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One-dimensional openings, granulometries and
component trees in O(1) per pixel

Vincent Morard, Petr Dokládal and Etienne Decencière

F

Abstract—We introduce a new, efficient and adaptable algorithm to
compute openings, granulometries and the component tree for one-
dimensional (1-D) signals. The algorithm requires only one scan of the
signal, runs in place in O(1) per pixel, and supports any scalar data
precision (integer or floating-point data).

The algorithm is applied to two-dimensional images along straight
lines, in arbitrary orientations. Oriented size distributions can thus be
efficiently computed, and textures characterised.

Extensive benchmarks are reported. They show that the proposed
algorithm allows computing 1-D openings faster than existing algorithms
for data precisions higher than 8 bits, and remains competitive with
respect to the algorithm proposed by Van Droogenbroeck when dealing
with 8-bit images. When computing granulometries, the new algorithm
runs faster than any other method of the state of the art. Moreover, it
allows efficient computation of 1-D component trees.

Index Terms—Algorithms, Mathematical Morphology, Opening, Granu-
lometry, Component Tree, Oriented size distribution, Filtering.

1 INTRODUCTION

In the framework of mathematical morphology [1], [2],
any anti-extensive, increasing and idempotent operator
is an algebraic opening. This fundamental family of
operators is often based on a structuring element (SE)
probing the image at different places; in this case, it
is called a morphological opening. Using a segment as
structuring element is useful to detect straight structures,
or to find the local orientation of thin objects. Indeed,
many practical applications involve a directional analy-
sis (Material characterisation, crack detection, biological
applications [3], [4]).

In this paper, the presentation is limited to openings,
but all results can be directly applied to their dual
operators, the closings.

Openings can be used to build granulometries [5]–
[7]. This tool was initially introduced to study porous
media [5] and it can be seen as a sieving process. Given
some powder composed of particles of different radii,
sieves of decreasing size are used to perform a size
analysis of these particles, by measuring the quantity
of powder left in each sieve. Many image processing
applications involve granulometries, size distribution,
image segmentations or texture characterisations [7]–[9].
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Multi-scale image analysis can also be based on the
component tree (or max-tree). Introduced by Salembier
[10], it captures some essential features of an image. This
tree structure is used in many applications including im-
age filtering, image segmentation, video segmentation,
and image compression [11]–[13]. It is also at the basis
of the topological watershed [14].

All these operators are time consuming with naive
implementations and many authors have developed fast
and efficient algorithms to deal with this issue.

For morphological openings (i.e. openings using a
structuring element), Pecht [15] defined in 1985 a log-
arithmic decomposition of the structuring element. This
decomposition removes most of the redundancy. Later,
Van Herk [16] on the one side, and Gil and Werman
[17] on the other side, reduced the complexity to a
constant per pixel. This algorithm, called hereafter HGW,
is independent of the size of the structuring element for
the computation of one-dimensional (1-D) erosions and
dilations. Later, Clienti et al. improved HGW algorithm
by removing the backward scanning to ensure a low
latency [18]. Then, algorithms have also been proposed
to compute openings in only one pass of the entire
image, without computing successively the erosion and
the dilation. Van Droogenbroeck and Buckley developed
an algorithm based on so-called anchors [19]. The al-
gorithm uses image histogram. It is extremely efficient
on 8-bit data, but its performance decreases with higher
precision data. Later, Bartovský et al. [20] worked on a
new streaming algorithm with a minimal latency and a
low memory requirement.

For granulometries, a straightforward approach con-
sists in computing a set of openings of different sizes,
and measuring the residues between two successive
openings. This is a very computationally intensive task.
Vincent proposed an efficient algorithm based on the re-
cursive analysis of the regional maxima of the signal [21].
This algorithm is faster by several orders of magnitude
over the naive implementation and highly contributed
to the diffusion of this tool in the image processing
community.

