (and

also for some very peculiar multiplying boundary conditions, [20, 17, 2| [8] [12]).

A very interesting and important case, both from the mathematical and physical point of view,
arises whenever H is a positive boundary operator of unit norm (see (I2))). In such a case, one
can not state a priori that Ty generates a Cop-semigroup in L*(€2,du). Nevertheless, since for each
r € [0,1) the operator H, := rH is a strict contraction, the transport operator Ty, associated
to H, does generate a Cop- semigroup (V;(t))t>0. These semigroups are substochastic, i. e. they
are positive contraction semigroups and one can show that the strong limit lim, ~_ V,.(t) := Vi (¢)
exists and defines a Cp-semigroup in L'(€2,du). Its generator A is then an extension of Ty and a

natural question is to recognize if A = Ty or not. For conservative conditions, i.e. if

IHflle =flly VfeLl
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it is known that the semigroup (V (t));>0 is conservative if and only if A = Tz. On the contrary,
whenever A 2 Ty a mass loss occurs, i.e. there exists nonnegative f such that ||V (¢)f]| < || f|| for

some t > 0.

As first observed in [5], such a problematic is very similar to what occurs in the so-called sub-
stochastic theory of additive perturbations of semigroups, (see the monograph [9]), where one is
faced with the following problem: let (T, D(T')) be the generator of a substochastic Cy-semigroup
(Gr(t))i=0 in X = LY(X,dv) (where (X,v) is a given measure space) and let (B, Z(B)) be a
non-negative linear operator in X such that Z(T) € 2(B) and [(T + B)fdv < 0 for all
fe2(T); =2T)NX,. Then for any 0 < r < 1 operator (T + rB, 2(T)) generates a Co-
semigroup (G, (t))i>0. These semigroups are such that the strong limit Tl/i(r{l_ G.(t) := Gk (t) exists

and the family (Gg (t))i>0 is a Cp-semigroup generated by an extension K of T+ B. In the context
of additive perturbations of substochastic semigroups a complete characterization of K is given;
it is shown that (Gx(t)):>0 is the smallest (in the lattice sense) Cp-semigroup generated by an
extension of T+ B. Moreover Gk (t) can be written as the sum of a strongly convergent series of
linear positive operators (Dyson-Phillips expansion series) and a satisfying honesty theory, dealing
with the mass carried by individual trajectories, has been developed [9] [6] 19]. Such a honesty
theory for additive perturbation has been based mainly on the so-called resolvent approach (i.e. on
the study of the resolvent of (A — K)~!) and such a resolvent approach has been applied to the
boundary perturbation case in [5, [I§]. Recently a new approach to honesty has been proposed,
based now on the semigroup approach and the fine properties of the Dyson-Phillips iterated [6].
Such an approach is equivalent to the resolvent one but its main interest lies in the fact that it is
robust enough to be applied to other kind of problems in which the resolvent approach would be

inoperative (e.g. for non-autonomous families [7] or integrated semigroups [§]).

In the present paper we want to recognize that a fully similar study can be carried out for the
operator Tg. Notice that several results concerning the transport operator 7y and the semigroup
(Vi (t))i>0 are already available in the literature. A complete characterization of A is given in [2]
where it is shown that A is an extension of Tg; the study of conservative boundary conditions has
been performed, in the free-streaming case, in [5] and, for general force fields, in [2]. The general
case of boundary operators with unit norm has been handled with in [I8] where a detailed honesty
theory has been performed. Nevertheless the obtained results are not so satisfying as those obtained
in the substochastic theory of additive perturbations of semigroups. In particular the question of
whether (Vi (t))i>0 is the smallest substochastic Cy-semigroup generated by an extension of Ty
remains open and the honesty theory performed in [2] [I8] is based on the resolvent approach only.

The objective of the present paper is to fill this blank. In particular, the main novelty of the

paper lies in the following;:

i) First, we prove that indeed the semigroup (Vi (t))i>0 is the smallest (in the lattice sense)

substochastic Cp-semigroup generated by an extension of Ty.
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ii) Second, and more important, we develop a ’semigroup approach’ to the honesty theory of
boundary perturbations, exploiting the recent results in [3] which allow to provide a charac-
terization of the semigroup (Vi (t)):>0 as an expansion series, similar to the Dyson-Phillips
arising in the additive perturbation case. While the resolvent approach allows to establish
necessary and sufficient conditions for a trajectory to be honest (i. e. honest on [0,00)) the
new semigroup approach allows to establish more general necessary and sufficient conditions
for a trajectory to be honest on a subinterval J C [0,00). We strongly believe that such a
semigroup approach has its own interest and that, as it occurs for additive perturbation [7], it
could hopefully be extended to deal with non-autonomous problems.

To be more precise, the contents of the paper are as follows. In Section 2 we introduce the
necessary notation and define the transport operator 7g. This section is mainly taken from the
recent contributions [2}[3]. In Section 3 we establish the most important properties of the semigroup
(Vu(t))i=0 and its generator, in particular showing that (Vi (¢))i>0 is the smallest substochastic
Cp-semigroup generated by an extension of 7z. In Section 4 we develop the honesty theory for
boundary perturbations, introducing first useful functionals and defining then the concept of honesty
of trajectories on subintervals J C [0,00). We obtain also necessary and sufficient conditions for
the honesty in the spirit of [2, Section 6] and [I8] not only using the usual resolvent approach but
also using the series approach introduced in [6]. In Section 6 two well-known examples are revisited

using our new approach, that allows us to deduce new interesting properties.

2. PRELIMINARIES

In the present section, we introduce the general mathematical framework we shall consider in
the sequel. The material from this section is mainly taken from [II [2] and we refer to these two
contributions for further properties of abstract transport operators. We begin with the rigorous

definition of the transport operator Ty associated to bounded boundary operator H.

2.1. Definition of the transport operator 7. In this paper we consider transport operators
associated to general external fields and general measures, according to the theory developed in
two recent contribution [I],[2]. More precisely, given a smooth open subset £ of RY we consider a
time independent globally Lipschitz vector field .# : RN — R¥ so that, for any x € €, the Cauchy
problem

dX

dt
admits a unique global solution

(t) = Z(X(t), VteR; X(0)=xec® (2.1)

(x,t) € @ x R+— B(x,t) € RV,

that allows to define a flow (T})icr given by Ty = ®(-,t). As in [I], we assume that there exists a

Radon measure z over RY which is invariant under the flow (T})ser, i.e.

(T A) = p(A) for any measurable subset A C RY and any ¢ € R. (2.2)
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Of course, solutions to ([Z.I)) do not necessarily belong to  for all times, leading to the definition

of stay times of the characteristic curves in €: for any x € , define
T+ (x) = inf{s > 0; ®(x, £s) ¢ Q}, (2.3)
with the convention that inf @ = oo. This allows to represent 2 as Q& = Q4 U Q4 where
QL ={xeQ; 71(x) < 0}, and Qi ={x € Q; 71(x) = o0}.
Moreover, we define the incoming and outgoing boundaries as
Iy ={yecoN;IxeQ, 7.(x) <oocandy = ®(x,£71(x)) } . (2.4)

The definition of the stay time 74 extends then to I'x by setting simply 74+ (y) = 0 and 7 (y) =
T4 (x)+7-(x) for any y € I'y with y = ®(x, £74+(x)). Notice that, with the above definition, 7+ (y)
is well defined (i.e. the definition does not depend on the choice of x € €24) and 7+ (y) is nothing
but the length of the characteristic curves having y as its left (respectively right) end-point. We
finally set

Iioo ={y € Tx; m¢(y) = oo}
With such notations, one can prove (see [I, Section 2]) the existence of unique positive Borel
measures p4+ on 'y such that the measure u on €24 is identified to the product measure of p4 with
the Lebesgue measure on R (see [I, Proposition 2.10]). The construction of such measures allow to
define the trace spaces
Ly =L'(Ty,dps)
with the usual norm. In the Banach space

X = LY, du)

endowed with its usual norm, we can define the maximal transport operator (Tmax, 2(Tmax)) as
follows (see [II, Theorem 3.6])

Definition 2.1. Given f € L*(Q,du), f belongs to the domain 2(Tmax) Of Tmax if and only if
there exists g € L'(2,du) and a representative f* of f (i.e. fi(x) = f(x) for u-a.e. x € Q) such
that, for u-almost every x € @ and any —7_(x) < t1 < t2 < 71(x) one has

F®(x 1)) — F(B(x, 1)) = / Cg(®(x, 5))ds. (2.5)

t1

In this case, we set Tmaxf = g.

