
HAL Id: hal-00879578
https://hal.science/hal-00879578v1

Submitted on 4 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Self-Stabilizing Minimum Spanning Tree
Construction Using Compact Nearest Common

Ancestor Labeling Scheme
Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru, Stephane

Rovedakis

To cite this version:
Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis. Fast Self-
Stabilizing Minimum Spanning Tree Construction Using Compact Nearest Common Ancestor La-
beling Scheme. [Research Report] LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France.
2013. �hal-00879578�

https://hal.science/hal-00879578v1
https://hal.archives-ouvertes.fr

Fast Self-Stabilizing Minimum Spanning Tree Construction Using

Compact Nearest Common Ancestor Labeling Scheme ∗

Lélia Blin
Université d’Evry-Val d’Essonne, 91000 Evry, France

LIP6-CNRS UMR 7606, France.

lelia.blin@lip6.fr

Shlomi Dolev
Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.

dolev@cs.bgu.ac.il

Maria Gradinariu Potop-Butucaru
Université Pierre & Marie Curie - Paris 6, 75005 Paris, France.

LIP6-CNRS UMR 7606, France.

maria.gradinariu@lip6.fr

Stéphane Rovedakis
Laboratoire CEDRIC, CNAM, 292 Rue St Martin, 75141 Paris, France.

stephane.rovedakis@cnam.fr

Abstract

We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construc-
tion. The space complexity of our solution is O(log2 n) bits and it converges in O(n2) rounds.
Thus, this algorithm improves the convergence time of previously known self-stabilizing asyn-
chronous MST algorithms by a multiplicative factor Θ(n), to the price of increasing the best
known space complexity by a factor O(log n). The main ingredient used in our algorithm is
the design, for the first time in self-stabilizing settings, of a labeling scheme for computing
the nearest common ancestor with only O(log2 n) bits.

∗A preliminary version of this paper has appeared in the proceedings of the 24th International Conference on
Distributed Computing (DISC 2010), see [3].

1 Introduction

Since its introduction in a centralized context [22, 17], the minimum spanning tree (or MST)
problem gained a benchmark status in distributed computing thanks to the seminal work of
Gallager, Humblet and Spira [9].

The emergence of large scale and dynamic systems revives the study of scalable algorithms.
A scalable algorithm does not rely on any global parameter of the system (e.g. upper bound on
the number of nodes or the diameter).

In the context of dynamic systems, after a topology change a minimum spanning tree pre-
viously computed is not necessarily a minimum one (e.g., an edge with a weight lower than
the existing edges can be added). A mechanism must be used to replace some edges from the
constructed tree by edges of lower weight. Park et al. [18, 19] proposed a distributed algorithm
to maintain a MST in a dynamic network using the Gallager, Humblet and Spira algorithm.
In their approach, each node know its ancestors and the edges weight leading to the root in
the tree. Moreover, the common ancestor between two nodes in the tree can be identified. For
each non-tree edge (u, v), the tree is detected as not optimal by u and v if there exist a tree
edge with a higher weight than w(u, v) between u (resp. v) and the common ancestor of u
and v. In this case, the edge of maximum weight on this path is deleted. This yields to the
creation of several sub-trees, from which a new MST can be constructed following the merging
procedure given by Gallager et al. [9]. Flocchini et al. [26, 27] considered another point of view
to address the same problem. The authors were interested to the problem of precomputing all
the replacement minimum spanning trees when a node or an edge of the network fails. They
proposed the first distributed algorithms to efficiently solve each of these problems (i.e., by
considering either node or edge failure). Additional techniques and algorithms related to the
construction of light weight spanning structures are extensively detailed in [21].

Large scale systems are often subject to transient faults. Self-stabilization introduced first
by Dijkstra in [5] and later publicized by several books [6, 24] deals with the ability of a system
to recover from catastrophic situation (i.e., the global state may be arbitrarily far from a legal
state) without external (e.g. human) intervention in finite time.