In the literature, many authors have worked on the 1-
D component tree. Among them, Najman and Couprie
[22] built an algorithm in quasi linear time and more
recently, Menotti et al. [23] downed the complexity to a
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constant per pixel.
In this never-ending struggle for faster algorithms, we

propose a new algorithm, which competes favourably
with existing ones when computing openings, and also
allows computing granulometries and component trees
- all this in one dimension. It can also deal with various
data accuracy (it is not limited to integers). In fact, in
can be applied to any kind of data, as long as the values
belong to an ordered group. A first, shorter, description
of this work was previously presented by the authors
[24].

This paper is organised as follows: section 2 recalls
the basic notions on attribute openings and granulome-
tries, whereas section 3 describes the algorithm to build
granulometries, openings and the component tree for
1-D signals. Then, section 4 applies this algorithm to
two-dimensional (2-D) images, and finally, sections 5
and 6 study the complexity and the timings through a
comparison with the state-of-the-art.

2 BASIC NOTIONS

In this section, the definitions of one-dimensional at-
tribute openings and size distributions are recalled.
Moreover, it is explained how to apply them to two-
dimensional images.

2.1 Attribute openings

Let X : D → {0; 1} be a binary signal, where D is
an interval of Z such as [1, N ]. We define {Xi} as the
collection of connected components (CC) of X and Xi

the ith element of this set. Note that in 1-D these CCs
are intervals of Z . We wish to keep or delete these CCs
according to an attribute associated to a criterion χ (e.g.
“the length is larger than λ”). Formally, χ is a function
mapping the set of CCs of D into {false, true}, which
allows to define a function ψ:

ψχ(Xi) =

{
Xi if χ(Xi) is true
∅ otherwise,

(1)

for all CCs Xi included in D. Based on this function, the
corresponding attribute opening can be introduced for
all binary signals X :

γχ(X) =
⋃

Xi∈{Xi}

ψχ(Xi). (2)

Hereafter, the chosen attribute will be the length of
the CC. The resulting criterion will be “is longer than
or equal to λ”, and the corresponding opening will be
denoted γλ. However, other attributes can be used, for
example, whether the CC contains a point from another set
(which would allow building openings by reconstruc-
tion).

From now on, consider f : D → V , with V equal to
Z or R. Let Xh = {x|f(x) ≥ h} be the set obtained
by thresholding f at level h. Recall that an opening is

(a) Input (b) γα
χ (c) ∨γχ
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Fig. 1. Application of linear openings with the criterion
χ : “length ≥ 21 pixels”. (a) initial image with a zoom
on a part of the image. (b) oriented filtering: only straight
structures longer than 21 pixels oriented at α = 70
degrees are kept. (c) preservation of all linear structures
longer than 21 pixels. (d) local orientation in false colours.

an increasing, anti-extensive and idempotent operator.
Thanks to the increasingness, the opening commutes
with the thresholding. Thence, the extension of openings
to grey level images is direct:

γχ(f) = ∨{h ∈ V | x ∈ γχ(Xh(f))}. (3)

We will introduce in section 3 an efficient algorithm
to compute these linear openings. In order to apply it to
two-dimensional images, we can consider a given orien-
tation α, and decompose the image into one-dimensional
signals, following this orientation (see section 4 for de-
tails). Therefore, we get a directional opening written γαχ .
Further directional operators can be built with these lin-
ear openings. The first one is ∨γχ(f), which is computed
by taking the supremum of the attribute openings in all
orientations:

∨γχ(f) =
∨

α∈[0,180[

γαχ (f) (4)

The second one, ζχ(f), can extract the local orientation
of the structures by storing, on each pixel, the angle of
the opening producing the highest grey value:

ζχ(f) = argsup
α∈[0,180[

γαχ (f). (5)

Fig. 1 illustrates the results of these operators on a
fingerprint image.