Remark 2.1. Notice that the above operator Tpax is well-defined, i.e. Thaxf does not depend on
the representative f*. Finally, we wish to emphasize the fact that the domain 2(Tnay) is precisely
the set of functions f € L'(€,du) that admit a representative which is absolutely continuous along

almost any characteristic curve.
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With the above definition, each function f € 2(Tmax) is such that the limits
BT f(y):= lim fi(®(y,—s))  and  B7f(y):= lim fi(®(y,s))

exist for almost p+-every y € I'y [I, Proposition 3.16, Definition 3.17]. Notice that the traces B* f
of a given f € 2(Tmax) does not necessarily belong to L} . Nevertheless one can prove the following
[2, Theorem 3.1, Proposition 3.2, Corollary 2.1] :

Theorem 2.1. Define the following measures over I'y:
dés(y) = min (7% (y), D dp=(y),  y €T+
Then, for any f € D(Tmax), the trace BT f belongs to Vi := LY (T'y,déx) with
IB=fllvy <Ifllx + 1 Tmaxflx,  f € D(Taax)-

Moreover
W= {f € D(Tmax); B f €LL} = {f € D(Tmax); B f € L} }
and the Green formula
[ Towstdn= [ B~ [ Bt (2.6)
Q r_ T
holds for any f € W'.

We are then in position to define the transport operator associated to a bounded boundary

operator as follows:

Definition 2.2. For any bounded linear operator
He B(LL,LY)
we define the transport operator (7g, Z(Tx)) associated to the boundary condition H as:
D(Tu) ={f € D(Tmax) ; BYf €L} and B~ f = HB* f}, o
Tuf = Twaxf Vf € D(Tu).

2.2. Construction of the semigroup associated to boundary operator with unit norm.
We begin by introducing several notations, taken from [2]. For any A > 0 one defines the following

operators
My: Y. —Y,
ur— [Myu] (y) = w(®(y, =7-(y))) exp (=A7-(¥)) X{r_(y)<oc}> ¥ €T+
=\ Yo — X
u— [Exu] (x) = u(®(x, =7 (x))) exp (=A7_ (X)) X{r_(x)<oc}, X € Q;
Gyr: X —>L}r

T_(z)
f s [Grf] (2) = / F(®(z—s)) exp(-As)ds, z€ T ;



and
C)\ X — X
(%)
P Ol = [ F0 —s)) exp(-Asds, x € 9
0
where x4 denotes the characteristic function of a set A. One has the following where 7y denotes

the transport operator associated to the boundary operator H = 0:

Lemma 2.1. For any A > 0, the following hold:

(1) My € B(Y_,Y,). Moreover, given w € Y_, Myu € L% if and only if u € LL.
(2) 2x € B(Y_, X). Moreover, the range of 2y is a subset of D(Tmax) with

TmaxZat = A2, B E\u=u, BTEyu = Mu, Yu €Y. (2.8)
(3) Gx € B(X,LL). Moreover, Gy is surjective.
(4) Cx € B(X) with range included in P(To). Moreover, Cy = (A —To)~* and
Grf=BTC\f forany fc X.
Notice that, if H = 0, it is not difficult to check that (79, 2(7o)) is the generator of a Cp-
semigroup (Up(t))i>0 given by
Uo(t)f(x) = fF(®(x, =) X{1<r_ (0} (X),  (x €8, feX). (2.9)

In all the sequel, we shall assume that H : L<1F — L' is a positive boundary operator of unit

norm, i.e.

HeB(LL,LY); Hf >0 VfeLl,f>0; |Hlgw )= Hfﬁup X [Hfllp =1 (2.10)
Ll =
L

Under such an assumption, for any 0 < r < 1, the boundary operator H, := rH is dissipative with
HHT||=@(L1+,Ll) =r <l

it is then well-known [2, Corollary 4.1] that the transport operator Ty, generates a positive con-
traction semigroup (V;-(t));>0 for any 0 < 7 < 1. From [2, Theorem 6.2], one has the following:

Theorem 2.2. Let H satisfy Assumption [210. Then, for any t > 0 and any f € X the limit
Vi (t)f =lim, ~ V.(t)f exists in X and defines a substochastic semigroup (Vi (t))iso0. If (A, 2(A))
is the generator of (Vi (t))i>o0, then its resolvent is given by

A—A)'f= lim (A —Tu,) ' f=Caf+ > EXH(M\H)"Gxrf  for any f € X, X >0, (2.11)

n=0

where the series converges in X. Moreover, A is an extension of Tg; more precisely
@(TH) C @('A) C @(Tmax) with -Af = Tmaxf Vf € @(A)

and

2(Tu)={p€ 2(A);BToeLl}={pecP(A);B el } =2(AHnW
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3. A NEW CHARACTERIZATION OF (Vi (t))i>0

In this section, we present a new characterization as well as practical expression of the semigroup
(Ve (t))i>0. Indeed in the following Theorem Bl we are able to prove that (Vg (t))i>0 is the smallest
substochastic Cp-semigroup generated by an extension of 7z, while in Theorem we show that
(Vi (t))t>0 can be written as the sum of a strongly convergent series. We first need to recall the
definition of transport operator associated to an unbounded boundary operator. Precisely, let us
introduce & as the space of elements (¢4,%_) € Y, x Y_ such that 14 — My_ € L*(T'y,duy) for
some/all A > 0. We equip & with the norm

1@ ¥ )lle = 9allye + lo-llve + 1Yy = Magp—|ry

that makes it a Banach space. Then, one has the following generalization of Definition

Definition 3.1. Given a possibly unbounded operator K from Yy to Y_, we denote by 2(K) its
domain and 4 (K) its graph. If 9(K) C & we can define the transport operator Ti associated to the
boundary operator KK by Tic f = Tmaxf for any f € 2(Tx), where

9(75) = { 1 € 2(Tow)s (871870 €91 .
We then have the following

Lemma 3.1. Let K be an unbounded operator as in Definition [31. For any A > 0, the following
are equivalent

(1) (I —MyK):2(K)— LY is bijective;

(2) (M —Tx): 2(Tx) — X is bijective.

Proof. According to [2, Lemma 4.2], for any A > 0 one has [I — MK]2(K) = L% if and only if
[N — Tx|2(Tx) = X. Therefore we have only to prove that, given A > 0, (I — M)K) : 2(K) — L%
is injective if and only if (Al — Tx) : 2(Tx) — X is injective.

