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Abstract 
 

   Quantum mechanics originates from the study of the spectrum of hydrogen atom and the black 
body radiation and the development of this theory has been very successful for the study of 
atoms, the nucleus and the classification of elementary particles using SU (3) group. But the 
course of quantum mechanics in the second year should be revised to take account of these 
developments not only in terms of program but also from an educational point of view, especially 
for students of mathematical orientation. In this work we give an idea about the origin of quantum 
mechanics and we summarize the Schrodinger, the Dirac formalisms of quantum mechanic and 
the path integral. After exposing the Dirac’s method of the oscillator we treat the Schwinger’s 
approach of angular momentum. We present the theory of the central potential, the Quarks model 
and the classification: of chemical elements and elementary particles. We present a summary of 
the approaches of group theory. We present the theory of SU (3) and the decomposition of tensor 
product of SU (3). To take account of level of students we use in the applications our 
generating function method for its simplicity.  
 

Résumé 

     La mécanique quantique a pour origine l’étude du spectre de l’atome  d’hydrogène et le 
rayonnement du corps noir mais le développement de cette théorie a eu un grand succès pour 
l’étude des atomes, du noyau et la classification des particules élémentaire à l’aide du groupe 
SU(3). Mais le cours de la mécanique quantique de la deuxième année doit être révisée pour tenir 
compte de ces  développement, non seulement du point de vue programme mais aussi du point de 
vue pédagogique, surtout  pour les étudiants d’orientation mathématique. Dans ce travail nous 
donnons une idée sur l’origine de la mécanique quantique et nous résumons les formalismes de la 
mécanique  ondulatoire,  le formalisme de Dirac et l’intégrale du chemin. Apres avoir exposé 
l’oscillateur par la méthode de Dirac nous traitons la théorie du moment angulaire à l’aide de  
l’approche de Schwinger. Nous exposons la théorie du potentiel central, le modèle des Quarks  et 
la classification : des éléments chimiques et des particules élémentaires. Nous faisons un résumé 
des approches de la théorie de groupe. Nous exposons la théorie et la décomposition du produit 
tensoriel de SU(3). Pour tenir compte du niveau des étudiants nous utilisons dans les 
applications  notre méthode de la fonction génératrice pour sa simplicité. 
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Introduction 
 

  The basis of scientific development and current technique are the classical and quantum 
mechanics. But quantum mechanics has objective to study and describe the phenomena 
of physical systems of the atomic and subatomic. It was developed to solve various 
problems such as the existence of the spectral lines of the hydrogen atom, the 
photoelectric effect, or black body radiation.  
   The development of quantum mechanics proved to be very fruitful in results and 
various applications. It allowed to clear up the mystery of the structure of the atom, 
the nucleus and they very important for the study of elementary particles and the quantum 
information. And  more it is undoubtedly the basis for future  technologies.  
    In this work we want to give the undergraduate students of the second year and 
especially  who have mathematical orientations  a simple overview of quantum 
mechanics and its connection with the mathematical theories.        
  The theoretical development of quantum mechanics had as its starting point the classical 
mechanics, optics  and the analytical mechanics. And this theory has opened up new 
branches not only physical but also mathematical through Dirac formalism, distributions, 
the Fock space and the modern physical theories. 
     On the other hand the theory of groups: The Lie groups, the classical groups and 
groups of permutations have applications in the theory of angular momentum, nuclear 
physics and classification of chemical elements and elementary particles. therefore we 
expose a summary for the study of algebras of semi-simple Lie groups and the Weyl 
global method for unitary group. We are particularly interested in the study of the 
representation of SU (3) and the tensor product of these groups. 
    We emphasize that this work is a revision and renovation of lecture notes taught to 
students in the second year in the 70s. we present a simple way to resolve many 
unresolved problems or solved by difficult methods using the generating function method 
that we have developed and using the octonion algebra. We emphasize that our method 
fits naturally in a simple way in all sections of the course of quantum mechanics. 
 
 

Summary of the origins of quantum mechanics 
 
 
 
 

 
 

 
 
 
 
 
 

Classical mechanic Elect. + MagnetismWave opticsGeo. optics

Lagrange equation Calculus of Variation 
Unification: Maxwell equation 

Analytic mechanic 

Heisenberg mechanic 
Schrödinger mechanic 

Quantum mechanic 
Dirac Formalisme

 Lagrangian Quantum Path 
integral of Dirac-Feynman” 
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I-  Origins and formalisms of quantum theory    
 
    Understanding the movement of the stars and planets and a variety of fact have been 
the origin of the classical and quantum mechanics. In this section we will give a quick 
summary of these theories and the quarks model of elementary particles. 
    We represent the development of mechanics: classical, quantum and  elementary 
particles by an astronaut who observed a pedestrian moves on the earth: 
First: it is very far from the earth, he sees the pedestrian (particle) moves on a straight 
         line or a curve.  
Secondly: if approaching the earth again, he sees the pedestrian moves in a zigzag  
          randomly.  
Third: if the astronaut approaches the pedestrian, he sees the pedestrian characteristics:  
         Eyes (spin), the head(charge), etc… 
 

1. Classical and analytical mechanics 
 
     We present in this part a rapidly developing of the classical mechanics [1] and the 
calculation of Euler variations [2] which is the origin of the principle of least action and 
the analytical mechanics. 
1.1 Origin of classical mechanics 
     1- We know that the origin of classical mechanics is the meeting between a rich young 
Tycho Brahe obsessed by astrophysics and a priest expelled from the church because 
Kepler doing mathematic during the confessions. After observing the planets during a 
long time Tycho Brahe died and Kepler found the Kepler's laws and more he has no 
resources and died of famine. 
 
 2- A young professor of mathematics Galileo good-looking and from a famous Italian 
family who loved dancing. One day when he was dancing in a very large and very clean 
saloon, "no-friction ", suddenly came a current of air and chandeliers start swinging 
without stop. Galileo deduced from the fact that the laws of nature are invariant under 
uniform translation. And then he defined the velocity and found the law of falling bodies. 
 
3-  Newton finally represented the force by a vector and introduced the acceleration and 
had a genius idea, “a brain-wave”, that the laws of nature are represented by mathematics 
and by his famous formula. 
undoubtedly Newton made a hole in the frozen ocean of knowledge and allowed other 
scientists to swim in it.  
 
1.2 The Euler calculations of variations 
    a-The Fermat's principle of least time 
 The study of the movement of light is performed using the physical wave or using 
geometrical optics. But Fermat sought the minimum of time of light ray linking point 
 A (0, a) in medium (1) to point B (b, c) of the medium (2) and passing through the point 
M (x, 0 ) with V1 and V2 are the velocities of the light in the first and the second medium. 
 

                       
)v/MB()v/AM(tt)x(t 2121 +=+=
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Fermat found the Descartes law of reflection of light. Descartes was very jealous and sent 
to Fermat a letter of displeasure. 
                                      
b-Calculation of Euler* variations  
    Generalizing the method of Fermat, Euler (Russia) has sought to find the minimum of 
the expression 

                                            ∫= b
a dttqqfI ),',(                                            (1,1) 
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We find by integration by parts of Euler's formula: 
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1.3 Analytical Mechanics and principle of least action 
 a- Lagrange formalism 
        Lagrange (France, friend of Napoleon) generalized Newton formula on a variety 
   and applying D'Alembert principle of virtual work and found the formula 
 

                       q
Lpwith

q
Lp
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d
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=
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= ,                                 (1,3) 

 
L = T-V is the Lagrangian, T is the kinetic energy and V is the potential energy. 
    Comparing this formula and Euler's formula (1,2), Hamilton observed the identity 
of the two formulas if f = L and replacing I by the action S then we write: 
 

                                            ∫=
b

a
dttqqLtqS ),',())((                                    (1,4) 

  
 The principle of least action has various applications: 
1 - It is applied in optics and gives the laws of dynamics which led Hamilton to predict a  
     unifying theory "wave-matter." 
 
2 - This principle has applications in various fields: economics, etc.. 
 

1,V1 

2,V2
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 b- The Hamiltonian function H and the equations of mechanics 
     Starting from the Lagrangian ),',( tqqL  
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And using Lagrange's formula we find after a simple calculation  
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Hamilton has introduced the function H and found a new system of equations of 
analytical mechanics or the canonical system: 
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By definition, the function ),',( tqqH  is the Hamiltonian of the system. 
And for a conservative system:  
 
                                         Vm2PtpqH 2 += /),,( .                                  (1,8) 
 
Then Jacobi continued the Hamilton work and found the known Hamilton-Jacobi 
equation: 

                                       0
t
St

q
SqH =

∂
∂

+
∂
∂ ),,( .                                           (1,9) 

With:   
                                          qSP ∂∂= / . 
Note that later Heisenberg found important equations in quantum mechanics similar to 
Hamilton's equations. 
 
  c- Physical quantities and the constants of motions 
    From the analytical mechanics we derive the physical quantities: the coordinates, 
momentum, the angular momentum and energy. 
For a conservative system the angular momentum and energy are independent of time so 
are constants of motion. 
 

                    CLEH0
t
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t
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r
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∂
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(1,10) 

 
    Analytical mechanics has various applications including the harmonic oscillator and 
the Kepler problem with the equation is transformed into an equation of the oscillator by 
Binet transformation to solve this equation. 
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2. Quantum Mechanics 
 

     The second case is the latest approach to quantum mechanics or the path integral 
introduced by Dirac and developed by Feynman [3-4] but the methods of calculations by 
this approach are difficult and beyond the level of the 2nd year.  
In this work we give only a quick summary of this approach. 
      It is very important to give a summary of the Hamiltonian approaches of quantum 
mechanics and the Dirac formalism[5-11]. 
 
2.1 Origin of the quantum mechanic 
 We know that this approach has its origin in a true story: 
    In a very brighten day in Geneva in 1885, escaping from a balloon salesman’s a 
number of balloon filled hydrogen and in the night he found an emission of radiation 
picked up from the balloons. Then a newspaper in Geneva "Geneva Gazette" published 
the wavelengths of radiation and a secondary teacher who has studied only the first year 
of the faculty found the series known Balmer series. 
     We must not forget the problem of black-body radiation (stove), which was the basis 
for the introduction of quanta of the light by Planck, Einstein and Bohr's work (table1-2) 
which were very important in the development of quantum mechanics.      
 
2.2 Hamiltonian approaches     
     From the intense research has resulted in two equivalent approaches: 
   Heisenberg's matrix mechanics and wave mechanics of Schrödinger. The first requires 
only the appearance of physical quantities observed by experience and this requires the 
absence of electron orbits at the microscopic level and the search for Hermitian operators 
representing physical quantities. But the second approach is start from the work of Louis 
de Broglie who postulated the wave-particle duality, already predicted by Hamilton, as a 
general property of microscopic objects. 
    Schrödinger specialist of differential equations, and in a seminar presented a simple 
rule of correspondence 
Ԧ=԰݌                                                      

௜
ቀ డ

డ௥Ԧ
ቁ                                                               (1,11) 

                                                   
Which allowed the derivation of the fundamental equation of quantum mechanics: 
   

                                        ⎟
⎠
⎞

⎜
⎝
⎛

∂
ψ∂

=ψ
t

iH h                                                         (1,12)    

                                   
Thus Schrödinger find the energy levels of hydrogen atom. 
Born gave a probabilistic interpretation of the wave function on the assumption that 
 
                                                   |߰ሺݎ,  ሻ|ଶ                                                                (1,13)ݐ
                                      
   Represents the probability of finding the particle at position ݎԦ  at time t. 
      Schrödinger also showed the equivalence of the two approaches but Dirac established 
the general formalism of  quantum mechanics. 
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   Finally Dirac**, arrived on the scene as they say, and after two weeks of reading the 
work of Heisenberg noted that the coordinates and momentums are observables and do 
not commutes. This involves from physical point of view that we can not simultaneously 
measure the position and momentum and implies from mathematical point of view that 
we must have two functions: The first one is based on coordinated and the second is a 
function of momentum and are deduced from each other by Fourier transformation. 
    And this has also led Dirac to introduce: a new notation of the space and dual space, 
the state function of the physical system, the discovery of the delta function known by 
Dirac function and the presentation of a new formulation of quantum mechanics. 
  More, Dirac introduced the ladder operators ሺܽା, ܽሻ or the raising and lowering 
operators, by analogy with complex numbers z and  ݖҧ, for solving the equation of the 
harmonic oscillator which are the origin of the second quantization, the basis to study the  
many body problems and the theories of modern physics. 
    Heisenberg also introduced a new and different representation of the Schrödinger and 
showed that the transition from state (x0, t0) to the state (x, t) can be done using the 
evolution operator Uሺt, t଴ሻ ൌ ݁ି೔

ħሺ௧ି௧బ ሻு  if H is independent of time.  
It is easy to observe that the operator U satisfies the Schrödinger equation. 
 

                                          HUሺt, t଴ሻ ൌ i԰ ቀபUሺ୲,୲బሻ
ப୲

ቁ                                            (1,14) 
   

3. Quantum physics before 1950 
 

     In the 50s of last century the situation was as follows: 
1 - The spin 
  Pauli introduced spin to explain the famous Stern-Gerlach experiment and defined  
The state of particles by the product of the spatial wavelength and the state of spin which 
is written in Dirac notation by 2/1s,s z ±= . 
 
2 - The Pauli principle 
  Pauli divided the particles into two categories: 
  a- The bosons:      particles with integer spin 
  b- The fermions:   particles with half integer spin.  
  c-The state of the physical system obeys the Pauli principle: 
      the wave function of bosons is symmetric and anti-symmetric for fermions. 
 → The result is that two fermions can not coexist in the same state, in the same place, at the 
      Same time and that ensures the existence of macroscopic matter. 
 
 3 - The octonions algebra in physics 
    The success of the analogy between the form of the Hamiltonian of the oscillator and 
the product of complex number and its conjugate led Dirac, in my opinion, to extend this 
  idea to octonion algebra [12-13] to determine the relativistic equation of electron. 
 We must not forget that Maxwell wrote at the beginning his electromagnetism theory in 
terms of  quaternions  and more quaternions are very useful in classical mechanic (A4), 
Quantum Mechanics and Quantum Fields [12-18]. 
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4 - The discovery of antimatter  
   Dirac also predicted on the basis of his famous equation of electron the existence of the 
anti-electron and the existence of antimatter, which was confirmed after that by the  
discovery of positrons etc.[8-9]. More matter and antimatter annihilate when they meet. 
 
5 - Structure of the atom 
 We know that light is composed of photon spin 1. And atoms are made up of Z electrons 
(e-) that revolve around the nucleus of Z protons with positive charges,  and (A-Z) 
uncharged neutrons. And all these particles are fermions with spin ½. 
 
6 - Photons and the electromagnetic interaction 
   In the vacuum the interaction can not occur without exchange of particles: 
   The electromagnetic interaction has infinite range and which requires the particle 
     exchange, virtual particles, zero mass and we deduce that: 
      The emission and absorption of photons by atoms is done by light quanta. 
    
7- Electrons - nucleus 
   The connection between the electrons and the nucleus is due to the electromagnetic 
interaction and this interaction is due to the exchange of virtual photon with spin 1. 
 

4. The Elementary Particles 
 
    Elementary particles [11,19-21] are numerous and have been detected in cosmic rays 
and from electron-proton reactions. Among these particles the protons and the electrons 
are stable and the others particles are resonance which decays and their lifetime is very 
short. And these particles are divided into three categories: hadrons or massive particles 
(proton, neutron, ...) and light particles or leptons (electron neutrino, ..) and photons, 
massless particle. 
    But the story of the discovery of these particles and their interactions is very long and 
complex, but we will give a brief idea about the interactions in the  nucleus and between 
these elementary particles. 
 
A- Interaction in nuclear physics 
  In nuclear physics, the interaction is short-range (10-12cm) and the binding energy of 
the nucleus is very high, for example the energy bonds of the deuteron is 2.2 MeV where 
the name of strong interactions. 
1- Yukawa proposed by an empirical method a potential of nuclear interaction and by  
  analogy with the electric field has predicted the existence of a particle as a quantum 
  field of strong interaction’ the meson’ with charge B , from the word baryon. 
2 - The difference between proton and neutron masses is very low and it is due to the 
 proton charge and this has led Heisenberg to introduce  isospin and nucleons. This means 
that the proton and neutron are the same particle, the nucleon, with two different states  
and by analogy with the spin we write 2/1I,I z ±= .  
3 - In nuclear physics the interpretation of level energies of Mg poses a great difficulty 
but Elliot 58 proposed a model based on the SU (3) group by considering the existence of 
a quadrupole-quadrupole forces between particles and the general agreement with the 
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experimental levels is quite good [20]. Elliot was also calculated the basis of the 
representation of SU (3) group. 
 
