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An elementary introduction to
Quantum mechanic

M. Hage-Hassan
Université Libanaise, Faculté des Sciences Section (1)
Hadath-Beyrouth

Abstract

Quantum mechanics originates from the study of the spectrum of hydrogen atom and the black
body radiation and the development of this theory has been very successful for the study of
atoms, the nucleus and the classification of elementary particles using SU (3) group. But the
course of quantum mechanics in the second year should be revised to take account of these
developments not only in terms of program but also from an educational point of view, especially
for students of mathematical orientation. In this work we give an idea about the origin of quantum
mechanics and we summarize the Schrodinger, the Dirac formalisms of quantum mechanic and
the path integral. After exposing the Dirac’s method of the oscillator we treat the Schwinger’s
approach of angular momentum. We present the theory of the central potential, the Quarks model
and the classification: of chemical elements and elementary particles. We present a summary of
the approaches of group theory. We present the theory of SU (3) and the decomposition of tensor
product of SU (3). To take account of level of students we use in the applications our
generating function method for its simplicity.

Résumé

La mécanique quantique a pour origine I’étude du spectre de I’atome d’hydrogéne et le
rayonnement du corps noir mais le développement de cette théorie a eu un grand succes pour
I’étude des atomes, du noyau et la classification des particules élémentaire a 1’aide du groupe
SU(3). Mais le cours de la mécanique quantique de la deuxiéme année doit étre révisée pour tenir
compte de ces développement, non seulement du point de vue programme mais aussi du point de
vue pédagogique, surtout pour les étudiants d’orientation mathématique. Dans ce travail nous
donnons une idée sur I’origine de la mécanique quantique et nous résumons les formalismes de la
mécanique ondulatoire, le formalisme de Dirac et I’intégrale du chemin. Apres avoir exposé
I’oscillateur par la méthode de Dirac nous traitons la théorie du moment angulaire a I’aide de
I’approche de Schwinger. Nous exposons la théorie du potentiel central, le modéele des Quarks et
la classification : des éléments chimiques et des particules élémentaires. Nous faisons un résumé
des approches de la théorie de groupe. Nous exposons la théorie et la décomposition du produit
tensoriel de SU(3). Pour tenir compte du niveau des étudiants nous utilisons dans les
applications notre méthode de la fonction génératrice pour sa simplicité.
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Introduction

The basis of scientific development and current technique are the classical and quantum
mechanics. But quantum mechanics has objective to study and describe the phenomena
of physical systems of the atomic and subatomic. It was developed to solve various
problems such as the existence of the spectral lines of the hydrogen atom, the
photoelectric effect, or black body radiation.

The development of quantum mechanics proved to be very fruitful in results and
various applications. It allowed to clear up the mystery of the structure of the atom,
the nucleus and they very important for the study of elementary particles and the quantum
information. And more it is undoubtedly the basis for future technologies.

In this work we want to give the undergraduate students of the second year and
especially who have mathematical orientations a simple overview of quantum
mechanics and its connection with the mathematical theories.

The theoretical development of quantum mechanics had as its starting point the classical
mechanics, optics and the analytical mechanics. And this theory has opened up new
branches not only physical but also mathematical through Dirac formalism, distributions,
the Fock space and the modern physical theories.

On the other hand the theory of groups: The Lie groups, the classical groups and
groups of permutations have applications in the theory of angular momentum, nuclear
physics and classification of chemical elements and elementary particles. therefore we
expose a summary for the study of algebras of semi-simple Lie groups and the Weyl
global method for unitary group. We are particularly interested in the study of the
representation of SU (3) and the tensor product of these groups.

We emphasize that this work is a revision and renovation of lecture notes taught to
students in the second year in the 70s. we present a simple way to resolve many
unresolved problems or solved by difficult methods using the generating function method
that we have developed and using the octonion algebra. We emphasize that our method
fits naturally in a simple way in all sections of the course of quantum mechanics.

Summary of the origins of quantum mechanics

lassical hani i . .
Classica mf chanic Geo. Optlis Wave optics Elect. + Magnetism
Lagrange equation Calculus of Variation \ /
v L — Unification: Maxwell equation
Analytic mechanic v

—

Heisenberg mechanic

Schrodinger mechanic

.

Quantum mechanic

v Dirac Formalisme
Lagrangian Quantum Path

integral of Dirac-Feynman” 4




I- Origins and formalisms of quantum theory

Understanding the movement of the stars and planets and a variety of fact have been
the origin of the classical and quantum mechanics. In this section we will give a quick
summary of these theories and the quarks model of elementary particles.

We represent the development of mechanics: classical, quantum and elementary
particles by an astronaut who observed a pedestrian moves on the earth:

First: it is very far from the earth, he sees the pedestrian (particle) moves on a straight
line or a curve.

Secondly: if approaching the earth again, he sees the pedestrian moves in a zigzag
randomly.

Third: if the astronaut approaches the pedestrian, he sees the pedestrian characteristics:
Eyes (spin), the head(charge), etc...

1. Classical and analytical mechanics

We present in this part a rapidly developing of the classical mechanics [1] and the
calculation of Euler variations [2] which is the origin of the principle of least action and
the analytical mechanics.

1.1 Origin of classical mechanics

1- We know that the origin of classical mechanics is the meeting between a rich young
Tycho Brahe obsessed by astrophysics and a priest expelled from the church because
Kepler doing mathematic during the confessions. After observing the planets during a
long time Tycho Brahe died and Kepler found the Kepler's laws and more he has no
resources and died of famine.

2- A young professor of mathematics Galileo good-looking and from a famous Italian
family who loved dancing. One day when he was dancing in a very large and very clean
saloon, "no-friction ", suddenly came a current of air and chandeliers start swinging
without stop. Galileo deduced from the fact that the laws of nature are invariant under
uniform translation. And then he defined the velocity and found the law of falling bodies.

3- Newton finally represented the force by a vector and introduced the acceleration and
had a genius idea, “a brain-wave”, that the laws of nature are represented by mathematics
and by his famous formula.

undoubtedly Newton made a hole in the frozen ocean of knowledge and allowed other
scientists to swim in it.

1.2 The Euler calculations of variations

a-The Fermat's principle of least time
The study of the movement of light is performed using the physical wave or using
geometrical optics. But Fermat sought the minimum of time of light ray linking point
A (0, a) in medium (1) to point B (b, ¢) of the medium (2) and passing through the point
M (x, 0 ) with V| and V; are the velocities of the light in the first and the second medium.

t(x)=t, +t,=(AM |/v,)+ (MB |/v,)

5
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Fermat found the Descartes law of reflection of light. Descartes was very jealous and sent
to Fermat a letter of displeasure.

b-Calculation of Euler* variations
Generalizing the method of Fermat, Euler (Russia) has sought to find the minimum of
the expression

=1 f(q,q" t)dt (1,1)
ol=0,avect+5t,6q(a)=5q(b)=0,and 6(q'(t)=d(5(q)/dt

We find by integration by parts of Euler's formula:

d of  O0f
dt 0q' 0q (1,2)

1.3 Analytical Mechanics and principle of least action
a- Lagrange formalism
Lagrange (France, friend of Napoleon) generalized Newton formula on a variety
and applying D'Alembert principle of virtual work and found the formula

R VAN 1 4
i p 8 g > p 8¢ (1,3)

L =T-V is the Lagrangian, T is the kinetic energy and V is the potential energy.

Comparing this formula and Euler's formula (1,2), Hamilton observed the identity
of the two formulas if f = L and replacing I by the action S then we write:

S(q(0)) = [L(g.q" 0)dr (14

The principle of least action has various applications:
1 - It is applied in optics and gives the laws of dynamics which led Hamilton to predict a
unifying theory "wave-matter."

2 - This principle has applications in various fields: economics, etc..



b- The Hamiltonian function H and the equations of mechanics
Starting from the Lagrangian L (g, q"',t)

oL oL .
And dL = —dq + —dgqg (1,5)
0q o4

And using Lagrange's formula we find after a simple calculation
d(gp - L)=dH = —pdg +qdp = ——dq + ——dp (1,6)
p

Hamilton has introduced the function H and found a new system of equations of
analytical mechanics or the canonical system:

. oOH . oOH
p=-——, g = — (L,7)
0q op

By definition, the function H (g, q"',¢) isthe Hamiltonian of the system.
And for a conservative system:

H(qg,p,t)=P°/2m+7V . (1,8)

Then Jacobi continued the Hamilton work and found the known Hamilton-Jacobi
equation:

0S 0S
H ,—,t)+ —=10. 1,9
(g P ) P (L,9)
With:
P =0S8/0q.

Note that later Heisenberg found important equations in quantum mechanics similar to
Hamilton's equations.

c- Physical quantities and the constants of motions
From the analytical mechanics we derive the physical quantities: the coordinates,
momentum, the angular momentum and energy.
For a conservative system the angular momentum and energy are independent of time so
are constants of motion.

7=0,—=0,:>H=E,E=€ (1,10)

Analytical mechanics has various applications including the harmonic oscillator and
the Kepler problem with the equation is transformed into an equation of the oscillator by
Binet transformation to solve this equation.



2. Quantum Mechanics

The second case is the latest approach to quantum mechanics or the path integral
introduced by Dirac and developed by Feynman [3-4] but the methods of calculations by
this approach are difficult and beyond the level of the 2nd year.

In this work we give only a quick summary of this approach.
It is very important to give a summary of the Hamiltonian approaches of quantum
mechanics and the Dirac formalism[5-11].

2.1 Origin of the quantum mechanic
We know that this approach has its origin in a true story:

In a very brighten day in Geneva in 1885, escaping from a balloon salesman’s a
number of balloon filled hydrogen and in the night he found an emission of radiation
picked up from the balloons. Then a newspaper in Geneva "Geneva Gazette" published
the wavelengths of radiation and a secondary teacher who has studied only the first year
of the faculty found the series known Balmer series.

We must not forget the problem of black-body radiation (stove), which was the basis
for the introduction of quanta of the light by Planck, Einstein and Bohr's work (table1-2)
which were very important in the development of quantum mechanics.

2.2 Hamiltonian approaches
From the intense research has resulted in two equivalent approaches:

Heisenberg's matrix mechanics and wave mechanics of Schrodinger. The first requires
only the appearance of physical quantities observed by experience and this requires the
absence of electron orbits at the microscopic level and the search for Hermitian operators
representing physical quantities. But the second approach is start from the work of Louis
de Broglie who postulated the wave-particle duality, already predicted by Hamilton, as a
general property of microscopic objects.

Schrodinger specialist of differential equations, and in a seminar presented a simple
rule of correspondence

> h(0
) 1.1
Which allowed the derivation of the fundamental equation of quantum mechanics:
L[ Oy
Hy = ih| —/— 1,12
U} ( rp ] (1,12)

Thus Schrodinger find the energy levels of hydrogen atom.
Born gave a probabilistic interpretation of the wave function on the assumption that

[W(r, )7 (1,13)

Represents the probability of finding the particle at position 7 at time t.
Schrodinger also showed the equivalence of the two approaches but Dirac established
the general formalism of quantum mechanics.



Finally Dirac**, arrived on the scene as they say, and after two weeks of reading the
work of Heisenberg noted that the coordinates and momentums are observables and do
not commutes. This involves from physical point of view that we can not simultaneously
measure the position and momentum and implies from mathematical point of view that
we must have two functions: The first one is based on coordinated and the second is a
function of momentum and are deduced from each other by Fourier transformation.

And this has also led Dirac to introduce: a new notation of the space and dual space,
the state function of the physical system, the discovery of the delta function known by
Dirac function and the presentation of a new formulation of quantum mechanics.

More, Dirac introduced the ladder operators (a*, a) or the raising and lowering
operators, by analogy with complex numbers z and Z, for solving the equation of the
harmonic oscillator which are the origin of the second quantization, the basis to study the
many body problems and the theories of modern physics.

Heisenberg also introduced a new and different representation of the Schrodinger and
showed that the transition from state (Xo, to) to the state (X, t) can be done using the

evolution operator U(t, to) = e (") if H is independent of time.
It is easy to observe that the operator U satisfies the Schrodinger equation.

HU(t to) = in (252) (1,14)

3. Quantum physics before 1950

In the 50s of last century the situation was as follows:
1 - The spin
Pauli introduced spin to explain the famous Stern-Gerlach experiment and defined
The state of particles by the product of the spatial wavelength and the state of spin which

is written in Dirac notation by |s,s, = £1/ 2>.

2 - The Pauli principle
Pauli divided the particles into two categories:
a- The bosons:  particles with integer spin
b- The fermions: particles with half integer spin.
c-The state of the physical system obeys the Pauli principle:
the wave function of bosons is symmetric and anti-symmetric for fermions.
— The result is that two fermions can not coexist in the same state, in the same place, at the
Same time and that ensures the existence of macroscopic matter.

3 - The octonions algebra in physics
The success of the analogy between the form of the Hamiltonian of the oscillator and
the product of complex number and its conjugate led Dirac, in my opinion, to extend this
idea to octonion algebra [12-13] to determine the relativistic equation of electron.
We must not forget that Maxwell wrote at the beginning his electromagnetism theory in
terms of quaternions and more quaternions are very useful in classical mechanic (A4),
Quantum Mechanics and Quantum Fields [12-18].



4 - The discovery of antimatter

Dirac also predicted on the basis of his famous equation of electron the existence of the
anti-electron and the existence of antimatter, which was confirmed after that by the
discovery of positrons etc.[8-9]. More matter and antimatter annihilate when they meet.

5 - Structure of the atom

We know that light is composed of photon spin 1. And atoms are made up of Z electrons
(¢") that revolve around the nucleus of Z protons with positive charges, and (A-Z)
uncharged neutrons. And all these particles are fermions with spin %%.

6 - Photons and the electromagnetic interaction
In the vacuum the interaction can not occur without exchange of particles:
The electromagnetic interaction has infinite range and which requires the particle
exchange, virtual particles, zero mass and we deduce that:
The emission and absorption of photons by atoms is done by light quanta.

7- Electrons - nucleus
The connection between the electrons and the nucleus is due to the electromagnetic
interaction and this interaction is due to the exchange of virtual photon with spin 1.

4. The Elementary Particles

Elementary particles [11,19-21] are numerous and have been detected in cosmic rays
and from electron-proton reactions. Among these particles the protons and the electrons
are stable and the others particles are resonance which decays and their lifetime is very
short. And these particles are divided into three categories: hadrons or massive particles
(proton, neutron, ...) and light particles or leptons (electron neutrino, ..) and photons,
massless particle.

But the story of the discovery of these particles and their interactions is very long and
complex, but we will give a brief idea about the interactions in the nucleus and between
these elementary particles.

A- Interaction in nuclear physics
In nuclear physics, the interaction is short-range (10-12cm) and the binding energy of

the nucleus is very high, for example the energy bonds of the deuteron is 2.2 MeV where

the name of strong interactions.

1- Yukawa proposed by an empirical method a potential of nuclear interaction and by
analogy with the electric field has predicted the existence of a particle as a quantum
field of strong interaction’ the meson’ with charge B , from the word baryon.

2 - The difference between proton and neutron masses is very low and it is due to the

proton charge and this has led Heisenberg to introduce isospin and nucleons. This means

that the proton and neutron are the same particle, the nucleon, with two different states

and by analogy with the spin we write |I,LI = =+1/ 2> .

3 - In nuclear physics the interpretation of level energies of Mg poses a great difficulty

but Elliot 58 proposed a model based on the SU (3) group by considering the existence of
a quadrupole-quadrupole forces between particles and the general agreement with the

10



experimental levels is quite good [20]. Elliot was also calculated the basis of the
representation of SU (3) group.

B-The Elementary Particles

The number of elementary particles exceeded the hundred and we must make a
classification similar to the classification of atoms of Mendeleev. And after many
unsuccessful trials Gell-Mann and Ne'eman proposed a model for hadrons based on the
SU (3) group theory [19-25].

Then Gell-Mann proposed the model of Quarks to avoid the defects in the model. The
Quarks model admits the existence of a common substructure of neutron and proton
called Quarks. This model is based on well known research of mathematicians and
physicists on group theory and these results led to the development of semi-simple lie
groups and especially the unitary groups SU (n).

C-The Interactions
To our knowledge the interactions are:
4.1 The electromagnetic interactions:
The quantum of these fields is the photon with spin one and zero mass.
4.2 The strong interactions
Currently we assume that this interaction is due to the interaction between quarks and
quantum of interaction of these fields is the gluon, particles with spin 1.
4.3 The weak-interaction
These interactions are due to decay of the neutron and radioactivity . The quantum
field are W* and Z° predicted by the electroweak unification theory .
a-This interaction is very important for the creation of energy in stars.
b-This interaction does not respect the important property of left-right symmetry.
"Some researchers believe that this interaction is responsible of the sense of: rotation
of the planets and rolling of DNA etc."
4.4 The interaction of gravitation.
4.5 Symmetry
Finally, we can not talk about the matter and the laws of nature without talking
symmetries and invariances, especially the left and right symmetry, rotational invariance,
the representation of groups especially semisimple Lie algebra [19-25]. Therefore we
summarize the symmetry and the study of SU (3) in the chapters at the end of this work.