Although there already exist self-stabilizing solutions for the MST construction, none of
them considered the extension of the Gallager, Humblet and Spira algorithm (GHS) to self-
stabilizing settings. Interestingly, this algorithm unifies the best properties for designing large
scale MSTs: it is fast and totally decentralized and it does not rely on any global parameter of
the system. Our work proposes an extension of this algorithm to self-stabilizing settings. Our
extension uses only poly-logarithmic memory and preserves all the good characteristics of the
original solution in terms of convergence time and scalability.

Antonoiu and Srimani, and Gupta and Srimani presented in [10, 11] the first self-stabilizing
algorithm for the MST problem. The MST construction is based on the computation of all
shortest paths (for a certain cost function) between all pairs of nodes. While executing the
algorithm, every node stores the cost of all paths from it to all the other nodes. To implement
this algorithm, the authors assume that every node knows the number n of nodes in the net-
work, and that the identifiers of the nodes are in {1, . . . , n}. Every node u stores the weight
of the edge (u, v) placed in the MST for each node v 6= u. Therefore the algorithm requires
Ω(
∑

v 6=u logw(u, v)) bits of memory at node u. Since all the weights are distinct integers, the
memory requirement at each node is Ω(n log n) bits. The main drawback of this solution is its
lack of scalability since each node has to know and maintain information for all the nodes in
the system. Note that the authors introduce a time complexity definition related to the trans-
mission of beacon in the context of ad-hoc networks. In a round, each node receives a beacon
from all its neighbors. So, the O(n) time complexity announced by the authors stays only in the

1

particular synchronous settings. In asynchronous setting, a node is activated at the reception of
a beacon from each neighbor leading to a O(n2) time complexity. A different approach for the
message-passing model was proposed by Higham and Liang [13]. The algorithm works roughly
as follows: every edge checks whether it should belong to the MST or not. To this end, every
non tree-edge e floods the network to find a potential cycle, and when e receives its own message
back along a cycle, it uses the information collected by this message (i.e, the maximum edge
weight of the traversed cycle) to decide whether e could potentially be in the MST or not. If
the edge e has not received its message back after the time-out interval, it decides to become
tree edge. The memory used by each node is O(log n) bits, but the information exchanged
between neighboring nodes is of size O(n log n) bits, thus only slightly improving that of [10].
This solution also assumes that each node has access to a global parameter of the system: the
diameter. Its computation is expensive in large scale systems and becomes even harder in dy-
namic settings. The time complexity of this approach is O(mD) rounds where m and D are the
number of edges and the upper bound of the diameter of the network respectively, i.e., O(n3)
rounds in the worst case.

In [4] we proposed a self-stabilizing loop-free algorithm for the MST problem. Contrary to
previous self-stabilizing MST protocols, this algorithm does not make any assumption on the
network size (including upper bounds) or the uniqueness of the edge weights. The proposed
solution improves on the memory space usage since each participant needs only O(log n) bits
while preserving the same time complexity as the algorithm in [13].

Clearly, in the self-stabilizing implementation of the MST algorithms there is a trade-off
between the memory complexity and their time complexity (see Table 1). The challenge we
address in this paper is to design fast and scalable self-stabilizing MST with little memory. Our
approach brings together two worlds: the time efficient MST constructions and the memory
compact informative labeling schemes. We do this by extending the GHS algorithm to the self-
stabilizing setting while keeping it memory space compact, but using a self-stabilizing extension
of the nearest common ancestor labeling scheme [20, 1]. Note that labeling schemes have already
been used in order to maintain compact information linked with vertex adjacency, distance, tree
ancestry or tree routing [2], however none of these schemes have been studied in self-stabilizing
settings (except for the tree routing).