2.2 Size distribution

A size distribution, also called granulometry, is built
from openings. As proposed by Matheron [5], a family
(γν)ν≥0 of openings is a granulometry if, and only if:

∀ν ≥ 0,∀µ ≥ 0, ν ≥ µ⇒ γν ≤ γµ. (6)

Later, Maragos introduced the pattern spectrum [7]:

(PS(f))(ν) =
−d(Meas(γν(f)))

dν
, ν > 0, (7)
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with Meas(), a given additive measure. In the discrete
case, the differential function is replaced by a subtraction
between two consecutive openings. By analysing these
residues, we get the measure of all the structures that
have been removed from the image at this scale. There-
fore, the discrete pattern spectrum is defined as follows:

(PS(f))(ν) = Meas(γν(f)− γν−1(f)), ν > 0. (8)

Fig. 2 explains how a 1-D signal is decomposed. The
pattern spectrum is saved into a discrete histogram,
where each bin stores the contribution of the signal to
its corresponding measure. Hereafter, the measurement
used in equations 7 and 8 is the volume, and the family
of openings are the openings with the length attribute,
γλ. Hence, block c3 is a 5 pixels long element having a
volume of 15; this adds 15 to the 5th bin. Elements c4 and
c6 have a length of 1 pixel; therefore, they contribute to
the first bin – and so on, until all the elements have been
processed.
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Fig. 2. Illustration of a grey scale pattern spectrum with
the volume measurement on a one-dimensional signal.

Openings and granulometries are computed efficiently
with the algorithm presented in the next section.

3 ALGORITHM FOR 1-D SIGNALS

This algorithm is able to compute granulometries, com-
ponent trees and attribute openings by length for a 1-D
signal. We first describe the decomposition used to get a
minimal and complete representation of the signal. Then,
we provide a detailed description of the algorithm.

3.1 Signal decomposition
Consider a 1-D signal f : D → V , with V equal to R
or Z . We recall that Xh = {x | f(x) ≥ h} denotes the
threshold of f at level h, and {Xh

i } the set of connected
components of Xh. Notice that one may obtain the same
connected component for different h. We wish to obtain
a representation of f by searching, for each Xh

i , for the
maximum h allowing to extract it.

First, we will re-index {Xh
i } into {Xj}. We will call

cord a couple c = (Xj , k) belonging to {Xj} × V , where

k = minx∈Xj f(x) is the altitude of the cord. As Xj is
an interval of Z , we can write it [sp, fp], where sp and
fp denote its starting and end positions. Its length is
L(c) = fp−sp+1. Fig. 3(a) illustrates the decomposition
of a 1-D signal into its cords.
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Fig. 3. (a) 1-D signal and the associated cords, (b) the
component tree and (c) the current state of the stack
(given the reading position rp). (The continuous/dotted
line means already/not yet known elements.)

The length satisfies the inclusion property, since we
have, for all cords ci = (Xi, ki) and cj = (Xj , kj) of f ,
such that Xi ⊂ Xj , ki > kj . We say that cj is an ancestor
of ci and ci is a descendant of cj . The longest descendant
of cj (with respect to the cord length defined above) is
its child. If ci is the child of cj , then cj is the parent of ci.
With the parent-child relationship, we get a tree called
component tree, or max-tree.

Given a cord ci = (Xi, ki) and its parent cj = (Xj , kj),
the volume of cord ci is defined as:

V (ci) = (ki − kj)L(ci). (9)

The reconstruction of a signal f from its set of cords
C = {(Xi, ki)} is straightforward:

f(x) = max
(Xi,ki)∈C : x∈Xi

ki. (10)

Additionally, attribute openings by length and the pat-
tern spectrum of f can be directly computed on C:

γλ(C) = {ci|L(ci) ≥ λ}, (11)

(PS(C))(λ) =
∑

L(ci)=λ

V (ci). (12)

An efficient decomposition of a function into its set of
cords allows an efficient computation of openings, pat-
tern spectra and component trees by using only logical
or arithmetic operations. The following section presents
the 1-D algorithm. Its efficiency stems from several facts:
the signal is read sequentially; every cord is visited once,
and only once, in the order child-parent. Later, we will
see that all operations, including finding the maximum
in Eq. 10, are done in O(1) per pixel.
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3.2 Algorithm principle

By analysing Fig. 3, we immediately notice a couple of
properties of the signal:

1) Every uprising edge is a starting point of at least
one cord. Every downfalling edge is the end of at
least one cord.