* Euler was the son of a Swiss baker and was sent to school early. After some months the child asked the
teacher: wrote me a set of numbers and I give you on the sum and the product of these numbers. The
teacher was amazed and at 3h30 am went to the bakery and told the father that your son is a genius and you
are unable to educate him. I suggest that you send him to the Bernoulli family of mathematicians.
** English physicist and electrical engineer. He was very influenced by the work of Heisenberg

and by the English School: Maxwell, Hamilton, Cayley, etc..

11



II- Schrodinger’s theory and harmonic oscillator
1. The Schrodinger equation

1.1 de Broglie wave function and Schrédinger equation

The experience of the electron diffraction shows the wave aspect of particles and the
classical conceptions are at an impasse.
de Broglie suppose that the wave function of electrons is a monochromatic plane wave of
the form:

y(r,t) = exp[ —i(ot—1p-r/h)] 2,1)
And which has a wavelength A =7/ p
de Broglie put: ho=E=p’/2m
And the wave function is then written:
y (7, t)=cexp] —i(Et — p -r/h)]
It is simple to verify that
oV h

ih = = - A 2.2
ot 2 m v 2.2)

This equation is the quantum representation of movement in the absence of interaction.
Schrodinger added the potential V and thus obtained the equation that bears his name.

aa—“;:(T+V)\|J:H‘I’ 2.3)
Where T is the kinetic energy:
T =p2/(2m), p? = —h*A (2.4)

1.2 The functions of stationary states
a- If H is independent of time we write:

v (r,t) = exp[ —i(Et)]¢(r) (2.5)
And the Schrodinger equation becomes
Ho = Eo

For an isolated system the states is described by the wave functions solutions of the
equation :

He,(r)=E,p,(r) (2,6)
And ¢, (r)are called stationary states.
The set of the eigenvalues {|En |} of H are the energy levels.
These wave functions are square integrable functions with:
(©,.0,)=19,(e,(rd*r=35,,, @.7)
And d’r=dxdyd:
- The set of wave functions {¢,,} form the pre-Hilbert space H.

- Also be noted that any linear superposition of the stationary states is a wave function of
the physical system.

12



2. Transformations and linear operators

2.1 Linear transformations and Euclidian space
2.1.1 We consider the linear transformations in E,, (K)
a : £, - FE, (2,8)

n

With a(e;)=2%2 a, e,
The matrix 4 = (a, ;)1is the matrix representation of the application a.

o o .
- The matrix A is hermitian if (a, ;)="(a,,).

2.1.2 Linear transformations which play an important role in physics are:
1-The special orthogonal groups SOn or SO (n) are linear transformations with:

‘O ,0 , = I With déterminant(O,)=1 (2,9)
2-The unitary groups, SU,, or SU(n) are linear transformations with:
‘U U , = I With déterminant (U,)=1 (2,10)

3 - The infinitesimal generators of the group
The elements A of the group G is composed of non-singular matrices of degree n and
is expressed as a function of r continuous parameters [24]:

A=A(a,,..,a,).
We have the important formula of group theory:
Of(x) =f('o(x)), x € E, And Uf(z)=f(‘u(z)),zeC, (2,11)
The infinitesimal generators of the group are:

X,=04/00,),_, (2,12)
From the conditions (2,9-10) we find that the number of parameters of SO (n) is
n (n-1)/2 and SU (n) is n*-1.

2.2 Operators in Hilbert space
The commutator of the two operators A and B is defined by

[A, B] =- [B, A]=AB-BA

We deduce that: [A, B+C]=[A, B] + [A, C],
[A, BC]=[A,B]C+BJ[A,C]. (2,13)
[A, B]=-[B, A] = AB-BA

a- Property: if [A, B] = 0, then the operators A and B have the same eigenvectors.

b-If we consider the linear transformation A we have:

(0, Ay)=(CA¢,v) (2,14)
c-The operator A is Hermitian if o
A= A"="4 (2,15)



d- We can simply prove the following theorem:
Theorem: The eigenvalues of a Hermitian operator are reels and the eigenvectors are
Orthogonal.
Casimir operators:
We denote by Casimir operators, the Hermitian operators that commute with the
generators of SO (n) or SU (n).
e- Lemma: If A is a real number around zero we write:

2
e“Be“=B+A[A,B]+zl[A,[A,B]]Jr... (2,16)

3. Observable and Schrodinger quantization rules

3.1 Observable and the wave function
The results of experimental measurements of the position, energy, kinetic and
angular moments are real numbers so the operators X, y, ..., L, are Hermitians and
hence are observables.
a-We can not measure simultaneously observable unless they commute.
b-The proper function of all commuting observables, H, ..., are the wave function
of the physical system.

3.2 The Schriodinger quantization rules
3.2.1 Born interpreted the square of the modulus of the wave function |(x)|? by
probability of presence of the particle at the point x
3.2.21f x = 40 [1p(£)|? = 0 the particle are not found in the infinity.
we write

+.f%\|1(x)(d(p(x))dx *Jf‘d\y(x)

- = - — e () + oy (x)o (x)]

It is clear that the operator px must be Hermitian:

k d

P

If &k = h we get the Schrodinger quantization rule.

— o

3.3 The commutator operators of x and p
[ 1r () = 2y ") = S=(f () = inf ()
Then [x, px] = 1h 2,17)

As a result, we can not simultaneously measure x and py.
Dirac deduced from this relationship the wave function in phase space.

3.4 The commutation of the operators Ly, L,, L,
Using the formula (2,17) we find:

lL..L |=inL, |L,,L.|=inL,, [L.,L ]=inL, (2,18)

14



The Casimir operator L*> = L> + L’ + L> commutes with Ly, Ly, L,.

Soif V=V (|1~ |) the wave function is eigenfunctions of L? , L and H.

3.5 The wave function of the physical system

The wavelength of a non-interacting physical system function is the tensor product of
individual wave functions. But for interacting system the wave function is developed on
the wave functions of non-interacting system.

4. The Heisenberg uncertainty relations

4.1 Average values of observables
The average value of the operator F is:

<F>=[y(r)F(x,y,z)y(r)dr (2,19)
< AF >*=< (F-< F >)*>
4.2 The uncertainty relation
We consider the integral:
dy

The development of this integral gives

2

dc 20, 1 € R

Xy + Ah

I(A) =< x2>+khf(dw XY o+ yx dy )dx+< pl>>0
dx dx

using [X, px] = 1 h and after integration by parts we find:
I(AM)=< x>>-Ah+A < p2>2>20

The discriminant of the quadratic equation in either negative or zero:

—4<x? > pl>+h?<0
If we replace x and px by the standard deviations we find:

< Ax >’<Ap_ >*>2h’/4
We derive the Heisenberg uncertainty relations

SAX><Ap . >=h/2,.<Az><Ap,>=h/2 (2,20)

-This relationship means that if the wave is close to x this implies that the wave

in the phase space is very spread out.
-There is the uncertainty relation time -Energy:

<AE > At> =h/2 (2,21)

5. The Harmonic oscillator

The Hamiltonian of the one dimension harmonic oscillator is:
2

H=2 4 mox> (2,22)
2m

The Schrodinger equation is:
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Hy , (x)=E,y,(x). (2,23)

Put x=(h/mo)q, et p=(moh)P, a=meo/h,E=ho€
Thus we find the following equation:
Hu(q) = (P2 +q° )u(q)/ 2 with H=ho H (2,24)

If we make the change of function:

u(q)=f(g) e "

We find the equation:

d’ d
7 (@) -29g—f(@)+(2e -1 f(g)=0 (2,25)
dq dq
The resolution is done by writing f (q) in the form of a series:
fl =a,+a,qg+a,q’ +.. (2.26)

If the solutions are bounded at infinity we find that {f (q)} are the Hermite
polynomials H;, (q) [2,30] and the wave function is:

u ()= (T2 ) 2e T H, ()
And u,(x)=((maeo)/ 1) u, (q)
u,(=x)=(-=D" u,(x) (2,27)

1 - These eigenfunctions form the Hilbert basis of Ly(R) and (-1)" is the parity.
2 - The eigenvalues of the energy of the oscillator are:

E =heo (n+1/2) (2,28)

6. Oscillator generating function and analytic Hilbert space

6.1 The generating function of the harmonic oscillator is known since long time [1-9]
and is written as:
2" 1 q2 22
G(2,9) = X0 =1, (@) =7 *expiv2gz ===} (2,29)
n!

N

6.2 If the parameter z is complex we find that the functions f,(z) =z"/ Jn! form

a basis of the analytic Hilbert space known by Fock or Fock-Bargmann space [21].
With

(Sl fu) =T 1.2 (2)du(z) =38, (2,30)
du(z) Is the cylindrical measure:
dp(z)=e " axdy Im, z = x + iy (2,31)

6.3 1t is easy to show the following useful formulas [25]:
f(z)=]f(z)e"du(z') And [e“ e du(z) =e™ (2,32)
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III- Dirac formalism of quantum mechanics

After reading the work of Heisenberg, Dirac observed several unresolved problems:

1 — Definition of the state of the physical system.

2 - X, px are non-commuting observables then we must find the eigenfunctions of x,

and px.

3 - The state of the oscillator.
4 - The connection between quantum and classical mechanics.

Dirac introduced a new notation for the Euclidean space and the Hilbert space which
leads to a new formalism of quantum mechanics and he find a new function: the delta
function which is at the origin of the theory of distributions.

We present first the Dirac notation in the simplest way, starting from the Euclidean

space, and then we extend it to the Hilbert space, space of Schrédinger wave functions
then we introduce the delta function and the eigenfunctions of momentum py. .

1. Euclidean Space and Dirac notation

The search for eigenfunctions of the observable (x) led Dirac to introduce a new
notation for the vector space and the dual space from the scalar product notation. Using
this new notation Dirac find the d-function and the well known Dirac transformation .

1.1 Dirac’s notation
The scalar product of two vectors is the bracket:

bra {4 ket
.7 =(x,y)=x"(y)=<(x|y)

We cut the bracket in two word bra and ket.
We denote the vectors y of the space by ket {| y> } and the vectors x* of the dual space by

the bra {<x| }.

a) The Euclidean space E;
In Dirac notation the basis vectors {€;, &,, €3) of the three-dimensional Euclidean space
E; may be written by(|1 > 2 > | 3 > ).

(.1

b) The dual space £ 3*

By definition, the dual space is the space of linear applications Es3 in R.
E; Is the dual space and we have the basis ¢, &, &,

In Dirac notation: ¢, = (I

8, =(2

) 53* = <3 |
If K is the field of the complex number C, X must be replaced by X .
¢) The identity operator

1-The projector p; is defined by:  p; = ‘l><l‘ With p} = p, (3,2)
2- Completeness or the identity operator: 1 = 2. ; | i><i | (3.3)
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1.2 Applications:

a-Let |X>=le.|i>

We write |x>=1|x>=z<i||x>|i>

b- In Dirac notation the linear transformlation a is written:
aliy=1xaliy=x G| )|

With X, = <i|x>, and a;; = <i|a|j> 3,4)

1.3 Rotation in Euclidean space E (k = R or C)
1 - The rotation matrix which leaves invariant the scalar product in the E3 (R) is known
by the orthogonal matrix of SO (3) with the Euler angles (£2) = (v, 0,0)

R(Q) = e~ W¥Sz07105y o —i0S; (3,5)
The representation matrix of spin 1 or Pauli matrices [9] are:
0 -i O 0 0 1 0 0 O
.=/t 0 O0L,o,={0 0 O0|,0,={0 0 —i (3,6)
0 0 O -i 0 0 0 7 O
With |s..s, |=ins. |s,.s.|=ins,, [s.,5, ]=ins,

2- The rotation matrix Rg which leaves invariant the scalar product in E, (C) is a unitary
matrix of SU (2) and the parameters are the Euler angles y,0 et ¢ with § = % isa
spin half and

(o 1y (0 -i) (1 0
o=l olo=ly o=l (3.7)

2. Hilbert space and Dirac notation

2.1 Hilbert space and linear operators
Let H be a space of function with basis { ¢ ; } and

(¢,,9 ;)= {(pi(X)cp,-(x)p(x)dx =393, (3.8)

p (x) Isthe weight function and the measure of integration is:
du(x) = p(x)dx
The space of wave functions{ @ ; (x )} is a space of square integrable functions which
is pres-Hilbert i.e. not complete .

2.2 Hilbert space and Dirac notation
a-The Hilbert space in Dirac notation is: { | Q,; > }

b The dual-space is: {<(pi | and <(0i |(0 j> =0,
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c-The identity operator is: { I = Z | 0 ><(P ; |} ( completeness condition)

d-The operator which leaves invariant the scalar product in the Hilbert space is a unitary
operator U has the form [24]:
U=¢e¢ “u, u=e " (3,9)

oL

F is a Hermitian operator and e is the group U; and u belongs to the

sub-unitary groups of operators su (n).

- The irreducible space of the unitary groups are finite spaces, disjoint and invariant
under unitary group su (n).

3. Dirac transformation and é-function

3.1 Continuous states of position and Dirac notation
a- Continuous states and Dirac notation
Dirac noted that the measurement of the position and the momentum px = p implies
that x and px=p are the eigenvalues of the observable (x) and (p) that have continuous
eigenvectors with:

)2‘ x> = x‘ x>,And D. px> = p‘p>, (3,10)
The identity operator I in the continuous case can be written as:
]=Hx>dx<x‘, ]:jpdp<p : (3,11)

b- Dirac distribution or Dirac function
The function Dirac 6 (x'-x) is the normalization of the continuous space {| x>}

. 0if x'#x
<x"x> = d(x'—x) with d(x'-x) = _ (3,12)
ocif x'=x
Dirac introduced this notation by analogy with Kronecker symbol &;;.
We will determine its expression in the next section.
The first important property:
(x'flx) = w (e le) = x (2] x) (3.13)
As a result: (x'=x)0(x'-x) or x8(x)=20 (3,14)
3.2 The transformation of Dirac and its applications
We consider the scalar product
(g f)= 1 g(x)yde f(x)
In Dirac notation the scalar product is:
g llry= 1 gCx)ydx f(x) (3.15)
Using the identity operator (3,11) we write:
(g./)=Lgl1]r)= [Cgl[x)dr (x|l s )dr (3,16)
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After comparison of the two above expressions, Dirac has defined the function f (x) as
the application: H — R.

(|| fYy—s (x| f)= f(x)eR (3.17)

And (gllx)=g(x) (3,18)

We also deduce the very useful expressions:

(x

** The state of the system is written by | ) > in Dirac notation.

— f (x) (3,19)

3.2.1 Second important property of delta function:

We have: f(xo):<xo ‘[‘f>:j<x0 Hx>dx<xuf>
So £ () = 18(x, = X)f () (3.20)

3.2.2 The eigenfunctions of the momentum operators
We assume that the eigenfunctions of the momentum p is the continuous function p (x).
We write:

. h
(x|p|p) = —P'()=p (x| p)=p p(x)
Therefore p(x)=cexp( ipx /h) = cexp( ikx) (3,21)

3.2.3 The {p} representing
If the wave function of the system is ¢ ( x ) we write:

((x]@) = ()] (3.22)

The wave function in the {p} representation or the phase space can be written as:

(pllo)=o(p) = (p|]0) = [(p[x)ds (x] o)
But < pH x> =ce™ (3,23)

As a result we find: o(p)=c fe_ikx o(x)dx (3,24)

3.2.4 Analytical expression of Dirac function

We write <x|| x’> = <x|1|x‘> = if<x||p>dp <p|| x‘> (3,25)

So we get: <x ” X'> =8(x'—x) = ‘C‘ZT " dp (3,26)

We shall calculate the normalization constant ¢ in chapter V.
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IV- Heisenberg representation and the path integral

1. The evolution operator and Heisenberg
representation

In this chapter we only want to give an idea of the path integral [3,26] and we assume
that the linear superposition of states is preserved through time.
We write the Schrédinger representation by:

|l (1)) = U (t,2)|y (1)) 4.1)
For a conservative system the evolution operator U (t, to) satisfies the Schrodinger
equation:
in %U(r,to) = HU (¢,t,) (4,2)

If we consider the inverse of the transformation, we write:

() = U (1w () (43)
And any observable A in the Schrodinger representation “ or picture” may be
written in the Heisenberg picture of the form:

A, =U"(t,t,)AU (t,t,) (4,4)
By a simple calculation we derive the Heisenberg equation
dA 04
h—1L =[A4,,H, |+ih—= 4,5
l dr (4, Hyl+i o 4.,5)

The Heisenberg equations for the coordinates » = (x,,x,,...,x,) and moments
(p1, P2, -..) is:

& _ i[xl.,H] - aﬂ’

dt ih op;

dp, 1 cH .

