Algorithmic description of erosions and dilations in Mamba

Serge BEUCHER CMM/ARMINES/MinesParisTech http://

Basic structuring elements on the elementary neighborhood

A class named structuringElement allows to define structuring elements on the elementary neighborhood of a point. A structuring element is simply defined by a list of points of the neighborhood and by the grid which is used. The points are coded according to the following scheme (Figure 1): For instance, an hexagonal structuring element is defined by: HEXAGON = structuringElement([0, [START_REF] Beucher | Mamba Image Library Python Reference[END_REF][START_REF] Beucher | Fast implementation of large erosions and dilations in Mamba[END_REF]3,4,5,6]

, mamba.HEXAGONAL)

A square one by: SQUARE3x3 = structuringElement([0, [START_REF] Beucher | Mamba Image Library Python Reference[END_REF][START_REF] Beucher | Fast implementation of large erosions and dilations in Mamba[END_REF]3,4,5,6,7,8], mamba.SQUARE)

The following definition corresponds to a centered segment of size 2 in the 60° direction on hexagonal grid: SEGMENT60 = structuringElement([0, [START_REF] Beucher | Mamba Image Library Python Reference[END_REF]4], mamba.HEXAGONAL)

In any case, the origin of the structuring element is always the center point although it is not compulsory that this center point belongs to the structuring element.

An erosion or a dilation by such a structuring element is obtained by performing the infimum (for the erosion) or the supremum (for the dilation) of the different shifts of the initial image which are imposed by (derived by the position of) the points belonging to the structuring element. These successive operations can be obtained with the infNeighbor or supNeighbor transformations available in the Mamba library. Note that, with some structuring elements, it would be possible to achieve erosions and dilations in a faster way by using successive operations with segments. A dilation by a 3x3 square for instance can be obtained with four successive dilations by size 1 segments in the directions 1, 3, 5 and 7 of the square grid which is twice as fast as the implementation based on suprema of shiftings. The same approach could be used with the elementary hexagon (that is, performing three successive dilations in directions 1, 3 and 5 instead of six shifts). However, in this case, it is not a good idea, as it produces errors on the edge of the image. These edge effects are illustrated in Figure 2. They come from the fact that a point generated by a dilation by a segment may fall outside of the image window which prevents it to be used at the next step to generate another point inside the window. The same phenomenon may occur also with erosions. As this bias does not occur when using suprema or infima of shiftings, this implementation is therefore used systematically with operators (erosion, dilation) using the structuringElement class (even on a square grid, for the sake of simplicity, although this bias does not appear). The structuring elements already defined in the Mamba library are given in Figure 3. Note that these structuring elements can be easily rotated, transposed through specific methods of the structuringElement class. Note also that a specific implementation of large structuring elements exists in the library (module erodilLarge.py). This implementation is described in [START_REF] Beucher | Fast implementation of large erosions and dilations in Mamba[END_REF]. As this implementation actually uses successive operations with segments (with some computation tricks to cope with edge effects), it is likely that these operators be faster on the square grid even for small size structuring elements.

Octogonal structuring elements

Octogons design

Octogons can be obtained by concatenating dilations with squares and with conjugate squares (squares turned by π/4), also called diamonds. The size n of the octogon is equal to: n = n 1 + n 2 where n 1 is the size of the square and n 2 the size of the diamond. These sizes determine the size of the sides of the octogon, n 1 determining the size s 1 of the horizontal and vertical sides and n 2 the size s 2 of the oblique sides (Figure 4). We have: s 1 =2n 1 s 2 =2 n 2 In order to obtain isotropic octogons, we put: s 1 =s 2 which leads to: n 1 = 2-1n=0.41421 n n 2 =n-n 1 =2-2 n Finally, as n 1 and n 2 must be integer numbers, we write: n 1 =E0.41421 n0.5 where E(x) stands for the integer part of x.

n 2 =n-n 1 The precision of the formula is sufficient for sizes of operations up to 100,000. The following figure (Figure 5) shows the increasing sequence of octogons generated by these formulas.

Figure 5: Successive octogons generated by the above algorithm.

Generating a sequence of octogons of increasing sizes

The following table (Table 1) contains the respective sizes of the squares and diamonds for the octogons of sizes 1 to 10. Note that these respective sizes do not increase according to a periodic scheme. We show that, to obtain an octogon of size i+1 from an octogon of size i, either an operation with a square or with a conjugate square is performed. Many morphological transformations (distance functions, residual transforms) need the elaboration of sequences of basic operations (erosions or dilations). So, it is necessary to exhibit the rule allowing to obtain a size i+1 transformation from the previous size i result. In the case of octogons, this rule is simple:

• calculate n=E 0.41421i0.5

• calculate n '=E0.41421 i10.5

• if n = n', the size i + 1 octogon is obtained by an operation with a diamond. Otherwise, it is obtained by an operation with a square. As an example, let us determine how to produce a dilation by an octogon of size 73 of a set X from the dilation of size 72. Let us calculate n and n' (see below). We see that n = n'. Therefore the size 73 octogonal dilation will be obtained by applying a dilation by a diamond to the previous dilated set. n=E 0.41421×720.5=30 n '=E0.41421×730.5=30 n n1 n2 Table 1: Squares and diamonds sizes for the generation of size n octogons.