Our contribution is therefore twofold. We propose for the first time in self-stabilizing settings
a O(log2 n) bits scheme for computing the nearest common ancestor. Furthermore, based on
this scheme, we describe a new self-stabilizing algorithm for the MST problem. Our algorithm
does not make any assumption on the network size (including upper bounds) or the existence of
an a priori known root. The convergence time is O(n2) asynchronous rounds and the memory
space per node is O(log2 n) bits. Interestingly, our work is the first to prove the effectiveness of
an informative labeling scheme in self-stabilizing settings and therefore opens a wide research
path in this direction. The description of our algorithm is explicit, in the sense that we describe
all procedures using the formal framework

〈label〉 : 〈guard〉 → 〈statement〉.

The recent paper [16] announces an improvement of our results, by sketching the implicit
description of a self-stabilizing algorithm for MST converging in O(n) rounds, with a memory
of O(log n) bits per node. This algorithm is also based on an informative labeling scheme. The
approach proposed by Korman et al. [16] is based on the composition of many sub-algorithms
(some of them not stabilizing) presented in the paper as black boxes and the composition of all
these modules was not proved formally correct in self-stabilizing settings up to date. The main
feature of our solution in comparison with [16] is its straightforward implementation.

2

a priori knowledge space complexity convergence time

[10] network size and O(n log n) O(n2)
the nodes in the network

[13] upper bound on diameter O(log n) O(n3)
messages of size O(n log n)

[4] none O(log n) O(n3)

This paper none O(log2 n) O(n2)

Table 1: Distributed Self-Stabilizing algorithms for the MST problem

2 Model and overview of our solution

2.1 Model

We consider an undirected weighted connected network G = 〈V,E,w〉 where V is the set of
nodes, E is the set of edges and w : E → R+ is a positive cost function. Nodes represent
processors and edges represent bidirectional communication links.

The processors asynchronously execute their programs consisting of a set of variables and a
finite set of rules. We consider the local shared memory model of computation1. The variables
are part of the shared register which is used to communicate with the neighbors. A processor
can read and write its own registers and can read the shared registers of its neighbors. Each
processor executes a program consisting of a sequence of guarded rules. Each rule contains a
guard (Boolean expression over the variables of a node and its neighborhood) and an action
(update of the node variables only). Any rule whose guard is true is said to be enabled. A node
with one or more enabled rules is said to be enabled and may execute the action corresponding
to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the state of its
program counter. A configuration of the system G = (V,E) is the cross product of the local
states of all nodes in the system. The transition from a configuration to the next one is produced
by the execution of an action at a node. A computation of the system is defined as a weakly fair,
maximal sequence of configurations, e = (c0, c1, . . . ci, . . .), where each configuration ci+1 follows
from ci by the execution of a single action of at least one node. During an execution step, one or
more processors execute an action and a processor may take at most one action. Weak fairness
of the sequence means that if any action in G is continuously enabled along the sequence, it
is eventually chosen for execution. Maximality means that the sequence is either infinite, or it
is finite and no action of G is enabled in the final global state. In this context, a round is the
smallest portion of an execution where every process has the opportunity to execute at least one
action. In the sequel we consider the system can start in any configuration. That is, the local
state of a node can be corrupted. We don’t make any assumption on the number of corrupted
nodes. In the worst case all the nodes in the system may start in a corrupted configuration. In
order to tackle these faults we use self-stabilization techniques. The definition hardly uses the
legitimate predicate. A legitimate predicate is defined over the configurations of a system and
describes the set of correct configurations.

1The fined-grained communication atomicity model [7, 6] can be used to design more easily a self-stabilizing
algorithm for message passing model. Each node maintains a local copy of the variables of its neighbors. These
variables are refreshed via special messages exchanged periodically by neighboring nodes. Therefore, in the
message passing model the space complexity of our algorithm is O(∆ log2 n) bits per node by considering also
the local copies of neighbors’ variables, with ∆ the maximum degree of a node in the network.

3

Definition 1 (self-stabilization) Let LA be a non-empty legitimate predicate of an algorithm
A with respect to a specification predicate Spec such that every configuration satisfying LA
satisfies Spec. Algorithm A is self-stabilizing with respect to Spec iff the following two conditions
hold:
(i) Every computation of A starting from a configuration satisfying LA preserves LA and verifies
Spec (closure).
(ii) Every computation of A starting from an arbitrary configuration contains a configuration
that satisfies LA (convergence).