=1 = .,H =, 121,2,. 496
a0 _amPet=og (40

This system of equations is formally identical to the Hamilton’s canonical system.
2. The path integral and the Feynman propagator

Using the unit operator / = Z|\|Ii ><\|J ; | we write the Feynman propagator, or the

Green's function, in the form:

K(r'tr,ty) = (r'le”™ M |r) = (e 17 | ) 4,7
Thus we find:
K (r'tr,ty) =2 v, (r't) y(r,t,) (4.8)
Using the unitary operators (3,11) we find that
[d’rK (r,t‘r‘,t')K (r',t“ro,to) =K (r,t‘ro,to) (4,9)
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This completeness condition is valid for t>t', t, t' € [to, t;].
The generalization of this relation to n - 1 intermediate point t> t, ;> t,,> ..>t;> 1) .
Then we write:

K (r,tlry,ty) = [d’r[d’r..[d’r
K (rtlr e YK (r',t'|ry, o). K (rtlr',1")

If the intermediate time is continuous we write the propagator using the symbols
of the path integral in general as

K (r,t‘ro,to) = f:((fo"))f:o"d[r(t)] exp {;—jfo"Lc(r,f,t)}dt (4,11)

- The Feynman conjecture

Feynman's conjecture is to introduce in the integral the classical Lagrangian and to
identify the normalization factor by the coefficient of the propagator of the free particle
(below) by putting:

(4,10)

n—1

2
j dx,dx,... dx, (4,12)

m
2rihAt

. n—>x©
dlr(t)]= hmAt _)0(

r t l
And K (7, ,¢, ‘ri,t,-) = [,/ d[r(t)] exp {;S(X(t)) }dt (4,13)
S (x(f )) Is the classical Hamilton-Jacobi action.
3. The propagators of a free particle

The propagator of free particle is
K (x',t'x,1) = {(x"|exp[ ;l;(z'—t)H]|x> (4,14)
Using the unit operator
I=[|pyd {p]
And <x ||p> =exp( ixp /h)/ N2nn (4,15)

We obtain the expression of the propagator:

K (x',t'

x,t) = ﬁfdp exp{ ;l;[p(x'—x) +(t'-t)p/2m]}

The evaluation of the integral is obtained by using the Gauss integral:

. " 2
Koty = =™ expt iom(x'-x)"

2 ihAt P VIR (4,16)

With At = ('—t).
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V-The harmonic oscillator and the Dirac notation

We will present at the beginning Dirac method [8-9] which is based on the
observation that the expression of the Hamiltonian has the form of product of a complex
number and its complex conjugate. We find the expression of the generating function by
a new method and then we derive the wave function of the harmonic oscillator.

Using the generating function and the Fock-Bargmann space we simply calculate the
properties of the o-function without recourse to the theory of distributions, the
normalization of the free wave and the Feynman propagator of the harmonic oscillator.

1. The state of the harmonic oscillator

Dirac noted that the Hamiltonian of the oscillator:
2

H=L +me’x (5,1)
2m

is analogous to the productz-z, z € C and he posed:

V2 V2

a=——~ (Q+iP), a" =—(Q —iP
> (0 ) 5 (0 )
With = (0 p = (mhw) 2P
mo
So Hu,(q)=(a’a+1/2)u,(q) = E,u,(q) (5.2)
a , a” Are adjoint operators with: [a,a+ ]: aa” —a‘a=1. (5.3)

1.1 The basis of the oscillator
It is well known that the basis of polynomials P(z) is:
1,2,2%,2,...,2"...
with @t =nz"" And il =0
dz dz

Comparing [a, a’ ] =land [(d /dz), z] =1 we simply deduct the basis of the harmonic
oscillator:

n

0%, 1) [ = i’/+_'|o>,.. and  al0)=0. (5.4)
n.
With a‘n>:n‘n—]>, a+‘n>=x/ﬂn+1> (5,5)

Soaand a’ are the creation and annihilation or the ladders operators of the harmonic
oscillator.
The wave function is written using the Dirac transformation by:

un(q)=<CI||n>=<qI%|n> (5.6)
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1.2 From the isomorphism between the space of the oscillator and the Fock space
f(z2)=z"/ Jn! we deduce the correspondence:

+ a
a” -z and a- e (5,7)
1.3 We also write formally: af (a*)|0) = %|o> (5,8)
a
This formula is very useful for fast calculations in the oscillator basis.

2. The generating function of the harmonic oscillator

We will determine the generating function at the beginning by a new method [25] and
we simply deduce the wave function of the oscillator in the coordinates representation.
The generating function of the oscillator can be written with the help of (5,6) in the form:

z"(a
Gl = S T, @ =37 o= )= ale” o) (59)
Using the transformation of Dirac and (5,8) we ﬁnd.
. 1 d
a- ae™ |0)=—=(q+—)G(z,9) (5,10)
(alac™[0)= g+ )G(=q
b- <q|aez"+ 0> =2zG(z,q) (5,11)
Comparing the two expressions (a) and (b) we obtain:
d
200 =(22-9)Gg) (5,12)
The solution of this equation is:
2
G(z.9) =cexpi(V2gz =) +9(2)} (5.13)
To determine ¢(z) we use the above expressions and:
. 1 d 0
a‘e™ |0)=—=(qg——)G(z,q) =—0G(z, 5,14
(g >\/3(q dq)(q) aZ(q) (5,14)

We find: ¢'(z) = —
The solution of the above expression gives the generating function

2 2
Gz.q) = cexpiv2gz = -~ =5 (5.15)
For t =0 we find:
G(0,9)="{q|0)=1u,(q) (5.16)
The normalization of ug (q) is ¢ = 7 ""*:

n 1 2 2

. Z - q- z
G(z,q)=Y_,—u =7 “expi2gz —L-— 5,17
(z,9) Z_omn(q) piN2¢z == —} (5.17)

c-The development of the second member and the comparison with the first
member gives the harmonic oscillator wave function (2,27)

u,(q)=Wn2"n) 2e 2 H,(q), u,(x)=(mo)/h)" u,(g) (5,18)
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d- From the transformations (2,29-31) we deduce:
16z, qu,(9) = f,(2), [G(z,9)f,(2)dn(z) =u,(q) (5,19)
And the kernel function is: <G(z',q)|G(z,q)> =e’”,

e- We note that the representation {p} or phase space of the oscillator is simply
calculated using the Gauss integral.

3. Properties of delta function

As a direct application of the generating function and the orthogonality of analytic
Hilbert space , Fock or Fock-Bargmann, is the derivation of the properties of the delta
function (Dirac distribution) and the normalization of the free wave:

We write

(a19")=(all]qa)=2,u,(q) u,(g" (5.20)
This expression is invariant under the change (-q, q ') so the delta function is an even

more clarifies the convergence in the function space H !!.
From the orthogonality of the Fock space (2,30) we find:

(a|q) =] zu, (q)ﬁﬁu‘, (¢)d(2) = [G(2,9)G(z,q") du(z) (5.21)

By performing the integration using the Gaussian integral we obtain:

(q|q)=8(q—q")
- %exp(—lm — gy exp(+ik(q — ¢') dk (5.22)
0 4

Integrating this expression gives:
a- [[;o(q—-q")dg'=1 (5,23)

And using the expression ¢ 6(¢) = 0 we find:

O
b- (qllq") = S(fl—CI'):ELme(Q E dle (5.24)
c- Then the constant normalization of the free wave is ¢ =1/+/2m.

So we found the properties of the delta without recourse to the theory of distributions
function.

4. The Feynman propagator of the oscillator
The Feynman propagator of the oscillator was determined by several methods: the first

one is the path integral, the second is the method of the Schwinger Green function, the
third is the algebraic method and finally the method of direct calculation using the
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formula of Mehler [4]. Calculations by these methods are complicated and all the books
teachings give only the result.
We propose to do the calculations by an elementary method:
1- The Feynman propagator of the oscillator is:
L H (1—ty)

K((x,1),(x",t,)) = <x|e_h x'> = <x
_ e—im(t—to)/Z Zn m)e—inm(t-to)un (x,) (5’25)

_;H(t—t0)1| x'>

e

By using the Fock-Bargmann space as above (5,20) we write:

1/2
K((x, 1), (X', t,)) = (m_f”) ol (t10)/2 o
th

[Ge™ 22, q)G(e™ "%z, q")dp(z) (5,26)

And using the expression of the generating function and asking we find:

1/2 ) 2 e _, |
(m_mj e—ia/zjexp([_ q +q te 2(zg+ Zq')\/_— zZ°+z ¢ Idu(z)
mh 2 2
2- After integration we obtain:
1/2
K((Xa t): (X' ) to)) = l(m_mj e_i“/z X
n\ mh
exp[———[(g> + g™ )cosa —2xx'||x E, x E,
2sin o
With E, = [exp[~(2¢* cos D[(x———(q+¢")’ ]} (5.27)
2 4cos —
2
L 2 .
And E, = [exp[-(2ie Slng)[(y+ o, Ca+a)) Ty (5,28)
4sin—
2
But 2¢ 2 cos(a/2)=(1+e™) 2ie ? sin(a/2) =(1-e™),

And e—ia/Z :1/ [e+iot .

. . oo gz’ T .
The integral of Gauss is: J_OC e dz= 1/_’ with Re (a)> 0
a

3- After integration of E; and E, we find:

;xEle2=n1f - 1 with |1icos a|>0 (5,29)
A et 2isina

Finally we get the Feynman propagator:

mo i
K((x, 0, (', tg)) = 4[5 —expl =———[(¢” + ¢ )cos a — 2¢¢']] ~ (5,30)
27mhisin o 2sin o
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VI- Central potential and hydrogen atom

The problem of hydrogen (AH), has played a central role in the development of
quantum mechanics [27-29]. Schrédinger has resolved this problem and found the wave
function in term of the coordinate representation and the energy spectrum.

1. Central Potential

The Hamiltonian is of the form:
2 32
=" sy ="T"Avve (6,1)
2u 2m

With p is the reduced mass.
We calculate the expression of the Laplacian by using the formula of Laplace-Beltrami
and the metric on a variety is:

ds’ =dx*> +dy’ +dz* = Zgiyjdxidxj (6,2)
ij
The expression of the Laplace-Beltrami is given by the formula
1 0 g 0
A=z———3—{kgw5—] (6.3)
" ‘(gi,j)‘ Xi X
(g"")Is the inverse of the matrix (g;;)and ' x2x)= (p, 0, @).
A simple calculation gives: ds® =r>sin”> 0do” +dr’ +r°do’ (6,4)
1o L
And Hy(r)=|-——=——F+_—+V(r) \y(r) = Ey(r) (6.5)
2urors 2u

We seek a solution by the method of separation of variables or by searching the solutions
of all the commuting observables.

. The invariance by rotation of the Hamiltonian implies that [L*, H] = Obut [L* ,1.1=0.
so the observables are H, L*, L

PR

1.1 The eigenfunctions of L? , L,
In spherical polar coordinated we write:

h 0 0 h 0 0
L =—(—cospcotd ——sinp— L =—(-cosgpcotd —+sinp— 6,6
. l.( @ o0 <pa€) y==( ® o0 (/’aa) (6,6)

i

2
T i L Y m S S 6.7)
i O sin@ 06 060 sin“ 0 0p
The eigenfunctions of L? , L _ are the spherical harmonics
1/2
_ | 22+ D) (L= m)! m imo
Y,,(0,0) = (00 [tm)=(-1) [ i () P," (cos 0)e (6,8)

Where P" (cos 8) are the associated Legendre functions [A6].
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In Dirac notation we write:
L*|im Y= n?1(1+ 1)|m ), L,

im >=hm|lm > (6,9)
[ is the azimuthal quantum number and m the magnetic quantum number.

[ and m are integers. We deduce the dimension of the space
E, ={|lm)}, and dim( E,)=21+1.

If we introduce the ladder operators Ly and L. or the raising and lowering operators:

Li=L,+iL, and L=LiL, with L_ [l £1)=10 (6,10)
we find:
L.|im)=JI(1+1) = m(m £ 1)|Im) (6,11)
1.2 The radial equation
The eigenvalue of the equation of energy becomes
n*10> I+’
Hy(r)=| — s+ +V(r) R, () = ER, (1) (6,12)
2ur or

We note that the approximation of the potential in nuclear physics, interactions between
nucleons (protons and neutrons), is the potential of the harmonic oscillator.

2. The hydrogen atom

The Hamiltonian for a particle in atomic physics can be approximated by the
Hamiltonian of the hydrogen atom.

2.1 The wave function and the energy of the hydrogen atom
The potential of hydrogen is:
2
k
Vi =-——=5, (6,13)
dre,r r

Since the charge of the proton is e and the electron charge e
For the bound states E <0 the wave function is

Wnlm (l/') = RnAl (r)Ylm (67 (P) (6914)
. 2 (n=1-1)! | 5 -p/2
With R (r)= L e’ 6,15
n.[( ) n2a3/2 [(l’l+1)'] p n+l (p) ( )
4
. pe 1
Energy is: FE =——W—x—
& " (dmgy)’2n” n’
dme B’ 2
and a=""00 o p==" (6,16)
Le na
With n=123,., e [<n-1
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L' (p) Is Laguerre polynomial [A6] of degree n '= (n-{ -1).

n+l
(n'") and n are the radial and principal quantum numbers.
For n=1 we obtain the binding energy of the hydrogen atom E, = -1/(2a).
We obtain the discrete spectrum if E<0 and the continuous spectrum if E>=0.

Parity: in the wave function if we change 7 by —7 we find:
Yo (7) = (D)W, (F) (6,17)
(=)' Is the parity.

Degeneracy of the energy levels:
[=0=0123,..,(n—1)and m=-1,..,-1,0,1,..,1/. (6,18)
For a definite value of € we find
S0+ =1+3+5+..+(2n—-1)=n" (6,19)

Classical notations of spectroscopy

(= 0 1 2 3 n=7] 2 3 4 5 6.20
Etat s p d f K LMNDO (6,20)
2.2 The {p} representation of hydrogen atom
The representation ¥ (p) is the Fourier transform of the wave function ¥ (1) :
Y(P)=—77 e PP (T)dr 6,21
() 2 I () (6,21)
Using the interesting and useful formula [28-29]:
[(e"P= 77 I pydr = dnn® /|p - p’ (6,22)
Fock observed that the representation {7'}is equivalent to the integral equation:
- . mk Y ,
(5 ~2mEYY(p) =1 | (623)
wh|p- bl

Calculations of {p}- representation by this method is complicated but we present in the
Appendix 5 a new, simple and direct method using our generating function method.

3. Connections hydrogen atom and harmonic oscillator

In classical mechanics solving the equation of the hydrogen is done by transforming
this equation in a harmonic oscillator equation using Binet transformation. In quantum
mechanics we use the octonions quadratic transformations* [A3] for the connection of the
hydrogen atom and the harmonic oscillator. These quadratic transformations and
hypercomplex numbers originate from the old problem of sum squares:
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Find the solution of the equation:
(Zz’;l‘xzz )(Zl’;lytz) =2k le) (6,24)

With {z, } are the quadratic forms z, =X a,x,y,
I

3.1 The quadratic transformation and hypercomplex numbers
We will present a new and simple recurrence method:

3.1.1 The transformation of Levi-CivitaR*> —R*.
We begin with the well known formulas:
cos0 =cos*(0/2)—sin*(0/2)

and sin® = 2cos(6/2)sin(6/2)
Multiplying these expressions by r then we write:
X, =2u,u, X, =u, —u,’ (6,25)
Avec X, =rsin6, X, =r1cosb,
And u, =+/rcos(8/2), u, =A/rsin(0/2)

We write (6.25) in matrix form as:

X, u, —u,\u
[ j:[ j( Jz (H,)(U,) (6.26)
X, u, u, \u,

The orthogonal and anti symmetric matrix H, has the properties:
H,=ul+Ju,, J?=-1,and 'H,H, =u] +u; (6,27)

3.1.2 The generalization of the transformation (6,26) is obtained by setting:

X u, —u, | u,
( ‘J=2( : ]{ j=2(H2)(U2') (6,28)
X, u, u JAu,

We find (6,24) if we put: Xy = )= (uy +uy’)
We find the octonion quadratic, or Kustaanheimo-Stiefel, transformation R*>R?
(ur,uz,us,ug) 2 (X1,X2,X3,0) , and it’s generalization in the appendix (A3,2).
Also it is simple to prove that:
A,(x)=A,(uw)/d?, r=u’. (6,29)

3.2 The equation hydrogen atom in the basis of the oscillator
The Schrodinger equation for the hydrogen atom is written in {u}representation as:

n* _
(—2—“A4(u) —4E i) f(u)=4Pf(u) (6,30)
2 2
With HO o 4E, 48 =ho@n+2),p=——, (6,31)
2 4rs,
After solving the equation (6.28) we find:
E, ==2u((B/(n+2)) (6,32)

*Note: The term octonions was added to specify these quadratic transformations.
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4. The energy spectrum and the permitted
transitions of hydrogen atom

1-Energy Levels of hydrogen atom
The wavelengths of spectral lines of hydrogen
1-The Balmer formula (1885): A =Bn%(n*4), n=3,4,5,6

14,1 1 _
2- The Rydberg formula: v=-=2 (2—2 — ﬁ) n=3,4,5,6
3 - The Ritz formula: v=R %—%),R=i
m n B
=T —Tn

2-The energy spectrum

A

v

-Einstein introduced the concept of "quantum radiation" called photon,

Particule for a light with mass zero and pulse or frequency v = ® 2rnv has energy.
E=hv/2n

Planck's constant h = 6.6262 10-34 joule seconds

-The energies of atoms adopt discrete values.