Assume now that (Al — Tx) : 2(Tk) — X is injective and let ¢ € Z(K) be a solution to
(I — Mx\K)y = 0. Set f = Z3Ke. One deduces from Lemma 2] (2) (with v = K1) that
f € D9(Tmax) With Thaxf = Af, BT f = K% and Bt f = M, K1 = 1. In other words, f € 2(Tx)
is a solution to the equation (A — Tx)f = 0 and therefore f = 0. Since ¢» = BT f, one gets 1) = 0
and (I — M)K) : 2(K) — L% is injective. Conversely, assume (I — M)\K) : 2(K) — L% to be
injective and let f € P(Tx) be a solution to (A — Tx)f = 0. According to [2| Theorem 3.2] (see
also Lemma 211 (2)), f € P(Tmax) with BT f € 2(K), and f = EyKBT f. Setting then ¢ = BT f,
one has ¢ € Z(K) and (I — M»K)y = 0. By assumption, ¢ = 0 and, since f = Ex K1, f =0 and
(M —Tk) : 2(Tc) — X is injective. This proves the desired equivalence. O

With this in hands, one can prove the following which somehow characterizes the class of oper-
ators sharing the properties of the generator A (recall that, according to Theorem 221 A satisfies
the following properties (a)—(c)):
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Proposition 3.1. Let Ay be the generator of a strongly continuous substochastic semigroup
(V)0 in X. Assume further that
(a) Z(Tu) € 2(Ao) € P (Tinax)
(b) Aof = Tmax[ for any f € P(A)
(c) 2(Th) ={f € P2(A):BTfeLi}={feP(A):B feLl}
Then there ezists a boundary linear operator Ho from Y, to Y_ with the following properties:
(i) LY = 2(H) C 2(Ho) with Hoy = HY for any ¢ € L
(ii) Ao = Ta,
(iii) for any X\ > 0 the mapping (I — M\Ho) : D(Ho) — L is bijective, and

(A= Ao) " f = Crf + ExHo(I — MyHo) "G f. (3.1)

(iv) for any A >0, u € LY, u >0 one has

(I —MyHo) fu>=0  Ho(Il —MyHo) 'u>0 (3.2)

Proof. First of all observe that the trace mapping Bt : 2(Ay) — Y, is injective. Indeed let
[ € 2(Ap) be such that BT f = 0. Then assumption (c) ensures that f € 2(Tg), so that
B~ f = HBT f =0. In particular, ||(BT f,B~ f)|l¢# = 0 and one deduces from [2, Corollary 3.1] that
f =0. Let us now introduce the set

Ey := Range(B" |g(4,)) = {¢ € Y} : 3g € Z(Ag) such that ¢ =Btg}

so that BT : 9(Ag) — FEo C Y, is bijective. This allows to define an unbounded linear boundary
operator Hg : Z(Ho) — Y- as follows:

P(Ho) = Eo and Hoyp =B g Vi) € Ey

where g is the unique element of Z2(Ay) such that Btg = 1. Let us prove that Hg satisfies points
(i) — ().

(i) Let h € LY} and XA > 0 be given. Setting u = (I — M\H)h € L%, by Lemma 2] (3), there
exists ¢ € X such that Ghg = u. Setting thenf = Cyg + ExHh one clearly has f € 2(Tmax)-
Moreover BYf = Gyg + MyHh = u+ My\Hh = h and B~ f = Hh = HBTf. In other words,
f € 2(Tu) C 2(Ap). Consequently, h € Ey with Hoh = Hh and (i) is proved.

(i1) To prove point (ii), it is enough to show that 2(Ag) = Z(Tx, ). From the definition of Ho and
the assumption Z(Ag) C Z(Tmax), one sees that

@(AO) - {f S 9(7-maxx) ; B+f € @(HO) ) B_f = HOB+f} = @(THO)

Conversely, let f € 2(Tmax) with BT f € 2(Hy) and B~ f = HoBtf. By definition of Hy and
since 2(Ho) = Ey, there exists g € 2(Ag) such that BTg = BT f and B~g = HoBTf = B~ f. Set
h = f —g. One has h € Z(Tmax) with BTh = B~h = 0 and again, we can invoke [2, Corollary 3.1]
to state that h =0, i.e. f =g € Z(Ap), proving the second inclusion.
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(i1i) Since Ap is the generator of a substochastic semigroup we can state that for any A > 0 and
f € X there exists a unique g € Z(Ap) such that (A\—Ag)g = f, with moreover g > 0if f > 0. This
means that for any A > 0 and f € X there exists a unique g € 2(Tmax), such that BTg € 2(H,)
with ¢ solution to the boundary value problem:

A —Tmax)g = f B~g = HoBtyg. (3.3)
From [2, Theorem 3.2], such a solution g is given by

g=Cxf+E\B7g=C\f +E\HoBTy, (3.4)

and, in particular, u := Btg € 9(H,) satisfies (I — M xHo)u = G f. Since (M —Tx,) : 2(Tw,) = X
is bijective, one deduces from Lemma [B1] that (I — M\Ho) : 2(Ho) — LY is bijective. Then,
u=B%g= (I — MyHo) 'G\f which, from (B4, shows that the solution to ([B.3)) becomes

g =Cxf+ExHo(I — MyHo) 'Grf

which is nothing but BI)).
(iv) Let now A > 0 and u € Lt with u > 0 be given. Consider then the function g, defined as

follows:
I+ MN7—(x)+1 )
T TG SR ) u(@Ge T () I 7 () + 7 (x) < oo,
92(3%) = (1 + A) exp(—74 (x))u(®(x, 74 (x)) if 7 (x)=o00 andTy(x)< o0,

0 if  74(x) = 0.
One can check easily that gy € X, gx > 0 with Gxgx = u. Setting now
fr=(A=A0) tgx = Crga + ExHo(I — MyHo) 'Grga
one sees that f) is nonnegative, with B¥ fy = (I — MxHo) 1Gagx = (I — MxHo) 'u > 0; B~ f\ =
Ho(I — MyxHo) 1Gagn = Ho(I — MyHo) tu > 0 which proves the result. O

The above Proposition allows to prove that (Vi (t)):>0 is the smallest substochastic semigroup

generated by an extension of Tz. More precisely we have

Theorem 3.1. Let (V(t))i>0 be a strongly continuous substochastic semigroup in X with generator
Ao which satisfies the conditions (a)-(c) of Proposition [l Then, for any t > 0 one has V(t) >
Vi (t), i.e. V(t)f = Vu(t)f for any nonnegative f € X. In other words, (Vi (t))i>o is the smallest

substochastic semigroup generated by an extension of Ty.

Proof. According to the previous Proposition B.I] there exists an extension Hg of H so that the
generator Ag of the semigroup (V(¢));>0 coincides with the transport operator Ty, and formula
B.I) holds. Now, since Hoh = Hh for any h € L%, we have, for 0 <r < 1 and H, = rH:
(I — MyHo) ™' — (I — MyH,)™ ' = [(I = M\Ho) ' (I — M\H,) — I](I — M\H,)"!
= (I — My\Ho) "(I — M\H, — I + MyHo)(I — MyH,)™*
=(1—r)(I — M\Ho) "M H(I — M\H,)™"
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where we used that the range of (I — MyH,)™* is Lt . One deduces easily from this that

Ho(I — MyHo) ™' — H, (I — M\H, )"
= (1—7) (Ho(I — MyHo) *M\H(I — MyH,)" '+ H(I — M\H,)™").
Recalling that (A — Ty, )" f = Cxf + ExH,.(I — MyH,)"'GAf (see [2, Eq. (4.6)]), by virtue of
(BI) one has then, for any f € X,
(A= .Ao)_lf - (A= THT)_lf =E\Ho(I — MkHo)_lG)\f —E\H, (I - MXHT)_Ika
= (1=7)2x (Ho(I = MaHo) "MyH(I — M\H,)" " + H(I — M\H,)™") G\ .
If f > 0, according to Proposition B (iv), we get (A — Ag) "1 f = (A — Tpg,.) "1 f for any 0 < r < 1.
This inequality together with ([ZI1)) allow to state that (A — Ag)~ > (A — A)~! which gives the

result according to the exponential formula. |

We recall now the recent result of the first author [3] about the construction of a suitable strongly

continuous family of bounded linear operators in X. First, let
Do = {f € P(Tmax) : BEf =0}.