2) When we read f from the left to the right, the
length of every cord is only known when the read-
ing position reaches its end. In Fig. 3, the already
known portion of each cord is represented with a
continuous line - up to rp - and the still unknown
portion with a dotted line.

3) Every cord can only be processed when the reading
position reaches its end.

4) The incipient cords, waiting to be processed, can be
stored in a Last-In-First-Out (LIFO) structure. The
stored cords are necessarily ordered according to the
inclusion relation (Fig. 3).

These properties are fundamental to get an efficient
algorithm.

3.3 Algorithm pseudo code

Alg. 1 reads the input signal sequentially, from left to
right (lines 4 and 5); rp denotes the current reading
position.

Algorithm 1: (fout or PS or CompTree) ← ProcessSig-
nal1D (f, λ, op)

Input: f : [1 . . . N ]→ R - input signal;
λ, parameter for the opening
op, selected operator

Result: fout = γλf or PS or CompTree

Stack ← ∅;1

CompTree← ∅;2

PS[1..N ] ← 0;3

for rp = 1..N do4

(fout or PS or CompTree)← ProcessPixel(f(rp), rp, λ,5

Stack, op)
Process Remaining Cords6

The cords are coded by a couple (sp, k), where sp
corresponds to the starting position, and k to the alti-
tude. The pending cords (of yet unknown length) are
stored in a LIFO-like Stack supporting the following
operations: push(), pop() and queries top() and empty().
Therefore, reading an attribute of the latest-stored cord
is Stack.top().att with att referring to k or sp. Inserting a
new cord into the stack will be written: Stack.push(k, sp)
while removing a cord: cordOut = Stack.pop(). At the
beginning Stack and CompTree are empty, and the
pattern spectrum PS is filled with zeros (lines 1 to 3).

Algorithm 2: (fout or PS or CompTree)← ProcessPixel
(k, rp, λ, Stack, op)

Input: k = f(rp)
rp, the reading position
λ, parameter for the opening
Stack, stack of cords (LIFO)
op, selected operator

Result: fout or PS or CompTree following op

if Stack.empty() or k > Stack.top().k then1

Stack.push(k, rp, FALSE);2

else3

while k < Stack.top().k do4

cordOut = Stack.pop();5

if Op ==Size distribution then6

Length = rp− cordOut.sp;7

PS[Length]+ =8

Length× (cordOut.k −max(k, Stack.top().k))
if Op ==Opening then9

if cordOut.Passed or rp− cordOut.sp ≥ λ10

then
fout ←WriteCords(cordOut, Stack, rp);11

Stack.push(k, rp, TRUE);12

break13

if Op ==Component tree then14

if Stack.empty() or Stack.top().k < k then15

currentNode.k = k;16

currentNode.Children.push(nodeOut);17

Stack.push(currentNode);18

break19

else20

Stack.top().Children.push(nodeOut)21

if Stack.empty() or k > Stack.top().k then22

Stack.push(k, cordOut.sp, FALSE);23

break24

Each pixel rp is processed by Alg. 2, processing dif-
ferently the rising and falling edges of the signal:
• Uprising edge (Alg. 2, line 1): is the beginning of at

least one cord, we store its position and altitude in
Stack (line 2).

• Downfalling edge: is the end of, at least, one cord.
The while cycle (lines 4 to 24) pops from Stack all
ending cords to process them one by one. At this
point, the processing of the ending cords depends
of the operator:
– Size distribution : We compute the cord’s length

and add its contribution to the corresponding bin
(indexed Length), lines 7 and 8. If the stack is
empty, a query top to the stack will return 0.