-The emission or absorption of light by atoms is by very specific

light frequencies:
Vit= ’ Ei-Ej | /h

E; and E;are the energies of the system before and after the emission or
absorption of the light .

3-Le spectre des ondes électromagnétique

ultraviolet visible light

Radius vy Radius x! /" & infrared radjo waves

10" 5¢m 10%m 10~7cm lcfn

A

Radius of the nucleus  radius of the atoms
And molecules

Echelle of wavelengths of the radiation. [9]
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Table 1: states of the hydrogen atom

Principal Energy states 12 m Degene- | The discrete
quantum ration spectrum
number
n=1 E; 1s 0 0 1
2s 0 0 —
n=2 E./4 1 1 4 __'L,
2p 1 0
1 -1
3s 0 0 - A
1 1 v
n=3 E,/9 3p 1 0 9
1 -1 — 5
2 2 y__
2 1
3d 2 0 _—
2 -1
2 -2
4 Table 2: The permitted transitions of hydrogen A £ =+ 1:
E, TContinuous spectrum
o] F— — e e
Es| S5s 5p 5d 5f
E4 4s [ 4f
E3 3s
Balmer series
E,| 2d
Lyman series
E1 43
=0 t=1 =2 (=3
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VII-The theory of angular momentum

The symmetry is very important in physics and especially the symmetry by rotation.
The invariance of the Hamiltonian by rotation involves to study the angular momentum
and the calculation of the coupling coefficients of the total angular momentum. Thus the
system states is eigenfunctions of the square of the total angular momentum and its
projection on the z-axis.

But quantum theory of the atom does not taking account for all phenomena such as
Stern-Gerlach experiment. And after a lot of work to analyze the spectrum, the spin of
the electron was introduced and the total angular momentum to solve some of these
difficulties.
In this part we follow the Schwinger approach [31-32] for it is simplicity and we can
generalized it to the semi-simple groups specially unitary group.

1. The electron spin

1.1 The magnetic moment
We consider an atom with Z electrons and the nucleus is the center and the Hamiltonian
of the system is Hy. According to the theory of electromagnetism if the system is

subjected to a magnetic field H . » the Hamiltonian is written:

H=H,———(H,L) (7.1)
2mc
Everything happens as all the electrons circulating in their orbit, each electron induces a
magnetic moment: o= 7 (7,2)
2mc

The magnetic moment of the atom is the sum of the individual magnetic moments Z.

M=—"L,[=Y:] (7.3)
2mc
1.2 The hypothesis of electron spin
The Stern-Gerlach experiment is to measure the deviation of silver atoms in a
region where reigns a strongly inhomogeneous magnetic field. Results contradict the
predictions: the beam ,instead of expanding, splits into two separate beams giving
two separate spots of identical intensities.
Normally division levels in a magnetic field produces an odd number of levels
(2 L+1) but often appears an even number of levels.
The explanation was simple but revolutionary for the first time appear a purely
quantum quantity: the spin 1/2.
These phenomena have led Goudsmit and Uhlenbeck to admit in 1925 that the electron
was a anime rotation on itself, which corresponded own angular momentum called
spin "2. Pauli introduced the function of two components:

\v=($ij=w+(éj+w_(?]=w+|+>+\|f_|—> (7.4)
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With Jlo L hr=1
By analogy with the angular momentum we write

S=6/2, And S’ =8]+S]+8S: (7,5)
with |s..8,|=ins.,|s,.5.|=ins . [S.,8.]=ins,

The state of spin ' particles are then written
|sms>, (s=1/2, m,=+1/2),0r T\

§2|5ms> =s(s+ I)|sms> = §|sm‘y>, S, sm‘\‘> = ms|sms> (7,6)

To resolve all the difficulties of these phenomena Goudsmit and Uhlenbeck
introduced also the spin magnetic moment.
~ e .
=——-0HJ 7,7
2mc (7.7)

N

2. The Schwinger approach of angular momentum

2.1 The generators of SU (2) and the basis of the oscillator
Schwinger noted that the orbital moment is written according to the operators
of creations and annihilations of the oscillator and spinl as:

L=ixp=0")0G)a) (7.8)
With (a+)t = (a:,a;,a:)
Schwinger in his work "on angular momentum" has replaced the matrices of spinl by

the matrices of spin 1/2 and found the generators of SU (2), (J, J, and J3), in terms of the
creations and annihilations operators of two dimensional harmonic oscillator:

We write : J = (al+ a; )(%j(al J (7,9)
a,

o are the Pauli matrices of spin 2, §=0/2.
We find easily the ladders operators J., J. and J;:

J,=J,+iJ,=a,a,,J =J,-iJ,=aa,,J,=[a,a,—a,a,]/2
)=, [T 1=2J;
And N =[ala,+ala,]/2et J> =N(N+1) (7,10)

2.2 The representation of SU (2) in the basis of the oscillator
We formally write:

N =[a,;0/0a, +a,0/0a,]/2, J, =[a;0/0a, —a,0/0a,]/2 (7,11)
According to Euler's theorem on the homogeneous functions, the eigenfunctions

32 .
of J;,N et J~ are the homogeneous functions:

ar(ﬂm)a;(j*m)

G mG—m)!

0,0)=9,,(a")

| jm) 0,0) (7,12)
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The one-dimensional subspace E; is (2j +1).
E; {|[jm), —j<m<j},j=01/23/2,. .

1- We also find that: ~ J* |]m> = j(j+])|jm>, J3|jm> = m|]m>
J.|jm)y=\j(j+D)—m(m=1) | jm+1) (7,13)

2.3 The SU (2) Wigner matrix D and its generating function
The rotation matrix according to the Euler angles is well known in classical mechanics.

And in quantum mechanics the matrix elements in space ﬂ jm>}0r D-Wigner are:

Dl (@)= ([ i) = (e e )

—iym' 7j —ipm (7’14)
=e""d/, . (0)e™
1/2
And o @=-_| v 0.0 (7,15)
(0 A1) "7 ’

Multiply by ¢,,.(u)4,, (v)r*/ and perform the summation then we find the generating

function of the matrix elements of rotations.

Y i @ s (DL (2, (V) = expl ' (u)(pR, (V)] (7,16)
— expl (g n)[ B ijm] = o(u,v,7)
-z, zZ; )\
With u=({n),v=( A and z=(z,, 22),

0 .0
z,=pa, = peXp(cpl)cos(E), z,=pa,= peXP(@z)sm(E) (7,17)

And 0<p<x, 0L@p<2n, 050<nrn, 0Zy<2rn
Q=whp). 0, =", 0, = 7) (7.18)

1 - Expression of matrix elements of rotations
From the above generating function we deduce after development the expression of
matrix elements of rotations in terms of Jacobi polynomials.

dl ()= N{, . (cos(8/2))" " (sin(0/2))" " P{" "™ (cos B) (7,19)
1
) ; M(7i—m' )| 2
With i, =Yt =m)t 2
’ (J+m)!(j—m)!
And PP (x) = (~1)" Ta+B+1) Fi(n+a+ B+ -nqi %) (7,20)
DL+ 1) 2

Using (7,16) we derive the orthogonality of the matrix-D:
Loy, @b, ©@d@=—

s’ (mj,my) my,m, 2j1+] mymy M2 jij2

(7,21)
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2 - The projection operator
We find by a simple calculation the projection operator

; 2j+1 o
Posy = 45 [ (Dlys) (2)R(2)d (22) (722

The projection operator and our generalization of Cramer's rule for linear systems,
formula (A6), allow us to calculate the spectrum of rotation of the nucleus [25].

3 - The characters of the group SU (2)

A _ ' ;o in(j+1/2)y
FINY () SV e SinG+1/2)y 7.23
=2 Do D=L, sin(y/ 2) o

With tr(R,)=2cos(y/2)=2cos(0/2)cos((p+y)/2)

3. The couplings in the theory of angular momentum

3.1 The addition of two angular momentum
In a system of two particles the total angular momentum is the sum of the individual
angular momentum we write:

j3:j1+j2 (7,24)
a- J12|j1m1> =7, +I)|j1m1>, J22|j2m2> = J,(J, +])|jzm2>
J3| i) dsms) = 73 Gs + D) Jsms ) (7,25)
b- |(]1]2)]3m> = Z mym, <j1m19j2m2 ” (J1J2)Jsm; >|j1m1 >| j2m2>
|j1m1>|j2m2> =2 j<jlml’j2m2 ”(Jl]2)]3m3>|(f1/2)13m3> (7,26)

The coefficient (j,m,, j,m, |(j,j,)j;m;) Is the Clebsch-Gordan.
c- We can use also the notations:
|G )sms ) =[G ds(mysms)), my = j, =y, my = my +m,
d- DYy () = (7o) Jm'|R (G jn) jm) = e d{,.,, (B)e ™ (7,27)

e- We define the Wigner symbols by:

(j, JrJs

j = (=" 24+ D)7 (jymy, joms || (i) Js —ms) (7.28)
m, m, my

3.2 Expression of the integral of the product of three D
Several methods have been proposed for the calculation of Wigner symbols:
a- Racah has applied the method of raising and lowering operators.
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b- The method that has as its starting point the integral of the product of three D
c-The Wan der Waerden method, or Weyl, that we present in the following.

a- Racah method or the infinitesimal method
Put Jop=J, +J,,
Using (7.13) we find the recurrences formula of Clebsh-Gordan coefficients:
G5 Fm)Gs £my + DKL) ms |, mim, ) =
(G Fm)Gy 2 my +DKG o) dsms | damm,) +
(G2 Fm) Gy £ my + DY) gsms |, mm,) (7.29)

From this expression Racah deducted the Clebsh-Gordan coefficients but Wander
Waerden method is much more simpler.

b- The method of product of three D or the global method

(jmy [(fomsy [R” | jym) )| jamy) = D] (@)D (Q) =

(ml,m;)
Z Ji J2 T3 ]{ le ]3' DY (2) (7,30)
m\m; m, m; ) \m; m, m; (m3,ms3)

, B B SR ,
with m=-m; =m, +m, and m'=-m; =m, +m,

3.3 The invariants of 3-j symbols
Van der Wearden [8,25,37] determined from elementary invariants of SU (2) the
invariant of SU (2) and from which he determined the 3-j symbols.
But we will use the generating function of the matrix elements of rotations for the
determination of these symbols.
The entire product of these three generating functions is:

G? :JH;ZI[¢(xi,yi,Zi)]dlu(Z])dlu(Zg): ZH(j/jzfs)(x)H(j/fzj3)(y) (7,31)

J1J2J3
Using the expression jexp[az + BZMu(z) = e” we find:

GP=exp [x,x? My, y 1+ Ix ! y 1+ I 0y, 00 1] (7.32)
With x' Z(F:,-aﬂ,-)ayi :(ui’vi)and x:(xl’xz)

After development and identification of (7,32) we find the invariants:

[x2,x3](J—2j1)[x3’x1](J—2jz)[x1’x2](J*2.i3)

H ()= 7,33
i O = T =20 =2l =27 (7:33)
R
And H uljzjg)(x) = Z[H?:I(Pj,-,mi (x )] (ml m2 ni } (7,34)
m; 1 2 3
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H( iy j})(x) Is the Van der Wearden invariant of 3-j symbols.

[x7,x’],[x°,x'], [x',x°] Are the elementary invariants of SU (2).

3.4 Applications:
1-The powers of the invariants (7,33) are positive, it follows that:

‘j] _j2‘3j3 <J;+J,and j3 2 m3‘ (7,35)

2 - The decomposition of the tensor product of the states of spin %% is:

2®2)=0)®03) (7,36)

a- The singlet state is:
100) = [1/2,172) [1/2,~1/2), ~[1/2,-1/2) [1/2,1/2), [I2

b- The triplet state is:
1) =1/2,1/2) [1/2,1/2),
10)=[1/2,m) [1/2,m,), +|1/2,m) [1/2,m,) /+2 (7.37)
1-1)=[1/2,-1/2) |1/2,-1/2),

3.5 The Van der Wearden formula for 3j symbols
The Van der Wearden formula of 3j symbols can be derived simply form (7,34):

(=1 + 1) =m)HUL, —m,)!
(H+L+))-1L, +m)HW( =1, —m,)!
JE(L —my—l +m =1 —my [ =1 —my + 1,11, + m, +1;1) (7,38)

,F, 1s a generalized hypergeometric series (A6) and

ll 12 [ 2 (-1,
[ ]=<—1> A m)

my m, nmy

U+ =)+ + ) +m)U, —m,y)!
(=1L, +)0W++ L+ DI —m)IU, +m )L, +my)I(, —m,)!

A(l,m) = (1) \/

The method of invariants has been the subject of many studies [25, 39] but the
generalization of this method to SU (n) for n> 3 is given in [25] .

3.5 The Schwinger approach of the coupling of angular momentum
Using (7, 33) we find the generating function of SU (2) is:

eXp[TBy[xlaxz]_'_ Tz[x1:x3]+ Tl[xzax3]] = Zq)j]jzj3 (T)H(j]]éj})(x) (7 39)

/(J+1)! TgJ—ZjI)T(ZJ—2jz)T(3J*2js)
VU =2j)\J =2/ =2);)
The generating function of the coupling of two angular momentum is obtained by using
(7,28) and changing [x',x’],[x*,x*]by (x’,x"),(x*,x*) in above the expression.

We deduce the Schwinger’s formula:

With q)(jl.fzjs) (T) =
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G(a,z) = exp[{oc3[xl,x2]+0c1(z,x2)+ocz(x',z)}] =

0 0 0 0 0 0
expl{os[—, T+ aylz, —+z, — 1+ o[z, —+ 2z, —Ilfexp[@,x") + (v,x)]
u v u, u, \2 v,

=X @2j+D)" @, (@) ))(2) (Fi () (7,40)

With ., F({;,) (x) is the coupling of two angular momentums in the Fock space and :
Jy=J, m'=jy = jy, m=my =m; +m,

The formula (7,40) allows simply the determination of the coupling of several angular

momentum and the representation of SU (3) (chapter X).

4. The tensor operators

The introduction of the tensor operator is very important for the calculation of matrix
elements of the transitions.

The eigenfunctions of J? and J;are {| jm>}, (m = —j,...,j)and the subspace
E= {| jm>} is invariant by rotation and as a result:
R|jm) =3, D}, () jm (7.41)

I-Definition: T/ s a tensor operator if:
RT R =% D/ . (2)T,) (7,42)

Where an equivalent way:
[J.,T)1=~j(j+D-m(m+1) T/, And [J,,T)]=mT! (7.43)

2-Wigner-Eckart theorem:

A representation in which the basis vectors {Ipjm>} are eigenfunctions fz and /.
The matrix elements of the tensor operator are defined by:

1
(pjm|T|p' j'm') = (i |T*[p' 1) m' kg | (k) jm) (7,44)
V2j+1
<pj |T , | p' j'> Is a coefficient which depends of the tensor operator.

3-The rules of selection of the operator tensor:
The matrix elements of the tensor operator is different from zero if:

j—j'<k<j+j| with g=m-m". (7,45)

Applications: The transitions of hydrogen atom are given in the table 2.
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VIII- Classification of elementary particles
and Quarks model

1. Introduction

Dirac predicted the existence of antiparticles starting from his famous equation of the
electron [A1] and in nuclear physics Elliot approximate in 58 the nuclear interaction by
the quadrupole-quadrupole interaction [20] to interpret the energy levels of Mg and found
that the wave function is developed on the basis of the representation of SU (3).

But the discovery of new particles and resonance particle decays quickly led to the
classifications of particles performed by Gell-Mann and Ne'eman [33] with the group
SU (3) in 64.