B-The Elementary Particles  
    The number of elementary particles exceeded the hundred and we must make a 
classification similar to the classification of atoms of Mendeleev. And after many 
unsuccessful trials Gell-Mann and Ne'eman proposed a model for hadrons based on the 
SU (3) group theory [19-25]. 
      Then Gell-Mann proposed the model of Quarks to avoid the defects in the model. The 
Quarks model admits the existence of a common substructure of  neutron and proton 
called Quarks. This model is based on well known research of mathematicians and 
physicists on group theory and these  results led to the development of semi-simple lie 
groups and especially the unitary groups SU (n).  
 
C-The Interactions 
   To our knowledge the interactions are: 
4.1 The electromagnetic interactions: 
      The quantum of these fields is the photon with spin one and zero mass. 
4.2  The strong interactions 
    Currently we assume that this interaction is due to the interaction between quarks and 
quantum of interaction of these fields is the gluon, particles with spin 1. 
4.3  The weak-interaction 
     These interactions are due to decay of the neutron and radioactivity β. The quantum 
field are W± and Zo predicted by the electroweak unification theory . 
a-This interaction is very important for the creation of energy in stars. 
b-This interaction does not respect the important property of left-right symmetry. 
"Some researchers believe that this interaction is responsible of the sense of:  rotation 
 of the planets and rolling of DNA  etc." 
4.4  The interaction of gravitation. 
4.5  Symmetry 
  Finally, we can not talk about the matter and the laws of nature without talking 
symmetries and invariances, especially the left and right symmetry, rotational invariance, 
the representation of groups especially semisimple Lie algebra [19-25]. Therefore we 
summarize the symmetry and the study of SU (3) in the chapters at the end of this work. 
 
 
 
 
 
 
 
 
* Euler was the son of a Swiss baker and was sent to school early. After some months the child asked the 
teacher:  wrote me  a set of numbers and I give you on the sum and the product of these numbers. The 
teacher was amazed and at 3h30 am went to the bakery and told the father that your son is a genius and you 
are unable to educate him. I suggest that you send him to the Bernoulli family of mathematicians. 
** English physicist and electrical engineer. He was very influenced by the work of Heisenberg 
     and by the English School: Maxwell, Hamilton, Cayley, etc.. 
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II-  Schrödinger’s theory and harmonic oscillator 
 

1. The Schrödinger equation 
 
1.1  de Broglie wave function and Schrödinger equation 
     The experience of the electron diffraction shows the wave aspect of particles and the 
classical conceptions are at an impasse. 
de Broglie suppose that the wave function of electrons is a monochromatic plane wave of 
the form: 
                                )]/rpt(iexp[)t,r( h⋅−ω−=ψ                              (2,1) 
And which has a wavelength p/h=λ  
de Broglie put:                          mpE 2/2==ωh  
And the wave function is then written: 
                               )]/(exp[),( h

v rpEtictr ⋅−−=ψ  
It is simple to verify that 

                                   ψΔ−=
∂
ψ∂

mt
i

2

2h
h                                                   (2,2) 

This equation is the quantum representation of movement in the absence of interaction. 
Schrödinger added the potential V and thus obtained the equation that bears his name. 
 

                                Ψ=ψ+=
∂
ψ∂ HVT
t

i )(h                                     (2,3) 

   Where T is the kinetic energy: 
                                     ܶ ൌ , Ԧଶ/ሺ2݉ሻ݌ Ԧଶ݌ ൌ െħଶ∆                                                   (2,4) 

1.2 The functions of stationary states 
a- If H is independent of time we write:  
                             )()](exp[),( rEtitr ϕ−=ψ                                     (2,5) 
And the Schrodinger equation becomes 
                                                       ϕ=ϕ EH  
For an isolated system the states is described by the wave functions solutions of the 
equation : 

                                                       )()( rErH nnn ϕϕ =                                (2,6) 
And )(rnϕ are called stationary states. 
The set of the eigenvalues }{ nE of H are the energy levels. 
These wave functions are square integrable functions with: 
                             ( ) ,)()(, ,

3∫ δ=ϕϕ=ϕϕ nmnmnm rdrr                    (2,7) 
And   dzdydxrd 3 =  
- The set of wave functions ሼ߮௡ሽ form the pre-Hilbert space H. 
- Also be noted that any linear superposition of the stationary states is a wave function of 
the physical system.  
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2. Transformations and linear operators 
 

2.1 Linear transformations and Euclidian space  
2.1.1 We consider the linear transformations in En (K)  
                                               nn EEa →:                                                     (2,8) 
With                                 j

i
jii eaea ∑= ,)(                     

 The matrix )( , jiaA = is the matrix representation of the application a. 
- The matrix A is hermitian if )()( ,, ij

t
ji aa = . 

 
2.1.2 Linear transformations which play an important role in physics are: 
1-The special orthogonal groups SOn or SO (n) are linear transformations with: 
 

                                   IOO nn
t =  With déterminant(On)=1                               (2,9) 

 
2-The unitary groups, SUn, or SU(n) are linear transformations with:    
    
                                   IUU nn

t =  With déterminant (Un)=1                           (2,10) 
 
3 - The infinitesimal generators of the group 
    The elements A of the group G is composed of non-singular matrices of degree n and 
is expressed as a function of r continuous parameters [24]: 

                                             ).,...,( r1AA αα=  
We have the important formula of group theory:  
            n

t Ex)),x(o(f)x(Of ∈=    And n
t Cz)),z(u(f)z(Uf ∈=                          (2,11) 

The infinitesimal generators of the group are: 
 
                                          ( ) 0/ =αα∂∂= kk AX                                                 (2,12) 
From the conditions (2,9-10) we find that the number of parameters of SO (n) is 
 n (n-1) / 2 and SU (n) is n2-1. 
 
2.2 Operators in Hilbert space 
   The commutator of the two operators A and B is defined by 
                                      [A, B] =- [B, A]=AB-BA 
We deduce that:            [A, B+C] = [A, B] + [A, C], 
                                      [A, BC] = [A, B] C+ B [A, C].                                             (2,13) 
                                      [A, B] = - [B, A] = AB-BA 
a- Property: if [A, B] = 0, then the operators A and B have the same eigenvectors. 
b-If we consider the linear transformation A we have: 
 
                                        ),A()A,( t ψϕ=ψϕ                                        (2,14) 
  c-The operator A is Hermitian if 
                                                   AAA t== ∗

                                                 (2,15) 
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d- We can simply prove the following theorem: 

 Theorem: The eigenvalues of a Hermitian operator are reels and  the eigenvectors are  
                  Orthogonal. 
Casimir operators: 
  We denote by Casimir operators, the Hermitian operators that commute with the 
generators of SO (n) or SU (n).                            
e- Lemma: If λ is a real number around zero we write:

  

        
...]],[,[

!2
],[

2

+
λ

+λ+=λ−λ BAABABBee AA          (2,16) 

 
3.  Observable and Schrödinger quantization rules  

 
3.1 Observable and the wave function 
  The results of experimental measurements of the position, energy, kinetic and  
angular moments are real numbers so the operators x, y, ..., Lz are Hermitians and  
hence are observables. 
a-We can not measure simultaneously observable unless they commute. 
b-The proper function of all commuting observables, H, ..., are the wave function 
   of the physical system. 
 
3.2  The Schrödinger quantization rules  
3.2.1 Born interpreted the square of the modulus of the wave function |߰ሺݔሻ|ଶ by 
          probability of presence of the particle at the point x 
3.2.2 If ݔ ൌ േ∞ |߰ሺേ∞ሻ|ଶ ൌ 0 the particle are not found in the infinity. 
   we write 

 ∝+

∝−

∝+

∝−

∝+

∝−

ϕψ+ϕ
ψ

−=
ϕ

ψ ∫∫ )()()()())(()( xxdxx
dx

xddx
dx

xdx  

It is clear that the operator px must be Hermitian: 

                                                            dx
d

i
kp x =  

If h=k we get the Schrödinger quantization rule. 
 
3.3  The commutator operators of x and p 

     [ ] )())(()('()(, rfirxf
dx
drxf

i
rfpx x h

h
=−=            

    Then                                 [x, px] = iħ                                                                    (2,17)              
                                             
    As a result, we can not simultaneously measure x and px. 
  Dirac deduced from this relationship the wave function in phase space. 
 
3.4 The commutation of the operators Lx, Ly, Lz 
    Using the formula (2,17) we find: 
 
                      [ ] [ ] [ ] yxzxzyxyx LiLLLiLLLiLL hhh === ,,,,,                                    (2,18) 
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    The Casimir operator 2222
zyx LLLL ++=

r
commutes with Lx, Ly, Lz. 

So if V = V (| r Ԧ |) the wave function is eigenfunctions of zLL ,2
r

and H. 
 
3.5 The wave function of the physical system 
   The wavelength of a non-interacting physical system function is the tensor product of 
individual wave functions. But for interacting system the wave function is developed on 
the wave functions of non-interacting system. 
   

4. The Heisenberg uncertainty relations 
 

4.1 Average values of observables 
     The average value of the operator F is: 

                      ∫ ψψ=>< rdrzyxFrF r)(),,()(                                          (2,19) 
                   >><−=<>Δ< 22 )( FFF  
4.2 The uncertainty relation 
   We consider the integral: 

R0dx
dx

dxI
2

∈≥+= ∫ λψλψλ ,)( h
 

The development of this integral gives 

 0)( 22 ≥><+∫ ⎟
⎠
⎞

⎜
⎝
⎛ ψ

ψ+ψ
ψ

λ+>=<λ xpdx
dx
dxx

dx
dxI h  

using [x, px] = i ħ and after integration by parts we find: 
                 0)( 222 ≥><λ+λ−>=<λ xpxI h  
The discriminant of the quadratic equation in either negative or zero: 
                         04 222 ≤+>><<− hxpx  
If we replace x and px by the standard deviations we find: 
                          4/222 h≥>Δ<>Δ< xpx  
We derive the  Heisenberg uncertainty relations  
           2/h=>Δ><Δ< xpx ,… 2/h=>Δ><Δ< zpz                         (2,20) 
-This relationship means that if the wave is close to x this implies that the wave 
 in the phase space is very spread out. 
 -There is the uncertainty relation time -Energy: 

                          2/h=>Δ><Δ< tE                                                 (2,21) 
 

5. The Harmonic oscillator 
 

   The Hamiltonian of the one dimension harmonic oscillator is: 

                                                 
22

2

2
xm

m
pH ω+=

                                              
(2,22)

 
The Schrödinger equation is: 
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                                               )()( xExH nnn ψ=ψ .                                         (2,23) 
 
Put                      ( ) ( ) hhh /,,/ ωαωω mPmpetqmx === , E= ћ ω Є    
Thus we find the following equation: 
                      ( ) HHwithquqPquH

)
h

)
ω=+= 2/)()( 22                                (2,24) 

If we make the change of function: 

                                                 2/2

)()( qeqfqu −=                                        
We find the equation: 

                         0)()12()(2)(2

2

=−ε+− qfqf
dq
dqqf

dq
d                                 (2,25) 

  The resolution is done by writing f (q) in the form of a series:    
                                   …+qa+qa+a=f(q) 2

210                                   (2,26) 
If the solutions are bounded at infinity we find that {f (q)} are the Hermite  
polynomials Hn (q) [2,30] and the wave function is: 

                                      )()!()( qHen2qu n
2

q
2
1

n
n

2
−−

= π    

And                                   ( ) )(/)()( 4/1 qumxu nn hω=   
                                                 )()1()( xuxu n

n
n −=−                                                (2,27) 

 
1 - These eigenfunctions form the Hilbert basis of L2(R) and (-1)n is the parity. 
2 - The eigenvalues of the energy of the oscillator are: 
 
                                       )2/1( += nE n ωh                                              (2,28) 
 

6. Oscillator generating function and analytic Hilbert space 
 

6.1 The generating function of the harmonic oscillator is known since long time [1-9]  
   and  is written as: 

               }
22

2exp{)(
!

),(
22

4
1

0
zqqzqu

n
zqzG nn

n

−−π=∑=
−

∝
=                         (2,29) 

6.2  If the parameter z is complex we find that the functions !/)( nzzf n
n = form 

  a basis of the analytic Hilbert space known by Fock or Fock-Bargmann space [21].  
  With 
                               nmmnmn zdzfzfff ,)()()( δ=μ∫∫=                                   (2,30)            
      )(zdμ  Is the cylindrical measure: 
                                iyxzdxdyezd yx +=π=μ +− ,/)( )( 22

                              (2,31)                               
6.3 It is easy to show the following useful formulas [25]:  
 
               ∫ μ= )'()'()( ' zdezfzf zz  And  αββα =∫ μ ezdee zz )(                       (2,32) 
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III- Dirac formalism of quantum mechanics 
 
 After reading the work of Heisenberg, Dirac observed several unresolved problems: 
  1 – Definition of the state of the physical system. 
  2 - x, px are non-commuting observables then we must find the eigenfunctions of x,  
       and px. 
 3 - The state of the oscillator.  
 4 - The connection between quantum and classical mechanics. 
 Dirac introduced a new notation for  the Euclidean space and the Hilbert space which     
leads to a new formalism of quantum mechanics and he find a new function: the delta 
function which is at the origin of the theory of distributions. 
    We present first the Dirac notation in the simplest way, starting from the Euclidean 
space, and then we extend it to the Hilbert space, space  of Schrödinger wave functions 
then we introduce the delta function and the eigenfunctions of momentum px. . 
 

1. Euclidean Space and Dirac notation 
 

  The search for eigenfunctions of the observable (x) led Dirac to introduce a new 
notation for the vector space and the dual space from the scalar product notation. Using 
this new notation Dirac find the δ-function and the well known Dirac transformation . 
 
1.1  Dirac’s notation 
    The scalar product of two vectors is the bracket: 

                           ( ) yx)y(xy,xy.x
ketbra

===

↓
∗rr                        (3,1) 

We cut the bracket in two word  bra  and  ket. 
We denote the vectors ݕ of the space by ket { y } and the vectors x* of the dual space by 

the bra { x }. 
a) The Euclidean space E3 
   In Dirac notation the basis vectors ሼ Ԧ݁ଵ, Ԧ݁ଶ, Ԧ݁ଷሻ  of the three-dimensional Euclidean space 
E3 may be written by ( 3,2,1 ). 

b) The dual space *
3E  

By definition, the dual space is the space of linear applications E3 in R. 
      *

3E  Is the dual space and we have the basis *
3

*
2

*
1 e,e,e rrr

. 

In Dirac notation: 3e2e1e *
3

*
2

*
1 ===

rrr ,,  

If K is the field of the complex number C, xr  must be replaced by x
r

. 
c) The identity operator  
1-The projector pi is defined by:    iii ppWithiip == 2

                           (3,2) 

 2- Completeness or the identity operator: ∑= i iiI                                   (3,3) 
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1.2  Applications: 
 a-Let                           ixx i∑=  

We write               ∑==
i

ixixIx  

b- In Dirac notation the linear transformation  a is written: 
                               ,ijaiiaIia ∑=×=  
With                         jaiaandxix jii == ,,                                               (3,4) 

 
1.3 Rotation in Euclidean space E (k = R or C) 
  1 - The rotation matrix which leaves invariant the scalar product in the E3 (R) is known 
by the orthogonal matrix of SO (3) with the Euler angles ),,()( ϕθψ=Ω . 

                                     ܴሺߗሻ ൌ ݁ି௜టௌ೥݁ି௜ఏௌ೤݁ି௜ఝௌ೥                                          (3,5) 
The representation matrix of spin 1 or Pauli matrices [9] are: 

      
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=σ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=σ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=σ

00
00

000
,

00
000

00
,

000
00
00

i
i

i

i
i

i

xyz                       (3,6) 

 
With              [ ] [ ] [ ] yxzxzyxyx SiSSSiSSSiSS hhh === ,,,,,  
 
2- The rotation matrix Rs which leaves invariant the scalar product in E2 (C) is a unitary 
matrix of SU (2) and the parameters are the Euler angles ϕθψ et,  with ݏԦ ൌ ఙሬሬԦ

ଶ
  is a  

spin half and 

                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=σ

10
01

,
0

0
,

01
10

zyx i
i

                               (3,7) 

 
2. Hilbert space and Dirac notation 

 
2.1 Hilbert space and linear operators 
     Let H be a space of function with basis }{ iϕ and  

                 jijiji dxxpxx ,)()()(),( δ=ϕ∫ ϕ=ϕϕ
Δ

                      (3,8) 

 )( xp  Is the weight function and the measure of integration is: 
                                   dxxpxd )()( =μ                                                            
The space of wave functions )}({ xiϕ  is a space of square integrable functions which 
is pres-Hilbert i.e. not complete . 
 