– Opening : We test the length of the cord (Eq. 11)
to discard those shorter than λ, line 10. Whenever
we find any cord longer than λ, we immediately
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reconstruct (Eq. 10) the opening fout = γλ(f) up
to the current reading position rp (lines 10 to 13).
The principle stems from the reasoning that the
length of every cord is only known when we
reach its end. As soon as we find the first cord
longer or equal to λ, from the inclusion property
we know that all cords stored in the LIFO are
(strictly) longer than λ. We do not need to wait
until their end to reconstruct the output up to rp.
We reconstruct the opening result fout using the
function WriteCords(). Thanks to the inclusion-
ordered LIFO we ensure that every pixel is writ-
ten only once. In the function WriteCords(), the
stack is emptied while we write the cords (see
Alg. 3). Hence, we add a flag Passed to the cord
structure to tell whether a cord is longer than λ.
Finally, we push the current cord into the stack,
with the flag Passed set to true (line 12). This
flag is essential, as we will not be able to access
its length later on.

– Component tree : We enrich the cord structure by
a new attribute Children. It is a list of pointers
on the cord structure. This attribute links every
parent to its children. Every ending cord needs to
be linked to its parent. Finding the correct parent
component involves three possible situations:
∗ If the stack is empty, we link cordOut with
currentCord (lines 16, 17 and 18).
∗ If the grey value of the new top-most node

in the stack is lower than currentCord grey
value, we also link cordOut with currentCord
(lines 16, 17 and 18).
∗ Otherwise, we link cordOut with the top-most

cord in the stack (line 21).
At the end of the 1-D signal (Alg. 1, line 6), some cords

may remain in the stack. We empty the stack and process
all the remaining cords according to the operator op.

Algorithm 3: fout←WriteCords(cordOut, Stack, rp)
Input: cordOut, last cord popped

Stack, stack of cords (LIFO)
rp, reading position

Result: fout = γλf

fout[cordOut.sp : rp] = cordOut.k;1

while not Stack.empty() do2

end = cordOut.sp;3

cordOut = Stack.pop();4

fout[cordOut.sp : end] = cordOut.k5

We notice that this algorithm only needs comparison
operations and subtractions between values. Therefore,
it can handle a large variety of data types, including
integer and floating point. In fact, from an algebraic
point of view, the set of values needs only to have the
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Fig. 4. Oriented pattern spectrum for α- and β- titanium
alloys. See the text for explanation.

structure of an ordered group.
The complexity is studied in section 5 and this algo-

rithm is applied to 2-D images in the next section.

4 APPLICATION TO 2-D IMAGES

It will be explained in this section how to apply the pre-
vious algorithm to 2-D images, by means of partitioning
the image support into thin straight lines, at arbitrary
orientations. This strategy is applied to the computation
of Oriented Pattern Spectrum (OPS) [7]. Finally, some
hints to compute the 2-D component tree are given.

In this section, g : E → V is a 2-D image, where E
is rectangular domain of Z2 of the sort [1, N1] × [1, N2],
and V , as previously, is equal to Z or R.

4.1 2-D image scanning strategy
Alg. 2 takes one pixel as input, and is clearly indepen-
dent of the orientation of the line. Hence, we can apply it
to 2-D images, provided we have an appropriate image-
scanning strategy. Soille et al. [25] described a way to go
through all pixels of an image at a given orientation, by
using Bresenham lines [26]. Moreover, they addressed
the padding problems by adding constraints to avoid
any overlaps between two translated lines. Hence, the
logic behind the construction of these lines ensures that
each pixel will be processed only once. This allows the
algorithm to run in place. For openings in arbitrary
orientation, we add a line buffer to store the index
position of all the previous pixels of the line. Hence, we
could easily write the result of the filter in the output
image with no other extra computation.