But the study of the scattering of electrons by protons and neutrons show that these
particles have a complex structure and the discovery of strange particles has caused
confusion and to break the impasse Gell-Mann was assumed that the elementary particles
are formed from particles called quarks. And the introduction of the Quarks model by
Gell-Mann has helped to solve the defects of this model.

At first we want to give a reminder of the work of Yukawa and Heisenberg in nuclear
physics as an introduction to the quark model knowing that protons and neutrons are
elementary particles and are part of baryons family.

2. Yukawa potential and the particle
state in nuclear physics

We know that the gravitational and electromagnetic interactions have infinite range
(potential 1 /) and the binding energy of hydrogen atoms is low which means that
electromagnetic interactions are also low.

a- In nuclear physics, the interaction is short-range (10-12cm) and the binding energy of
nuclei is very high, for example, the binding energy of deuteron energy is 2.2 MeV where
the name of strong interactions.

b- Yukawa proposed a potential of the strong interaction and predicted the existence of
the particle (meson) assumed as the quantum field of strong interaction.

c- Experience shows that the intensity its range of interaction between proton and neutron
are the same and this has led Heisenberg to introduce the nucleon and the isospin.

2.1 Yukawa nuclear potential
By analogy with the derivation of the Coulomb potential and that consists the
spherical solution of the known equation

A(p(r,t)=—47’tp (971)
p is the density of the charges.
The solution is :

o(r)y=gqlr 9.2)
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Where is ¢ = [p(r)dv the charge of the source
Yukawa start from the Klein-Gordon equation

1 o°
A-——5
c” Ot
The potential must be independent of time and directions so we seek solution
of the radial part of

1 d d
(A-pHe(r,)=0 > r—zg(rzd—fj—uch(r,t)zo 9.4)

Solving the last equation leads to a physically acceptable solution and that is the well
known Yukawa nuclear potential:

- Mz)(P(rat) =0, 9.3)

—ur

o(r) =g~ (9,5)

,
Where p is the mass with (c=h=1) and 1/ p is range.

2.2 The state of a particle in the shell model of nuclei
Heisenberg by analogy with the theory of spin considered that protons and neutrons
are two aspects of a single particle, the nucleon and thus he introduced the isospin.

The notations in isospin particle I= ({,,1,,1.), and (I,1.).
Nucleons are in two isospin states:
|1,1, =1/2) is the proton state.

1,1, =—1/2)is the neutron state.

So the nucleons are fermions and the basis are the products of: The basis of the
oscillator, the spin state and isospin

ﬂnxnynz> s, ms> ],]Z>} with nxnynz> = nx> ny> nz> (9,6)
And Vinna 1 (5GY:2) =y, (W, (VV, (2)
The energy is:
Ey=nho(N+3/2), N=n_+n, +n, 9,7)
The total degeneracy of a state energy Ey is given by:
dy = (N + 1) N + 2) 9.,8)

The spherical basis of the harmonic oscillator is

2

wmm&@=Nw%T%ﬁkmk%ﬁ%@@ (9,9)
1/2
. 2T (n+1)
With =rdmw/h, N,=|———""_
p =N o |:F(n+l+3/2)}

The principal quantum number N is connected to the radial quantum number n and
azimuthal quantum number / by N = 2(n — 1)+ (.
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3. The Quarks model

A-The elementary Particles:
Elementary particles are numerous and can be classified as follows:
1-The hadrons are particles capable of strong interactions and consist of particles called
quarks.
Hadrons are: The Baryons particles with spin half (p, n, ...)
The mesons Particles with integer spin (7 -, o, ...)
2-The leptons are particles capable of weak and electromagnetic interactions.
These particles are:
The electron e™, muon u~, tau 7~ (charge negative )
And neutrinos v, , v, Vv (no charge)
3- Photon massless and spin 1
4 - Gravitons and massless particle of spin 2
5- Antiparticles:
At any charged particle is a particle associated with the same mass and opposite charge.
B-Quarks: The Quarks are characterized by the quantum numbers are summarized in the
table:

Quark u d c S t b
Charge Q 2/3 | -1/3 123 |-1/3 [2/3 |-173
Charm C 0 0 +1 |0 0 0
strange S 0 0 0 -1 0 0
Top T 0 0 0 0 +1 |0
Bottom B 0 0 0 0 0 -1

Table 3

4. The quantum numbers of Quarks

In what follows we will be interested in the quantum numbers of quarks [33].
1- Strangeness and hypercharge
It is well known that the electromagnetic interaction is due to the electric charge Q of
the particle and by analogy the field of strong interaction is due to a baryonic charge B.
Similarly, the baryon charge should be additive such as the electric charge.
We note that the charge:
For nucleons:
Q=I,+1/2 for the proton
Q=I,-1/2 for the neutron
For mesons:
Q=I~=1 for T
Q=L~0 for n’
Q=IL~=-1 for !

Gell-Mann proposed an additive quantum number S, which he called strangeness S is
equal zero for mesons and nucleons, but S = -1 for K, KO, K, Z+, ZO, >
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The corresponding antiparticles have opposite strangeness S = +1.

S=Y-B (9,10)
Y is the hypercharge.

So the nucleons and mesons are non-strange particles.
We can also deduce the relation of Gell-Mann-Nishijima:

O0=1_+Y/2 (9,11)
2- parity
Attributing intrinsic parity appears as an experimental necessity under the assumption
of parity conservation in strong interaction processes.
- The parity of fermions and anti fermions is negative.

3- color

Baryons consist of three quarks with spin %2 and the wave function must obey the Pauli
principle, but this is not the case.
To eliminate this contradiction color was introduced as a new quantum number to save
the Pauli principle.
The color has since become the basis of the modern theory of strong interactions between
Quarks.
The quanta of these fields are called gluons whose numbers is eight.

4- Quarks, leptons and fundamental interactions

Quarks u c t Leptons Ve Vu | Ve
d S b e [V
v\ . Z N
Gluons Photons bosons Intermediaries Gravitons
strong Electromagnetic weak Gravitons
Table 4

5- The symmetries Laws

All the interactions conserve energy, momentum, angular momentum, charge, the
number of quarks, the baryon number and lepton numbers.
But the weak interactions do not conserve the number of quarks.

6- The mass formula of Gell-Mann-Okubo
The mass of the formula:
M =mg + aY+b[I(I+1)-Y2/4]. (9,12)
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7- The search for Higgs bosons
The theories of electroweak and strong interactions are called standard model. But this
theory predicts zero mass to all particles and Higgs proposed a mechanism to give mass
to these particles, but this mechanism provides for the existence of a heavy particle the
Higgs boson.

8- Spectrum masses of the 8 baryons J'=1/2" and the 10 baryons J’=3/2"

A Masse(GeV/c?)
S=-3
1,6
§S=-2 {
1,41
§=14
= = }S§=-2
S=0 {
5,505 }SZ-J
-
n,p }S=0
p P=1/2" P=3/2"
Table 5
5- Tables of Hadrons
Baryon JP=1/2"
Q |S I Quarks Mass Lifetime Decay modes
content MeV/c? S
p |[+1]0 12 | uud 938,27 )
n |0 |0 1/2 | udd 938,57 888,6 pep
A0 |-1 |0 uds 1115,7 2,63 10" pr, i’
ST+ 1 |1 uus 11894 0,810 nm’, pn°
1o [-1 |1 uds 1192,5 7,4107° Ay
> l-1 -1 |1 dds 11974 1,510 nm
2o |2 |12 |ssu 1314,9 2,97 An’
= [-1 [-2 |12 [ssd 1321,3 1,610 AT

Baryon JP=3/2"
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Q |S |I Quarks Mass Lifetime Decay modes
content MeV/c? S
= -23 +
A 2 |0 |32 uuu 1231 0,6 10 pn
AT [+1 [0 [32 |uud 1235 0,6 107 pr,nm
A 1o o [32 Judd 1234 0,6 107 pT,nm
A -1 |0 [32 |ddd 1234 0,6 107 nmw
ST+ -1 |1 uus 1383 2 107 An
Olo [-1 |1 uds 1384 2 107 A7’
oAl -1 1 dds 1387 2 107 AT
2% 1o [-2 [12 |ssu 1532 7 1075 En, 20
E -1 |2 |12 |ssd 1535 7 10> 2n°, 2°n
Q |-1 ]3]0 SSS 1672 0,8 107 AK, 2%, 270
Table 6 : Baryons
Mesons J'=0"
Q S I Quarks content Mass Lifetime Decay modes
MeV/c? S
n,n | +1- |0 1 |ud,ud 139,57 |2,610° 1, ev
1
0 0 0 1| wi-ddyv2 134,97 | 8,410 vy
n 0 0 0 (uii-dd-2s5)\6 548,8 710" VY, U, Y
n' 0 [0 |0 |ua+dd+s5)4/6 [9575 3107 N, Ty
KL,K [ +1- [+1,- [12 [5u,su 493,65 |1,2410° wv, min’, min'n
1 1
R’ |0 +1,- [ 172 | 5d,sd 497,67 | K20,89 107" T,
' 1 K2 5,1710°" €V, TV, T
Mesons J'=1"
Q S 1 Quarks content Mass Lifetime Decay modes
MeV/c? S
p,p +1,-1 |0 1 |udud 774 04107 nin’
p’ 0 0 1 (uii-dd)?2 774 0,4 107> T
) 0 0 0 (uii+dd)6 781,9 7107 nn’, 1y
0 0 0 0 s§ 10194 20107 KK, KK’
K* K* | +1,-1 |[+1,- |12 |5u, sz 891,8 1107 K’ K%, Ko
1
0 |0 +1,- [ 172 [35d,sd 896,1 1107 K*n°, K'°, Kor°
’ 1

Table 7: mesons
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IX-The N-fermions states and the classification of
chemicals elements

We start from the Pauli principle, the theory of second quantization and the
determination of one particle state to study the many-body system. But the approximation
of the single-particle state by the hydrogen atom is very interesting for the study and the
classification of chemical elements.

We also give an idea of the shell model and the states of a system of fermions in the
notations of the second quantization.

- The one-particle states in atomic physics
The particle state is the tensor product of the wave function and the state of spin so the
wave function of the i- th particle is:

Vg (i) = \Vn[z[m,(”[)|smz>a 8,1)
W, 1, (1;) Is the spatial part and the |Sms > is the spinor part.
b-In Dirac notation we write:

‘\V nlm ,sms > = |n1m >|Sm s >’ (872)
d- Usually appears in the Hamiltonian the term L.S ofthe spin-orbit interaction and the
wave function takes the form.:

‘Wn([s)jm(r’s)>: z <lml’Sms (lS)Jm> \Ijn[m(r)|sms> (8’3)

1. Pauli principle

The Hamiltonian of a system of n-identical particles, such as electrons, is invariant
under permutation.
In the case of a two-particle system we write:

Hy(1,2)=Evy(1,2) et Hy(2,1)=E y(2,]) (8,4)

The operator of permutations is defined by
Py (2,1) =y (1,2)
The probability of presence can be written

v @.2)] =y =[Py @,2)] = P? [y (1,2) (8.,5)

So P =1 so we find the normalized wave function must be symmetric or

antisymmetric:

v = Lz[w(l,z) fy12)] = %[\v(lﬁ) ~w(1.2)] (8.6)
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Pauli principle:

- The bosons have symmetric wave functions

- Fermions have anti-symmetric wave functions

- The space of bosons have integer spin: 1, 2,3, ...

- The space of fermions have half-integer spin 1/2, 3/2, 5/2, ...
- Bosons obey Bose-Einstein statistics

- Fermions obey Fermi-Dirac statistics

2. The wave function of the system of N-fermions

We assume that the one-particle states are a solution one particle Hamiltonian h,
e.g. Hartree-Fock , with:

ho, = Eop, (8,7)
And we assume that E; <E, <E; ... <Ey, ...

For a system of N fermions was
N
E, =3 E, (8.8)
i=1
We call Fermi energy is the highest energy Ex.

The wave functions are Slater determinants:
-For a system of two particles N =2 , E = {EE;]

1

El1 El2
\V{‘E}(LZ)=$(P D 02

8,9
0 04,((2) (5.5)

-For a system of N particles the ground state can be written using the Slater determinant,
with E = [E1E2E3 ] by:

0 052 - 0LN)

E2 1 E2 2) .- E2 N
W;E}(1,2,3,...,N)=ﬁ(p 5() ? 5() S 7 5( ) (8.10)

P, ey) Pk, 2) - Pk, (N)

3. The state of the system and the notations
of second quantization

3.1 Fock space and ground state
By analogy with the harmonic oscillator we consider for example the fundamental N-
particle state:

Wi L2, N) =1 111 e 10 0. 0., [E]=[EE,E,.E,]  (8,11)
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The quantum vacuum is the state or there has only zeros.
000000 0 -)=|0) (8,12)

a- The particle-hole or p-h states are the excited states of replacing the states i with i <N
by 0 and for the states j with j> N by 1:

b- The 2p-2h states is excited state with two holes two particles.

c- We can continue 3p-3h etc..

The set of states (fundamental, p-h, 2p-2h ...), is the Dirac-Fock or Fock space.

3.2 The fermions operators of creation and annihilation
We define an operator called ay,: annihilations operators of a particle in the
state m using the formula:
0siN,=0

am| N, --~>:{(_1)v_“ 0 > si N, =1

(v) is the number of occupied states with lexicographical index lower than m, we deduce
the action of the creation operator by:

(8,13)

“0nl-- 1 N siN =0
ail- N, -y=CD ) siN, (8,14)
0siN,=1
Anticommutations the following rules are easily verified:
[a;raajL :(a;raj +ajai+):8i,j > [anajL = [a;,a;L =0 (8,15)
The ground state can be written in this notation by:
ajay.ay|0)=[1 1 1 .. .. 1 0 -, (8,16)
3.3 Expression of the Hamiltonian
We assume that the fermions indistinguishable and the Hamiltonian is written:
. . + 1 . ohr T+
H=% ,-j<z|T|j>a,. a, +ZZ zjkl<l:] 4 k,l>ai a;a,a, (8,17)

with (i, j[/ v

kD)=, j

k,0)—(i, j|V|I,k)

In general we choose for effective calculus a woods- Saxon or Gaussian potential plus
other terms such as LS.

We can find the one-particle Hamiltonian h and the eigenfunctions using Hartree-Fock
variationelle method [25] seeking the minimum of the energy

(wjul)
B (19

In this course we want only to give an idea as a simple introduction to the Hartree-Fock
theory.
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4. Classification of chemical elements

4.1 The electron energy levels

To study the energy levels of many-electron of atoms, it was usually approximate the
central field by the equation of hydrogen with the quantum number n, £, m. Because of
the influence of the electron energy levels depends on both n and £. For a given value of
n, the energy levels increases as { increases. This is because the electrons with low £ pass
near the nucleus, that is to say, in a region where the potential is similar to that created by
the nucleus of charge Ze.
On the other hand, an electron whose "path" would be virtually external to those of other
electrons have an energy approximately equal to that of a corresponding level of the
hydrogen atom.

4.2 Distribution of elections of an atom

We will discuss the distribution of elections of an atom on the different levels. Under
the Pauli principle, we know that for every quantum number n, £, m, so it can not
correspond two anti-parallel spin electronsm_ = £(I/2).

Each pair of values n, £, may correspond 2(2 £ +1) electrons.

The existence of quantum numbers can leave the electrons of an atom in shell and
subshell. A shell of electrons corresponds to the same value of n, when it is complete they
have 2n’electrons, forn=1,23, ...,isa 2n°=2, 8, 18,32, .... May then divide this shell
into n subshell each thereof corresponding to a given value of ;

A completes subshell are 2 (2 £ +1) electrons, which gives 2, 6, 10,... for £ =0, 1, 2,3, ...
To classify the different elements, we must study how to fill the shell and subshell of
successive atoms with the number of electrons increases. The levels are filled in order of

increasing energy.

4.3 Configuration of different atoms in their ground state

One can study the electron configuration of different atoms in their ground state. This
configuration is expressed by giving levels occupied by electrons. These levels are
assigned an exponent indicating the number of electrons that are (Appendix 2).
For example, the ground states of following atoms are:

He C Na
1s* | 1s” 28" 2p” | 1s” 2s” 2p° 3s

4.4 The shell model in nuclear physics

a- The shell model in nuclear physics is partly analogous to the atomic shell model.
More the shells for protons and for neutrons are independent of each other .

b- In nuclear physics, a magic number is a number of protons or neutrons in a nucleus
which is particularly stable. The seven magic numbers experimentally verified are: 2, 8,
20, 28, 50, 82, 126. But the three-dimensional harmonic oscillator gives the following
magic numbers 2,8,20,40,70,112 which only agree with the first three entries which
implies making calculations with more realistic potentials.
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X- The representation theory of groups (Symmetry)

The left-right symmetry is visible in all every living and particles, more the spatial
symmetry and rotational invariance are very important in physics and chemistry. Weyl in
his book "symmetry" shows that the symmetry in art then we can say: there is no: mater,
art, beauty or love without symmetry then the symmetry is the secret of the existence.