The subset Dy is dense in X (see [3, Proposition 1]). Remember that the semigroup (Up(t))i>0 is
defined through (Z.9)). Now, one introduces the following

Definition 3.2. For anyt > 0, we define the family (U (t))ken by induction as follows: if f € Dy,
t>0andk > 1, one sets

+ —T_(x X, —T_(X X wi T_(x) < ¢,
T e <»>inz,m;§T(;lit 55

Moreover, fort =0, we set Ug(0)f =0 for any k > 1 and any f € X.

Remark 3.1. In other words, if we put ; :={x € Q :x=d(y,s),y eT_,0<s <tATL(y)},
then [Uy(¢) f](x) may be different from zero only for x € €, being Uy (t) f(®(y, s)) = H(BTUy_1(t—
$)F)(y)-

Remark 3.2. Notice that, given f € Dy and t > 0, one has (fot Uk(s)fds) (x) =0 for any x € Q
with 7_(x) > t. In particular,

t
B (/ Uk(s)fds) (z) =0 Vzeli; 7 (z2)>t, k>1. (3.6)
0
The properties of the family (Uk())i>0, for given k > 1, have been established in [3]. In
particular, for any f € Dy and any ¢ > 0, one has Ug(t)f € X with

10ROl < IH s ooy 1 fllx = Il Ve > 1.

Since Dy is dense in X, one can extend Uy () in a bounded linear operator in X, still denoted Uy ()
such that

1 Uk(t)]l2(x) < 1.
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Moreover, one has the following

Proposition 3.2. For any k > 1, the family (Ux(t))i>0 enjoys the following properties:

(1) (Ur(t))t=0 is a strongly continuous family of operators in X.

(2) For all f € Dy and t > 0 one has Ug(t)f € Z(Tmax) With ThnaxUk(t) f = Uk(t) Tmax f -

(8) For all f € Dy and t > 0 the traces BXUy(t)f € LY and the mappings t — BT U (t)f € L1
are continuous.

(4) For any f € X, t >0 and s > 0 we have Ug(t + s)f = Z?:o U;(t)Ui—j(s)f.

(5) For all f € X andt > 0 one has fot Uk(s)fds € 2(Tmax) with

t
T / Us(s)fds = Up(1)f.
0

Moreover, B* (f(f Uk(s)fds> €L} and

oBt (/Ot Ukl(s)fds) =B~ (/Ot Uk(s)fds) . (3.7)

(6) For any f € X and X > 0, setting g == [ exp(—At)Uk(t) fdt, one has gr € D(Tmax) with
Tmaxgrk = Agr. ~ for k> 1, while  Tmaxgo = Ago — f;

and Bt g, = (MAH)*Gxf € L% for any k > 0 while B"go = 0 and B~ g, = HBTgp—1 if
k>1.
(7) For any nonnegative f € X and any t > 0 and n > 1 one has

n t
S0 fllx = £l — \ 8 [ UnGs)sas
k=0 0 Li
1 . . (3.8)
HBT U ds —||BT Ur(s)fd .
3 e [ vioras| - st [ vicesas ]
In particular,
n t
S0l < sl - | [ vaosas| <l 39)
k=0 0 Ll

The above listed properties allow to give a characterization of the semigroup (Vi (¢))i>0 in terms
of a strongly convergent expansion series, reminiscent to classical Dyson-Phillips expansion series

for additive perturbation:

Theorem 3.2. For any f € X and any t > 0, one has

V()] = S U0, (3.10)
k=0
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Proof. For any f € X and any ¢ > 0, set V(t)f = Y-, Uk(t) f. Notice that the series is convergent
in X and the family (V(¢)):>0 defines a substochastic Cy-semigroup in X (see [3} Theorem 4.3] for
details). Let us prove that V(t) = Vg (t) for all t > 0. Let f € X and A > 0 be fixed. Set, for any
k>1,
gk :/ exp(—At)Ux(t) fdt.
0

Proposition asserts that g € P(Tmax) and satisfies Thnaxgr = Agi for any k > 1. According to
[2l Theorem 2.1] we deduce that, for k > 1, g = ExHBTgr_1 = ExH(M)\H)*'Gyf. Summing
this identity, we get that

/Ooexp( HW (t) fdt = ng_CAf+ZHAHM,\H) Gif.
0

k=0
Since this last expression coincides with (A — A)~!f, one deduces from the injectivity of Laplace
transform that V(¢)f = Vg (t)f for any ¢t > 0. O

An immediate consequence of the above Theorem is given in the following

Corollary 3.1. For any f € X and A > 0, as n — oo, the sum Z/ exp(—At)Ug(t) fdt

converges to (A — A)~Lf in the graph norm of A.

We end this section with a technical result that complements Proposition B.2] and shall be useful

in the sequel

Lemma 3.2. Let f € X be nonnegative and t > 0 be given. For anyz € I'y and any k > 1 it holds

[B+ /O t Us(s) fds] (z) < [HB* /0 t Up_1(5) fds] ((z, —7_(2)).

Proof. Let k > 1 and z € Ty be given. If 7_(z) > t, one gets from (3.6) that

B+ (/Ot Uk(s)fds) (z) =0

from which the conclusion clearly holds. Now, if 7_(z) < t, set y = ®(z,—7_(z)) € I'_. Since
f k(8)fds € D(Tmax) With Tmax fo Ui(s)fds = Ug(t) f, one deduces from Definition 2] (see also
[1, Theorem 3.6]) that

[ i, s - I t (o) s @) - [ | t U (5) s (803, t2)

t1

for any 0 < t1 < t3 < 74(y) = 7—(z) < t. In particular, for nonnegative f we get

[ / t Uk<s>fds] (@(y.12) < [ / t Uk<s>fds] @.h)  V0<t <ty <r(y)=r () <t

Letting ¢t — 0T and t2 — 71 (y) and since z = ®(y, 74 (y)), we get

o/ t vus)fas) (@) < [ ( | t 0 (5)fas) | ).

Using now ([B.7)) and the fact that y = ®(z, —7_(2z)) we get the conclusion. O
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4. HONESTY THEORY

4.1. On some functionals. For any [ € P(Tmax) we define
a(f) = _/ Tmax fdp.
Q
while, for any f € %', we set
/)= [ B fd ~ [ HE s,
I, r_

Clearly a : Z(Tmax) — R is a linear functional with |a(f)| < || Tmaxf||x for any f € 2(Tmax). Here
we are interested in the restriction of a to Z(A), that we still denote by a. Since A generates a

positive contraction semigroup (Vi (t)):>o we have

of) =~ [ Afdn=tm t [ (F-Va@®F)duZ0 V€ DA = FA) MK
Q t—0+ Q

Hence a : 2(A) — R is a positive linear functional. Furthermore a is continuous in the graph norm
of A and its restriction to 2(Ty) is equal to the restriction of ag to Z(7x). Indeed, according to
Green’s formula (2.6) for all f € 9(Ty) we have

an)= [ B - | oEra = | B [ HE e = ()

This basic observation allows to formulate an equivalent to [6, Proposition 4.5] in this boundary

perturbation context. Precisely, one has

Proposition 4.1. For all f € Z(A) there exists

oo

dim 33 a0 ([ vits)sas) =30 (1)

k=0

with [a(f)] < 2(|| fllx + [ Afl|x). Furthermore, if f € 2(A)+, then
0 <a(f) < a(f) < [[Tmaxfll- (4.2)
The proof of Proposition d.1]is based upon the following

Lemma 4.1. For any f € X andt > 0 one has

wl( [ U (s)fds) < Iflx. (4.3)
kZ:O 0 (/0 k X
If f € 2(A) then one also has
>ao ([ vrGe)sas) | < 207+ [T ). (1.4
k=0 0
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Proof. For simplicity, for any fized t > 0, we set

t
Gr(f) :‘/0 Ui(s)fds Vk > 1.