To compute the time complexity, we use the definition of round [6]. Given a computation e
(e ∈ E), the first round of e (let us call it e′) is the minimal prefix of e containing the execution
of one action (an action of the protocol or a disabling action) of every enabled processor from
the initial configuration. Let e′′ be the suffix of e such that e = e′e′′. The second round of e is
the first round of e′′.

2.2 Overview of our solution

We propose to extend the Gallager, Humblet and Spira (GHS) algorithm [9], to self-stabilizing
settings via a compact informative labeling scheme. Thus, the resulting solution presents several
advantages appealing to large scale systems: it is compact since it uses only memory whose size
is poly-logarithmic in the size of the network, it scales well since it does not rely on any global
parameter of the system.

The notion of a fragment is central to the GHS approach. A fragment is a sub-tree of the
graph, i.e., a fragment is a tree which spans a subset of nodes. Note that a fragment can be
limited to a single node. An outgoing edge of a fragment F is an edge with a single endpoint in
F . The minimum-weight outgoing edge of a fragment F is an outgoing edge of F with minimum
weight among outgoing edges of F , denoted in the following as MEF . In the GHS construction,
initially each node is a fragment. For each fragment F , the GHS algorithm in [9] identifies the
MEF and merges the two fragments endpoints of MEF . It is important to mention that with
this scheme, more than two fragments may be merged concurrently. The merging process is
repeated in a iterative fashion until a single fragment remains. The result is a MST. The above
approach is often called blue rule for MST construction [23].

This approach is particularly appealing when transient faults create a forest of fragments
(which are sub-trees of a MST). The direct application of the blue rule allows the system to
reconstruct a MST and to recover from faults which have divided the existing MST. However,
when more severe faults hit the system the process’ states may be corrupted leading to a
configuration of the network where the set of fragments are not sub-trees of some MST. This
may include, a spanning tree but not a MST or spanning structure containing cycles. In these
different types of spanning structures, the application of the blue rule is not always sufficient to
reconstruct a MST. To overcome this difficulty, we combine the blue rule with another method,
referred in the literature as the red rule [23]. The red rule considers all the possible cycles in
a graph, and removes the heaviest edge from every cycle, the resulting is a MST. To maintain
a MST regardless of the starting configuration, we use the red rule as follows. Let T denote a
spanning tree of graph G, and e an edge in G but not in T. Clearly, if e is added to T, this
creates a (unique) cycle composed by e and some edges of T. This cycle is called a fundamental
cycle, and denoted by Ce. According to the red rule, if e is not the edge of maximum weight in
Ce, then there exists an edge f 6= e in Ce, f ∈ T such that w(f) > w(e). In this case, f can be
removed since it is not part of any MST.

Our solution, called in the following SS-MST Algorithm, combines both the blue rule and red
rule. The application of the blue rule needs that each node identifies the fragment it belongs to.

4

The red rule also requires that each node can identify the fundamental cycle associated to each
of its adjacent non-tree-edges. Note that a simple scheme broadcasting the root identifier in
each fragment (of memory size O(log n) bits per node) can be used to identify the fragments, but
this cannot allow to identify fundamental cycles. In order to identify fragments or fundamental
cycles, we use a self-stabilizing labeling scheme, called NCA-L. This scheme provides at each
node a distinct label. For two nodes u and v in the same fragment, the comparison of their
labels provides to these two nodes their nearest common ancestor in a tree (see Section 3).
Thus, the advantage of this labeling is twofold. First the labeling scheme helps each node to
identify the fragment it belongs to. Second, given any non-tree edge e = {u, v}, the path in the
tree going from u to the nearest common ancestor of u and v, then from there to v, and finally
back to u by traversing e, constitute the fundamental cycle Ce.