2.2 Hilbert space and Dirac notation 
a-The Hilbert space in Dirac notation is: }{ iϕ  

b The dual-space is:           { }j,ijii and δϕϕϕ =  
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c-The identity operator is: }I{
i

ii∑ ϕϕ= ( completeness condition) 

d-The operator which leaves invariant the scalar product in the Hilbert space is a unitary 
operator U has the form [24]: 
                                               iFi euueU −α− == ,                                   (3,9) 
F is a Hermitian operator and α−ie  is the group U1 and u belongs to the  
sub-unitary groups of operators su (n). 
- The irreducible space of the unitary groups are finite spaces, disjoint and invariant 
under unitary group su (n). 
 

3. Dirac transformation and δ-function  
 
3.1  Continuous states of position and Dirac notation 
  a- Continuous states and Dirac notation 
     Dirac noted that the measurement of the position and the momentum px  = p implies 
that x and px= p  are the eigenvalues of the observable (x) and (p) that have continuous 
eigenvectors with: 

                                  ,pppp̂And,xxxx̂ xx ==                              (3,10) 
The identity operator  I in the continuous case  can be written as: 

                                       
xdxxI ∫= , pdppI ∫= ,                                            (3,11) 

 b- Dirac distribution or Dirac function 
     The function Dirac δ (x'-x) is the normalization of the continuous space {| x>} 

                      
⎩
⎨
⎧

=∝
≠

=−δ−δ=
xxif
xxif

xxwithxxxx
'
'0

)'()'('                                 (3,12) 

Dirac introduced this notation by analogy with Kronecker symbol  δij.  
We will determine its expression in the next section. 
  The first important property:  
                                 xxxxxxxxx '''ˆ' ==                                        (3,13)                  

As a result:
            

0)()'()'( =δ−δ− xxorxxxx                                         (3,14)                  

 
3.2  The transformation of Dirac and its applications 
   We consider the scalar product 

                                              
∫=
∝+

∝−
)()(, xfdxxgfg

 
In Dirac notation the scalar product is: 

                                   ∫=
∝+

∝−
)()( xfdxxgfg                              (3,15) 

Using the identity operator (3,11) we write: 

         ∫==
∝+

∝−
dxfxdxxgfIgfg ),(                   (3,16) 
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After comparison of the two above expressions, Dirac has defined the function f (x) as 
the application: H → R. 

             Rxffxfx x ∈=⎯→⎯ )(:                              (3,17) 

And                                     )( xgxg =                                                     (3,18) 

We also deduce the very useful expressions: 

           )('ˆ),(ˆ xf
i

fpxxxffxx x
h

==                       (3,19) 

** The state of the system is written by ϕ in Dirac notation. 
 
3.2.1  Second important property of delta function: 
We have:              

fxdxxxfIxxf ∫== 000 )(  

So                               dxxfxxxf )()()( 00 ∫ −δ=                                              (3,20) 
 
3.2.2   The eigenfunctions of the momentum  operators 
 We assume that the eigenfunctions of the momentum p is the continuous function p (x). 
We write:

  

                                    
)()('ˆ xpppxpxp

i
ppx ===

h

                             
Therefore               )exp()/exp()( ikxcipxcxp == h                                 (3,21)      
 
3.2.3  The {p} representing  
     If the wave function of the system is )( xϕ we write: 

                                             )( xx ϕϕ =                                                        (3,22) 

The wave function in the {p} representation or the phase space can be written as: 

                              ∫ ϕ=ϕ=ϕ=ϕ
∝+

∝−
xdxxpIppp )(                            

But                                     ikxcexp −=                                                                 (3,23) 

As a result we find:                  ∫ ϕ=ϕ
∝+

∝−

− dxxecp ikx )()(                                             (3,24)                        

                                                            
3.2.4   Analytical expression of Dirac function 

    We write                    ∫==
∝+

∝−
''' xpdppxxIxxx                                  (3,25) 

So we get:                   dpecxxxx xxip∫=−δ=
∝+

∝−

− )'(2)'('                                          (3,26) 

We shall calculate the normalization constant c in chapter V. 



 

21 
 

IV- Heisenberg representation and the path integral 
 

1. The evolution operator and Heisenberg  
representation 

 
   In this chapter we only want to give an idea of the path integral [3,26] and we assume 
that the linear superposition of states is preserved through time. 
We write the Schrödinger representation by: 
                                          )(),()( 00 tttUt ψψ =                                               (4,1) 
For a conservative system the evolution operator U (t, t0) satisfies the Schrödinger 
equation: 

                                   ),(),( 00 ttHUttU
dt
di =h                                                       (4,2) 

If we consider the inverse of the  transformation, we write: 
                                      )(),()( 0

*
0 tttUt ψψ =                                                         (4,3) 

And any observable A in the Schrödinger representation “ or picture” may be  
written in the Heisenberg picture of the form: 
                                             ),(),( 00

* ttAUttUA H =                                         (4,4) 
By a simple calculation we derive the Heisenberg equation 

                                           
t

AiHA
dt

dAi H
HH

H

∂
∂

+= hh ],[                                            (4,5) 

The Heisenberg equations for the coordinates ),...,,( 21 nxxxr =  and moments 
 (p1, p2, ...) is: 

                                          
i

i
i

p
HHx

idt
dx

∂
∂

== ],[1
h

,   

                                          ..,2,1i,
x
H]H,p[

i
1

dt
dp

i
i

i =
∂
∂

==
h

                                    (4,6)               

 
This system of equations is formally identical to the Hamilton’s canonical system. 
 

2. The path integral and the Feynman propagator 
 
     Using the unit operator iiI ψ∑ ψ= we write the Feynman propagator, or the 
Green's function, in the form: 
 
                     rIeerrertrtrK HtiHtiHtti )()()(

0
00 ''),,'( −−−−− ==                      (4,7)

 Thus we find: 

           ),(),'(),,'( 00 trtrtrtrK i ψ∑ ψ=                                          (4,8) 
Using the unitary operators (3,11) we find that 
       ),,(),','()',',( 0000

3 trtrKtrtrKtrtrKrd =∫                      (4,9) 
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This completeness condition is valid for t> t ', t, t' א [t0, t1]. 
   The generalization of this relation to n - 1 intermediate point  t> tn-1> tn-2> ...> t1> t0 . 
Then we write: 

               
)',',()...,','()',',(

...),,(

00

333
00

trtrKtrtrKtrtrK

rdrdrdtrtrK ∫∫∫=
                        (4,10) 

If the intermediate time is continuous we write the propagator using the symbols 
 of the path integral in general as 

     dttrrLitrdtrtrK nnn t
t c

rtr
rtr ⎭

⎬
⎫

⎩
⎨
⎧

∫∫= =
= ),,(exp)]([),,(

000

)(
)(00 &

h   
(4,11)  

- The Feynman conjecture  
     Feynman's conjecture is to introduce in the integral the classical Lagrangian and to 
identify the normalization factor by the coefficient of the propagator of the free particle 
(below) by putting:   

                  n

n

dxdxdx
ti

m
t

ntrd ...
20

lim)]([ 21

2
1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→
∞→

=
ΔπΔ h

                                     (4,12) 

And dttxSitrdtrtrK ff

ii

tr
triiff

⎭
⎬
⎫

⎩
⎨
⎧

∫= ))((exp)]([),,( ,
, h        

   (4,13) 

  ))(( txS Is the classical Hamilton-Jacobi action. 
                                    

 3. The propagators of a free particle 
 

    The propagator of free particle is 

                   xHttixtxtxK ])'(exp['),','( −=
h

                        (4,14) 

Using the unit operator  
                                         pdppI ∫=  

And                      hh π= 2/)/exp( ixppx                                         (4,15)   
We obtain the expression of the propagator: 
  

      ∫ −+−
π

= ]}2/)'()'([exp{
2

1),','( 2 mpttxxpidptxtxK
hh

 

 
The evaluation of the integral is obtained by using the Gauss integral: 
 

       }
2

)'(exp{
2

),','(
2

t
xxmi

ti
mtxtxK

Δ
−

Δπ
=

hh
                           (4,16) 

 With  )'( ttt −=Δ . 
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V-The harmonic oscillator and the Dirac notation 
 
     We will present at the beginning Dirac method [8-9] which is based on the 
observation that the expression of the Hamiltonian has the form of product of a complex 
number and its complex conjugate. We find the expression of the generating function by 
a new method and then we derive the wave function of the harmonic oscillator. 
    Using the generating function and the Fock-Bargmann space we simply calculate the 
properties of the δ-function without recourse to the theory of distributions, the 
normalization of the free wave and the Feynman propagator of the harmonic oscillator. 
 

1. The state of the harmonic oscillator  
 

Dirac noted that the Hamiltonian of the oscillator: 

                                            22
2

2
xm

m
pH ω+=                                                      (5,1) 

is analogous to the product Cz,zz ∈⋅  and he posed: 

                                )(
2
2),(

2
2 iPQaiPQa −=+= +  

With                         PmpQ
m

x 2/12/1 )()( ω=
ω

= h
h

 

 
So                             )()()2/1()( quEquaaquH nnnn =+= +)

                                     (5,2) 
 
 +aa , Are adjoint operators with:    [ ] 1, =−= +++ aaaaaa .                                 (5.3) 
 
1.1 The basis of the oscillator 
      It is well known that the basis of polynomials P(z) is: 
                                                1, z, z2, z3,…, zn,…     

with                                  011 == −

dz
dAndnz

dz
dz n

n

 

Comparing [ ] 1, =+aa and [ ] 1),/( =zdzd we simply deduct the basis of the harmonic 
oscillator: 

                         00,..0
!

,...,1,0 ==
+

aand
n

an
n

.                           (5,4) 

With                  1nnna1nnna +=−= +,                                       (5,5) 
So a and a+ are the creation and annihilation or the ladders operators of the harmonic 
oscillator. 
The wave function is written using the Dirac transformation by: 

                                  n
n

aqnqqu
n

n !
)(

+

==                                             (5,6) 
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1.2 From the isomorphism between the space of the oscillator and the Fock space
!/)( nzzf n

n =    we deduce the correspondence:     

                                                  ܽା ՜ and   a՜  ݖ ௗ
ௗ௭

                                                                           (5,7) 

1.3 We also write formally:         0)(0)( +

+
+

∂
∂

=
a
afaaf                                      (5,8) 

This formula is very useful for fast calculations in the oscillator basis. 
 

2. The generating function of the harmonic oscillator 
 
    We will determine the generating function at the beginning by a new method [25] and 
we simply deduce the wave function of the oscillator in the coordinates representation. 
The generating function of the oscillator can be written with the help of (5,6) in the form: 

              
0eq0

!n
)a(zq)q(u

!n
z)q,z(G za

0n

nn

n0n

n
+

=∑=∑= ∝
=

+
∝
=                        (5,9)                                 

Using the transformation of Dirac and (5,8) we find: 

a-                                    ),()( qzG
dq
dq

2
10aeq za +=

+

                                      (5,10)                        

b-                                         ),(0 qzzGaeq za =
+

                                                   (5,11) 
Comparing the two expressions (a) and (b) we obtain: 

                                      ),()(),( qzGqz2qzG
dq
d

−=                                              (5,12)                                  

The solution of this equation is: 

                                     )}()exp{(),( z
2

qqz2cqzG
2

ϕ+−=                                    (5,13)                                 

To determine )(zϕ  we use the above expressions and: 

                            ),(),()( qzG
z

qzG
dq
dq

2
10eaq za

∂
∂

=−=
++                             (5,14)                          

    We find: zz −=)('ϕ  
    The solution of the above expression gives the generating function 

                              }exp{),(
2
z

2
qqz2cqzG

22

−−=
                                          

(5,15) 

For t = 0 we find: 
                                        )(),( qu0qq0G 0==                                        (5,16) 
   The normalization of u0 (q) is c = π-1/4: 

                       }
22

2exp{)(
!

),(
22

4
1

0
zqqzqu

n
zqzG nn

n

−−π=∑=
−

∝
=

                
(5,17) 

  c-The development of the second member and the comparison with the first  
     member gives the harmonic oscillator wave function (2,27) 

              ( ) )(/)()(),()!2()( 4/122
1 2

qumxuqHenqu nnn

q
n

n hω=π=
−−

                 (5,18) 
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d- From the transformations (2,29-31) we deduce: 
                      )()()(),(),()(),( quzdzfqzGzfquqzG nnnn ∫ =μ∫ =                  (5,19) 

And the  kernel function is:     ,),(),'( 'zzeqzGqzG =                                         
e- We note that the representation {p} or phase space of the oscillator is simply   
  calculated using the Gauss integral. 

 
3. Properties of delta function 

 
    As a direct application of the generating function and the orthogonality of analytic 
Hilbert space , Fock or Fock-Bargmann, is the derivation of the properties of the delta 
function (Dirac distribution) and the normalization of the free wave: 
We write 
                           ∑== n nn ququqIqqq )'()(''                                   (5,20) 
 
This expression is invariant under the change (-q, q ') so the delta function is an even 
more clarifies the convergence in the function space H !!. 
 From the orthogonality of the Fock space (2,30) we find: 

              )()',(),()()'(
!!

)('
,

zdqzGqzGzdqu
j

z
i

zquqq j

ji

ji
i μ∫=μ∫∑=              (5,21) 

 
By performing the integration using the Gaussian integral we obtain: 

                          )'(' qqqq −δ=  

                                    dkqqikqq ∫ −+−−
π

= ))'(exp())'(
4
1exp(

2
1 2                         (5,22) 

Integrating this expression gives: 
 
a-                                        ∫ =−∝+

∝− 1')'( dqqqδ                                                  (5,23) 
 
And using the expression 0)( =δ qq we find: 

b-                    ∫
π

=−δ= ∝
−∝

− dkeqqqq kqqi )'(

2
1)'('

                      
     (5,24)                     

c- Then the constant normalization of the free wave is π= 2/1c . 
     So we found the properties of the delta without recourse to the theory of distributions 
function. 
 

4. The Feynman propagator of the oscillator 
 
   The Feynman propagator of the oscillator was determined by several methods: the first 
one is the path integral, the second is the method of the Schwinger Green function, the 
third is the algebraic method and finally the method of direct calculation using the 
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formula of Mehler [4]. Calculations by these methods are complicated and all the books 
teachings give only the result.  
   We propose to do the calculations by an elementary method: 
  1- The Feynman propagator of the oscillator is: 

             ''))t,(x't),K((x,
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By using the Fock-Bargmann space as above (5,20) we write: 
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    And using the expression of the generating function and asking we find: 
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2-  After integration we obtain: 
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The integral of Gauss is:   ,
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a
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  3- After integration of E1 and E2 we find: 
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Finally we get the Feynman propagator: 
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VI- Central potential and hydrogen atom 
 
   The problem of hydrogen (AH), has played a central role in the development of 
quantum mechanics [27-29]. Schrödinger has resolved this problem and found the wave 
function in term of the coordinate representation and the energy spectrum. 

 
1. Central Potential 

 
The Hamiltonian is of the form: 

                                     )(
2
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With μ is the reduced mass. 
We calculate the expression of the Laplacian by using the formula of Laplace-Beltrami 
and the metric on a variety is: 
                                  ji

j,i
j,i dxdxgdzdydxds ∑=++= 2222                                       (6,2) 

  The expression of the Laplace-Beltrami is given by the formula 
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)g( j,i Is the inverse of the matrix )g( j,i and (x1,x2,x3)= (ρ, θ, ߮). 

A simple calculation gives: 2222222 sin θ++ϕθ= drdrdrds                                  (6,4)    
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We seek a solution by the method of separation of variables or by searching the solutions 
of all the commuting observables. 
. The invariance by rotation of the Hamiltonian implies that 0],[ 2 =HL

v
but 0],[ 2 =zlL

v
. 

so the observables are zLLH ,, 2v . 
 
1.1 The eigenfunctions of zLL ,2v

 

  In spherical polar coordinated we write: 
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The eigenfunctions of zLL ,2
r

are the spherical harmonics 
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Where )(cosθm
lP  are the associated Legendre functions [A6].
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In Dirac notation we write: 
            lmmlmLlmlllmL z hh

r
=+= ,)1(22

               (6,9) 

l is the azimuthal quantum number and m the magnetic quantum number. 
l and m are integers. We deduce the dimension of the space  
                                  lE 12)dim(},{ +== lEandlm l .  
If we  introduce the ladder operators L+  and  L-  or the raising and lowering operators:   
                 L+ =Lx+i Ly   and   L-=Lx-i Ly   with    0=±± llL                    (6,10) 
we find: 
                             lmmmlllmL )1()1( ±−+=±                                            (6,11) 
 
1.2 The radial equation 
      The eigenvalue of the equation of energy becomes 
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  We note that the approximation of the potential in nuclear physics, interactions between 
nucleons (protons and neutrons), is the potential of the harmonic oscillator. 
 