According to PropositionB.2l(5), Gr(f) € Z(Tmax) for any f € X, k > 1 with moreover BTGy (f) €
L%, ie. Gi(f) € #. We begin with assuming f € Xy and ¢t > 0. One can reformulate (3.8) as

Zao (Gr() = [Ifllx = ZIIUk O fllx = IBTGn(Nllr+ < IIFllx (4.5)

k=0

Therefore, we can see that (3;_;ao (Gr(f))), is an increasing bounded sequence whose limit

satisfies
Zﬂo (Gre(f) < IIfllx —ZHUk ) fllx- (4.6)

Now, for general f € X, since Gk( ) € W, we deduce from [2 Proposition 2.2] that |Gk (f)| € #
and, since Ug(s) (0 < s < t, k > 0) is a positive operator, the inequalities

a0 (Gr(/)] < a0 (IGR(F)) < a0 (Gr(If]))  VE=1

hold. This, together with (L) yields (@3)). Before proving ([@4]), one notices that the right-hand
side of (@8] for f >0 is

L(f—;:m(ﬂf) an= [ =vanan=- [ ([ vaoras) an

where we used Theorem and the well-know fact (see [16, Lemma 1.3, p. 50]) that, for any
Co-semigroup (Vi (t);>0 with generator A, one has fot Vi (s)fds € 2(A) with A (fo Vi (s fds) =
Vu(t)f — f for any t > 0 and any f € X. Since moreover Vg (t)f — f = fo Vu(s)Afdsif f € 2(A),

one gets

iao (/Ot Uk(s)fds> <a (/Ot VH(s)fds> _ —/n (/Ot VH(S)Afds) A ¥feD(A)NX,.

k=0
(4.7)
Let us now fix f € Z(A) and set g := (I — A)f = gt — g, where g4 and g_ denote respectively
the positive and negative parts of g. Put also fli = (I — A)7lgs so that f = f" — fi, where fli
are belonging to 2(A); (notice that = do not necessarily coincide with the positive and negative
parts f* of f). One has

IAfF x < 1A Ix + g™ Ix < 20951
Recalling that AfE = Traxfi¥ and using formula @7) we get

S [t < [ ([ owra)o

k=0

t
< / Vit () Tonae FE 1 < ) Tonae fiE L < 26091
0
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where we used that the semigroup (Vi (t))>o is substochastic. Finally, noticing that

o t [e'e] t oo t
> </ Uk(s)fds> <D a </ Uk(s)ffrds> +) ag </ Uk(s)fl_ds>
k=0 0 k=0 0 k=0 0
we obtain (4) since [¢7 || x + [lg7[|x = llgllx < [fllx + [ Tmaxf | x- O

Proof of Proposition [[-1] Using Lemma (1] together with a repeated use of Proposition (4), it
is not difficult to resume the proof of [6l Proposition 4.5] to get the result. We only mention here
that the equivalent of [6 Eq. (4.14)] in our context is

3 (/Ot Uk(s)fds) = . % 3 a0 (/OT Ui(r) (/Ot VH(s)fds) dr) . (4.8)

k=0 k=0

Details are omitted. g
As an immediate consequence of Proposition . we deduce the following

Corollary 4.1. For any f € X, t >0 and XA > 0 one has

i (/Ot VH(s)fds> - i % (/Ot Uk(s)fds> , (4.9)

k=0

and
oo

a(A-AT) =D </r (MAH)*G fdpuy _/r H(MAH)kGAfd,U> : (4.10)

k=0

Proof. Identity ([@9) is simply deduced from (@8] and the definition [@1]). Regarding [@I0), observe
that for any f € X, and A > 0 one has

A=—A)f= /Ooo exp(—\t) Vg (t) fdt = A/OOO exp(—A\t) (/Ot VH(s)fds> dt.

Therefore, from (@9,

a((A-A)7f) = A/OOO exp(=\t)a (/Ot VH(s)fds> dt

= A/Ooo exp(—At) Y ao </0t Uk(s)fds> dt.

k=0

o0

¢
Setting, gr = / exp(—At)Ui(t) fdt and ¢ (t) = / Ui(s)fds, one deduces from Proposition B2
0 0
(6) that, for any k > 1

A / b exp(—At)BT ¢y (t)dt = BT g, = (M H)*G\\ f,
0

and, recalling that ag(¢r(t)) = / Bt r(t)dpy — HB ¢ (t)dp_ we get [EI0). O
ry r_
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Remark 4.1. In the free-streaming context, the identity (£I0) shows that the functional @ co-
incides with the functional ¢y defined in [I8]. In particular, this shows that the functional ¢y of
[18] does not depend on A, answering the question left open in [I8, Remark 17]. Moreover, by
Proposition [} we see that the functionals ¢y and ¢ of [I8] (corresponding respectively to our a
and a) are positive functionals such that cy(p) < ¢(p) for all ¢ € Z(A);+ which extends the result
of [18, Remark 17] valid only for ¢ € (A — A)71X .

Proposition ] allows to define a third linear positive functional © : Z(A) — R by setting

O(f) =a(f) —a(f)  for any f € 2(A).

Clearly, the functional © is continuous in the graph norm of Z(A). Other properties of © are stated
here below.

Corollary 4.2. For any f € X, t>0 and XA > 0 one has

0 (/Ot VH(s)fds> — lim_ 5 B* (/Ot Un(s)fds) dpy, (4.11)

and
O(AN=A)'f)= lim [ (M\H)"Gxfdpy. (4.12)

n—oo F+

In particular, both the limits appearing in [EII)) and (EI2) exist and are finite for any f € X.

Proof. As in the proof of Corollary 1] for fixed f € X, A > 0 and ¢ > 0 set

fe%e] t
gk_/o exp(—=AOU(t)fdt  and m(t)—/o Uk(s)fds,  k=0.

Notices that ¢y (t) € # for any t > 0 and any k > 1. One checks then easily thanks to Proposition
(7) that, for any n > 1

n—1

D a(gr(t) =Y ao(¢r(t) + / Bt (s)dpy.
k=0 k=0 Ty

One deduces easily (.IT)) from this last identity combined with ([@3) and the fact that (3, _q dx(t)),,
converges to fot Vi (s) fds in the graph norm of A. In the same way, noticing that for any n € N

one has
n

n—1
>aa) =Y ala)+ [ Brgudus,
k=0 Iy

k=0
one readily gets (12) using now {.I0) together with the fact that (3, _ gx), converges to (A —
A)~1f in the graph norm of A as n — oo (see Corollary B.1)). O

The above results yield the following
Proposition 4.2. For any f € 2(Ty) one has a(f) = a(f) = ao(f). Consequently,

o(f)=0 Vfe2(Tu). (4.13)
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Proof. By definition and since © is continuous over 2(A) endowed with the graph norm, it is
enough to prove that a(f) = a(f) for any f € 2(Ty). For any A > 0, since the operator G :
X — LY is surjective, one deduces from (ZI2) that the limit lim, o fF+ (M)H)" hdpy exists and
is finite for any h € L.. Now, given f € 2(Tu), set g = (A — A)f. Since BT f € L! the limit
limy, - 00 fF+ (M\H)"B* fdu, exists and is finite while, from f = (A — .A)~"!g one deduces that

n—1

> (MyH)*Grg =BY f — (MyH)"B. f.
k=0

n—1
Therefore, the sequence (Z / (M\H )kG/\ gdu+> is converging. In particular,
k=0"T+

n

lim (M\H)"Grgdp4 = 0.

From (12), this limit coincides with © ((A —.A)~'g) = O(f) which shows the result. O

Now one proves that, somehow, ([@I3) is a characterization of 2(Tz), at least for nonnegative

f:
Proposition 4.3. If f € 9(A), is such that O(f) =0, then, f € 2(Tu ).