To summarize, SS-MST algorithm will use the blue rule to build a spanning tree, and the
red rule to recover from invalid configurations. In both cases, it uses our algorithm NCA-L to
identify both fragments and fundamental cycles. Note that, in [18, 19] distributed algorithms
using the blue and red rules to construct a MST in a dynamic network are proposed, however
these algorithms are not self-stabilizing.

2.3 Notations

In this section we fix some general assumptions used in the current paper. Let G = 〈V,E,w〉
be an undirected weighted graph, where V is the set of nodes, E is the set of edges and the
weight of each edge is given by a positive cost function w : E → R+. We consider w.l.o.g.
that the edges’ weight are polynomial in |V |. Moreover, the nodes are allowed to have unique
identifiers denoted by Id encoded using O(log n) bits where n = |V |. No assumption is made
about the fact that edges’ weight must be distinct. In the current paper Nv denotes the set of
all neighbors of v in G, for any node v ∈ V (G).

Each node v maintains several information a pointer to one of its neighbor node called the
parent. The set of these pointers induces a spanning tree if the spanning structure is composed
with all the nodes and contains no cycle. We denote by path(u, v) the path from u to v in the
tree. For handling the nearest common ancestor labeling scheme we will define some notations.
Let `v be the label of a node v composed by a list of pairs of integers, where each pair is an
identifier and a distance. `v[i] denotes the ith pair of the list, and for every pair i the first
element is denoted by `v[i][0] and the second one by `v[i][1]. The last pair of the list is denoted
by `−1

v .

3 Self-stabilizing Nearest Common Ancestor Labeling scheme

Previously, we explained that our SS-MST algorithm needs to identify fragments, internal and
outgoing edges of each fragment and the presence of cycles. To achieve this identification we use
a nearest common ancestor labeling scheme. This section is dedicated to the presentation of a
self-stabilizing version of the distributed algorithm proposed by Peleg [20]. The self-stabilizing
algorithm is called in the following NCA-L. NCA-L algorithm can be used to solve other tasks
than constructing a MST, hence we present this part in a separate section.

In [20], Peleg gives a nearest common ancestor labeling scheme for a tree structure with a
memory complexity of Θ(log2 n) bits. We will first give in this section a self-stabilizing version
of this scheme, that is the encoder and decoder part related to the labeling scheme, and finally
we prove the correctness and the complexity of our self-stabilizing algorithm. For simplicity, we
assume in this current section that all the nodes of the network belong to a single tree. It is
easy to see that without a tree structure, the nodes cannot have a common ancestor. Therefore,

5

C(v) = {u ∈ Nv : pu = Idv}
nbrNdS(v) =

(
1 +

∑
u∈C(v)

sizeu[0], max{Idu : u ∈ C(v) ∧ sizeu[0] = max{sizex[0] : x ∈ C(v)}}
)

Leaf(v) ≡ (C(v) = ∅ ∧ sizev = (1,⊥))
SizeC(v) ≡ Leaf(v) ∨ (C(v) 6= ∅ ∧ sizev = nbrNdS(v))
LabelR(v) ≡ (pv = ∅ ∧ `v = (Idv, 0))
LabelNd(v) ≡ (pv ∈ N(v)) ∧ (Heavy(v) ∨ Light(v))
Label(v) ≡ LabelR(v) ∨ LabelNd(v)

Heavy(v) ≡ (sizepv
[1] = Idv) ∧ (sizev[0] < sizepv

[0]) ∧ (`pv
\`−1pv

= `v\`−1v) ∧ (`−1pv
[1] + 1 = `−1v [1])

Light(v) ≡ (sizepv
[1] 6= Idv) ∧ (sizev[0] ≤ sizepv

[0]/2) ∧ (`v = `pv
.(Idv, 0))

Figure 1: Macros and predicates of Algorithm NCA-L for any v ∈ V .

in the next section we have to deal with the general case in which cycles can be contained in
the starting configuration.

3.1 Variables

Before presenting the nearest common ancestor labeling scheme, we describe below the variables
used by the labeling scheme. Each node v ∈ V maintains three variables:

• A parent pointer to a neighbor of v stored in pv defining the spanning tree.