Hereafter, image g is decomposed into a set of 1-D
signals {gα,k}k∈K , following direction α.
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4.2 Oriented Pattern Spectrum
We have seen that the local orientation on a given pixel
of a 2-D image can be measured by the supremum of lin-
ear openings. We may wish to additionally measure the
pattern spectrum for each orientation, which leads to the
Oriented Pattern Spectrum (OPS), initially introduced by
Maragos [7]:

OPS(g)(λ, α) =
∑
k∈K

(PS(gα,k))(λ). (13)

Computing the OPS can be very time consuming.
Using the presented algorithm reduces its computation
time. Fig. 4 illustrates the results of this operator. Ori-
ented pattern spectra are represented as 2-D images, one
column for each orientation. Fig. 4 (b) and (d) show the
OPS of the (a) α- and (c) β- titanium alloys, respectively.
We can see in (b) two peaks, giving evidence of an
alignment in the image. The majority of the structures
are oriented around 140◦ (measured anticlockwise from
the horizontal line), with a second peak around 40◦.
The majority of the structures are up to 80 pixels long,
with several individuals from 120 to 160 pixels long. The
β-titanium alloy is rather isotropic, with only a slight
alignment around 90◦.

4.3 Border effects
Consider a stationary, random process ξ of arbitrarily
placed, L-pixel long, non intersecting and non over-
lapping, straight lines, oriented in a constant direction
ϑ. The PS(ξ) in the direction of ϑ is δ(L), the Dirac
function at L. Now, consider a bounded, discrete support
[1, N ]2⊂Z2, and the realisation of ξ on D, see Fig. 5. The
intersection with a finite support introduces in the PS
a bias (a.k.a. border effects) due to the truncation of the
structures in ξ (see the red curve in Fig. 5).
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Fig. 5. Randomnly placed, 100-pixel long, straight lines
and the pattern spectrum: blue - expected pattern spec-
trum, red - effect of truncation on a bounded support.

The border effect is an ubiquitous problem, differently
handled in various applications. Van Droogenbroeck [19]
proposes an interesting discussion. He recommends to
add the maximal value of V (let us call it ∞) outside
the image support. On the other hand, in the domain
of connected filters, one often completes by adding the
minimal value of V .

In granulometries one often uses padding by ∞. In-
deed, ∞ is a recessive value that allows considering in
Eq. 7 the truncated structures (of unknown length) as
infinitely long, and makes them unaffected by γν , for
any ν <∞.

The proposed algorithm can easily handle both border
management strategies. Considering the infinite exten-
sion, every cord touching the border is ignored. For
openings, the flag Passed of the first cord pushed into
the stack and the cords remaining in the stack at the
end of the line, must be set to true. The timings stay
unchanged with this strategy.

4.4 2-D component tree

If we compute a tree for each 1-D image gα,k obtained
from the 2-D image g, we get a set of trees called a forest.
On its own, such a forest is not interesting, since it does
not describe the 2 dimensional patterns of the images.
However, Wilkinson et al. [27], and later Matas et al.
[28], [29] have described a method to merge all these
trees to get the 2-D component tree of the image. Hence,
the proposed algorithm can be seen as a part of a new
process to get the 2-D component tree in an efficient way.

5 COMPLEXITY

The computational complexity of this algorithm is evalu-
ated focusing first on the 1-D algorithm. Then, we study
the 2-D part.

5.1 1-D scan strategy

Consider a 1-D signal f : [1 . . . N ] → V , with V = Z or
R. The input signal is read sequentially from left to right
(Alg. 1, lines 4 to 6) and it calls Alg. 2 once per every
sample.
By analysing Alg. 2, we notice that every cord, where it
starts, is pushed once and only once into the LIFO stack
(line 2), and eventually retrieved (line 5), when it ends.
The retrieval is done in a cycle while (line 4) since several
cords may end simultaneously at one downfalling edge
(as e.g. the cords c2 and c5 in Fig. 3). The cycle while,
executes once per every cord. All remaining operators
in the Alg 2 are O(1) operations, like tests or operations
on the stack.
Hence, we may conclude, that Alg. 2 executes with the
average complexity of O(1) per pixel. However, because
of the conditions the execution time differs according
to the content of the image. The time will decrease for
smooth signals. The theoretical lower bound is reached
with constant signals, containing only one cord.
Regarding memory consumption, the maximum number
of cords pushed into the stack is bounded by the mini-
mum between the number of grey levels and the number
of pixels of the signal.