Proof. The proof is inspired by the analogous result for additive perturbation [19, Proposition 1.6].
Let f € 2(A)+ be given such that O(f) = 0, i.e. a(f) = a(f). Since A\(A — A)~1f — f in the
graph norm of Z(A) as A — oo, we get that

lim © (A(A—A)"'f) =O(f) =0.

A—00

Now, since

O (AA —A)1f) = lim )\/ (MAH)" G fojis
ry

n—00

we see that, for any € > 0 we can find A > 1 and N > 1 such that
AN = A)ileaXf = Tmaxfllx <e; [[AA = A)ilf —flix<e

and/ (M H)" Gy fduy <
Ly

e

T Yn=N. (41)

For such A > 1 and N > 1, we construct a sequence (p,) in # with the following properties

B o0 =0; By = (MAH)'Grf s llpnllx < [(MAH)"Grfllue
and [ Tmax@nllx < ||(JWVLI)HGAJPHL1+

The existence of such a sequence is ensured by [2 Proposition 2.3]. Then, for any n > 1, we set

n—1

k=0
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Clearly, u,, € 2(Tmax) for any n > 1 with

n—1
Tmaxun = <O)\f + Z E)\H(M)\H)HG)\JC> - f - Tmax‘ﬂn;
n=0
n—1 n—1
Bfu, = Y (MyH)*Grf and B u,=>» H(MH)"G\f=HB"%u,
k=0 k=0

i.e. u, € 2(Ty) for all n > 1. Considering that (A — A) 7 f = O\ f + Y peg ExH(MAH) G f, we
can choose n > N such that H()\ — A7 —O\f - ZZ;& EAH(MAH)kGAfHX < % With such
choice, since A(A — A) " Tax f = A2(A — A)~1 f — Af, we check that

Nun = Fllx < A — (A= A7 ) x + IAA = A) 7L = fllx < 4e
and ||/\Tmaxun - Tmaxf”X < 4e.

Since Au,, € Z(Ty), this shows that f € 2(Tg ). O

4.2. Honesty criteria. Here we want to improve the honesty theory developed in [I§]. First of all
we adapt the definition of honesty, established in the additive perturbation framework in [I9, [6].

Definition 4.1. Let f € X be given. Let J C [0,00) be an interval. Then, the trajectory
(Ve (t)f)iso is said to be honest on J if

t
||VH<t>f||X—||vH<s>f||X—a</ vH<r>fdr>, Vv osteds<t

The trajectory is said to be honest if it is honest on [0,00). The whole Co-semigroup (Vi (t))i>o

will be said honest if all the trajectories are honest.

In the following, we establish thanks to the representation series (3.10) an approach to honesty on
subinterval J C [0, c0) which is completely new in the context of boundary perturbation. The proof
is inspired by the recent similar results obtained in the additive perturbation framework thanks to
Dyson-Phillips series (see the concept of so-called 'mild honesty’ in [6, Section 4]). More precisely,
we have the following honesty criteria, analogous to [6], Theorem 4.8]:

Theorem 4.1. Given f € Xy and J C [0,00), the following statements are equivalent
1) the trajectory (Vi (t) f)iso is honest on J;

=0 for any s,t € J,s < t;

n—00 1
Ly

2) lim ‘B"' /tUn(r)de

t
3) / Va(r)fdr € 2(Tg ) for any s, t € J, s < t;

t
4) the set <B+/ Un(r)fdr> is relatively weakly compact in LY for any s,t € J,s < t.
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Proof. Let f € X, JC[0,00) and s,t € J,s <t be given. Recall that

a(Awxwﬂv>—wwy@nﬂx—nwawﬂu-

so that, according to Definition 1] the trajectory (Vi (¢)f)i>o is honest on J if and only if
t
C] (/ VH(T)de> =0 Vs,teJs<t

According to ([@IT), this is equivalent to 2), i.e. 1) < 2). Since moreover fst Via(r)fdr € 2(A)4,
statements 1) and 3) are equivalent by virtue of Corollary [£13] and Proposition 3l Clearly 2)
implies 4). Assume now that the set (BﬂL fst Un(r) fdr) is relatively weakly compact in L. Let

us show that lim,,_, ||BT fst Un(r)fdr||z: = 0. According to (.II), the limit

lim
n—oo

= {(s,t)
L

BT /t U, (r)fdr

exists. By Theorem [Z1] we also have

Bt / t U, (r) fdr / t Uy (r) fdr

g ‘

t
—|—H'Tmax/ U, (r)fdr
X s

Yy X

/mmm~+wmmuwm@mp

X
and, since the series ) fst Un(r)fdr, >, Un(s)f and »° Uyp(t)f are converging (towards

f: Vi (r)fdr, Vg (s)f and Vg (t)f respectively), one deduces that the right-hand-side is converging
to 0 as n — oo and

=0. (4.15)
Yy

BT /t U, (r)fdr

lim ’
n— o0

Now, by assumption /), there exists a subsequence (BﬂL fst U, (1) fdr)k which converges weakly

to, say, gs4 € LY. For any i € N weset I = {z € 'y : 7_(z) > 1} and denote by x; the
characteristic function of the set I'; . Then for any ¢ € N, the limit

¢ ¢
lim B+/ Up, (r)fdrduy = lim xi(z) (B+/ U, (r)fdr) (z)dpy(z) = / gs,1dpiy.
Ty k—o0 I, s Tist

k—o0 s

Thus, from (@I5),
t
lim B+/ Up, (r)fdrdéy =0 Vi e N.
F'L,+

k—o0 s

Since, for any fixed i € N and any z € I'; ;. one has d¢; (z) > 1du(z) so that

/ gs,tdpy = 0.
Fi,+

Since g5, is nonnegative on I'y = (J;=, I'; 4, we deduce that gs,(z) = 0 for pu4-almost every z € T';..
In other words, the unique possible weak limit is g5+ = 0 and therefore ¢(s,t) =0, i.e. 2) holds. O
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Remark 4.2. We deduce directly from the above, with J = [0,00) that the Cp-semigroup
(Vi ()0 is honest if and only if lim,,_, ||BT fg Un(s)fdsHLl+ =0 for any f € X and ¢t > 0.

Remark 4.3. Recall that in [19], in the free-streaming case, the defect function [0,00) 3 ¢ — n,(t)
has been defined, for each fixed f € (A —A)"' X, by ns(t) == |[Va (@) fIl — || f]l + ea fo Vi (s)fds).
We have already observed (see Remark [L.T)) that ¢y of [19] corresponds to our functional a. Hence
the defect function can be defined for each fixed f € X, as

= =0 [ Viatsas) = - tm [ [ v, 1sas

Such a representation of 7y allows to deduce immediately that the mapping t — 7¢(¢) is nonpositive

1
L+

and nonincreasing. Moreover, if the trajectory (Vu(¢)f)i>0 is not honest then there exists g > 0
such that n(t) = 0 for 0 < ¢t < tp and ny(t) < 0 for all ¢t > ty. Setting g = Vi (to)f € X4+. Then
for any ¢t > 0 one has

ny(t+to) = —© (/Omo VH(S)fds>

=1 v Vir(s)jas) - 6 /+ Virto)fas) = ([ v Vs Jads ) = ny(0) <0

i.e., with the terminology of [19], the trajectory (Vi (t)g)i>o0 is immediately dishonest.