• sizev is a pair of integers, whose the first element is an estimation of the number of nodes
in the sub-tree of v and the second one is the identifier of the child of v with the subtree
of highest size. If v has no child then sizev is equal to (1,⊥). Note that, the first integer
of the pair is referenced by sizev[0], while the second integer by sizev[1].

• The label of v (composed of a list of pairs of integers where each pair is an identifier and
a distance (described below)) is stored in variable `v.

We will now present the manner the nearest common ancestor scheme computes the label
of each node in a spanning tree.

3.2 Labeling encoder

The main idea of this protocol is to divide a tree structure in sub-paths to minimize the label
size of each node. Let us describe more precisely our self-stabilizing version of this protocol.
In a rooted tree, a heavy edge is an edge between a node u and one of its children v with the
highest number of nodes in its sub-tree. The other edges between u and its other children are
tagged as light edges. We extend this edge designation to the nodes, a node v is called heavy
node if the edge between v and its parent is a heavy edge (see Predicate Heavy(v) in Figure 1),
otherwise v is called light node (see Predicate Light(v) in Figure 1). Moreover, the root of a tree
is a heavy node. The idea of the scheme is as follows. A tree is recursively divided into paths
of disjoint edges: heavy and light paths. Remark: Any child of highest number of nodes can be
selected as heavy node, so among these children the one of highest identifier can be selected.

To label the nodes in a tree T, the size of each subtree rooted at each node of T is needed
to identify heavy edges leading the heaviest subtrees at each level of T. To this end, each
node v maintains a variable named sizev which is a pair of integers. The first integer is the
local estimation of the number of nodes in the subtree rooted at v. For a node v this value
is computed by summing up all the estimated values of its children plus one. The value of

6

0

1 2

3 4 5

96 7 8

10
1,⊥ 1,⊥

1,⊥

1,⊥2,10

3,6

5,3

1,⊥

11,1

4,8

5,5

Heavy tree edge Light tree edge

(0,0)(2,0)

(0,0)

(0,1)

(0,2)

(0,3)

(0,0)(2,1)

(0,0)(2,2)
(0,0)(2,1)(9,0)

(0,0)(2,3)

(0,1)(4,0)

(0,2)(7,0)

Figure 2: Nearest Common Ancestor Labeling scheme for a tree. The bubble at each node v
corresponds to the label of v. The integer inside each node corresponds to the node’s identifier,
while the other notation corresponds to the variable size.

sizev is processed in a bottom-up fashion from the leaves to the root of the tree (see Predicate
SizeC(v) in Figure 1 and rule RSize). The second integer is the identifier of a child of v with
maximum number of nodes in its sub-tree, which indicates the heavy edge. We suppose w.l.o.g
that, in case of equality between the size of the children’s subtrees the child with the minimum
identity is chosen. The variable sizev is setted to (1,⊥) for a leaf node v (see Predicate Leaf(v)
in Figure 1).

Based on the heavy and light nodes in a tree T indicated by variable sizev at each node
v ∈ T, each node of T can compute its label (see rule RLabel in Figure 3). The label of a node v
stored in `v is a list of pair of integers. Each pair of the list contains the identifier of the node
which is the root of the heavy path (i.e., a path including only heavy edges) that v belongs to
and the distance to it. For the root v of a fragment, the label `v is the following pair (Idv, 0),
respectively the identifier of v and the distance to itself, i.e., zero (see Predicate LabelR(v) in
Figure 1). When a node u is tagged by its parent as a heavy node (i.e., sizepv [1] = Idu), then
the node u takes the label of its parent but it increases by one the distance of the last pair of
the parent label (see Predicate LabelNd(v) in Figure 1).
Otherwise, a node u is tagged by its parent v as a light node (i.e., sizepv [1] 6= Idu), then the
node u becomes the root of a heavy path and it takes the following label: the label of its parent
to which u concatenates to a new pair composed by its identifier and a zero distance (we note
the step of concatenation by the operator ”.”).
Examples of theses cases are given in Figure 2, where integers inside the nodes are node iden-
tifiers and lists of pairs of values are node labels.