In the following paragraph, we will analyse the com-
plexity for 2-D supports.
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5.2 2-D scan strategy
We perform a complete scan of a 2-D rectangular image
with a set of parallel, α-oriented Bresenham lines. With
the Soille algorithm, this is done in O(1) per pixel.
Furthermore, this set of lines can be computed in parallel
since each line is independent from the others.

Therefore, the complexity does not increase with the
size of the openings λ and every pixel is computed in a
constant time. Next section is devoted to a comparison
of the timings with the state of the art.

6 TIMINGS AND COMPARISON WITH OTHER
METHODS

Beside its adaptability, this algorithm is designed for
speed. Thus, this section is devoted to compare this
algorithm with the state of the art for openings, gran-
ulometries and oriented size distributions. All these ex-
periments have been made on a laptop computer using
only one thread (Intel Core 2 Duo T7700 CPU @2.4GHz).

6.1 Timings for openings
Four benchmarks on openings have been computed to
test the speed of the proposed algorithm. First, we see
the correlation between the computation time and the
image content. Then, we compare openings in arbitrary
orientations for different algorithms. Finally, we make a
benchmark with reference to the orientation and with
reference to different input data types.

6.1.1 Benchmark with the image content
By analysing Alg. 2, we note that the number of op-
erations changes with the image content. Hence, we
measure the average time for 1000 horizontal openings
for different images of size 512×512 pixels: Goldhill, two
other versions of Goldhill (where the number of grey
levels has been set to 2 and 9, with no dithering), an
uniformly distributed random noise image and, finally,
a constant signal.

Fig. 7 collects the results. As expected, the constant
image gives the smallest computation time. We also note
that an image with uniform noise is computed faster
than Goldhill image. A general rule for this algorithm
is that timings are correlated to the mean number of
pixels into the stack. A random signal will have, in
average, fewer pixels in the stack than a natural image.
Furthermore, the fewer cords there are, the closer you
get to the theoretical lower bound.

6.1.2 Benchmark with other algorithms
For a comparison with the state of the art, we use
five other algorithms. The first one is an algorithm
by Van Herk, Gil and Werman [16], [17] (referred to
as HGW algorithm hereafter). Then, we use Clienti
et al.’s algorithm [18] (Clienti), Van Droogenbroeck et

(a) (b) (c) (d) (e)

Fig. 6. Image of size 512×512 used for Fig. 7. (a) goldhill,
(b) goldhill with 9 grey levels, (c) goldhill with 2 grey levels,
(d) random noise and (e) a constant image
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Fig. 7. Timings for horizontal openings of size λ for
different images, using the proposed algorithm (512× 512
pixels)

al.’s algorithm [16], [30] (Van Droogenbroeck), Bartovský
et al.’s algorithm [20] (Bartovsky) and finally a naive
implementation that follows the classical definition of
an opening (Naive). All these algorithms have a O(1)
complexity per pixel, excepted the naive algorithm O(λ).
They have been integrated to the same platform, in C++,
with exactly the same interface. Then, we average the
computation time of 1000 realisations of openings with
arbitrary orientations. The timings have been computed
on Goldhill image (Fig. 8) but we note that the results
are approximately the same with other images.

The difference between the naive implementation and
others methods is huge. The naive implementation’s
complexity is independent on the image content but
it does depend on the length of the openings. Our
algorithm is very fast. However, Van Droogenbroeck’s
method outperforms our algorithm, especially for large
values of λ. One reason can be pointed out to explain
this difference; for our algorithm, every pixel of the
output image is written exactly once. This can slow
down our algorithm compared to an algorithm that
only writes the modified pixels. We note, however, that
Van Droogenbroeck’s algorithm is not able to handle
efficiently 16 bits or floating-point data images.