2. The hydrogen atom 
 

   The Hamiltonian for a particle in atomic physics can be approximated by the 
Hamiltonian of the hydrogen atom. 
 
2.1 The wave function and the energy of the hydrogen atom 
  The potential of hydrogen is: 
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Since the charge of the proton is e+ and the electron charge e- 
For the bound states E <0 the wave function is 
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With                                1,...,3,2,1 −≤= nletn  
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  )(12 ρ+
+
l

lnL  Is Laguerre polynomial [A6] of degree n '= (n-ℓ -1). 
  (n ') and n are the radial and principal quantum numbers. 
      For n=1 we obtain the binding energy of the hydrogen atom E0 = -1/(2a). 
We obtain the discrete spectrum if E<0 and the continuous spectrum if E>=0. 
 
Parity: in the wave function if we change ݎԦ  by െݎԦ we find: 
                                   )()()( rr nlm

l
nlm

rr
ψ−=−ψ                                                          (6,17) 

  l)(−  Is the parity. 
 
Degeneracy of the energy levels:  
 
              )1(,...,3,2,1,0 −== nl l and llm ,...,1,0,1,...,−−= .                                     (6,18)   
                            
For a definite value of  ℓ we find 
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Classical notations of spectroscopy  
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n 543213210 ==l
                (6,20)  

    
2.2 The {࢖ሬሬԦ}  representation of hydrogen atom 
   The representation )p(rΨ is the Fourier transform of the wave function )r(rΨ : 
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Using the interesting and useful formula [28-29]: 
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Fock observed that the representation {ݎԦ}is equivalent to the integral equation: 
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  Calculations of {p}- representation by this method is complicated but we present in the 
Appendix 5  a new, simple and direct  method using our generating function method.  
 

3. Connections hydrogen atom and harmonic oscillator 
 
    In classical mechanics solving the equation of the hydrogen is done  by transforming 
this equation in a harmonic oscillator equation using Binet transformation. In quantum 
mechanics we use the octonions quadratic transformations* [A3] for the connection of the 
hydrogen atom and the harmonic oscillator. These quadratic transformations and 
hypercomplex numbers originate from the old problem of sum squares: 
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 Find the solution of the equation: 
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  With { iz } are the quadratic forms  ∑=
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kjjki yxaz  

3.1 The quadratic transformation and hypercomplex numbers 
      We will present a new and simple recurrence method: 
3.1.1 The transformation of Levi-Civita 22 RR → . 
      We begin with the well known formulas: 
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Multiplying these expressions by r then we write: 
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The orthogonal and anti symmetric matrix H2 has the properties: 
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3.1.2 The generalization of the transformation (6,26) is obtained by setting: 
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We find (6,24) if we put:         )()( 2
4

2
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2
2

2
13 uuuux +−+=     

    We find the octonion quadratic, or Kustaanheimo-Stiefel, transformation R4 R3 
 (u1,u2,u3,u4)  (x1,x2,x3,0) , and it’s generalization in the appendix (A3,2). 
Also it is simple to prove that:  
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3.2 The equation hydrogen atom in the basis of the oscillator 
   The Schrodinger equation for the hydrogen atom is written in {u}representation as: 
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With                         ,
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After solving the equation (6.28) we find: 

                                           ( )2)2/((2 +−= nEn βμ                                                  (6,32) 
 
*Note: The term octonions was added to specify these quadratic transformations.   
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4. The energy spectrum and the permitted 
transitions of hydrogen atom 

 
 1-Energy Levels of hydrogen atom 
The wavelengths of spectral lines of hydrogen 
       1-The Balmer formula (1885):   λ = Bn2/(n2-4) ,   n=3,4,5,6 
       2- The Rydberg formula:            ߥ ൌ ଵ

ఒ
ൌ ସ

஻
ሺ ଵ

ଶమ െ ଵ
௡మሻ   n=3, 4, 5,6 

       3 - The Ritz formula:                  ߥ ൌ ܴ ቀ ଵ
௠మ െ ଵ

௡మቁ , ܴ ൌ ସ
஻
 

                                                              ൌ ௠ܶ െ ௠ܶ 
2-The energy spectrum 
 
 
 
                                Ej 
                  
    
                                 Ei 
                    
 
 
-Einstein introduced the concept of "quantum radiation" called photon, 
Particule for a  light with mass zero and pulse or frequency ν = ω 2πν has energy. 
                                                           E = hν/2π 
Planck's constant h = 6.6262 10-34 joule seconds 
-The energies of atoms adopt discrete values. 
-The emission or absorption of light by atoms is by very specific  
   light frequencies: 
                                                       νif = | Ei-Ej | / h 
  
Ei and Ej are the energies of the system before and after the emission or  
absorption of the light .  
 
3-Le spectre des ondes électromagnétique 
 
                                                          ultraviolet  visible light 
            Radius γ                             Radius x                             infrared       radio waves 
 
10-15cm                     10-10cm                    10-5cm                        1cm 
                   
 
Radius of the nucleus      radius of the atoms 
                                          And molecules 
         
 Echelle of wavelengths of the radiation. [9] 
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Table 1: states of the hydrogen atom 

 
Principal 
quantum 
number 

Energy states ℓ  m  Degene-
ration 

The discrete 
spectrum 

n=1  E1  1s  0   0  1   
 
 
n=2 

 
 
E1/4 

2s 
 
 
2p 

0 
 
1 
1 
1 

 0 
 
 1 
 0 
‐1 

 
 
4 

 

 
 
 
n=3 

 
 
 
E1/9 

3s 
 
 
3p 
 
 
 
 
3d 
 

0 
 
1 
1 
1 
 
2 
2 
2 
2 
2 

0 
 
 1 
 0 
‐1 
 
 2 
 1 
 0 
‐1 
‐2 

 
 
 
9 

 

 
 
                                      
                               Table 2:  The permitted transitions of hydrogen Δ ℓ = ± 1:    
 E0                Continuous spectrum           
   0 ---------------------------------------------------------------------------------------- 
 E5    5s                            5p                                5d                             5f                                     
 E4    4s                            4p                                4d                             4f 
 E3    3s                            3p                                3d                                 
                                                                                     Balmer series 
 E2    2d                            2p 
 
 
    
                                             Lyman series 
 
 
 
 E1      4s                       
                   ℓ=0                       ℓ=1                              ℓ=2                          ℓ=3 
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VII-The theory of angular momentum 
 
     The symmetry is very important in physics and especially the symmetry by rotation. 
The invariance of the Hamiltonian by rotation involves to study the angular momentum 
and the calculation of the coupling  coefficients of the total angular momentum. Thus the 
system states is eigenfunctions of the square of the total angular momentum and its 
projection on the z-axis.  
But quantum theory of the atom does not taking account for all phenomena such as 
 Stern-Gerlach experiment. And after a lot of work to analyze the spectrum, the spin of 
the electron was introduced and the total angular momentum to solve some of these 
difficulties. 
   In this part we follow the Schwinger approach [31-32] for it is simplicity and we can 
generalized it to the semi-simple groups specially unitary group. 
 

1. The electron spin 
 

1.1 The magnetic moment 
  We consider an atom with Z electrons and the nucleus is the center and the Hamiltonian 
of the system is H0. According to the theory of electromagnetism if the system is 
subjected to a magnetic field 1H

r
, the Hamiltonian is written:       

                                                  )(
2 10 LH

mc
eHH

vr
⋅−=                                             (7,1) 

Everything happens as all the electrons circulating in their orbit, each electron induces a 

magnetic moment:                           l
mc
e rr

2
=μ                                                           (7,2) 

The magnetic moment of the atom is the sum of the individual magnetic moments Z. 
 

                                               ∑==Μ =
z
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                                               (7,3) 

 
1.2 The hypothesis of electron spin 
         The Stern-Gerlach experiment is to measure the deviation of silver atoms in a 
region where reigns a strongly inhomogeneous magnetic field. Results contradict the 
predictions: the beam ,instead of expanding, splits into two separate beams giving  
two separate spots of identical intensities. 
     Normally division levels in a magnetic field produces an odd number of levels 
 (2 L+1) but often appears an even number of levels. 
    The explanation was simple but revolutionary for the first time appear a purely 
quantum quantity: the spin 1/2. 
  These phenomena have led Goudsmit and Uhlenbeck to admit in 1925 that the electron 
was a anime rotation on itself, which corresponded own angular momentum called 
 spin ½. Pauli introduced the function of two components:     
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 With                                       ( ) 1rd 322 =+∫ −+ ψψ  
 By analogy with the angular momentum we write 
                                      2

z
2
y

2
x

2 SSSSAnd,2/S ++==
rrr

σ                                      (7,5) 
with                        [ ] [ ] [ ] yxzxzyxyx SiSSSiSSSiSS hhh === ,,,,,      
 
 The state of spin ½ particles are then written 
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To resolve all the difficulties of these phenomena Goudsmit and Uhlenbeck 
 introduced also the spin magnetic moment. 
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e
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rr
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(7,7) 

 
2. The Schwinger approach of angular momentum 

 
2.1 The generators of SU (2) and the basis of the oscillator 
     Schwinger noted that the orbital moment is written according to the operators 
 of creations and annihilations of the oscillator and spin1 as: 
                                       ( ) ( )( )aaprL t

σr
rrr

+=×=                                              (7,8) 

With    ( ) ),,( ++++ = zyx
t aaaa  

    Schwinger in his work "on angular momentum" has replaced the matrices of spin1 by 
the matrices of spin 1/2 and found the generators of SU (2), (J1, J2 and J3), in terms of the 
creations and annihilations operators of two dimensional harmonic oscillator:
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 .Ԧ/2ߪ= Ԧݏ   ,½ Ԧ  are the Pauli matrices of spinߪ
We find easily the ladders  operators J+, J- and J3:                 

                2aaaaJaaiJJJaaiJJJ 2211312212121 /][,, +++
−

+
+ −==−==+=  

                                            33 2],[,],[ JJJJJJ == −+±±  

 And                           )(/][ 1NNJet2aaaaN 2
2211 +=+= ++

r

                         (7,10) 
                                           
2.2 The representation of SU (2) in the basis of the oscillator 
     We formally write: 
              2aaaaJ2aaaaN 221132211 /]//[,/]//[ ∂∂−∂∂=∂∂+∂∂= ++++

                  (7,11) 
According to Euler's theorem on the homogeneous functions, the eigenfunctions 

 of 2
3 JetNJ
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, are the homogeneous functions: 
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The one-dimensional subspace Ej is (2j +1).  
                                     Ej ,.../,/,j},jmj,jm{ 23210=≤≤−  .                 

1- We also find that:      jmmjmJjm1jjjmJ 3
2 =+= ,)(
r

 

                                      1)1()1( ±±−+=± jmmmjjjmJ                             (7,13)     
 
2.3 The SU (2) Wigner matrix D and its generating function 
    The rotation matrix according to the Euler angles is well known in classical mechanics. 
And in quantum mechanics the matrix elements in space { }jm or D-Wigner are: 
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Multiply by j2
jmjm rvu )()(' φφ and perform the summation then we find the generating 

function of the matrix elements of rotations. 
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With                        u = (ζ, η), v = (χ, λ) and z = (z1, z2),  
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1 - Expression of matrix elements of rotations 
    From the above generating function we deduce after development the expression of 
matrix elements of rotations in terms of Jacobi polynomials. 
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Using (7,16) we derive the orthogonality of the matrix-D: 
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2 - The projection operator  
  We find by a simple calculation the projection operator  
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(7,22)
 

The projection operator and our generalization of Cramer's rule for linear systems,   
formula (A6), allow us to calculate the spectrum of rotation of the nucleus [25].   
 
3 - The characters of the group SU (2) 
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With          )2/)cos(()2/cos(2)2/cos(2)( ψ+ϕθ=γ=sRtr              
          
          

3. The couplings in the theory of angular momentum 
 

3.1 The addition of two angular momentum 
     In a system of two particles the total angular momentum is the sum of the individual 
angular momentum we write:  

                                                    213 JJJ
rrr

+=                                                   (7,24) 
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(7,26) 
 
The coefficient 33212211 )(, mjjjmjmj  Is the Clebsch-Gordan. 
 c-  We can use also the notations:   
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        e- We define the Wigner symbols by: 
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3.2 Expression of the integral of the product of three D 
      Several methods have been proposed for the calculation of Wigner symbols: 
a- Racah has applied the method of raising and lowering operators. 
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b- The method that has as its starting point the integral of the product of three D 
c-The  Wan der Waerden method, or Weyl, that we present in the following. 
  
a- Racah method or the  infinitesimal method 
  Put                                               ±±± += 213 JJJ

rrr
 

Using (7.13) we find the recurrences formula of Clebsh-Gordan coefficients: 
                       [ ] =+± 212133213333 mmjjmjjj1mjmj )())(( m  

                                     [ ] ++± 212133211111 mmjjmjjj1mjmj )())(( m     

                                    [ ] 212133212222 mmjjmjjj1mjmj )())(( +±m
                              

(7,29)
 

 
From this expression Racah deducted the Clebsh-Gordan coefficients but Wander 
Waerden method is much more simpler. 
 
b- The method of product of three D or the global method 
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with  213 mmmm +=−=  and '''' 213 mmmm +=−=  
 
3.3 The invariants of 3-j symbols 
     Van der Wearden [8,25,37] determined from elementary invariants of SU (2) the 
invariant of SU (2) and from which he determined the 3-j symbols. 
  But we will use the generating function of the matrix elements of rotations for the 
determination of these symbols. 
     The entire product of these three generating functions is: 
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Using the expression αβμβα ezdzz =+∫ )(]exp[ we find: 
       [ ]],][,[],][,[],][,[exp 3232313121213 yyxxyyxxyyxxG ++=       (7,32) 
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After development and identification of (7,32) we find the invariants: 
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)()( xH
321 jjj   Is the Van der Wearden invariant of 3-j symbols. 

],[ 32 xx  , ],[ 13 xx , ],[ 21 xx  Are the elementary invariants of SU (2). 
 
3.4 Applications: 
  1-The powers of the invariants (7,33) are positive, it follows that: 

                         21321 jjjjj +≤≤−  and  33 mj ≥                                         (7,35) 
  2 - The decomposition of the tensor product of the states of spin ½ is: 
                                                  (2) ٔ (2) = (1) ْ (3)                                              (7,36) 
a- The singlet state  is: 
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3.5 The Van der Wearden formula for 3j symbols 
    The Van der Wearden formula of 3j symbols can be derived simply form (7,34): 
 

 ×
−−+−++−

−−+−
Δ−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

)!()!()!(
)!()!()!(

),()1(
211221

22321)(2

321

21 12

mllmlllll
mlmllll

ml
mmm
lll ll              

                   )1;1,1;,,( 122121112223 ++−+−−−−+−−− mllmllmllmlmlF         (7,38) 

23 F  is a generalized  hypergeometric series (A6) and  
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        The method of invariants has been the subject of many studies [25, 39] but the 
generalization of this method to SU (n) for n> 3 is given in [25] . 
 
3.5 The Schwinger approach of the coupling of angular momentum 
      Using (7, 33) we find the generating function of SU (2) is: 
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The generating function of the coupling of two angular momentum is obtained by using 
(7,28) and changing ],[],,[ 3231 xxxx by ),(),,( 2313 xxxx  in above the expression. 
  We deduce the Schwinger’s formula:    
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With  )()()'( xF j

mm  is the coupling of two angular momentums in the Fock space and :  
                           213213 ,', mmmmjjmjj +==−==

 The formula (7,40) allows simply the determination of the coupling of several angular 
momentum and the representation of SU (3) (chapter X). 
 

4. The tensor operators 
 
   The introduction of the tensor operator is very important for the calculation of matrix 
elements of the transitions. 
 The eigenfunctions of 3

2 JandJ
r

are ( )jjmjm ,...,},{ −= and the subspace  

Ej= }{ jm  is invariant by rotation and as a result: 
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  1-Definition: j

mT Is a tensor operator if: 
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Where an equivalent way: 
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2-Wigner-Eckart theorem: 
    A representation in which the basis vectors {Iρjm>} are eigenfunctions ܬԦ2 and ܬ௭. 
The matrix elements of the tensor operator are defined by: 
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  '' jTj k ρρ Is a coefficient which depends of the tensor operator. 
 