Algorithm NCA-L is composed by the rules RSize and RLabel given in Figure 3 which correct
the variables size and ` respectively if needed.

7

RSize: [Size correction]

If ¬SizeC(v) Then
If C(v) = ∅ then sizev := (1,⊥)
Else sizev := nbrNdS(v);

RLabel: [Label correction]

If SizeC(v) ∧ ¬Label(v) Then
If sizepv [1] = Idv then `v := `pv ; `

−1
v [1] := `−1

v [1] + 1;
Else `v := `pv .(Idv, 0)

Figure 3: Formal description of Algorithm NCA-L for any v ∈ V .

3.3 Labeling decoder

Let us now describe the decoder for the nearest common ancestor. This decoder is given in [20],
but for simplicity we present it using our own notations (see predicate nca in Figure 4). Let us
consider two nodes u and v, we denote by nca(`u, `v) the label of the nearest common ancestor
of u and v. For the remainder of this paper, we define the following notations: `∩u,v = `u ∩ `v
and `′u,v = `u\`∩u,v. The nearest common ancestor of u and v is composed by the common part
of the label of u and v (`∩u,v) and by the smaller pair following the lexicographic order of the
last pair of their labels (i.e., minimum between `′u[0] and `′v[0]). In the other case u and v have
not common ancestor.

nca(`u, `v) ≡

`∩u,v.`

′
u,v[0] If `′u,v[0][0] = `′v,u[0][0] ∧ `′u,v[0][1] < `′v,u[0][1] ∧ `∩u,v 6= ∅

`∩u,v.`
′
v,u[0] If `′u,v[0][0] = `′v,u[0][0] ∧ `′v,u[0][1] > `′u,v[0][1] ∧ `∩u,v 6= ∅

∅ otherwise

Figure 4: Macro used for computing the nearest common ancestor.

On the example defined on Figure 2, the labels of nodes 9 and 10 are respectively `9 =
(0, 0)(2, 1)(9, 0) and `10 = (0, 0)(2, 3). In this case, we have for the defined notations on labels:
`∩9,10 = (0, 0), `′10,9 = (2, 1)(9, 0) and `′9,10 = (2, 3). Since we have `′9,10[0][1] < `′10,9[0][1] then on
this example nca(`9, `10) = (0, 0)(2, 1).

3.4 Correctness and complexity

This subsection is dedicated to the correctness of the self-stabilizing nearest common ancestor
labeling scheme. Let Γ be the set of all possible configurations of the system. In order to prove
the correctness of the NCA-L algorithm, we denote Γsize the set of configurations in Γ such
that variables size are correct in the system. More precisely, we define the following function s:
V → N be the function defined by

s(v) = |
(
(sizev[0]− 1)−

∑
u∈C(v)

sizeu[0]
)
|.

Note that s(v) ≥ 0, and the variable size has a correct value at node v if and only if s(v) = 0.
In the following, we show that any execution of the system converges to a configuration in
Γsize, and the set of configurations Γsize is closed. The following lemma establishes the former
property. We assume that all the nodes of the system belongs to the tree T and we define below
a legitimate configuration for the informative labeling scheme considered in this section.

8

Definition 2 (Legitimate configuration for Labeling scheme) A configuration γ ∈ ΓΛ

is called legitimate if the following conditions are satisfied:

1. the root node r of the tree T has label equal to (Idr, 0),

2. every heavy node v ∈ T has a label equal to (`pv\`
−1
pv).(`−1

pv [0], `−1
pv [1] + 1),

3. every light node v ∈ T has a label equal to `pv .(Idv, 0).

Lemma 1 Starting from an arbitrary configuration γ ∈ Γ, the system reaches a configuration
in γ′ ∈ Γsize in O(δT) rounds, where δT is the depth of the tree T.