In quantum mechanics we are interested in transformations of groups and Lie algebra
Especially the classical groups: rotations O (n), unitary U (n) and symplectic SP (n).

The theory of unitary groups is of fundamental importance in quantum physics and we
want to do an introduction for students to follow more advanced courses on the
representation theory of groups and Lie algebra.

But the study of this theory began in mathematics and this explains the diversity of the
proposed methods [34-40]: the Cartan-Weyl infinitesimal method, the Global method of
Young, Frobenius and Weyl. Therefore we will give only a quick summary of semi-
simple Lie group and the generalization of Euler’s angles to SO(n) and SU(n) saw its
applications in quantum and in quantum information theory [41].

1. Introduction to the semi-simple Lie algebra

1.1 infinitesimal method
This is the algebraic method that was developed by Cartan ,Killing, Weyl, Chevalley,
and Dynkin etc. And it takes its starting point the study of the properties of infinitesimal
operators of the groups. And it is widely used by physicists because it is of great interest
from a practical and theoretical point of view.

1.2 The global method

The global method of Weyl originates the connection between the representation of
groups of permutations and unitary groups. This method has been the subject of intense
study by mathematicians: Gel'fand, Godement and Zelobenko ... [37] and by physicists
[36] as Biedenharn, Moshinsky and others.
But physicists have worked particularly in determining the basis of irreducible [35-37]
representations of unitary groups in the oscillator basis as an extension of Schwinger's
work on the theory of angular momentum.

1.3 The method of Schur function
Finally the method of Schur function is the least used and least known in physics.

2. The infinitesimal method and the Lie algebra

If we consider the Lie group of r-parameters and r-infinitesimal operators (2,11) and
the commutation relations:

[X,, X 1=X.C5 X, with C} =C;, (10,1)

We define the metric tensor and the Killing form by:
gO‘}\, = glc = z‘f,p C;,pC;,r (1092)
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Note that Weyl determined infinitesimal generators of unitary groups U (n) and they are
denoted by £, (i,j =1....n)

[E;,Eq]=0,E; —8,E,, (10,3)

These generators are expressed [36] using the operators of creation and annihilation of
n-dimensional harmonic oscillator:

E. = a'a.
v vy (10,4)
2.1 The Cartan theorems

Theorem: The Lie algebra is semisimple if and only if det (g4, )=0.

The inverse matrix of (g,;) is denoted by (g**) (6,3).

The first theorem of Cartan:
The necessary and sufficient condition for a semi-simple group is compact if the
Killing form is negative definite [23].

2.2 Classification of semi-simple Lie algebras

Cartan's method is to find the roots of the equation solutions with eigenvalues

denoted by (p)
[4,X]=pX, (10,5)
with A=%,a"X, et X =% b"X,
The vectors {X,} are independent then:
(a"c’uy —pdv)b" =0
We deduce the secular equation
det(a" ¢y —p06°y)=0 (10,6)
The second theorem of Cartan:

If the Lie algebra G is semisimple and if we choose for A the element of G which has
the most distinct eigenvalues, then one's own degenerate zero value. The degree £ of
degeneracy of this eigenvalue, [A,H;]=p=0, is characteristic of the algebra then { is called
the rank of the semisimple algebra and A = ); H;.

The set {H;} span an {-dimensional subspace of the r- dimensional vector space, and
the dimension of {E} ,[AEq]=a Eq, is1- £ a.

2.3 The Cartan-Weyl basis
We only give the very important results of Cartan and Weyl:

[H. H,]=0, [H,E, ]=aE,, Gk=1,..,10)

[E,.E,1=N,5  [E,E,]1=0d'E, (10,7)
With N,,=C&P oa'=%,¢g"a, (10,8)

Note that this basis is frequently used in physics. And it has been demonstrated starting
from this basis that the semi-simple groups are the classical groups: the orthogonal, the
unitary and symplectic and exceptional groups.

Note that the classification of these algebras can be easily carried by the Dynkin
diagrams, diagrams roots [23].
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2.4 Cartan theorem on the irreducible representations of classical groups.
For classical groups G of order n there are n fundamental weights:

[h]s= [hin, hon,. .., han] (10,9)

And any maximum weight corresponding to an irreducible representation there are n
positive numbers m; as:

H|[h,) = h,|h],) (10,10)

m =h, =R, i=12,...n,

The index hy, is zero if G is the group SU (n).

2.5 Racah theorem:
The number of Casimir operators of G is n.

2.6 The fundamental representations of unitary groups
The irreducible representations of G are functions of fundamental representations
for which hj,= 1, i<=n.
E. Cartan showed that the irreducible representations of U (n) are functions of subspaces
of fundamental representations [21].
These basic representations are subspace [h],.

{A, .} =[100..0],, {A, ,} =[110..0],,....{A, , } =[111,...,11], (10,11)
—
The dimension of the subspace [1,1,1...,1,0,...,0] =A,, ,Or F (n, p), is C? then the

dimension F (n, n) is 1. And it is easy to verify that the sum of the dimensions of the
fundamental representations of U (n) is 2"-1 and 2"-2 of SU (n).

2.7 The fundamental basis of binary representations:

We observe that the vectors of the bases of fundamental representations can be
expressed by binary numbers that we call the binary basis of fundamental representations.
And afterwards we make the correspondence with the Gel'tand basis of U (n) .

We write as examples:

[8ey [[2 o [[[o [1 ]|
ban |[1]o]o]|[o]1]0o]|[o]o]1
Doy [[O]2]1]|[1]o]1][[1]1]0
Day [[1]0]ofo]|[o]1]o]o][[o]ol1]o][[1]1]1]0]]
Duy |[1]2]o]o]|[2]o]1]o]|[1]0]0]1
Duy |JOT0[1]1][[o]1]ol1][[o]1]1]0
Bagy [JO]1]a]a][[2]oa]a][[a]21]o]1]][[o]o]o]1]]
Table 8
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3. The global method: representations of permutations
and unitary groups

The global method of Weyl has the starting point the connection between the
representations of permutations groups and unitary groups.
Weyl introduced the characters of classical groups and he deduced the branching law
and the formula of the dimension known by Weyl formula.

3.1 The Weyl branching law
If we consider the restriction of U (n) to U (n-1), with [h], and [h],.; are the highest
weights. Weyl found the important result:

hyy2h ., 2hy,2h,,  >2..2h L= h

a- From this formula Gel'fand and Zeitlin deduced first in an intuitive way the
representation of U (n) represented by an array of index > 0.

b- The search for the explicit form of Gel'fand basis, using the bosons operators or Fock
space, was found by Bargmann and Moshinsky, Biedenharn and others. But Nagel and
Moshinsky expressed this basis in terms of the raising and lowering operators.

All these methods are an inextricable complexity for n > 3 for this we have developed

the method of generating function to solve this difficult problem [25].

n—1,n- n,n * (10>12)

3.2 Representations of permutations groups
3.2.1 Consider the Schrodinger equation of a system of n- fermions (electrons or
nucleons) for example

H(r,ry,., v ) W(r,,ry,, r,) = EV¥Y(r,,1y,.., 1) (10,13)

The Hamiltonian H must be invariant under a permutation of the variables r;. The solution
of the equation must be transformed according to an irreducible representation of these
groups and these representations are symmetric or antisymmetric if ¥ function of the
variables r; and the spins.

3.2.2 The irreducible representations of the permutation group S, are determined by the
decomposition of n into positive integers:

n=A+A, +.. A, A =2A,>2.2A,r<n (10,14)

A table or Young diagram (A4, ..., A,) is a Young tableau in which inscribed the numbers
1 to n. The boxes are arranged in a line A, A,,..., A, by line because the lines are arranged
in ascending order.

We fill the boxes of the Young diagram with numbers y; functions forn =11

1 [2 |3]4]5]
617 |8

10
11
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The number of permutations is n! This corresponds to n! Young tableaux that are not
linearly independent of where the introduction of the standard tableaux.

The standard tableaux is the distribution in ascending order numbers from left to right
and from top to bottom columns built by the rule of recurrences [38-39]. We will give
these tables by recurrence method [38]:

N=1

1] 1[3]
3 2
\ B
N=4 [1]2]3]a][1]2]3]2]2]4a][1]2] |2 1|3
4 13 3|4 3] 2]4
4]

Table 9

3.2.3 We note that: the first by (4), the second (3,1), fourth ((2,2)=(2?), fifth (2,1,1) =
(2,1,1)=(2,1%), and seventh (1%).

3.2.4 The conjugates partitions: The conjugates partitions are partitions that can be
deduced from each other by the exchange of rows and columns by rows and columns and
to each partition there is a conjugate partition.

3.2.5 Representations: We note that the decomposition of irreducible representations
can be done with the help of Young operators [36-39] and the Young diagrams.

3.3 The dimension of the representation of S,
The dimension of the representation of S, associated with the partition (A4, ..., A;) is:

d, = n!><|:[ I (A, =4, +J- i)j/(f[ (A, +7r— i)j!} (10,15)

Jyi=1

3.4 Weyl representation of the unitary groups

Weyl showed that representations of unitary groups [36] can be deduced from its
patterns by repeating numbers and we will give the representation of U (2) and semi
maximum representation of U (3), and then we deduce the Weyl branching law.
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N2 T (02

-

1 1 1
H =5 @We@) ~e@em) = (T =N [ 1]= oo =11

i12]- %(cp(l)cp(z) +o2)o(l) = %(N AN 2 2]=0@e@) =4

a- Representation of U(2)

hyi hy, hy,
11... 11.. [222.... |
222..
We have: h;;<hp<h (10,16)
b- Representation de U(3)
hys hy, hy3 hp his
11... ...  |.... T 1]33......... |
22... 2..... 3...
33.....
We have also:  hy; <hy <hys<hjp<hjs (10,17)

c- The Weyl branching law
The generalization of expressions (10,17) allows us to deduce the restriction of weight
U (n) to U (n-1). The maximum weight are [h], and [h],.:

> . 2h, . 2h,, . (10,18)

4. The Gel'fand basis of unitary groups

4.1 The Gel'fand basis of unitary groups

Based on the law of the Weyl branching Gel'fand and Zeitlin found by intuition the
orthogonal basis of U (n).
The Gel'fand basis or T, is:

My o oy, [4]
.................. [h]n n
|),)= Z‘ =|[A]. (10,19)
hlZ h22 (h)’171
(1),
hll
And h;2h,,  2h,, ; avec j=2,.,n et i=1,..,j
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4.2 The Weyl dimension formula
The dimension of the subspace of U (n) is given by the Weyl formula:

dy, =dlh, ... h, =1, (p, - p,) /(120 (n-1)] (10,20)
with p, =h, +n—i and hy, = 0 for the subgroups SU (n).

4.3 The maximal and minimal states
We associate with any vector a weight vector that has the components:

(1) = (1, (1), @, (). @, (R)). (10,21)
with ©,, = (ihj, _ihj,i_l)
= =

A weightw(h") is higher than the weight (/) if the difference of the first component
o(h') — o(h) 1s positive.
We deduce the existence of a minimal and maximal vectors.

4.4 Explicit expression of Gel'fand basis
By analogy with the SU (2), Nagel and Moshinsky [35] showed that the basis can be

deduced from the minimum and maximum state by applying ladders operators L} , R} .

We write:
vl T, ol T,
|(h),)= NTITT(L)" = N'TITT(RY)™|
r=2p=1 (max),_, r=2p=1 (min),,
With L5 = hM - hu,H , R = hwH - hwu (10,22)

N and N 'are the normalization constants.

4.5 The binary representations of the analytic Hilbert space

(zij ), i, j =1,...,n Is a matrix defined on the field of complex numbers [25,37]. We

12..1
iy

associate to any minors A" of (z/), i, j =1,...,n a binary number of length n and

ordered. This number ones for the numbers i,i,,...,7, and zero elsewhere.

12 ... 4 ... i .. n
10,23
A= ATE=100 01 1 .0 ( )
We note in the following the basis vectors of Fock-Bargmann space by:
A, (2) =1, A=, A () (10,24)
The Gel'fand representation is:
T, (A2) = ((h), |A(z)) (10,25)

56



5. Generalization of Euler’s angles to SO(n) and SU(n)

We establish recurrences formulas of the order of the classical groups that allow us to
find the generalization of Euler’s angles for the classical groups [25, 41-44].

5.1 Generalization of the Euler parameterization of SO(3)

The rotation may be written by
7ieL.\' —ipL.

R(y0p) =e e e (10,26)
By analogy we write the finite transformation of classical groups in the form:

A;:n = A;T—JB;nA;T—I

(10,27)
With m =0, 1 and 2 for orthogonal, unitary and symplectic groups.
We design by Nyy(n) the number of parameters of the classical groups:
No(n)=n(n-1)/2,  Nj(n)=n’1, Ny(n)=n(2n+1). (10,28)
In the following we derive two kinds of recurrences formulas
a- The first relation:
N, (m)=N, (n-1)+2"n-1,m=0,1,2. (10,29)

Since the point (0, ...,0,1) is invariant by the group of order n-1 this means that the last
column and the last row are the components of the unit vectors , with 2™ n-1 parameters,
of points on the unit sphere S™"~1 of the Euclidian space E,(K),K = R,C,H = Q.

b- The second relation:

N . (n)=2N_(n-1)-N_0-2)+2" m=0,1.2 (10,30)
It is quite evident that the left and right parameters of (10,26) are different

A;n = AgingilAzizB:ArﬁzB:ﬁlA;ﬁz
Therefore (10,31)
=A4,,B,L[4,,B, 4,1, A,

n—1 n—1
If [B",A",]1=0 (10,32)

The number of parameters of A7 becomes 2N,,(n — 1) — N, (n — 2) + 2™ and the
number of parameters of B, is 2™ therefore we find the same result of the above
recurrences relations (10,29-30).

To find A" we must choose the parameters such that [B', A" ,]= 0 and the last line, or
the last column, are the components of the unit vector 1 = (x,,...,x,) of E,(K) and from
this property we can deduce simply the measure of integration of SO(n) and SU(n) [25].

5.2 Parameterization of SO(n)
In this case 4" = 4" ,B" A" ,, m = 0 the matrix B’ is function of one variable and

n—12

The expression [B’, 4! ,]1=0 means that B! leave invariant 4’ ,.
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If we choose in E, the spherical coordinates 6,,6,,...6, ,we find the Vilenkin’s

parameterization [44] for SO(n). and any rotation g of the group SO (n) can be set as
follows:

g=g ™D g0

Where "' =8,0))--8.(0) (10,33)
And gi(0) is the rotation matrix in the plane (X, Xi+1).

5.3 Parameterization of SU(n)
In the case of m = 1 the matrix B! is function of two variables and det(B)) = 1.
The expression [B!, 4’ ,]=0 means that B! leave invariant 4’ , and the solution is not

unique for n>2.
We can consider the useful options (22), for example

(n=1) (1)

u=u u
Where u® = uf (i, (OF ) (BF 1)
uik(eikﬂl//ik)anz Zgi(aik)di(l//ik) (10,34)
—iyf iy
With ub = ¢ O laqn=|¢ 1m0 (10,35)
0 etV 0 e*l("*l)\ul
We have for SU(3) U, =4; =A; [B;4;
a, a, 0\||1 0 0 |d, 0 0 b, b, 0
~a, a 0|0 cos%f sin% 0 d, 0l|-5 b 0| (1036
0 0 I Y v. o o 47|l o o0 I
0 —sin—= cos—
2 2 |
with 0<v, <, d,=e” 0<p, <.
\ 0' -
And b, =exp(¢, )COS(E)’ b, = exp(¢', )sm(z) (10,37)

Note: Symmetry and prime numbers
The right and left symmetry is fundamental in physics this incite us to ask
whether this symmetry is in primes:
Find the numbers n with a+a=n.
a, a are primes and {a} are all the primes with: n/2 <a<n, and n==2,3, ...
Calculations for n < 100 million we find six numbers n =15, 7, 10, 16, 36, 210.
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XTI -The representation of SU (3) group
The group SU (3) plays a fundamental role in nuclear physics and elementary particle
and we will determine first the generators of SU (3).
The expression of the vectors of the basis was found by several methods but we will
find it simply using the generating function and the Schwinger approach [40].
1. Generators and Casimir operators of SU (3)

1.1 Gell-Mann represented the generators of SU (3) by the following matrices:

01 0 0 -i O 1 0 O
Ao=[1 0 0la,=[i 0 OLr,=[0 -1 0
0 0 0 0 0 O 0 0 O
0 0 1 0 0 —i 0 0 0
M(o 0 o}xs 0 0 J,xé(o 0 1
I 0 0 i 0 0 1 0
0 0 O 1 0 0
m{o 0 —i,xgzio 1 0 (11,1)
0 i O 3 0 0 -2
Put F =72
We write : T.=F *iF,, U, =F,xiF,, V., =F, tiF;
=B, Y=h Ui=gCroT) Vi=gCreT) (1))
After a simple calculation we find
Y, 7.1=0, [T.,T 1=2T, [U,,U_1=2U,, [V,,V_]=2V;, (11,3)

SU (3) has rank two then by Racah theorem the number of Casimir operators are two:
1
C,=XY_F? C,= Yiud, W FFF,d, = ZTmce (2212, (L4

1.2 The basis of the group SU (2) cSU (3)
Let be the space Dy, ,, of homogeneous polynomials and V(?,“tz,y) (z',z%) is the

orthogonal basis. In the case of SU (3) we write:

z! =(§1,1’]1,01)=(x1,61), z? =(&,:M,,0,) =(x2,62)

And r=c%,  r-=n?, 1=l 9 (11,5)
on o€ 2" on
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poe? g ? 26l
ot om oo

With T;”:éi d +n; o + G, 0 5
IS, Vo, oo,

J J

The vectors V™

() (z',z*)are eigenfunctions of the Casimir operator and the projection

of T on the z-axis and y is the triple of the hypercharge Y (y =3Y).
The numbers I, I, or 7,7, are isospin and its projection on the z-axis, p=A+u and q=.
We have:

YVl =9V TVl =tV (11,6)

TPV =t +1V}h.