For any subinterval J C [0, 00) we denote by
Xy={feX+; (Va(t)f)io is honest on J }

and, whenever J = [0, 00), we simply denote X} = Xjo ) the set of initial positive data giving rise
to honest trajectories. Moreover, arguing exactly as in [6] Proposition 3.13], one sees that X}, is

invariant under (Vg (t))i>0. Moreover, arguing exactly as in [I9] Proposition 2.4], one has

Proposition 4.4. For any subinterval J C [0,00), one has X ; = span(X ;) = X, — X is a closed
lattice ideal of X whose positive cone is X j. In particular, Xp, = span(Xy) is a closed lattice ideal

in X which is invariant under (Vi (t))t>o0 and ()?h)Jr =X

We recall now that a positive semigroup (7'(¢)),5, in X is said to be irreducible if there is no
trivial closed ideal of X (i.e. different from X and {0}) which is invariant under T'(¢) for all ¢ > 0.
We have then the following to be compared to [I8, Theorem 19 & Remark 20]:

Proposition 4.5. Let g € X4, g # 0 such that the trajectory (Vi (t)g)i>o is honest.

(1) If (Vi (t))i>0 is irreducible then the whole semigroup (Vi (t))i>o is honest.
(2) If g is quasi-interior then the whole semigroup (Vi (t))i>o0 is honest.

Proof. Let g # 0 such that (Vi (t)g):>o is honest be given.

(1) One has then X # {0}. Since )?h is an ideal invariant under (Vi (t))i>o0, if (Vi (t))i>o0 is
irreducible, this shows that necessarlly Xh = X and, in particular, X = Xj,.

(2) If g is quasi-interior, since g € X, r one has Xh = X and the conclusion follows. O
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We have the following practical criterion extending [I8, Theorem 2.1 & Corollary 2.3]

Proposition 4.6. Assume that there exists some quasi-interior h € L}r such that
Hh(®(z, —7-(2))) X {r_ (z)<oc} < I(2) for almost every z € T';. (4.16)
Then, the whole semigroup (Vi (t))i>o is honest.

Proof. Let h € L}|r satisfying the above assumption be given. Define then

f(x) = #(qu_(x) eXp(_TJF (X)) h(‘I)(x, T+ (X)) if 7 (X) + 74 (X) < 00,
exp(—74 (x)) h(®(x, 74 (x)) if 7 (x) =00 and 74(x) < o0,

and f chosen freely on €, in such a way that f € X is quasi-interior. One sees easily (see [2]
Proposition 2.3] for details) that BT f = h. Moreover, since 74 (x¢) = 74 (x) +¢ and ®(x¢, 71 (x¢)) =
O(x,74(x)) for any x € Q, t > 0, x; = ®(x, —t), one checks easily that, for any x € €2, it holds

LT () A (x o
Uo(t) f(x) = { T=(x) + 74 (x) p(—t — 74 (%)) M(P(x, 74 (X)) X {t<r_ (0} HxEQLNQ,
exp(~t = 7 (%)) M2 (x, 7 (x)) it xeN N0 .

Therefore, one sees that for any ¢t > 0, Up(t)f(x) < f(x) for almost every x € . Let ¢ > 0 be
fixed. According to Lemma [3.2] one has

{B"’ /Ot Ul(s)fds} (z) < [HBJr /Ot Uo(s)fds] (D(z,—7_(2)) Vzely.
Since Up(s)f < f on Q4 we get
[B"' /Ot Ul(s)fds] (z) <t [HBT f] (®(z, —7_(2)) = tH h(®(z,—7_(2))) Vzel,.
From (4.10)), one gets therefore
{BJF /Ot Ul(s)fds} (Z)X{r_(z)<oc} < th(z) for a. e. ze€ I'y.
Recalling that [B"’ fot Ui (s)fds] (z) =0 if 7_(z) > t, we get therefore that
{BJF /t Ul(s)fds} (z) < th(z) fora. e. zely.
Repeating the argument, oneogets that
[B+ /Ot Un(s)fds] (z) < Z—n'h(z) Vt>0,n>1, fora.e.zeTy.
This shows that, for any ¢ > 0,
’ B+ /Ot U, (s)fds

which, according to Theorem [1] the trajectory (Vi (t)f)i>o0 is honest. Since f is quasi-interior,
Proposition yields the conclusion. O

tn
< —=Jhllpr — 0 asn—
n! +

1
L+
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Besides the semigroup approach that we developed in the previous lines, it is also possible to
develop a resolvent approach to honesty, as the one developed in [I8] for the free-streaming case
and in [5] for conservative boundary conditions. Such an approach provides necessary and sufficient
conditions for a trajectory to be honest which are different from the one listed above. They can
be seen as the analogue of [0 Theorem 3.5 & Theorem 3.11] which are established in the additive
perturbation framework. Since we decided to mainly focus on the semigroup approach, we only
state the result for the sake of completeness but omit the details of the proof which can be adapted
without major difficulty from [I8] and [6]:

Theorem 4.2. Given f € X, the following statements are equivalent

1) the trajectory (Vi (t) f)i>o is honest;

2) © ((A=A)~f) =0 for all/some X\ > 0;

3) limy, 00 H(M;J‘I)"G,\f||L1+ =0 for all/some X > 0;
4) A=A)"rf € 2(Ty) for all/some X\ > 0;

5) the set (MxH)"G\[)),, is relatively weakly compact in L. for all/some X > 0.

n

In particular, the whole Co-semigroup (Vi (t))i>o is honest if and only if A= Ty.

Remark 4.4. It is possible to provide sufficient conditions for a trajectory to be honest which are
reminiscent to those given in [19] Proposition 2.6]. Namely,

(1) given f € X, if there exists A > 0 such that (MyH)Gxf < Gif, then the trajectory
(VH(t)f)t>0 is honest;

(2) it g € 2(Ty) is such that Tgg < Ag for some A > 0, then ¢ € X and the trajectory
(Vi (t)g)i>0 is honest.

5. SOME EXAMPLES

We illustrate here our approach by two examples. These two examples are dealing with the free-
streaming equation conservative boundary and, as so, have already been dealt with in our previous
contribution [5]. The scope here is to show that our new approach, based upon the semigroup
representation ([B.I0), allows not only to recover, by different means, the results of [5], but also to

characterize, in both examples, new interesting properties.

5.1. An instructive one dimensional example revisited. We revisit here a one-dimensional
example introduced in [20, Example 4.12, p. 76]. This example has been revisited recently in both
[5L 18]. Given two real nondecreasing real sequences (ax )0 and (bg)r>0 with

ap < b < agt1 Vk > 0, klim ar = 00
o0

set
oo

Q= U (ak,bk) =: U Ik.
k=0 k=0



24 LUISA ARLOTTI & BERTRAND LODS

We assume then p to be the Lebesgue measure on R and consider the constant field # : R — R
given by #(z) =1 for all z € R. In such a case, the flow ®(z,t) is given by

O(x,t)=x+t for any z,t € R,
and
. ={ag,keN}, Ty={bp,keN}, 7_(z)=x—ax Va, < x < b, keN.
The measures dju+ are then the counting measures over I'y.. We define then H € #(LY, L) by

0 if k=0,
Hip(ag) = (5.1)
br_1 ifk>0
for any ¢ € Li. It is clear that H is a positive boundary operator with unit norm. We then explicit
the strongly family of operators {(Uk(t))i>0; k € N} as defined in Definition To this aim for
any k € N, set Ay = by — ag. For f € Dy and t > 0 one easily sees that

flx=t) f0<t<z—ag,

Uo(t) f(z) = , (5.2)
0 otherwise,
which yields
f(bk—t) ifO<t<Ak,
B*Uo() (br) = . (5.3)
0 otherwise.
By induction one can easily show that for n > 1, k > 0, ax < = < by one has
Florn —ax+a+ Y50 A —t)  ifk>n
Un(t)f(z) = and x —ai+ E?;é_nﬂ Aj<t<z—ar+ Ef;,i_n Aj,
0 otherwise

(5.4)

so that

k . k k
B+Un(t)f(bk) _ f(bkfn + Zj:k—n-‘,-l Aj — t) if k>n and Ej:k—n—i—l Aj <t< Ej:k—n Aj,
0 otherwise.