3-The rules of selection of the operator tensor: 
  The matrix elements of the tensor operator is different from zero if: 
 
                                 ','' mmqwithjjkjj −=+≤≤− .                           (7,45) 
 
Applications: The transitions of hydrogen atom are given in the table 2. 
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VIII- Classification of elementary particles 
 and Quarks model 

  
1. Introduction 

 
     Dirac predicted the existence of antiparticles starting from his famous equation of the 
electron [A1] and in nuclear physics Elliot approximate in 58 the nuclear interaction by 
the quadrupole-quadrupole interaction [20] to interpret the energy levels of Mg and found 
that the wave function is developed on the basis of the representation of SU (3). 
    But the discovery of new particles and resonance particle decays quickly led to the 
classifications of particles performed by Gell-Mann and Ne'eman [33] with the group 
SU (3) in 64. 
    But the study of the scattering of electrons by protons and neutrons show that these 
particles have a complex structure and the discovery of strange particles has caused 
confusion and to break the impasse Gell-Mann was assumed that the elementary particles 
are formed from particles called quarks. And the introduction of the Quarks model by 
Gell-Mann has helped to solve the defects of this model.    
   At first we want to give a reminder of the work of Yukawa and Heisenberg in nuclear 
physics as an introduction to the quark model knowing that protons and neutrons are 
elementary particles and are part of baryons family. 
 

2. Yukawa potential and the particle 
state in nuclear physics 

 
    We know that the gravitational and electromagnetic interactions have infinite range 
(potential 1 / r) and the binding energy of  hydrogen atoms is low which means that 
electromagnetic interactions are also low. 
 a- In nuclear physics, the interaction is short-range (10-12cm) and the binding energy of 
nuclei is very high, for example, the binding energy of deuteron energy is 2.2 MeV where 
the name of strong interactions. 
 b- Yukawa proposed a potential of the strong interaction and predicted the existence of 
the particle (meson) assumed as the quantum field of strong interaction.  
c- Experience shows that the intensity its range of interaction between proton and neutron 
are the same and this has led Heisenberg to introduce the nucleon and the isospin.  
 
2.1  Yukawa nuclear potential 
     By analogy with the derivation of the Coulomb potential and that consists the 
spherical solution of the known equation 
 
                                         πρ−=ϕΔ 4),( tr                                                (9,1) 
ρ is the density of the charges. 
The solution is :    
                                                rqr /)( =ϕ                                                        (9,2) 
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Where is ∫ ρ= dvrq )(  the charge of the source       
Yukawa start from the Klein-Gordon equation 

                                        ,0),()1( 2
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                                 (9,3) 

The potential must be independent of time and directions so we seek solution  
of the radial part of 
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  Solving the last equation leads to a physically acceptable solution and that is the well 
known Yukawa nuclear potential: 

                                                
r

egr
rμ−

=ϕ )(                                                               (9,5) 

Where μ is the mass with (c = ħ = 1) and 1 / μ is range. 
  
2.2 The state of a particle in the shell model of nuclei 
     Heisenberg by analogy with the theory of spin considered that protons and neutrons 
are two aspects of a single particle, the nucleon and thus he introduced the isospin. 

The notations in isospin particle ),(),,,( zzyx IIandIIII =
r

.  
Nucleons are in two isospin states: 
                                      2/1, =zII  is the proton state. 
                                     2/1, −=zII is the neutron state. 
So the nucleons are fermions and the basis are the products of:  The basis of the 
oscillator, the spin state and isospin 
 

                  { }zszyx IImsnnn ,,   with zyxzyx nnnnnn =                               (9,6) 
 
And                 )z()y()x()z,y,x(

zyxzyx nnn]n,n,n[ ψψψ=ψ  
The energy is: 
                      zyxN nnnNNE ++=+ω= ),2/3(h                                            (9,7) 
The total degeneracy of a state energy EN is given by: 
                               )2)(1( ++= NNd N                                                   (9,8) 
The spherical basis of the harmonic oscillator is 
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The principal quantum number N is connected to the radial quantum number n and 
azimuthal quantum number l by l+−= )1(2 nN . 
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3. The Quarks  model 
 
A-The elementary Particles:  
   Elementary particles are numerous and can be classified as follows: 
1-The hadrons are particles capable of strong interactions and consist of particles called 
quarks. 
Hadrons are:        The Baryons particles with spin half (p, n, ...) 
                             The mesons Particles with integer spin (π ±, π0, ...) 
2-The leptons are particles capable of weak and electromagnetic interactions. 
These particles are: 
                    The electron ݁ି, muon ିߤ, tau  ߬ି (charge negative ) 
                    And neutrinos ߥ௘ , ,ఓߥ  ఛ (no charge)ߥ
3-  Photon massless and spin 1 
4 - Gravitons and massless particle of spin 2 
5-  Antiparticles: 
   At any charged particle is a particle associated with the same mass and opposite charge. 
B-Quarks: The Quarks are characterized by the quantum numbers are summarized in the 
table: 
 

          Quark u d c s t b 
Charge Q 2/3 -1/3 2/3 -1/3 2/3 -1/3 
Charm C 0 0 +1 0 0 0 
strange S 0 0 0 -1 0 0 
Top T 0 0 0 0 +1 0 
Bottom B 0 0 0 0 0 -1 

 
Table 3 

 
4. The quantum numbers of Quarks 

 
 In what follows we will be interested in the quantum numbers of quarks [33]. 
  1- Strangeness and hypercharge 
     It is well known that the electromagnetic interaction is due to the electric charge Q of 
the particle and by analogy the field of strong interaction is due to a baryonic charge B. 
Similarly, the baryon charge should be additive such as the electric charge. 
We note that the charge: 
For nucleons: 
                                              Q=Iz+1/2 for the proton 
                                               Q=Iz-1/2 for the neutron 
For mesons: 
                                               Q=Iz=1 for π+ 
                                               Q=Iz=0 for π0  
                                               Q=Iz=-1 for π-1 

 
   Gell-Mann proposed an additive quantum number S, which he called strangeness S is 
equal zero for mesons and nucleons, but S = -1 for K-, K0, K+, ∑+, ∑0, ∑-.  
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The corresponding antiparticles have opposite strangeness S = +1. 
 
                                                               BYS −=                                            (9,10) 
Y is the hypercharge. 
 
So the nucleons and mesons are non-strange particles. 
We can also deduce the relation of Gell-Mann-Nishijima: 
 
                                                             2/YIQ z +=                                      (9,11) 
2- parity 
    Attributing intrinsic parity appears as an experimental necessity under the assumption 
of parity conservation in strong interaction processes. 
- The parity of fermions and anti fermions is negative. 
 
3- color 
   Baryons consist of three quarks with spin ½ and the wave function must obey the Pauli 
principle, but this is not the case. 
To eliminate this contradiction color was introduced as a new quantum number to save 
the Pauli principle. 
The color has since become the basis of the modern theory of strong interactions between 
Quarks. 
The quanta of these fields are called gluons whose numbers is eight. 
 
4- Quarks, leptons and fundamental interactions 
 
 
                     Quarks  
 

u c t 
d s b 

Leptons 
 

νe νμ ντ 
e μ τ 

 

Gluons Photons bosons Intermediaries Gravitons 
strong Electromagnetic weak Gravitons 
 

Table 4 
 
5- The symmetries Laws 
   All the interactions conserve energy, momentum, angular momentum, charge, the 
number of quarks, the baryon number and lepton numbers. 
But the weak interactions do not conserve the number of quarks. 
 
6- The mass formula of Gell-Mann-Okubo 
    The mass of the formula:  
                                              M = m0 + aY+b[I(I+1)-Y2/4].                                     (9,12) 
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  7- The search for Higgs bosons 
    The theories of electroweak and strong interactions are called standard model. But this 
theory predicts zero mass to all particles and Higgs proposed a mechanism to give mass 
to these particles, but this mechanism provides for the existence of a heavy particle the 
Higgs boson. 
 
8- Spectrum masses of the 8 baryons  Jp=1/2+ and the 10 baryons Jp=3/2+  
  

 
                              Masse(GeV/c2)                                                                       

                                        S=-3         
                  1,6-                               

                                         S=-2 
                  1,4-                                                  
                                                                                S=-1      
                                                     S=-2                        

                                           S=0 
                                                      S=-1 
 
                     1- 

 
                                                       S=0 
 
                               Jp=1/2+                                                                                                        Jp=3/2+                        

 
Table 5  

 
 
 

5- Tables of Hadrons 
 

Baryon Jp=1/2+ 
 Q S I Quarks 

content 
Mass 
MeV/c2 

Lifetime        
s 

Decay modes 

p +1 0 1/2 uud 938,27 ∞  
n 0 0 1/2 udd 938,57 888,6 peρ 
Λ 0 -1 0 uds 1115,7 2,63 10-10 pπ-, nπ0 
∑+ +1 -1 1 uus 1189,4 0,810-19 nπ+, pπ0 
∑0 0 -1 1 uds 1192,5 7,410-20 Λγ 
∑- -1 -1 1 dds 1197,4 1,510-10 nπ- 
Ξ0 0 -2 1/2 ssu 1314,9 2,9-10 Λπ0 
Ξ- -1 -2 1/2 ssd 1321,3 1,610-10 Λπ- 

Baryon Jp=3/2+ 

n, p 

p 

∑‐,∑0,∑+ 

Ξ0, Ξ- 
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 Q S I Quarks 
content 

Mass 
MeV/c2 

Lifetime         
s 

Decay modes

Δ++ 2 0 3/2 uuu 1231 0,6 10-23 pπ+ 
Δ+ +1 0 3/2 uud 1235 0,6 10-23 p π0, n π+ 
Δ0 0 0 3/2 udd 1234 0,6 10-23 p π-, n π0 
Δ- -1 0 3/2 ddd 1234 0,6 10-23 n π- 
∑++ +1 -1 1 uus 1383 2  10-23 Λ π+ 
∑*0 0 -1 1 uds 1384 2  10-23 Λ π0 
∑*- -1 -1 1 dds 1387 2  10-23 Λ π- 
Ξ*0 0 -2 1/2 ssu 1532 7  10-23 Ξ-π+, Ξ0π0 
Ξ*- -1 -2 1/2 ssd 1535 7  10-23 Ξ-π0, Ξ0π- 
Ω -1 -3 0 sss 1672 0,8 10-23 ΛK-, Ξ0π-, Ξ-π0 
 
                                         Table 6 : Baryons 

 
 

Mesons JP=0- 
 Q S I Quarks content Mass 

MeV/c2 
Lifetime         

s 
Decay modes

π+, π- +1,-
1 

0 1 u ҧ݀,ݑത݀ 139,57 2,6 10-8 μν, eν  

π0 0 0 1 (uݑത-d ҧ݀)/√2 134,97 8,4 10-17 γγ 
η 0 0 0 (uݑത-d ҧ݀-2sݏҧ)/√6 548,8 7 10-19 γγ, π+π-, π+π-γ 
η‘ 0 0 0 (uݑത ൅d ҧ݀ ൅sݏҧ)/√6 957,5 3 10-21 ηπ+π-, π+π-γ 
K+, K- +1,-

1 
+1,-
1 

 -േπ+πߨ ,േπ0ߨ ,ത 493,65 1,24 10-8 μνݑҧu, sݏ 1/2

K0,ܭฎ
଴
 0 +1,-

1 
ҧd, sݏ 1/2 ҧ݀ 497,67 ܭ௦

଴0,89 10-10

௅ܭ
଴ 5,17 10-8 

π+π-, π0π0 
πЄν, πμν, πππ 

 
Mesons JP=1- 

 Q S I Quarks content Mass 
MeV/c2 

Lifetime       
s 

Decay modes

ρ+, ρ- +1,-1 0 1 u ҧ݀,ݑത݀ 774 0,4 10-23 ߨേπ0 
ρ0 0 0 1 (uݑത-d ҧ݀)/√2 774 0,4 10-23 π+π- 
ω 0 0 0 (uݑത+d ҧ݀)/√6 781,9 7 10-23 π+π-π 0, π0γ 
φ 0 0 0       sݏҧ 1019,4 20 10-23 K+K-, K0K0 
K*+, K*- +1,-1 +1,-

1 
 -േπ0, K0π+, K0πܭ ത 891,8 1 10-23ݑҧu, sݏ 1/2

K*0,ܭฎ
଴כ

 0 +1,-
1 

ҧd, sݏ 1/2 ҧ݀ 896,1 1 10-23 ܭേπ0, K0π0, K0π0 

 
Table 7: mesons   
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IX-The N-fermions states and the classification of 
chemicals elements 

 
        We start from the Pauli principle, the theory of second quantization and the 
determination of one particle state to study the many-body system. But the approximation 
of the single-particle state by the hydrogen atom is very interesting for the study and the 
classification of chemical elements. 
  We also give an idea of the shell model and the states of a system of fermions in the 
notations of the second quantization. 
 
- The one-particle states in atomic physics 
     The particle state is the tensor product of the wave function and the state of spin so the 
wave function of the ݅‐ th particle is: 
 
                                       ,)()(][ iimlnEi smri

iii
ψ=ψ                                            (8,1) 

  )( imln r
iii

ψ  Is the spatial part and the ssm is the spinor part. 
b-In Dirac notation we write: 
                                       ,smnlm ssms,nlm =ψ                                             (8,2) 

d- Usually appears in the Hamiltonian the term ܮሬԦ. Ԧܵ   of the spin-orbit interaction and the 
wave function takes the form.: 
                         snlm

mm
sljmlsn smrjmlssmlmsr

ssl

)()(,),(
,

)( ψ∑=ψ                 (8,3) 

 
1. Pauli principle 

 
     The Hamiltonian of a system of n-identical particles, such as electrons, is invariant 
under permutation. 
In the case of a two-particle system we write: 
 
                       )1,2()1,2()2,1()2,1( ψ=ψψ=ψ EHetEH                         (8,4) 
 
The operator of permutations is defined by 
                                                    )2,1()1,2( ψ=ψP                                                       
The probability of  presence can be written  
 
                       22222 )2,1()2,1()1,2()2,1( ψ=ψ=ψ=ψ PP                            (8,5) 
 
So 1±=P  so we find the normalized wave function must be symmetric or 
antisymmetric: 

                 [ ])2,1()2,1(
2

1
ψ+ψ=ψ s       [ ])2,1()2,1(

2
1

ψ−ψ=ψ A                           (8,6) 



 

47 
 

Pauli principle: 
- The bosons have symmetric wave functions 
- Fermions have anti-symmetric wave functions  
 - The space of bosons have integer spin: 1, 2,3, ... 
- The space of fermions have half-integer spin 1/2, 3/2, 5/2, ... 
- Bosons obey Bose-Einstein statistics 
- Fermions obey Fermi-Dirac statistics 
 

2. The wave function of the system of N-fermions 
 
      We assume that the one-particle states are a solution one particle Hamiltonian h, 
 e.g. Hartree-Fock , with: 
                                                EE Eh ϕ=ϕ                                                              (8,7) 
 
And we assume that E1 <E2 <E3 ... <EN, ... 
 
For a system of N fermions was 

                                              ∑=
=

N

i
iEE

1
0                                                                   (8,8) 

We call Fermi energy is the highest energy EN. 
  
The wave functions are Slater determinants: 
-For a system of two particles N = 2 , E = {E1E2] 
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22

11
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EE

EEA
E ϕϕ
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=ψ                                                   (8,9) 

 
-For a system of N particles the ground state can be written using the Slater determinant, 
with E = [E1E2E3 ...] by: 
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                               (8,10) 

 
 

3. The state of the system and the notations  
of second quantization 

 
   3.1 Fock space and ground state 
     By analogy with the harmonic oscillator we consider for example the fundamental N-
particle state: 
                   ]...[][,....0...001....1111),..,2,1( 321}[ N

A
E EEEEEN ==ψ      (8,11) 
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The quantum vacuum is the state or there has only zeros. 
 
                                  00000000 =L                                          (8,12) 
 
a- The particle-hole or p-h states are the excited states of replacing the states i with i ≤ N 
by 0 and for the states j with j> N by 1: 
b- The 2p-2h states is excited state with two holes two particles. 
c- We can continue 3p-3h etc.. 
The set of states  (fundamental, p-h, 2p-2h ...), is the Dirac-Fock or Fock space. 
 