6.1.3 Benchmark with orientation
Openings in arbitrary orientation require an extraction of
the lines. We use the same method for all the algorithms
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Fig. 8. Timings for openings in arbitrary orientation with
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Fig. 9. Timings for openings with regard to the orientation
for different algorithms (Goldhill image 512× 512 pixels)

[25] excepted for the Bartovský algorithm, which uses its
own line extraction. We average the computation time of
1000 openings, for every orientation with λ = 41 pixels.
Fig. 9 collects the results and we note that the compu-
tation times are almost independent of the orientation.
The angle α = 0◦ and α = 90◦ are different since the
extraction of the lines is straightforward. We note that
the best situation for all the algorithms is α = 0◦ as
expected. This is due to the row major organisation of
our data, which minimises cache misses.

6.1.4 Benchmark with input data types
All the previous experiments have been computed with
8-bit images. This benchmark allows visualising the
overhead introduced by using other input data type: 8-,
16-, 32-bit, floating point (single and double precision)
for the computation of a horizontal opening. To avoid
any bias introduced by the image content, we use a
random uniform noise image of size 512 × 512 for our
experiments. We compute the average time of 1000 open-
ings for each input data type.

Note that the algorithm proposed by Van Droogen-
broeck – the fastest for 8-bit images – does not support

0

2

4

6

8

10

12

14

UINT8 UINT16 UINT32 float double

T
im

e
 (

m
s)

HGW

Clienti

Bartovsky

This paper

Van Droogenbroeck

UINT8 UINT16 UINT32 float double

Fig. 10. Timings for openings with regard to the input data
type (Uniform noise image 512× 512 pixels)

2048 x2048

4096 x 4096

8192  x 8192

0

200

400

600

800

1000

1200

0 20 40 60 80

T
im

e
(m

s)

Vincent

This paper

0 20 40 60 80

Number of pixels  (MPixel)

Fig. 11. Timings for horizontal granulometries with refer-
ence to the image size. The proposed algorithm outper-
forms the algorithm by Vincent (Uniform noise images).

any other data type, hence, we have not included it into
this benchmark. The results are depicted in Fig. 10. We
note that our algorithm is the fastest.

6.2 Timings for granulometries
Compared to a naive implementation, the algorithm by
Vincent for granulometries is highly efficient [21]. Even
many years after its publication, it used to be the fastest
algorithm for 1-D granulometries. We have compared
these two algorithms and the timings are collected in
Fig. 11, where we plot the average time needed to
build a horizontal pattern spectrum with reference to
the number of pixels of the signal. Our method is 21%
faster than Vincent’s one, which becomes useful when
we compute the oriented size distribution. The OPS
requires many linear granulometries in all orientations:
we may need to compute 180n−1 granulometry for n-D
images. The computation times for the OPS of images
4(a) (322x322) and 4(c) (625x625) are respectively equal
to 0.37s and to 1.06s for 180 orientations.
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7 CONCLUSIONS

This paper introduces a new, flexible and efficient algo-
rithm for computing 1-D openings and granulometries.
Its theoretical complexity is linear with respect to the
number of image pixels, and constant with respect to
the opening size. Moreover, it can be applied to a large
set of image types; in fact, the image values only need
to have the structure of an ordered group. Extensive
benchmarks show that it is the fastest algorithm for com-
puting 1-D openings on images whose data precision is
higher than 8 bits (for 8-bit images, the algorithm by
Van Droogenbroeck remains unvanquished). It can also
be used to compute 1-D granulometries, running faster
than the algorithm proposed by Vincent, which has led
this category for many years. Moreover, 1-D component
trees can also be efficiently computed with the same
algorithm. From a software engineering point of view,
it should be noted that having the same algorithm for
computing different operators, with different data pre-
cisions, is very interesting. Futhermore, one can choose
between two border extensions to adapt these operators
to applications.

The proposed algorithm is applied to 2-D images in
several ways: i) the classical linear openings for oriented
filtering and/or enhancing of linear structures; ii) the
collection of size distributions for all orientations gives
the oriented pattern spectrum.

In the future, we shall focus on the computation of lo-
cal granulometries for analysing non-stationary signals,
or to segment textured images. A second extension is
to introduce new scan strategies, beyond straight direc-
tions, and use this algorithm to efficiently compute path
openings. Finally, small modifications of this algorithm
are required to compute openings by reconstruction for
1-D signals.
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