The Young tableau imposes the following condition on V(f)‘ (see also table 8):

TV (z2%) =0 (11,7
2. Schwinger approach and the generating function of SU (3)

2.1 Schwinger approach
The vectors Vj.  (z',z*)are the elements of the product space D, ® D, ® D,

(t,1z,y)
which has the basis:
(leml (&1 ’nl)(pjzmz (az ’1/]2)(pj3m3 (Gl ’GZ)'
But
0 0 1 0 0
T, =3, +6,—, T =3 +1,—, T =3, +—(——-1,— 11,8
+ + §3 81']3 n3 ag} 3 2(&3 aé3 n3 81']3) ( )

And it is easy to verify that J,,3_ et 3, are the generators of SU (2).

So the determination of the basis {V(ﬁf; }by Schwinger generating function method.

This method consists of making the following coupling (7,40):
a-The first coupling (j;m;)x(jomy) 2(j (m’, m)):

P jim, (Esl’nl)(p_jzmz (&,,Mm,) = (m')F(fn)(x)a m'=j - j,
b-We apply to the result the new coupling (jm')x(j;m;):

' s 1 2) _(2
iy Fony (), (01,0,) = Vi) (27,2, 20)

c-We then apply the Cartan basis (table 8) ,or the Young condition (11,7),to cancel the
parameters 7z@ so we write:
A A
i u))y) (z",z0) =y u’)y) (z", 2, 702)

(2.1, (8.1,

We obtain the generating function of SU (3) and we write it in a simple form:
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G((x,y,u),z) = eXp[f A +gz(12>]
lﬂ%(}yw((tﬂ:ﬂtz,y)(f,g) V((tiﬁ)y)(z(l) (12)) (11,9)
With f=xE&xmnx,), &=0m-0&»,).2" =(z],25,2})

i are the minors:

2 = 20 x 2 = (AT + AT+ Ak)

z

We also have:
(Pf?‘;’”(f g)=N[(p), ()](x/ x5y Dy ) Im")) (11,10

(L+r+D(p+A—-s+1)!
A+ 2+ DA A =)!s! (= )1t + 1)1t = ¢5)!

And  N[(Aw),(a)] = (—l)s\/

2.2 The basis vectors V(zp; (z',2%) of SU(3)

By the development of the generating function and after comparison with the second
term we find the basis:

. (n—s)!r!
Vi (@527) = N1 o)(=1)* Xz"( j( —s—k)\[r - (n-k)]!

&I (AL (=AY (AL

(11,11)

NI(Ag; @) = A+DN(u+r—s+1)! X(Z‘[—m)! %
A = s =N+ T+ A+ s+ D! @0t

And y=—QA+pn)+3(r+s), 0<r <A,

NS
2 2
t,=t—m, m=0,1... 2t (11,12)
In part 6 we follow the notations:

3A11 :Zi: 3A21 :lea 3A31 2213: (11,13)

0<s<y,

(11,14)

And the vectors (a)(z z?) =T, (A(2)

The dimensions of the subspace of SU (3) are useful for the following:

h13=}\,+u,h23=u 1,0 1,1 2,0 2,1 3,0 3,1 4,0 4,1 4,2
d[hy3,hy3,0] 3 3 6 8 10 |15 |15 [24 |27
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XII- SU(n) generating function of Gel'fand basis
and tensor products of SU (3)

To extend the study of angular momentum to the unitary groups it is important to
determine the generating functions of these groups. We observed a very important
property: the powers of the parameters of the generating functions are the same
powers of the ladders operators of the oscillator and SU (2).

We will demonstrate that the generating function of SU (3) that we have built [46] with
the help of the Schwinger approach (Chapter 11) verifies the above property.

The generalization to SU (n) of this property give the Gel'fand generating functions
and then we deducting the base and the formulas for the conjugate states of SU (n).

We also expose the usual methods which are very useful for the calculation of tensor
products of SU (3).

1. Generating functions and ladder operators

1.1 Generating function of the oscillator and the base of Gel'fand
The generating function of the oscillator in terms of Gel'fand indices:

Gl)=1,, T @I

] |0) = exp[y,a; ]0) (12,1)
11/

2.2 Generating function of SU(2) and the Gel’fand basis
We want to express the generating function of SU(2) in terms of Gel'fand indices.

it ) (12,2)

We have | jm) = _GEmL JI
CHGFm)!

In the Gel’fand notation we write the generating function of SU (2) by:

h127h11 hl]
G(&z2)=2 1, \;ZZZ —hn())!}zh)n)' z(h”hno)(A(z)) =exp[y) LA, +x) ,ALT  (12,3)

With: h,=2j, hy=j-m, h,,=0.
1.3 The generating function of SU(3) and the Gel’fand basis

We observed (12,1-2) that the powers of parameters x and y have the same powers of
raising and lowering operators introduced by Nagel and Moshinsky [35].

The extension of this observation to the expression of the generating function of SU(3)
give:

P =z iNPua R [h]3
2 [T TAu @0 ) )r{ j(A@:
R (h)
exp[3A(1122)y3 +2Z3 (3A(12) A(llf)yé)"i'y; (3A11y; +3A12x;)+3A13x;] (12,4)
The comparison of the expressions (8.3) and (10.28) yields:
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[h]3 - + Z + M —t+ —
(h), 2 3 2
t,+ r + G +32M)
Thus we find the well known result [36]:
a- hi3=p,hpn=q b-
C- Y = h12 + h22—2 (h13 + h23) /3 d-

We give only an expression of the basis of SU (3) in terms of the hypergeometric

function ,F;:

A+pu

N (A +2p)

3

I, =t=hi -(hi2 + hy) /2
I=t= (hi-hyy) / 2

(12,5)

(12,6)

hiy  hy
Mol | )= MUTGAY) AR AT (A"
h12
X 2Fl(hzz = hyy, by = hyy sy — By +1;(3A11 3Aﬁ)/(3A21 3A52)) (12,7)
1.4 The fundamental representations of quarks and antiquarks
SU@3) i= 1 2 3 4 5 6
Binary basis || 100 | || o010 [|| oo1 [|| o1l ||| 101 | 100
Gel’fand basis 1 0 0)(1 O 0} (1 O O 1 10 110 11
1 0 1 0 0 0 10 1 0 11
1 0 0 0 1 1
Young basis 2| 1] 1]
3 3 2
Quarks (I, Y) | (1/2,1/3) | (-1/2,1/3) | (0,-2/3) (-1/2,-1/3) | (1/2,-1/3) | (0, 2/3)

2. The generating function of SU(n)

Table 10 Baryon J’=1/2"

Generalizing the generating functions of the oscillator, SU (2) and SU (3) we write:

With

n A

2o 11

=2u
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1, ()™ ()™ )T, (A(2)

= eXp[ Zm,i(P:l,i(xﬂ y)nA”;(Z)]’
e(u,\) = hp.k _hp w1 and  f(p,) = hpx71 _hu+lk'

(12,8)




2.1 Calculus of the coefficients ] (X,y)
The coefficients @, (x,y) may be written as product of parameters y;, = y(A,u) and

x; = x(A, ). We determine the indices of these parameters by using the following rules:
a- We associate to each "one" which appeared after the first zero a parameterx}  whose
index A is the number of boxes and x the number of "one" before it, plus one.
b- We associate to each zero after the first "one" a parameter y; whose index A is the
number of boxes and x is the number of "one" before him.

2.2 The symmetry and the conjugate states of SU(n)
k

We know that each binary number has a complement then we deduce thatA’ ; has a

—k . . .. . .
complement A i}, Therefore the generating function is invariant by the transformation:
Ao A (12.9)

2.2.1 The conjugate statel, ((hc ), )of Gel’fand basis

The generating function of the conjugate state I, ((hc ), )becomes:

n A-1 _ X _ A
T 1111 45, ((x)heh (pryhehe i (k).

= &Xp [ Zm,i(an,i(x’ y)nK,; ]' (12’10)

A—p

We change x!' and y!' by y.™ and x|~

n

in @7, (x,y) to get@'; (x,).
Put v=h-p so we write:

no Al Y TRV T L c
S TTTT 4, ()7 () )T, ((7),)
= p:
=exp[ T,.0", (x,y)x,A"], (12,11)

Comparing (5,2) and (5,3) we find:

h:,x—l - h:+1,x = hx—u,x - hx—u,x—1
ot h:,x - h:,xq = hk—u,k—l - hx—uﬂ,k >
h;’n = hn’n =0 (12,12)
avec

We will determine the conjugate state‘(h")n>with the help of (5,4).

2.2.2 Expressions of the indices of the conjugate states:
We proceed by induction to determine the indices of the conjugate states:
After the calculations for A=n, n-1 .., 1 and p=A-1,.., 1 we find:
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hi =h

i,j 1,n

- hj—i+1,j (12,13)

We also get a known but found by other methods result [36].

2.2.3The phase factor
By extension of phase factor ¢ of SU (2) [6], we write:
| o=%,,h,—h, | (12,14)
a- The conjugate state of SU (2) is:
hlcz = 2]9 hzcz = 09 hlcl = j+m (12315)

b - The conjugate state of SU (3) is the transformation : (t, t,, Y) 2 (t, -t,, -Y)
So we get the conjugate basis and the R-Conjugation of Gell-Mann of SU (3) [36].

It is important to note that obtaining results (12,4) and (12,12) shows also the validity
of our observation (12,1-2) that the powers of the parameters of the generating function
have the same powers of ladders operators.

3. The decomposition of tensor products of SU (3)

3.1. Graphical representation of Quarks

We will present the decomposition of the tensor product by the graphical method because
it is a simple and original method [19] and then the Young method tableau.

We represent the fundamental basis of quarks by ||1,,Y > with:

a- The quark [3]: (I, Y)=(1/2,1/3), (-1 /2, 1/3), (0, -2/ 3)
b- The antiquarks [3]: (I, Y)=(1/2,-1/3),(1/2,-1/3), (0, 2/3)

The graphical representation is :

The quark The antiquarks
Y. Y

2/3
1/3

—> T —>T
3 /\4}‘. 3

-2/3

3.2 The decomposition of the tensor products

We want to determine, for example, the tensor product [3] & [3]. Let us put the center
of the second pattern at the ends of the first and we get the second figure.
But among the ends there are double points imposes second figures for double points.
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v4 v4 %
-2/3
t 1/3 : 1/3 :
41@ ® T3 = =T3 =
-4/3
Y
\T 2/3
2/3
-1/2 1/2
>T; @ > Ts

-1/3

3.3 The decomposition of the tensor products
We will calculate the tensor products with Young tableaux

a- [ ]= ED@El
[3] ® [3] = [6] ®[3]

b- D®H= IGBQ
[3] ® [3]1= [8] @11,

c- IR =T T 1
[3]1®[6]=[10] @ [8]

We can apply this method to other decompositions and are:

3] ® B]® [3]1= (1] @ [8] ® [8] @ [10]
[B] ®[8]=[27] ® [10] ® [8] ® [8] ® [8] ® [10] ® [1]
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3.4 The Baryon Octet and The Gel’fand basis

1-The Baryon Octet and the plane Y-Ts

AY AY
p A AO A+ A++
2 -1 z*— ;A4 Eg
= =*- —=*0
21O
3.5 The Baryon Octet and the Gel’fand basis
particule roton neutron > 3’ )
States 1]1] 1]2] 1 ]3] 1)1 1]2]
2 2 2 3 3
Gel’fand basis 210 210 210 2 10)[(210
2 1 21 2 0 20 20
2 1 2 1 0
Quarks (I, Y) (1/2,1) (-1/2,1) (1,0) (0,0) (-1,0)
particule A’ g’ =
States 1 3] 1]3] 23]
2 3 3
Gel’fand basis 210 210 210
11 1 0 1 0
1 | 0
Quarks (I, Y) (0,0) (1/2,-1) (-1/2,-1)

Table 11 Baryon J’=1/2"

3.6 Coupled representations of SU(3)
Several methods have been proposed for the determination of coupled representations

and Clebsch-Gordan but calculations by these methods is beyond the undergraduate level

[25,36].

67



XIII-Appendices

Appendix 1: Equations of Klein-Gordon and Dirac
We want to give only the formulas [9].
1. Klein-Gordon equation
Starting from the relativistic energy

P’ +m? =E? (Al,1)
And the correspondence principle: E — i %, P

We find the Klein-Gordon equation
2

(—§7+A—m2)w(r7,t)=0 (Al1,2)
This equation is an equation of relativistic spinless particles.
A particle of mass m and charge e and is located in the electromagnetic potential (@ ,/T)

has the equation:

E:e(pi\/(ﬁ—eg)2+m2 (A1,3)
We deduce in this case the Klein-Gordon equation:
e e -5 2

2. Dirac equation of the electron
Following Dirac we are looking an equation of the form:

0y /0t = H ,y (A1,5)

The theory of relativity imposes a symmetry between the coordinates and the time so we
are looking for a first-order equation and a hermetic operator, Hp, of the form:

H,=0-p+a,m (A1,6)
It is required that the energy of the electron System verify the equation:
H?=m’c’ +c’p’ (A1,7)
Replacing Hp and making identification we find:
(a,)’ =1 akal+a’ak:25k)l (A1,8)

We can write the matrix (&) in a form similar to the Pauli matrices by putting:

0 i
Y =0, Y =004,

o (L 0Y . (0 &) , (01
Vo= 0 —I’ Vo= —O'i 0 H Vo= I 0 (A1,9)

a-The equation is then written :
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H, =d - -p+a,m (A1,10)

3. The equation for the electron in an electromagnetic field is:

[(E—ecp)—&-(ﬁ—eﬁ)—a4m]5” =0 (A1,11)

Appendix 2: Electronic configuration of the chemical elements

Electronic configuration of neutral atoms in the ground state:
sub-shells abbreviated by detailed sub-shells and the number of electrons in each shell.