3.2 The fermions operators of creation and annihilation 
    We define an operator called am: annihilations operators of a particle in the  
state m using the formula: 

    
⎩
⎨
⎧

=−
=

= ν 10)1(
00

m

m
mm Nsi

Nsi
Na

LL
LL                                                (8,13) 

 (ν) is the number of occupied states with lexicographical index lower than  m, we deduce 
the action of the creation operator by: 

                 
⎩
⎨
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=
=−

=
ν

+

10
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m

m
mm Nsi

Nsi
Na

LL
LL                                   (8,14) 

Anticommutations the following rules are easily verified: 
 
                     [ ] ( ) jiijjiji aaaaaa ,, δ=+= ++

+
+ ,  [ ] [ ] 0,, ==

+
++

+ jiji aaaa                   (8,15) 
The ground state can be written in this notation by: 
 
                              L01......1110...21 =+++

Naaa .                              (8,16) 
 
3.3 Expression of the Hamiltonian 
  We assume that the fermions indistinguishable and the Hamiltonian is written: 

                    kljiijklij ji aaaalkVjiaajTiH +++ ∑+∑= ,,
4
1 )

                             (8,17) 

with                  klVjilkVjilkVji ,,,,,~, −=  
   
 In general we choose for effective calculus a woods- Saxon or Gaussian potential plus 
other terms such as SL

rr
⋅ . 

  We can find the one-particle Hamiltonian h and the eigenfunctions using Hartree-Fock 
variationelle method [25] seeking the minimum of the energy 
 

                                                             ΨΨ

ΨΨ
=

H
E

                                              
(8,18) 

 
In this course we want only to give an idea as a simple introduction to the Hartree-Fock 
theory. 
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4. Classification of chemical elements 
 

4.1 The electron energy levels 
   To study the energy levels of many-electron of atoms, it was usually approximate  the 
central field by the equation of hydrogen with the quantum number n, ℓ, m. Because of 
the influence of the electron energy levels depends on both n and ℓ. For a given value of 
n, the energy levels increases as ℓ increases. This is because the electrons with low ℓ pass 
near the nucleus, that is to say, in a region where the potential is similar to that created by 
the nucleus of charge Ze. 
On the other hand, an electron whose "path" would be virtually external to those of other 
electrons have an energy approximately equal to that of a corresponding level of the 
hydrogen atom. 
 
4.2 Distribution of elections of an atom 
   We will discuss the distribution of elections of an atom on the different levels. Under 
the Pauli principle, we know that for every quantum number n, ℓ, m, so it can not 
correspond two anti-parallel spin electrons )/( 21ms ±= .  
Each pair of values n, ℓ, may correspond 2(2 ℓ +1) electrons. 
  The existence of quantum numbers can leave the electrons of an atom in shell and 
subshell. A shell of electrons corresponds to the same value of n, when it is complete they 
have 2n2 electrons, for n = 1, 2,3, ..., is a 2n2 = 2, 8, 18,32, .... May then divide this shell 
into n subshell each thereof corresponding to a given value of ℓ;  
A completes subshell are 2 (2 ℓ +1) electrons, which gives 2, 6, 10,... for ℓ = 0, 1, 2,3, ...  
   To classify the different elements, we must study how to fill the shell and subshell of 
successive atoms with the number of electrons increases. The levels are filled in order of 
increasing energy. 
 
4.3 Configuration of different atoms in their ground state  
    One can study the electron configuration of different atoms in their ground state. This 
configuration is expressed by giving levels occupied by electrons. These levels are 
assigned an exponent indicating the number of electrons that are (Appendix 2). 
For example, the ground states of following atoms are: 
                              
                                                                                                                                                                     
                                                                                                    
                                                                                     
4.4 The shell model in nuclear physics   
 a- The shell model in nuclear physics is partly analogous to the atomic shell model. 
More the shells for protons and for neutrons are independent of each other . 
 b- In nuclear physics, a magic number is a number of protons or neutrons in a nucleus 
which is particularly stable. The seven magic numbers experimentally verified are: 2, 8, 
20, 28, 50, 82, 126. But the three-dimensional harmonic oscillator gives the following 
magic numbers 2,8,20,40,70,112 which only agree with the first three entries which 
implies making calculations with more realistic potentials. 
 

He C Na 
1s2 1s2 2s2 2p2 1s2 2s2 2p6 3s
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X- The representation theory of groups (Symmetry) 
 

    The left-right symmetry is visible in all every living and particles, more  the spatial 
symmetry and rotational invariance are very important in physics and chemistry. Weyl in 
his book "symmetry" shows that the  symmetry in art then we can say: there is no: mater, 
art, beauty or love without symmetry then the symmetry is the secret of the existence. 
    In quantum mechanics we are interested in transformations of groups and Lie algebra 
Especially the classical groups: rotations O (n), unitary U (n) and symplectic SP (n). 
The theory of unitary groups is of fundamental importance in quantum physics and we 
want to do an introduction for students to follow more advanced courses on the 
representation theory of groups and Lie algebra. 
  But the study of this theory began in mathematics and this explains the diversity of the 
proposed methods [34-40]: the Cartan-Weyl infinitesimal method, the Global method of 
Young, Frobenius and Weyl.  Therefore we will give only a quick summary of semi-
simple Lie group and the generalization of Euler’s angles to SO(n) and SU(n) saw its 
applications in quantum and in quantum information theory [41].   
 

1. Introduction to the semi-simple Lie algebra 
 
   1.1 infinitesimal method 
     This is the algebraic method that was developed by Cartan ,Killing, Weyl, Chevalley, 
and Dynkin etc. And it takes its starting point the study of the properties of infinitesimal 
operators of the groups. And it is widely used by physicists because it is of great interest 
from a practical and theoretical point of view. 
 
1.2 The global method 
    The global  method of Weyl originates the connection between the representation of 
groups of permutations and unitary groups. This method has been the subject of intense 
study by mathematicians: Gel'fand, Godement and Zelobenko ... [37] and by physicists 
[36] as Biedenharn, Moshinsky and others. 
But physicists have worked particularly in determining the basis of irreducible [35-37] 
representations of unitary groups in the oscillator basis as an extension of Schwinger's 
work on the theory of angular momentum.  
 
1.3  The method of Schur function 
     Finally the method of Schur function is the least used and least known in physics. 
 

2. The infinitesimal method and the Lie algebra 
 

   If we consider the Lie group of r-parameters and r-infinitesimal operators (2,11) and 
 the commutation relations: 
                                     τ

ρσ
τ
σρτ τ

τ
σρσρ =∑= ,,, ,],[ CCwithXCXX                         (10,1) 

 
We define the metric tensor and the Killing form by: 
                                      ∑== ρτ

τ
τλ

τ
ρσλσσλ , ,, CCgg                                                     (10,2) 
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Note that Weyl determined infinitesimal generators of unitary groups U (n) and they are 
denoted by )....1,(, njiEij =  
                                              ,],[ kiililjkklij EEEE δ−δ=                                           (10,3) 
   These generators are expressed [36] using the operators of creation and annihilation of 
n-dimensional harmonic oscillator: 

                                                   ∑= +
ij jiij aaE

                                                   (10,4) 
2.1 The Cartan theorems  
Theorem: The Lie algebra is semisimple if and only if  det ሺ݃ఈఊ)=0.  
The inverse matrix of ሺ݃ఈఒሻ is denoted by ሺ݃ఈఒ) (6,3). 
 
The first theorem of Cartan: 
    The necessary and sufficient condition for a semi-simple group is compact if the 
Killing form is negative definite [23]. 
 
2.2 Classification of semi-simple Lie algebras 
     Cartan's method is to find the roots of the equation solutions with eigenvalues  
denoted by (ρ) 
                                                   ,],[ XXA ρ=                                                       (10,5) 
with                            νν

ν
μ μ

μ ∑=∑= XbXetXaA  
The vectors {Xν} are independent then: 
                                               0)( , =ρδ− ν

ν
τ

νμ
τμ bca  

We deduce the secular equation 
                                             0)det( , =δρ− ν

τ
νμ

τμ ca                                              (10,6) 
The second theorem of Cartan: 
    If the Lie algebra G is semisimple and if we choose for A the element of G which has 
the most distinct eigenvalues, then one's own degenerate zero value. The degree ℓ of 
degeneracy of this eigenvalue, [A,Hi]=ρ=0, is characteristic of the algebra then ℓ is called 
the rank of the semisimple algebra and A ൌ ∑ H୧୧ . 
   The set {Hi} span an ℓ-dimensional subspace of the r- dimensional vector space, and 
the dimension of {Eα} ,[A,Eα]=α Eα,  is r- ℓ a.  
 
2.3 The Cartan-Weyl basis 
    We only give the very important results of Cartan and Weyl: 
 
 
                                                                                                                                   (10,7)    
 
With                          ij

iji gCN α∑=α= β+α
βαβα ,,,                                          (10,8) 

Note that this basis is frequently used in physics. And it has been demonstrated starting 
from this basis that the semi-simple groups are the classical groups: the orthogonal, the 
unitary and symplectic and exceptional groups. 
   Note that the classification of these algebras can be easily carried by the Dynkin 
diagrams, diagrams roots [23]. 

),...,1k,i(,E]E,H[,0]H,H[ iiki l=== αα α

αα−αβαβα α== EEENEE i],[,],[ ,  
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2.4 Cartan theorem on the irreducible representations of classical groups. 
   For classical groups G of order n there are n fundamental weights: 
 
                                                                                                                                   (10,9) 
 
And any maximum weight corresponding to an irreducible representation there are n 
positive numbers mi as: 
                                             
                                                                                                                                 (10,10) 
 
 
 
The index hnn is zero if G is the group SU (n). 
 
2.5  Racah theorem: 
      The number of Casimir operators of G is n. 
 
2.6 The fundamental representations of unitary groups 
     The irreducible representations of G are functions of fundamental representations 
 for which hin= 1, i<=n. 
E. Cartan showed that the irreducible representations of U (n) are functions of subspaces 
of fundamental representations [21]. 
These basic representations are subspace [h]n. 
 
               nnnnnnn ]11,...,111[}{,...,]0...110[}{,]0...100[}{ ,2,1, =Δ=Δ=Δ                  (10,11) 

The dimension of  the subspace ]0,...,0,1,..,1,1,1[
876 p

 = pn ,Δ   ,or F (n, p), is p
nC then the 

dimension F (n, n) is 1. And it is easy to verify that the sum of the dimensions of the 
fundamental representations of U (n) is 2n-1 and 2n-2  of SU (n). 
 
2.7 The fundamental basis of binary representations: 
   We observe that the vectors of the bases of fundamental representations can be 
expressed by binary numbers that we call the binary basis of fundamental representations. 
And afterwards we make the correspondence with the Gel'fand basis of U (n) . 
We write as examples: 
 
 

 

 

 

                                                         
          

Table 8 

∆(2,1)  1  0  0  1 

∆(3,1)  1  0 0
 

0 1 0 0 0 1
∆(3,2)  0  1 1

 

1 0 1 1 1 0

∆(4,1)  1  0  0  0  0 1 0 0 0 0 1 0 1 1  1  0 
∆(4,2)  1  1  0  0  1 0 1 0 1 0 0 1
∆(4,2)  0  0  1  1  0 1 0 1 0 1 1 0
∆(4,3)  0  1  1  1  1 0 1 1 1 1 0 1 0 0  0  1 

[h]n= [h1n, h2n,…, hnn] 

        ninni hhhH ][][ =  
niini hhm )1( +−= ,    i=1,2,…,݊, 
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3. The global method: representations of permutations 
and unitary groups 

 
    The global method of Weyl has the starting point the connection between the 
representations of permutations groups and unitary groups. 
Weyl introduced the characters of classical groups and he deduced the branching law  
and the formula of the dimension known by Weyl formula. 
 
3.1 The Weyl branching law  
 If we consider the restriction of U (n) to U (n-1), with [h]n and [h]n-1 are the highest 
weights- Weyl found the important result: 
                  nnnnnnnlnl hhhhhh ,1,11,2,21,, .... ≥≥≥≥≥≥ −−−− .               (10,12) 
a- From this formula Gel'fand and Zeitlin deduced first in an intuitive way the 
    representation of U (n) represented by an array of index ≥ 0. 
b- The search for the explicit form of Gel'fand basis,  using the bosons operators or Fock 
   space, was found by Bargmann and Moshinsky, Biedenharn and others. But Nagel and  
   Moshinsky expressed this basis in terms of the raising and lowering operators. 
 All these methods are an inextricable complexity for n ≥ 3 for this we have developed 
the method of generating function to solve this difficult problem [25]. 
 
3.2 Representations of permutations groups 
  3.2.1 Consider the Schrödinger equation of a system of n- fermions (electrons or 
nucleons) for example 
 
                   ),...,,(),...,,(),...,,( 212121 nnn rrrErrrrrrH Ψ=Ψ                 (10,13) 
 
The Hamiltonian H must be invariant under a permutation of the variables ri. The solution 
of the equation must be transformed according to an irreducible representation of these 
groups and these representations are symmetric or antisymmetric if  Ψ function of the 
variables ri and the spins. 
3.2.2 The irreducible representations of the permutation group Sn are determined by the 
decomposition of n into positive integers: 
 
              nrn r21r21 ≤≥≥≥++= ,...,... λλλλλλ                      (10,14) 
 
  A table or Young diagram (λ1, ..., λr) is a Young tableau in which inscribed the numbers 
1 to n. The boxes are arranged in a line kλλλ ,...,, 21 by line because the lines are arranged 
in ascending order.  
We fill the boxes of the Young diagram with numbers ψi functions for n = 11 
 

1 2 3 4 5 
 6 7 8
9 10
11 
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   The number of permutations is n! This corresponds to n! Young tableaux that are not 
linearly independent of where the introduction of the standard tableaux. 
   The standard tableaux is the distribution in ascending order numbers from left to right 
and from top to bottom columns built by the rule of recurrences [38-39].  We will give 
these tables by recurrence method [38]: 
 
N=1   
         
 
 N=2 
 
 
 

 
   
 
   
N=4                                                                                                                                                   
                                                                                        
 
 
                                                                             Table 9 
 
3.2.3  We note that: the first by (4), the second (3,1), fourth ((2,2)=(22), fifth (2,1,1) = 
(2,1,1)=(2,12), and seventh (14). 
 
3.2.4 The conjugates partitions: The conjugates partitions are partitions that can be 
deduced from each other by the exchange of rows and columns by rows and columns and 
to each partition there is a conjugate partition. 
 
3.2.5 Representations: We note that the decomposition of irreducible representations 
can be done with the help of Young operators [36-39] and  the Young diagrams. 
 
3.3 The dimension of the representation of Sn  
The dimension of the representation of Sn associated with the partition (λ1, ..., λr) is: 
 

     ⎥
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(10,15) 

 
3.4 Weyl representation of the unitary groups 
    Weyl showed that representations of unitary groups [36] can be deduced from its 
patterns by repeating numbers and we will give the representation of U (2) and semi 
maximum representation of U (3), and then we deduce the Weyl branching law. 

      

1 

1  2  1 
2

1  2  1
2
3

1  2  3  1  3 
2 3 

1  2  3  4 1 2
3 4

1 2

3
4

1 2 3 
4 

1 2 4
3

1 4
2
3

1
2
3
4

1  3  4 
2 

1 3
2 4

1 3
2
4
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 N=2                              
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a- Representation of U(2) 
                                                 h11               h22                 h12 

11… 11.. 222…. 
222.. 

 
We have:    h11 ≤ h22 ≤ h12                                                                                                                                     (10,16) 
 
b- Representation de U(3) 
                                   h23                  h22                h23                        h12                h13 

11… 11… …… 11……………1 33……… 
22… 2….. 3… 
33….. 

                         
We have also:    h23 ≤ h22 ≤ h23 ≤ h12 ≤ h13                                                                              (10,17) 
 
c- The Weyl branching law  
   The generalization of expressions (10,17) allows us to deduce the restriction of weight 
U (n) to U (n-1). The maximum weight are [h]n and [h]n-1: 
 
                  nnnnnnnlnl hhhhhh ,1,11,2,21,, .... ≥≥≥≥≥≥ −−−− .               (10,18) 

 
4. The Gel'fand basis of unitary groups 

 
4.1 The Gel'fand basis of unitary groups 
  Based on the law of the Weyl branching Gel'fand and Zeitlin found by intuition the 
orthogonal basis of U (n). 
The Gel'fand basis or nΓ is: 
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And                   jietnjavechhh jijiji ,...,1,...,2,11,, ==≥≥ +−  
 

1 2 1 
2 

2 2 1 1 
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4.2 The Weyl dimension formula  
       The dimension of the subspace of U (n) is given by the Weyl formula: 
 

             
[ ]∏ −−== <μν ji jninnnnh npphhdd )!1(!2!1/[)(],..,[ 1][ L                     (10,20) 

 
with inhp inin −+=  and hnn = 0 for the subgroups SU (n). 
 