Dodecagonal structuring elements

Generating dodecagons

Dodecagons can be obtained on the hexagonal grid by concatenating dilations with hexagons and with conjugate hexagons. These latter ones are produced by two transposed tripod structuring elements (Figure 6). Note that the size of the conjugate hexagon which corresponds to the number of iterations of both tripod transformations is half the size of the circumscribed hexagon (Figure 6a). As for the octogons, the respective sizes n 1 of the hexagon and n 2 of the conjugate hexagon control the sizes s 1 and s 2 of the 60° and 90° sides of the dodecagon. In order to generate isotropic dodecagons, we must have s 1 = s 2 . This condition leads to the following values for the size n 1 of the hexagon and n 2 of the conjugate hexagon (Figure 6b) needed to generate a size n dodecagon. s 1 =n 1 s 2 = 3 n 2 s 1 =s 2 leads to n 1 =3 n 2 The size n of the dodecagon (which is also the size of the embedding hexagon) is given by: n=n 1 2n 2 Then:

n 1 =32-3 n≈0.46410 n n 2 = 2-3 n≈0.26795 n
As for octogons, the values n 1 and n 2 must be integer values. However, contrary to the octogonal case, it is not sufficient to take the closest integer to obtain an appropriate value. Indeed, if n is, for instance, equal to 5, n 1 and n 2 are respectively equal to 2.32 and 1.34 before truncation, which leads to n 1 = 2 and n 2 = 1 if the nearest integer rule was enforced. But n would be equal to 4 and not to 5...

In order to cope with this problem, a more sophisticated rule must be applied. Firstly, let us calculate n 1 . Its real value is bounded by two successive integer values, p and p+1. Now, if the size n of the dodecagon is an even number, as n=n 1 2n 2 , n 1 must be even. Therefore, the approximation of n 1 must be chosen among p and p+1 depending on the parity of these two numbers. Figure 7 shows successive dodecagons produced by this algorithm and Table 2 gives the corresponding hexagon and conjugate hexagon sizes for the first ten values. Table 2: Hexagons and conjugate hexagons sizes for the generation of size n dodecagons. .

Iterating dodecagons

As for octogons, it is interesting to provide a rule for producing dodecagonal operations of size n + 1 from the result of the operation at size n. However, in the dodecagonal case, the rule is not as simple as it was in the octogonal case because, as it can be shown in the previous table, to obtain the result of a dodecagonal operation of size n + 1, the results of size n but also of size n -1 operations are needed. For instance, if we consider the size 5 dodecagonal operation, we see that it can be performed by concatenating a size 3 hexagonal operation and a size 1 operation with a conjugate hexagon. But the result of size 6 can only be produced by performing an operation with an elementary hexagon on the size 4 result. On the contrary, to get an operation of size 7, the previous result of size 6 is sufficient: we just have to perform an elementary hexagonal dilation to get it. So, to perform successive dodecagonal operations of increasing sizes, we must preserve the two previous results. Then, from the results of the size i and size i -1 operations, getting the result of the size i + 1 operation is achieved by the following procedure:

• calculate n 1 for the size i operation, with the parity correction described above (in an iterative procedure, this value is supposed to have been calculated at the previous step). • calculate n' 1 for the size i + 1 operation.

• if n' 1 = n 1 + 1, perform an elementary hexagonal operation on the size i result to obtain the size i + 1 dodecagonal operation. • else, perform an operation by an elementary conjugate hexagon on the size i -1 result to obtain the size i + 1 dodecagonal operation. This implementation has been used to realise the dodecagonal distance function of a set. It can be found in the mambaComposed.miscellaneous.py module.

Conclusion

Erosions and dilations with basic structuring elements are realised in Mamba in such a way that no edge effects are likely to occur, which would be unacceptable for these elementary transformations. This exactness is obtained after a small reduction of the performances. Regarding octogonal and dodecagonal operators, their design has been made in order to favour their simplicity. However, it is of the outmost importance to keep in mind some of their characteristics

Figure 1 :

 1 Figure 1: Directions coding for the hexagonal and square grids.

Figure 2 :

 2 Figure 2: Edge effects when computing an hexagonal dilation with three successive dilations by segments: on the left, points generated by dilations in directions 1 and 3 fall outside the image window and do not contribute to the next dilations.

Figure 3 :

 3 Figure 3: Some structuring elements present in the Mamba library.

Figure 4 :

 4 Figure 4: size of the octogon compared to the respective sizes of the square and of the diamond used to get it.

Figure 6 :

 6 (a) generation of a conjugate hexagon of size 1 by two successive tripods. Note the size of the conjugate hexagon compared to its embedding hexagon. (b) Relations between the size of the dodecagon and the sizes of the hexagon and conjugate hexagon.

Figure 7 :

 7 Figure 7: Successive dodecagons generated by the above procedure.