1 H Hydrogen : 1s'

2 He Helium : 1s°

3 Li Lithium : 1s° 2s'

=

-

4 Be Beryllium : 1s” 2s”

5B Bore : 1s” 2s” 2p1

-

6 C Carbone : 1s” ,2s° 2p”

-

7N Azotes : 1s” 2s° 2p°

-

8 O Oxygen : ls” 25" 2p°

-

9 F Fluor : Is° ,2s° 2p°

&

10 Ne Neon : 1s” 2s° 2p°

&

11 Na Sodium : [Ne] 3s'

-
>

12 Mg Magnesium : [Ne] 3s°

-
>

13 Al Aluminum : [Ne] 3s” 3p’

-
-

14 Si Siliceous : [Ne] 3s” 3p°

15 P Phosphor : [Ne] 3s” 3p°

-
>

16 S Sulfur : [Ne] 3s” 3p*

-

17 CI Chlorine : [Ne] 3s” 3p5

-
>

18 Ar Argon : [Ne] 3s” 3p6

-
-

19 K Potassium : [Ar] 4s'

¥
-
-

20 Ca Calcium : [Ar] 4s°

-
-

O (00|00 ||| N[ [W(N|—

BN [ —

21 Sc Scandium : [Ar] 3d' 4s”

¥
-

22 Ti Titan : [Ar] 3d” 4s

-
o
o

23 V Vanadium : [Ar] 3d° 4s°

-
-
-

24 Cr Chrome : [Ar] 3d° 4s'

-

&
=

25 Mn Manganese : [Ar] 3d’ 4s”

AN AN R NSRS ARSI RN AN RS AN RS A TN A NS AN AT A I A NS RN A TN RS A TN NS e
90 [ 90|00 |00 |00 |00 00|00 (00|00 00|00 |00 |00 (00 (00|00 |\ (WP | N|—

-

et [ et | | | ek
PR (=]
NN — (DN

o

26 Fe Iron : [Ar] 3d° 4s”

Table 12
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Appendix 3: hypercomplex numbers, quadratic transformations of
octonions and Pauli and Dirac matrices

3.1 Octonion Quadratic transformations
From the generalization of the transformation (6, 28) we obtain the antisymmetric
matrices H, (2,2)”complex” , Hy (4,4)”Quaternion” and Hg (8,8) “Octonions” (A3,3).

by posing: Va= (u3,ug,u,up) et Vg=(us,ug,u7,us,u1,Uz,U3,Us) (A3,1)
We get the transformations R* - R’et R® - R”:
V4H4 = (Xl, X2, X3,0) V8H8 = (ZSa =23, Z3, ~Z1,Z ,0,0,0) (A352)

3.2 Hypercomplex numbers: complex, quaternion and octonion.
The matrix of octonions Hg is given by:

u, —u, —u, —u, —us —U, —U, —IUy
U, U, —u, Uy —Ug U Uy  —u,
u, u, u, —u, —u, —Uug U Uy
U, —u; U, u, —ug U; —Ug  Us
And H, = (A3,3)
us U U, Ug u,  —u, —u, —u,
Uy —Us Ug —U; U, u, U, —U,
U, —ug —Us U u, —u, U U,
ug U, —u, —uUs U, u, —u, U
. _ 8 _
With H, =u I+ ,ue,, e e =—1, (A3,4)
t 8 ' 8 2
And Hy=ul-3%7,ue, H xHg =% u, (A3,5)
3.3 Quadpratic transformations and Pauli, Dirac matrices
t . .
3.3.1 Put: (u) =(u;+uy,uz+iug)
t . . .
and (v) = (utiup,uztiug,us+ivg,us+ug) (A3,6)

The Pauli and Dirac matrices are § and y' and It’s simple to shows the relations:
x= ([@EIW), x= @)W, %= [@s)w), (A3,7)
2, = (Y’ V), 7 ="' @y (V,i=123, z,=' )7 (V) (A3.8)

3.3.2 Identifying t(u) A; with the columns of VgHg we deduce the matrices A; which are
the Dirac representations matrices of y' in R® with '(u) = (uy, s, ..., ug). In addition we
find the three matrices A, z; = 0, i=5,6,7, which commute with the A;, 1=0,1, .., 4.

3.4 Hurwity theorem:

There are antisymmetric and orthogonal matrices H, if and only if :
n=1, 2,4 and 8 or “ R, C, H=Q and O” (A3,9)
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Appendix 4: Inertia tensor and cross product in n-dimensions space

We demonstrated using an elementary method that the tensor of inertia of a material
point and the cross product of two vectors were only possible in a three or seven
dimensional spaces [14].

1. Inertia Tensor
The kinetic energy of a particle of mass m=1 which moves in a system in rotation with
angular velocity (@)is:

T =é(§c)~(}) =§(@xf).(5)xf)

X, 0 z —-y\o
X =l-z 0 x |o, =)o) (A4,1)
X, y —x 0 )\o,

Then
T=% (@ ({(V)V) (@) and (M),=(V,)(V,)

We write the inertia matrix as:

- 2
m,, m, mg, r°—x> —-xy —-xz
_ _ -2 2
M);=|m;, m, my |=| —Xy r-=y —yz (A4,2)
~2 2
m;, m, my — XZ -yz T'-z

2. Inertia tensor and the quaternion
The identification of two sides of the equation (A4,2) may be written as:

m,+x>=7" m,+xy=0 m,+xz=0
m,+xy=0 my,+y’ =F> my,+yz=0
my,+xz2=0  my,+yz=0 my+z =7’
x4y 4zt =7 (A4,3)

We can express these systems in matrix form as ‘(V,)(V,) = 1’1

2

t(VB) -y (Vs) y — 0 7 0 0 (A4 4)
x yz 0A-x -y -z 0 0 0 0 7

We replace the matrix (V3 )by its expression in (A4,1) then we deduce the orthogonal and
anti-symmetric matrix:
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0 z -y x
-z 0 x vy
V)=
y -x 0 =z
0

-X -y -z

With (V,) is the matrix representation of the quaternion
V, =xe —ye, + ze,
312 =-1, 622 =-1 e32 =-1

€€, = =€, 6,63 =€, €6 =6,

(A4,5)

(A4,6)

(V,) Is an Hurwitz matrix and e,,e, and e, are the generators of the quaternion [A4,5].

3. The cross product in n-dimensions

The generalization of the tensor of inertia in an intuitive way is:

=2 2

m,, m, .. m, Fi-x"  —xx,
-2 2
m m oo m — X, X r —Xx
21 22 2
M)=| . = I ?
m;, m, ... m, — XX, — XX,
n

With }7=in5 and 2y

pmy m; +x;"=1",1=1...,n

m; +x;X; =0,i#jeti,j=1...,n

And the matrix system ‘(V,,,)(V,,,) =TI takes the form:

- X, X, 0
V) (v.) |0
-X, X, :
X, ... X, 0 \-x, ... =x, O 0

t(\/n+l )(Vn+l) = fzIa and V = ZZ:I Xiei

The generators of the octonions algebra satisfy:

2
e, =—1, ee, =—ee,

i Jji?

ij=1,.7

- XX,
—h (A4,7)
7'2 — X 2
(A4.8)
. (A4,9)
=2
(A4,10)

Hurwitz showed that the orthogonal and anti-symmetric matrix which lines are a linear
combination of components of a vector if only if n=1, 2,4 or 8.

Consequently the matrix (M) is orthogonal if n+1=8, it results that dim( R")=1,3 or 7.
And the restriction of (Vg) = -u, e, +u3 €3 +ug €4 -Us €5 -ug €6 tuy €7 +ug eg to the first seven
rows and columns (7,7) we obtain the matrix (V) and (M7)=(V7) (V7).
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Appendix 5: The p-representation of the hydrogen

It is well known that the representation {p} of the hydrogen atom was deduced
indirectly by Fock in 1935 by introducing the transformation that bears his name [29].
But in the literature [3-11,28] there is no direct calculation to determine the wave
function in the representation{p} of the hydrogen atom, which is the Fourier transform of
the wave function of the representation {7}, except in special cases.
In this section we want to fill this gap by using the method of generating function and
the quadratic transformation R* — R3 and more we find the phase factor.

1. Generating function of hydrogen atom

The wave function of hydrogen atom in momentum representation is

= ] —ip.7 —
v ( p)zm j P (F)dr (AS,1)

l//nlm (?) = ei(wr)/anl (x)Ylm (9¢)5F = (}", 99 (0)’60 = 2/}1

With R ,(x) is the radial part R ,(x) = (nNTnlI) FLCD (x) (A5.,2)

[y A
And  x=orN, =2 [C2EDD L ase= (A5.3)
n [(n+D)!] n

Where L? (r)is the associated Laguerre polynomial.
Atomic unit are used through the text.

1.1 The generating function of Laguerre polynomial L. (r)

The generating function of Laguerre polynomial L? (r)1is:

n z

X @ 1 Ta)
o O (A9

(a+1)

From the property %L(na) (r)=-L""(r)

z

. Zn (Z)H—l - r
We deduce that —= 1 —= e AS5,5
Eo(n+1+1)' (1) (1-2)* (A52)

1.2 The generating function of spherical harmonics

(a-f)’ 4
2 21 1

& Z%n(f) Y, () (A5,6)

With d is a vector of length zero, d.d = 0 and its components
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a :_&.512 +E.~§> a, :_i(gf +§§): a, =2§&,,

With (P”"(a):,/(ulm)!(zz—m)!'

1.3 Generating function for the basis of the hydrogen atom
1

g z"@,, (o), and summing with respect to n, [, m

. 4r
We multipl )b
py \anm( ) Y[Zl 1

G(z.00.7) = %,;[21 L =

m(n+1)!

1 2" 0, (QEW 1 (F) =

! (AS,7)
o (@2 Z— AL (o o o .
nz=(; (l’l + l + 1)' n -I= 1( )Z m (Dlm( 5)[//’11’”( )
Substituting (A5,5) and (A5,6) in the above expression we obtain:
z wr(lI+z) wz(ar)
e xpL™ - A5,8
(Z 5 ) \/_(]_ ) ] p[ 2(]_2) (]_Z)Z] ( )

2. The generating function in momentum representation

2.1 The quadratic transformation R* —» R3
Consider the relationship between the well-known Wigner’s D matrix spherical
harmonics polynomials

1/2
2J])lmO)( ) (21 lj Ylfn(ea(p)a Z:(Zlazz) (A539)

zZ, =u, +1u,, Z, = U, +1u,,

p=Ar, 1=27 +2,2,, 1> =x>+y’ +2°
We write in terms of Euler’s angles or Cayley-Klein parameterization.

_i(¢+y) P2 _i(¢-y)
zZ,=u, +iu, =JrcosZe ? ,Z, =U; +iu, =Jrsin—e °? (A5,10)
2 2

And D} (2,.7,,2,,Z,) =u”'D},. ., (vBe),j=11/2,...

If we put /=1 in (AS5,9) we obtain the quadratic transformation

X =2(u3uy +u,u,) =22, +2,2;, ¥y = 2(u,u, —u3u,) =i(z,2, - 2,7)),
s . . _ N (AS5,11)
z=u, +Uu,—-u; —u, =2,7, —2,7,,

2.2 The volume element
We consider the transformation (u,,u,,u,,u,)— (r,y0¢)
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With 0<0<7, 05y, p<2n,0<r<oc,—oc<u, <+oc,i=1,..4
And d'ii = |J drd 6dpdy
The calculation of the Jacobian gives

|J| = (u’/8)sin 0 but d°7 = r’drd0dedy
Therefore Su’dii = didy,
And

[fGy,200dF =% [ £ (e, y), 2y’ dii (A5,12)

2.3 The generating function in {u} representation
We denote the generating function by G(z,a&, p) in the representation {u}. But to
determine the generating function (AS5,7) we must multiply by 4 / &t to reflect the change
in the measure of integration. We write
- 1 g7 -
y/nlm(p):(27z_7"‘e i l{/nlm(r)dr (A5513)

To calculate this expression we must write (AS5,1) in the (u) representation using the
formula (AS5,11):

.4 1 - F
¥om (D) = ;er Yo

In the expression of W , (p) there is the term 4 for that we consider a new generating
function:

(Fyu’d*u (A5,14)

1 4 =z
G(z,aé,p,p)= — X
@ 2P = Gy 7 U2y
; . (AS5,15)
J‘e—i‘i exp| — a)l"( +Z) + O{C()Z(a.l;) _ﬂu2d41:i
2(0-z) 2(1-2)
We assume that 3 > 0 therefore there is no problem of convergence.
We write then: G(z,a&,p) =- 6G(z,a§,ﬁ,ﬂ)/8ﬂ|ﬂ:0 (AS5,16)
1
4 \2 Z"
With  G(z,eé,p) = — | = A5,17
( é: p) ;(214_1) an wlm (é)vlnlm(p) ( )

2.4 The generating function of momentum-space
We can do the integration of (AS5,14) by a direct calculation with the variables (u) we
can perform the integration using the Gauss formula

(ij an Jdx,dy, exp(-z' Xz + A'z+z'B) =(det(X)) ' exp(4' X 'B) (A5,18)
7 i=

Withz =(z,,z2,,...,z,)

We have
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—ip-r=-ip (z,z, +2221)+py(z122 -z,2))—ip.(2,Z, - 2,Z,),

~ - . _ _ _ _ (AS5,19)
a-r=a/zz,+z,z)+ia, (zz,-z,z)+a.(z,z, —z,zZ,)
We obtain then
a)(]+z)+ﬂ_i N oz . Cip 4 0z g - +£ 0z 4
¥ 2(1-2) P - P =y TP
) —ip +—2% 4+ —lLa w(]+z)+ﬂ+i L R
P =y T Ty (1-2) P 0-2 "

Because d?=0 we deduce that:

det(X) = [(8(”2) +;3j + 5% +ia

apld=w/2 (A520
' (A5,20)

(1-2)

We find therefore the generating functions

L2 z
G(z.ac,p.h) = V27 (81 +2)+ B(I-2)) +(1-2)* b + 2iasa- p|

(A5,21)

In applying the relation (A5,16) we find the generating function G(z,a&, p)

45 2(1=z7)
G(z,aé,p) = ’
D ox o + BU-2) + (-2 B + 2iasa 7]

(A5,22)

3. The wave functions in momentum space

We drive the basis of momentum-space using the formula (AS5,6)

10" 106 ar N7
(@108~ Y _Gz.al.p)| = — v (P A5.23
{cojm( $) 5" 150 (z,aé p)l (2l+1j N Y (D) ( )

In this case we must take 6=1/n and to execute the calculations we proceed by step:

3.1 Derivation with respect to o

1o ~ LAED

[— ,G(Zaaf»p)} = (i) =% (46)""

e ' o (A5,24)
(] _ZZ)ZI+1 (aﬁ)l

[(6(+2)° +(I-2)’p’1" 2'I
We have
BU+2)" +(1=2)' P’ =(p" +8") = 22(p’ =8")+2"(p* +8")

~2 g2
— (PP +8)-22x+27], x=| L 82
p-+90

We deduce that

76



(4D @)™ (-2 (@p) (A5.25)

10
[__G( a&p)} =0 o Grre)y eama i 2

I'o

0

3.2 Derivation with respect to g
Using the familiar formula for the generating function of Gegenbauer polynomials

(1=2zt42%) = zzmc (z)_zz [c2 -2 )] (A5,26)
Withm +1+1 =n, m+ 1+ 3 =n and 6 =1/ n therefore
B; %j— (2,08, p)L—() (Zj_i’ (qﬁ“fgf)mx
[CERSRCNS) (o2 (A527)

., %, % (@ _62)j
PP (PP +8%) (P +8) (p* +8%)
We obtain y.y = 0. Thus we find the transformation introduced by Fock.

Put y=(y,,,¥5,Y5:V4) :((

3.3 Derivation with respect to @, (a%)
By using the formula (A5, 6) we get the following expression

w0108 2 Gzt )} -0 (*2(4232)”2>< (A5,28)

nl oz" I oo
€2 -2, @ (5)

3.4 The wave functions in momentum space
The comparisons of (A5,26) and (A5,27) give us the result:

2 . 1+1 Cyll+?1 _C;ij% -
Vo (B) =)' Nya™ %x(%) ! (ff)+62)1+2 @y ) (A5.29)

And with the help of the recurrences formula [30]:

(n+a)C,," (x) = (& = DIC}) (x) = €7 (x)]

(A5,30)
We derive finally the wave functions in momentum space:

GO IR
nl \/_T[ (_>2+6 )]+2 C;i }l _.2 62) lm(p)

Vo (P)=()'N (A5,31)

It is clear that we obtain by an elementary method and direct calculus not only the wave
function in momentum representation but also the phase factor.
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Appendix 6: Generalization of Cramer's rule and classical
polynomials

1. Generalization of Cramer's rule
The expression of the determinant formed fromdet( A) = det( a,,a,,..., a )

by substituting the components of some vector (a,;) by the components of the vectors

b,,1 <i<s < n result from the resolution of the system:

>axk,j)=b, k=12,..5, s<n (A6,1)
j=1
The solution of this system is given by the formula (25):
x(L,i,) ... x(Liy)
det(a,,..., 8, 15Dy, 850y ees By s DysA gy onrdy ) = det(A)] : : (A6,2)

x(s,1;) ... Xx(s,i,)

In the particular case s=1 we find the well known Cramer’s rule.

The formula (A6, 2) is very useful for calculating the spectrum of nucleus rotations
but it is fundamental for the study of nucleus vibrations (25).

2.0rthogonal polynomials
1.1 The hypergeometric functions

ey =1, OB a(a +DHEP+1)
2Fl(oc,B,y,z)—l+y_lz+ S -12 z7 + .. (A6,3)

1.2 Laguerre polynomials
The differential equation [2,30]:

2
{zdd—2+(k+1—z)di+p}Lkp=0 (A6,4)
z z
Orthonormality relation
| 2
fe"z"L\ L¥dz _ e+ (A6, 5)
0 p| Pq

1.3 Hermite polynomials
The differential equation:

dz ?

1.4 Legendre polynomials
The differential equation'

d? d
——2ZE+2n H,(z)=0 (A6,6)

2
{(1 xdi+ 0+ 1) - sz}pfy(x):o (A6,7)
Orthonormality relation
idom 2 (L +m)!
J.lpkpf YRR (/ —m) Sy, (A6,8)
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