4.3 The maximal and minimal states 
    We associate with any vector a weight vector that has the components: 
                               ))(...),(),(()( 21 hhhh nnnn ωωω=ω .                                       (10,21) 

with                                    )(
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1
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1
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ijin hh

 
   A weight )'(hω  is higher than the weight )(hω  if the difference of the first component 

)()'( hh ω−ω is positive. 
  We deduce the existence of a minimal and maximal vectors. 
    
4.4  Explicit expression of Gel'fand basis  
   By analogy with the SU (2), Nagel and Moshinsky [35] showed that the basis can be 
deduced from the minimum and maximum state by applying ladders operators μ

λ
μ
λ RL , . 
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With                       1,, −λμλμ

μ
λ −= hhL ,   λ+μ−λμ

μ
λ −= ,11, hhR                                     (10,22) 

N and N 'are the normalization constants. 
 
4.5 The binary representations of the analytic Hilbert space    
 njiz j

i ,...,1,),( =  Is a matrix defined on the field of complex numbers [25,37]. We 
associate to  any minors l

ii l

K
K

12
1

Δ
 
of njiz j

i ,...,1,),( =  a binary number of length n and 
ordered. This number ones for the numbers liii ,,, 21 K and zero elsewhere. 
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                         (10,23) 

 
We note in the following the basis vectors of Fock-Bargmann space by: 
 
                                              { }))()( ...12

...][, 1
zz k

iin
k

in
i

kn li
Δ=Δ=Δ                                    (10,24) 

   The Gel'fand representation is: 
 

                                                 )()())(( zhz nn Δ=ΔΓ                                          (10,25) 
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5. Generalization of Euler’s angles to SO(n) and SU(n)  
 

    We establish recurrences formulas of the order of the classical groups that allow us to 
find the generalization of Euler’s angles for the classical groups [25, 41-44].  
  
 5.1 Generalization of the Euler parameterization of SO(3)     
   The rotation may be written by   

                                 
zyz LiLiLi eeeR ϕ−θ−ψ−=ψθϕ)(                                                 (10,26) 

By analogy we write the finite transformation of classical groups in the form:  
 

                                         
m

1n
m
n

m
1n

m
n ABAA −−=                                                             (10,27) 

With m = 0, 1 and 2 for orthogonal, unitary and symplectic groups. 
We design by Nm(n) the number of parameters of the classical groups: 
 
                 N0(n)=n(n-1)/2,       N1(n)= n2-1,  N2(n)= n(2n+1).                                (10,28)                
In the following we derive two kinds of recurrences formulas 
a- The first relation: 
                            .2,1,0,12)1()( =−+−= mnnNnN m

mm                                     (10,29) 
 
Since the point ሺ0, … ,0,1ሻ is invariant by the group of order n-1 this means that the last 
column and the last row are the components of the unit vectors , with 2m n-1 parameters, 
of points on the unit sphere ܵ௠,௡ିଵ  of the Euclidian space ܧ௡ሺܭሻ, ܭ ൌ ܴ, ,ܥ ܪ ൌ ܳ. 
b- The second relation: 
                              .2,1,0m,m2)2(nN)1(nN2(n)N mmm =+−−−=                  (10,30) 
 
  It is quite evident that the left and right parameters of (10,26) are different   
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If                                                             0],[ 2 =−

m
n

m
n AB                                           (10,32) 

 
   The number of parameters ܣ ݂݋௡

௠  becomes 2ܰ௠ሺ݊ െ 1ሻ െ ܰ௠ሺ݊ െ 2ሻ ൅ 2௠ and the 
number of parameters of  ܤ௡

௠  is 2௠ therefore we find the same result of the above 
recurrences relations (10,29-30). 
  To find m

nA we must choose the parameters such that 0]A,B[ m
2n

m
n =− and the last line, or 

the last column, are the components of the unit vector )x,...,(xr n1=
r  of ܧ௡ሺܭሻ and from 

this property we can deduce simply the measure of integration of SO(n) and SU(n) [25]. 
 
5.2 Parameterization of SO(n) 
     In this case m

1n
m
n

m
1n

m
n ABAA −−= , m = 0 the matrix 0

nB  is function of one variable and  
The expression 0AB 1

2n
0
n =− ],[  means that 0

nB  leave invariant 0
2nA − . 
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  If we choose in En the spherical coordinates 1n21 −θθθ ,..., we find the Vilenkin’s 
parameterization [44] for SO(n). and any rotation g of the group SO (n) can be set as 
follows: 
                                                 )1()1( ...ggg n−=  

Where                                  )()...()( k
kk

k
11

k ggg θθ=                                                (10,33)                          
 
And gk(θ) is the rotation matrix in the plane (xk,xk+1). 
 
5.3 Parameterization of SU(n) 
        In the case of m = 1 the matrix 1

nB  is function of two variables and 1B1
n =)det( . 

The expression 0AB 1
2n

1
n =− ],[  means that 1

nB  leave invariant 1
2nA −  and the solution is not 

unique for n>2.  
We can consider the useful options (22), for example   
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We have for  2
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.,, πβπν β ≤≤=≤≤ 3

i
33 0ed0with 3

 
And                        )

2
'(in)'exp(=),

2
'()c'exp(=b 2211

θ
ϕ

θ
ϕ sbos

                            
(10,37) 

 
 
Note: Symmetry and prime numbers 
    The right and left symmetry is fundamental in physics this incite us to ask 
 whether this symmetry is in primes: 
  Find the numbers n with  a + ā = n.  
  a, ā  are primes and {a} are all the primes with: n / 2 ≤ a <n ,  and  n== 2,3, ... 
Calculations for n ≤ 100 million we find six numbers n = 5, 7, 10, 16, 36, 210. 
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XI -The representation of SU (3) group 
 
   The group SU (3) plays a fundamental role in nuclear physics and elementary particle 
and we will determine first the generators of SU (3). 
  The expression of the vectors of the basis was found by several methods but we will 
find it simply using the generating function and the Schwinger approach [40]. 
 

1. Generators and Casimir operators of SU (3) 
 
1.1 Gell-Mann represented the generators of SU (3) by the following matrices: 
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Put                                           2/iiF λ=  
We write :         547621 ,, iFFViFFUiFFT ±=±=±= ±±±  

              )
2

3(
2
1),

2
3(

2
1,

3
2, 3383 zzz TYVTYUFYFT +=−===               (11,2) 

After a simple calculation we find 
 
             ,2],[,2],[,2],[,0],[ 33 VVVUUUTTTTY z ==== −+−+−+±                     (11,3) 
 
SU (3) has rank two then by Racah theorem the number of Casimir operators are two:  
 

   )],([
4
1,, ,,,, ,,21

2
1 kjikjikjikji kji

l
i i TracedFFFdCFC λλλ=∑=∑= +=       (11,4) 

 
1.2 The basis of the group SU (2) ؿ SU (3) 
     Let be the space ],[ μλD  of homogeneous polynomials and ),( 21

),,( zzV ytzt
λμ  is the 

orthogonal basis. In the case of SU (3) we write: 
                                             
                            ),(),,( 1

1
111
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2 σ=σηξ= xz  
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ξ= −+ zTTT                 (11,5) 
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With                                        ,
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iijT
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ξ∂
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ξ=                                                                         

 
The vectors ),( 21

),,( zzV ytzt
λμ are eigenfunctions of the Casimir operator and the projection 

of T
r

 on the z-axis and y is the triple of the hypercharge Y (y = 3Y). 
The numbers I, Iz or ztt , are isospin and its projection on the z-axis, p=λ+μ and q=μ. 
We have: 
                              λμ

α
λμ
α

λμ
α

λμ
α == )()()()( , VtVTVyVY zz                                        (11,6) 

                                            λμ
α

λμ
α += )()(

2 )1( VttVT
r

.                                                  
 
The Young tableau imposes the following condition on λμ

α)(V (see also table 8):    

                                              0),( 21
)(12 =λμ

α zzVT                                                    (11,7) 
                                                                                      

2.  Schwinger approach and the generating function of SU (3) 
 

   2.1 Schwinger approach 
The vectors ),( 21

),,( zzV ytzt
λμ are the elements of the product space 

321 ttt DDD ⊗⊗  
which has the basis: 
                             ),(),(),( 212211 332211

σσϕηξϕηξϕ mjmjmj . 
But  
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(11,8) 

 
And it is easy to verify that 3, ℑℑℑ −+ et are the generators of SU (2). 
 
 So the determination of the basis { }λμ

α)(V by Schwinger generating function method.   
This method consists of making the following coupling (7,40):                         
a-The first coupling (j1m1)x(j2m2) (j (m’, m)):  
   21)()'(2211 '),(),(),(

2211
jjmxF j

mmmjmj −=⇒ηξϕηξϕ  
b-We apply to the result the new coupling )mj()'jm( 33× :   

             ),,(),()( )12()2()1()(
),,(21)()'( 33

zzzVxF yttmj
j
mm z

λμ⇒σσϕ              
c-We then apply the Cartan basis (table 8) ,or the Young condition (11,7),to cancel the  
   parameters  zԦሺଶሻ  so we write: 
                                      ),( )12()1()(

),,( zzV ytt z

λμ = ),,( )12()2()1()(
),,( zzzV ytt z

λμ  
 
We obtain the generating function of SU (3) and we write it in a simple form:     
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And       
)!()!()!(!)!(![!)12()!1(

)!1()!1()1()](),[(
33 ttttssrrt

srN s

−+−μ−λλ++λ
+−λ+μ++μ

−=αλμ  

 
2.2 The basis vectors ),( 21

)( zzV λμ
α  of  SU (3) 

   By the development of the generating function and after comparison with the second 
term we find the basis: 
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In part 6 we follow the notations: 
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And the vectors               )((),( 3

21
)( zzzV ΔΓ=λμ

α  
 
The dimensions of the subspace of SU (3) are useful for the following: 

                                                       
 h13=λ+μ,h23=μ  1,0  1,1  2,0  2,1  3,0  3,1  4,0  4,1  4,2 

d[h13,h23,0]  3  3  6  8  10  15  15  24  27 
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XII- SU(n) generating function of Gel'fand basis  
 and tensor products of SU (3) 

 
    To extend the study of angular momentum to the unitary groups it is important to 
determine the generating functions of these groups. We observed a very important 
property:   the powers of the parameters of the generating functions are the same  
powers of the ladders operators of the oscillator and SU (2). 
  We will demonstrate that the generating function of SU (3) that we have built [46] with 
the help of the Schwinger approach (Chapter 11) verifies the above  property. 
  The generalization to SU (n) of this property give the Gel'fand generating functions 
 and then we deducting the base and the formulas for the conjugate states of SU (n). 
  We also expose the usual methods which are very useful for the calculation of tensor 
products of SU (3). 
 

1. Generating functions and ladder operators 
 

1.1 Generating function of the oscillator and the base of Gel'fand 
    The generating function of the oscillator in terms of Gel'fand indices: 

                        0]ayexp[0
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=∑=                         (12,1) 

 
2.2  Generating function of SU(2) and the Gel’fand basis  
  We want to express the generating function of SU(2) in terms of Gel'fand indices.  

We have                      ,
)!()!2(
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(12,2)

 
In the Gel’fand notation we write the generating function of SU (2) by:
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 With:         0,,2 221112 =−== hmjhjh . 
 
1.3  The generating function of SU(3) and the Gel’fand basis 
   We observed (12,1-2) that the powers of parameters  x and y have the same powers of 
 raising and lowering operators introduced by Nagel and Moshinsky [35]. The extension of this observation to the expression of the generating function of SU(3) 
give: 
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The comparison of the expressions (8.3) and (10.28) yields: 
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Thus we find the well known result [36]: 
a-          h13 = p, h23 = q                                 b-            Iz =tz= h11 -(h12 + h22) / 2 
c-         Y = h12 + h22-2 (h13 + h23) / 3           d-             I=t= (h12-h22) / 2                   (12,6) 
   
We give only an expression of the basis of SU (3) in terms of the hypergeometric 
function 2F1: 
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1.4  The fundamental representations of quarks and antiquarks 
 
      SU(3)      i =   1 2 3 4 5 6 
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Young basis 1 

 

2 
 

3
 

2
3

1 
3 

1 
2 

 

Quarks (Iz, Y) (1/2,1/3) (-1/2,1/3) (0,-2/3) (-1/2,-1/3) (1/2, -1/3) (0, 2/3) 
 

Table 10  Baryon Jp=1/2+ 
 
 

2. The generating function of SU(n) 
 

 Generalizing the generating functions of the oscillator, SU (2) and SU (3) we write: 
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With                λ+μ−λμ−λμλμ −=λμ−=λμ 111 ),(,),( hhfandhhe . 
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2.1  Calculus of the coefficients )y,x(m
i,nϕ  

The coefficients )y,x(m
i,nϕ may be written as product of parameters ),(yy μλ=μ

λ and

.),( μλ=μ
λ xx We determine the indices of these parameters by using the following rules: 

a- We associate to each "one" which appeared after the first zero a parameter μ
λx  whose 

indexλ is the number of boxes andμ the number of "one" before it, plus one. 
b- We associate to each zero after the first "one" a parameter μ

λy whose indexλ is the 
number of boxes and μ  is the number of "one" before him.  
 
2.2 The symmetry and the conjugate states of SU(n)  
     We know that each binary number has a complement then we deduce that k

]i[,nΔ has a 

complement
k

]i[,nΔ , Therefore the generating function is invariant by the transformation: 
 

                                                          
k
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k
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2.2.1 The conjugate state ( )n

c
n h )(Γ of Gel’fand basis 

The generating function of the conjugate state ( )n
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n h )(Γ becomes: 
 

                      
( )cnn

n hhhh hyxA )())()((
2

1

1

111 Γ∑ ∏ ∏λμ
=λ

−λ

=μ

−μ
λ

−μ
λλμ

λ+μ−λμ−λμλμ

 

                                    [ ],),(exp , ,
m
jnim

m
in yx Δ∑ ϕ=                                     (12,10) 

 
We change μ−λ

λ
μ−λ

λ
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μ
λ xandybyyandx in ),(, yxm

inϕ  to get ),(' , yxm
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Put ν=λ-μ  so we write:           
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Comparing (5,2) and (5,3) we find: 

                                1,,,11, −λμ−λλμ−λλ+μ−λμ −=− hhhh cc

 

et                             λ+μ−λ−λμ−λ−λμλμ −=− ,11,1,, hhhh cc ,            

 avec                                        
0,, == nn

c
nn hh                                                    (12,12) 

We will determine the conjugate state n
ch )( with the help of (5,4). 

 
2.2.2 Expressions of the indices of the conjugate states: 
  We proceed by induction to determine the indices of the conjugate states: 
After the calculations for λ= n, n-1 .., 1 and μ= λ-1,.., 1 we find: 
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jijn

c
ji hhh ,1,1, +−−=

                                         
(12,13) 

 
We also get a known but found by other methods result [36]. 
 
2.2.3The phase factor  
By extension of phase factor φ of SU (2) [6], we write: 

                                               nji ji hh 1, , −∑=ϕ
                                        

(12,14) 

a- The conjugate state of SU (2) is:  

                                                     mjhhjh ccc +=== 112212 ,0,2                           (12,15) 
 
b - The conjugate state of SU (3) is the transformation : (t, tz, Y) (t, -tz, -Y)   
So we get the conjugate basis and the R-Conjugation of Gell-Mann of SU (3) [36]. 
   It is important to note that obtaining results (12,4) and (12,12) shows also the validity 
of our observation (12,1-2) that the powers of the parameters of the generating function 
have the same powers of ladders  operators. 
 