(5.5)

Because of this we have for all f € X

bkfn &
t f(s)ds if k>=n and t>>7_, . A,
Bt (/ Un(s)fds> (b) = /aknv(bkn+szn+lAj—t) J=konal Y
0 0 otherwise.

(5.6)

Now we are able to prove the following where (Vi (t))i>0 is the Cp-semigroup constructed through
Theorem 221 and given by Vi (t) = Y07, Un(t) (t = 0):

n=0"-"n
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Proposition 5.1. The Cy-semigroup (Vi (t))e>o is honest if and only if
A = Z(bk — ak) =0 (5.7)

If A < o0, define

J = { Z Aj,ZAj] C [0,00) forany keN.
j=k+1 =k

by
Then, given f € X, the trajectory (Vi (t)f)i>o0 is honest on Jy if and only if f(s)ds =0

ak
which is equivalent to f(s) =0 for almost every s € Ij.

Remark 5.1. The first part of the Proposition is a well-known fact, first proven in [20] and revisited
recently in [B][I8]. The second part, on the contrary, is new to our knowledge and provides a criterion

for ’local’ honesty.

Proof. Thanks to formula (5.6 we can state that for all f € X4, n>1andt>0

[eS) br
‘ =2 [/ f(s)dsl >t a5)

LY k=0 RV (be+E A —t)

00 b
<> [ fs)as =1
k=0" %k

Assume first that A = +00. In such a case for any f € X1, k € N we have:

Bt /t U,(s)fds
0

(5.8)

b
fim / f(s)ds| x k+n =0
nﬁml‘”wm+2?:HAjo (>3350, A5}

which, thanks to the dominated convergence theorem yields

Bt /t U,(s)fds = 0.
0

1
Ly

lim
n— o0

By virtue of Corollary the trajectory (Vi (t)f)i>o is then honest. Since f € X is arbitrary,
the semigroup itself is honest.
Now consider the case A < 4+o00. In such a case, given ky € N, let t € Ji, C [0,A] C [0,00). It

is easy to see that

be 0 k=0, k—1>0,
lim / f(s)ds| x ktn L= b
n—oo l arV (bt 510 A=) {t>3250500 A} f(s)ds ifk > ko + 1,
ak
while
big bro
lim / f(s)ds| x kotn A 4 = / f(s)ds.
00 akov(bko +Z;‘Cg::+1 Ajft) {t>zjgk0+l A]} (bko +Zjoik0+1 Aj7t)

Then, from the dominated convergence theorem and (B.8])) we get
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_/(b'“’ Fls)ds + i /

[
f(s)ds.
bko"'z;ikon Aj—t) k=ko+1" %k

Bt /t U,(s)fds
0

lim ‘
n— 00 1
Ly

Therefore, for any t1, ta € Ji, with t; < t2 one has

1
L

to
lim HBJF/ U,(s)fds

n—oo
t1

(bk0+zjo'ozko+l Aj—t1) b
/ Fs)as < [ fls)ds
(bko +Z]‘Oik0+1 Aj—t2) Ak
where the last inequality is an identity if ¢; = Z;’;ko 1Ay and tp = Z;’;ko A;. Using Corollary
again, this shows that the trajectory (Vi (t)f)¢>o is honest on Jy, if and only if f::” f(s)ds=0
0

and, being f nonnegative, this is equivalent to f(s) = 0 for almost every s € I, . ]

Remark 5.2. As an immediate consequence of the obtained result we can state the following: if
A < 00, then no trajectory (Vi (t)f)i>o (f € X+) is honest on an interval J D [0, Al.

Remark 5.3. Finally observe that, in case A < 400, for all f € X and ¢t > A one has Vg (t)f = 0.
Indeed for ¢t > A one has Uy(t)f = 0. Furthermore for any n > 1, k > 0, one has t > Z?;L,? Aj.
This implies U, (¢)f(x) =0 for alln > 1, f € Dy and x € Q which gives the result.

5.2. Kinetic equation with specular reflections. In this second example, we consider the
physically relevant case of free-streaming semigroup associated to specular reflections. Such a
model, as well-known [3], is strongly related to the so-called billiard flow which is a well-known
dynamical system studies in ergodic theory [14]. We do not provide here any new honesty criterion
but show how the result we obtained before yields possibly new property of the billiard flow. More

precisely, we consider now a transport equation in RY with N = 2d, d € N and consider then
Q=DxR?

where D is a smooth open bounded and convex subset of R%. Any x € © can be written x = (z,v),
with # € D, v € R? and consider the measure du(x) = dz ® do(v), where dp is a positive Radon
measure on R? with support V. We assume for simplicity that V and dp to be orthogonally invariant.
Assume the field .# : x € RN — RY to be given by Z(x) = (v,0) for all x = (x,v) € R? x R%.
Classically, the associated flow is given by ®(x,t) = (x + vt,v) for all x = (z,v) and ¢ € R. In this
case,

Iy ={y=(z,v) €D xV; v-n(z) > 0}, dp+(y) = |v-n(x)|de(v)do(x)

where n(z) denotes the outward normal unit vector at € 9D and do(-) is the Lebesgue surface
measure on 0D. We consider here the boundary operator H to be associated by the specular

reflection, i.e.
Hy(y) = ¥(z, 0 —2(v - n(z))n(z)), RS Lﬁr, y = (z,v) el_.

It is known that H is a positive and conservative operator, i.e. ||[Hy| 1 = ||z/JHL1+ for any non-

negative ¢ € L}r. In particular, H has unit norm. As in the previous example, let us characterize
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the families (Uk(t))i>0, k € N. Observe that for x = (x,v) € D x V we can define the sequence of
rebound times:

k—1
t1(x) = 7-(x), ta(x) =t1(x) +7—(x1) ... tp(x) =tp—1(X) + 7-(Xp-1) = T_(%5)
j=1
where , setting xg = x, xg =z, v9 = v, one has, for any j =1,... k:
X; = (l‘j,’l)j) S 1—‘+, with Tj =Tj—1 — T_(Xj_l)’l}j_l, € 0D,

vj = vj—1 = 2(vj—1 - n(zj1))n(z-1).
With this notations, setting also to = 0, we have for any f € Dy, k > 0, x = (x,v) €

Up()f(x) = f(zr — (t = t.(X)) Uk, V) X {11 (x) <t <trr1 (%)}

Recall that Vi (t) = >~ Uk(t) and, since for a given ¢ > 0 and a given x € £2, there exists a unique
k € N such that ¢ € [t;(x), tr+1(x)], one has Vi (t) f(x) = Uk(t) f(x) (of course, such k depends on
x). This implies that, for any ¢t > 0,

V() f = fod:
where {0;;t € R} is the one-parameter group of transformations on D x V corresponding to the

so-called billiard flow [14] (see also [4]). The following is taken from [20, [5] and is proven through

the resolvent approach:

Proposition 5.2. Assume that do(0D) < co. If there exists some nonnegative 1 € L' (V,do(v))
with Y (v) = Y(Jv]) for any v € V and

[ @+ e vledete) < oo
\%4

then the semigroup (Vi (t))i>o is honest.

Proof. The proof follows from Proposition L@ since, as in [I8, Corollary 2.3], the mapping h(x,v) =
¥(|v]) provides a quasi-interior element of L’ satisfying (EI6). O

Remark 5.4. From Remark we deduce that for any t > 0 and f € X

07
1
LJr

Bt /t Ui(s)fds
0

lim }
k—o0

i.e.

tAtp 41 (X)
i [ F (k= v (s — 1)k, v | X (o, 00ty i () = 0.
k—o0 F+ th (x)

We wonder if such a property of the billiard flow is known in the literature.
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