3. The decomposition of tensor products of SU (3) 
 

3.1. Graphical representation of Quarks 
We will present the decomposition of the tensor product by the graphical method because 
it is a simple and original method [19] and then the Young method tableau. 
We represent the fundamental basis of quarks by ||ܫ௭, ܻ ൐  with: 
 
a- The quark         [3]:          (Iz, Y) = (1/2, 1/3), (-1 / 2, 1/3), (0, -2 / 3) 
b- The antiquarks [3ത]:          (Iz, Y) = (-1 / 2, -1 / 3), (1/2, -1 / 3), (0, 2/3) 
 
The graphical representation is :  
 
                 The quark                                                            The antiquarks   
                      Y                                                                                 Y 
                                                                                                                                                                              
                                                                                                             ●2/3 
                ●        1/3  ● 
 
                                                     T3                                                                              T3                                    
                                                                                                   ●          -1/3    ●                             
                         ●-2/3 
 
 
3.2 The decomposition of the tensor products 
   We want to determine, for example, the tensor product [3] ٔ [3].  Let us put the center 
of the second pattern at the ends of the first and we get the second figure.  
But among the ends there are double points imposes second figures for double points. 
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         Y                               Y                                           Y                                                         
                                                                      ●                     ●  -2/3         ● 
                                            
 ●           1/3    ●          ●         1/3      ●                     ●                   ●                  
                                                           
                          T3 ٔ                          T3   =                                                  T3    =             
                                                                                  ●                   ● 
             ●                              ●                                             ●  
                                                         
                                                                                             ●-4/3                
                      Y                                                                               
                                                                                          Y      
     ●                ●                 ●                                                 ●  2/3                                                           
                           2/3              
                                                                            -1/2                          1/2       
                                                  T3  ْ                                                                 T3               
     -1                                   +1     
               ●               ●                                           ●                             ●                 
                                                                                               -1/3 
                        ●    -4/3 
 
 
 
 
3.3 The decomposition of the tensor products 
  We will calculate the tensor products with Young tableaux 
 
a‐                                                                          =    = 

                                             [3]   ٔ  [3]  =  [6]  ْ [3ത]                                           (12,16) 
 
b-                                                        =              
  
  
                                        [3]  ٔ [3ത] =  [8]  ْ [1],                                                  (12,17) 
 
c-                                                       =                                  
 
                                      [3] ٔ [6] = [10] ْ ሾ8ሿ                                                              (12,18) 
 
We can apply this method to other decompositions and are:  
 
                           [3]   ٔ  [3] ٔ  [3] =  [1]  ْ ሾ8ሿ ْ ሾ8ሿ ْ ሾ10ሿ 
                   [8] ٔ [8] = [27] ْ ሾ10ሿ ْ ሾ8ሿ ْ ሾ8ሿ ْ ሾ8ሿ ْ ሾ10ሿ ْ ሾ1ሿ                 (12,19)   



 

67 
 

3.4 The Baryon Octet and The Gel’fand basis 
 1-The Baryon Octet and the plane Y-T3 
 
                                  Y                                                                                                      Y 
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                                                                                                                                  ‐2   Ω‐                                                                      

3.5 The Baryon Octet and the Gel’fand basis 
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⎜
⎜

⎝
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2
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012
 

⎟
⎟
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⎜
⎜
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⎟
⎟
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⎞

⎜
⎜
⎜
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⎟
⎟
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⎞

⎜
⎜
⎜

⎝
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1
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
02

012

Quarks (Iz, Y) (1/2,1) (-1/2,1) (1,0) (0,0) (-1,0) 
 
      particule   Λ0 Ξ0 Ξ- 
States 1  3 

2 
 

1 3
3

2  3 
3 

Gel’fand basis 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
11

012
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
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012
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
01

012
 

Quarks (Iz, Y) (0,0) (1/2,-1) (-1/2,-1) 
                                             
                                        Table 11   Baryon Jp=1/2+ 
 
 
 
 3.6 Coupled representations of SU(3) 
     Several methods have been proposed for the determination of coupled representations 
and Clebsch-Gordan but calculations by these methods is beyond the undergraduate level 
[25,36]. 
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XIII-Appendices 
 
Appendix 1:   Equations of Klein-Gordon and Dirac 
      We want to give only the formulas [9]. 
1. Klein-Gordon equation 
   Starting from the relativistic energy 
                                              222 EmP =+

r
                                                            (A1,1) 

And the correspondence principle:  1,1, =∇→
∂
∂

→ h
rr

i
P

t
iE  

We find the Klein-Gordon equation 

                                      0),()( 2
2

2

=ψ−Δ+
∂
∂

− trm
t

r                                                (A1,2) 

This equation is an equation of relativistic spinless particles. 
A particle of mass m and charge e and is located in the electromagnetic potential (ϕ  (Ԧܣ,
has the equation: 
                              

22 mAepeE +−±ϕ= )(
rr

                                             (A1,3)
 We deduce in this case the Klein-Gordon equation: 

                            
Ψ=Ψ⎥

⎦

⎤
⎢
⎣

⎡
−∇−ϕ−

∂
∂ 222 )1()( mAe

i
e

t
i

vr

                                      
(A1,4)

 
 
2. Dirac equation of the electron 
  Following Dirac we are looking an equation of the form: 
 

                                          
ψψ DHti =∂∂ /                                                        (A1,5) 

 
The theory of relativity imposes a symmetry between the coordinates and the time so we 
are looking for a first-order equation and a hermetic operator, HD, of the form: 
 

                                    
 4 mpH D α+⋅α= vv

                                                  (A1,6) 
 
It is required that the energy of the electron System verify the equation: 

                                    
22422 pccmH r

+=                                                        (A1,7) 
Replacing HD and making identification we find: 

                      
lk

kllk2
k 21 ,)( δααααα =+=                                           (A1,8) 

We can write the matrix ሺߙԦሻ  in a form similar to the Pauli matrices by putting: 

                                            
i4

i
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(A1,9)

 
 
a-The equation is then written : 
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                                  mpH 4D αα +⋅= vv
                                            (A1,10) 

 
3. The equation for the electron in an electromagnetic field is: 
 

                              [ ] 0mAepeE 4 =α−−α−ϕ− Ψ).()(
rrr

            (A1,11) 
 

--------------------------------------- 

 
 
Appendix 2:   Electronic configuration of the chemical elements 
        
              Electronic configuration of neutral atoms in the ground state: 
  sub-shells abbreviated by detailed sub-shells and the number of electrons in each shell. 

1 H Hydrogen : 1s1 1  
2 He Helium : 1s2 2 
3 Li Lithium : 1s2 2s1 2,    1 
4 Be Beryllium : 1s2 2s2 2,    2 
5 B Bore : 1s2 2s2 2p1 2 ,   3 
6 C Carbone : 1s2 ,2s2 2p2 2,    4 
7 N Azotes : 1s2 ,2s2 2p3 2,    5 
8 O Oxygen : 1s2 ,2s2 2p4 2,    6 
9 F Fluor : 1s2 ,2s2 2p5 2,    7 
10 Ne Neon : 1s2 2s2 2p6 2,    8 
11 Na Sodium : [Ne] 3s1 2,    8,    1 
12 Mg Magnesium : [Ne] 3s2 2,    8,    2 
13 Al Aluminum : [Ne] 3s2 3p1 2,    8,    3 
14 Si Siliceous : [Ne] 3s2 3p2 2,    8,    4 
15 P Phosphor : [Ne] 3s2 3p3 2,    8,    5 
16 S Sulfur : [Ne] 3s2 3p4 2,    8,    6 
17 Cl Chlorine : [Ne] 3s2 3p5 2,    8,    7 
18 Ar Argon : [Ne] 3s2 3p6 2,    8,    8 
19 K Potassium : [Ar] 4s1 2,    8,    8,    1 
20 Ca Calcium : [Ar] 4s2 2,    8,    8,    2 
21 Sc Scandium : [Ar] 3d1 4s2 2,    8,    9,    2 
22 Ti Titan : [Ar] 3d2 4s2 2,    8,    10,    2 
23 V Vanadium : [Ar] 3d3 4s2 2,    8,    11,    2 
24 Cr Chrome : [Ar] 3d5 4s1 2,    8,    13,    1 
25 Mn Manganese : [Ar] 3d5 4s2 2,    8,    13,    2 
26 Fe Iron : [Ar] 3d6 4s2 2,    8,    14,    2 

  

                                                                    
Table 12 
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Appendix 3:   hypercomplex numbers, quadratic transformations of  
                        octonions and Pauli and Dirac matrices 
 
3.1 Octonion Quadratic transformations  
  From the generalization of the transformation (6, 28) we obtain the antisymmetric 
matrices H2 (2,2)”complex” , H4 (4,4)”Quaternion” and H8 (8,8) “Octonions” (A3,3). 
 
by posing:                V4= (u3,u4,u1,u2)       et  V8=(u5,u6,u7,u8,u1,u2,u3,u4)                              (A3,1) 
We get the transformations 

5834 RRetRR →→ :  
                            V4H4 = (x1, x2, x3,0)      V8H8 = (z5, -z3, z2, -z1,z0 ,0,0,0)                         (A3,2) 
 
3.2 Hypercomplex numbers: complex, quaternion and octonion. 
  The matrix of octonions H8 is given by: 

And
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(A3,3) 

 

With                                1ee,euIuH ii
8

2i ii18 −=⋅∑+= = ,                             (A3,4)     

And                            ,8
218 ∑−= =i ii

t euIuH      
28

188 ii
t uHH ∑=× =                         (A3,5) 

    
3.3 Quadratic transformations and Pauli, Dirac matrices 
3.3.1  Put :                                         t(u) =(u1+iu2,u3+iu4)    
        and                    t(v) =  (u1+iu2,u3+iu4,u5+iu6,u7+u8)                                         (A3,6) 
 
The Pauli and Dirac matrices are ݏԦ and γi  and It’s simple to shows the relations:  
 
                               x1=  t(ū)(sx)(u),  x2=  t(ū)(sy)(u), x2=  t(ū)(sz)(u),                              (A3,7) 
                            
                     )v()v(z,3,2,1i),v()v(iz),v()v(z 0t

0
it

i
5t

4 γ==γ=γ=                      (A3,8) 
 
3.3.2  Identifying t(u) λi with the columns of V8H8 we deduce the matrices λi which are 
the Dirac representations matrices of γi in R8 with t(u) = (u1, u2, ..., u8). In addition we 
find the three matrices λi , zi = 0, i=5,6,7, which commute with the λi, i = 0,1, .., 4. 

3.4 Hurwitz theorem:  
        There are antisymmetric and orthogonal matrices Hn if and only if : 
                              n=1, 2, 4 and 8 or “ R, C, H=Q and O”                                      (A3,9) 
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Appendix 4:  Inertia tensor and cross product in n-dimensions space 
 
   We demonstrated using an elementary method that the tensor of inertia of a material 
point and the cross product of two vectors were only possible in a three or seven 
dimensional spaces [14].  
 
1. Inertia Tensor 
  The kinetic energy of a particle of mass m=1 which moves in a system in rotation with 
angular velocity )(ω

r
is:  
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Then 

                      ( ) ( ) )V)(V(Mand)()V)(V()(
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We write the inertia matrix as:  
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2. Inertia tensor and the quaternion  
   The identification of two sides of the equation (A4,2) may be written as:  
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We can express these systems in matrix form as Ir)V)(V( 2
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t r
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(A4,4)  

 
We replace the matrix ( )3V by its expression in (A4,1) then we deduce the orthogonal and 
anti-symmetric matrix:  
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With )( 4V  is the matrix representation of the quaternion  
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  )( 4V Is an Hurwitz matrix and 321 eandee ,  are the generators of the quaternion [A4,5].     
 
3. The cross product in n-dimensions 
      The generalization of the tensor of inertia in an intuitive way is: 
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And the matrix system Ir)V)(V( 2

1n1n
t r

=++  takes the form:  
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The generators of the octonions algebra satisfy:  
                                      71jieeee1e ijji

2
i K,,,, =−=−=  

Hurwitz showed that the orthogonal and anti-symmetric matrix which lines are a linear 
combination of components of a vector if only if n=1, 2,4 or 8.  
  
    Consequently the matrix (M) is orthogonal if n+1=8, it results that dim( nR )=1,3 or 7. 
And the restriction of (V8) =  -u2 e2 +u3 e3 +u4 e4 -u5 e5 -u6 e6 +u7 e7 +u8 e8 to the first seven 
rows and columns (7,7) we obtain the matrix (V7) and (M7)= t(V7) (V7). 
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  Appendix 5:    The p-representation of the hydrogen 
 
     It is well known that the representation {݌Ԧ} of the hydrogen atom was deduced 
indirectly by Fock in 1935 by introducing the transformation that bears his name [29]. 
   But in the literature [3-11,28] there is no direct calculation to determine the wave 
function in the representation{݌Ԧ} of the hydrogen atom, which is the Fourier transform of 
the wave function of the representation {ݎԦ}, except in special cases. 
   In this section we want to fill this gap by using the method of generating function and 
the quadratic transformation ܴସ ՜ ܴଷ and more we find the phase factor. 
 

1. Generating function of hydrogen atom 
 
The wave function of hydrogen atom in momentum representation is 
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Where )(rLn
α is the associated Laguerre polynomial.  

Atomic unit are used through the text. 
 
1.1 The generating function of Laguerre polynomial )(rL 1l2

1ln
+
−−  

The generating function of Laguerre polynomial )(rLn
α is:  
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1.2 The generating function of spherical harmonics 
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With Ԧܽ is a vector of length zero, Ԧܽ. Ԧܽ ൌ 0 and its components 
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1.3 Generating function for the basis of the hydrogen atom 
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Substituting (A5,5) and (A5,6) in the above expression we obtain: 
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2. The generating function in momentum representation 

 
2.1 The quadratic transformation ࡾ૝ ՜   ૜ࡾ
    Consider the relationship between the well-known Wigner’s D matrix spherical 
harmonics polynomials  
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We write in terms of Euler’s angles or Cayley-Klein parameterization. 
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If we put l =1 in (A5,9) we obtain the quadratic transformation 
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2.2 The volume element 
We consider the transformation ),r()u,u,u,u( 4321 ψθϕ→  
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With       41iur0200 i ,...,,,,,, =∝+≤∝≤−≤∝≤≤≤≤≤ πϕψπθ   
And                                  ψϕθ dddrdJud 4 =

r  
The calculation of the Jacobian gives 
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2.3 The generating function in {u} representation 
We denote the generating function by ),,( pzG r

αξ in the representation {u}. But to 
determine the generating function (A5,7) we must multiply by 4 / π to reflect the change 
in the measure of integration. We write 
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To calculate this expression we must write (A5,1) in the (u) representation using the 
formula (A5,11):  
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In the expression of                 there is the term      for that we consider a new generating 
function:  
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We assume that β ≥ 0 therefore there is no problem of convergence. 
  
We write then:  
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2.4 The generating function of momentum-space 
     We can do the integration of (A5,14) by a direct calculation with the variables (u) we 
can perform  the integration using the Gauss formula  
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We obtain then  
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Because Ԧܽଶ=0 we deduce that: 
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We find therefore the generating functions  
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In applying the relation (A5,16) we find the generating function ),,( pzG r

αξ  
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3. The wave functions in momentum space 

 
We drive the basis of momentum-space using the formula (A5,6) 
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In this case we must take δ=1/n and to execute the calculations we proceed by step: 
 
3.1  Derivation with respect to α 
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We have  
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We deduce that 
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3.2 Derivation with respect to z 
Using the familiar formula for the generating function of Gegenbauer polynomials 
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With m + l +1 = n, m+ l + 3 = n and δ =1/ n therefore 
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We obtain  ݕሬሬሬԦ. Ԧݕ ൌ 0. Thus we find the transformation introduced by Fock. 
 
3.3 Derivation with respect to ࢓࢒࣐ሺ ࣔ

ࣈࣔ
ሻ  

   By using the formula (A5, 6) we get the following expression 
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3.4 The wave functions in momentum space 
The comparisons of (A5,26) and (A5,27) give us the result: 
 

 
[ ]

)(
)(

)()(
)4(

2
)!1()()( 222

2
3

2
112/3 pY
p

xCxClaNip lml

l
ln

l
lnl

nl
l

nlm
r

r
r

+

+
−−

+
−−+−

δ+
−

δ×
π

+
=ψ                    (A5,29) 

 
And with the help of the recurrences formula [30]:  
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We derive finally the wave functions in momentum space:  
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It is clear that we obtain by an elementary method and direct calculus not only the wave 
function in momentum representation but also the phase factor. 
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Appendix 6:  Generalization of Cramer's rule and classical 
                       polynomials   
 
1. Generalization of Cramer's rule 
      The expression of the determinant formed from )a,...,a,adet()Adet( n21

rrv=   
by substituting the components of some vector )a( i

r  by the components of the vectors
nsi1,b i ≤≤≤

r
result from  the resolution of the system: 
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The solution of this system is given by the formula (25): 
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In the particular case s=1 we find the well known Cramer’s rule.  
 
   The formula (A6, 2) is very useful for calculating the spectrum of nucleus rotations 
 but it is fundamental for the study of nucleus vibrations (25). 
 
2.Orthogonal polynomials 
1.1 The hypergeometric functions 

                 ...
2.1)1(

)1()1(
1

1);;,( 2
12 +

⋅+γγ
+ββ+αα

+
⋅γ

αβ
+=γβα zzzF                (A6,3) 

1.2 Laguerre polynomials  
The differential equation [2,30]: 

                             0Lp
dz
d)z1k(

dz
dz k

p2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+−++                                   (A6,4) 

Orthonormality relation 
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1.3 Hermite polynomials 
 The differential equation: 
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1.4 Legendre polynomials 
 The differential equation: 
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Orthonormality relation 
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