Proof. First, we define the following potential function Φ. We denote by δT the depth of
the tree T, i.e., the length of the longest path from the root to the leaves. Let γ ∈ Γ be a
configuration, and let Γ be the set of all configurations. Let Φ : Γ→ N be the function defined
by

Φ(γ) =

δT∑
d=0

νd(γ)(n+ 1)d

where νd(γ) is the number of nodes v at depth d in T with s(v) 6= 0. Note that 0 ≤ νd(γ) ≤ n,
and 0 ≤ Φ(γ) ≤ (n + 1)δT+1. Also, the variable size has a correct value at every node if and
only if Φ(γ) = 0. Let γ(t) denotes the configuration of the system after round t. Let d0 be the
largest index such that νd0(γ(t)) 6= 0. Since we use a weakly fair scheduler, all the nodes are
scheduled during the execution of round t+1. Every node v at depth d > d0 does not change its
value of variable size (see the predicate SizeC), and therefore s(v) remains zero, so νd(γ(t+ 1))
remains zero as well. The nodes at depth d0 change their variable size according to the variable
size of their children. Let v be a node at depth d0. The children of v (if any) are at depth
d > d0. Thus, their variable size has not changed, and therefore s(v) becomes zero after round
t+ 1. As a consequence, νd0(γ(t+ 1)) = 0. Therefore, we get

Φ(γ(t+ 1)) < Φ(γ(t))

and thus the system will eventually reach a configuration in Γsize. To measure the number of
rounds it takes to get into Γsize, observe that δT decreases by at least one at each round.Starting
from any arbitrary configuration, the system reaches a configuration in Γsize in O(δT) rounds.

2

Lemma 2 Starting from a configuration in Γsize the system can only reach configurations in
Γsize.

Proof. According to algorithm NCA-L, the variable size is modified only by Rule RSize. Consider
a configuration γ ∈ Γsize such that variables size are correct. For each node v, we have s(v) = 0
and Predicate SizeC(v) is true. Thus, Rule RSize cannot be executed by a node v and we
have s(v) = 0 which implied that Φ(γ) = 0. Therefore, for any execution starting from a
configuration γ ∈ Γsize, the system remains in a configuration in Γsize. 2

Lemma 3 (Convergence for NCA-L) Starting from an illegitimate configuration, Algorithm
NCA-L reaches in O(δT) rounds a legitimate configuration, where δT is the depth of the tree T.

9

Proof. Let us introduce some notations that we will use throughout in the proof. Let
¯̀
v = `v\`−1

v be the pairs list of the node’s label v such that the last pair is removed, and
|`v| the number of pairs in the label of v. For two labels `v and `u the step � is defined by:

`v � `u =

|`v |−1∑
i=0

|`v[i][0]− `u[i][0]|+ |`v[i][1]− `u[i][1]|.

We first define a first function L(v) on the state of each node v ∈ V as following:

L(v) ≡

s(v) + ||`v| − 1|+ `v � (Idv, 0) If v = r

s(v) + ||`v| − |`pv
||+ (¯̀v � ¯̀pv

) + |`−1v [0]− `−1pv
[0]|+ |`−1v [1]− `−1pv

[1]− 1| If sizepv
[1] = Idv

s(v) + ||`v| − |`pv
| − 1|+ (¯̀v � `pv

) + (`−1v � (Idv, 0)) Otherwise

Note that L(v) ≥ 0 and when L(v) = 0 the variable ` has a correct value for a node v. Let
Λ: Γ→ N be the function defined by,

Λ(γ) =

δT∑
d=0

ξd(γ)(n+ 1)n+1−d

where ξd(γ) is the number of nodes v at depth d in T with L(v) 6= 0. Remark that 0 ≤ ξd(γ) ≤ n,
and 0 ≤ Λ(γ). Also, the variable ` has a correct value at every node if and only if Λ(γ) = 0. Let
γ(t) denote the configuration of the system after round t, and suppose that t > n. By lemma 1
and lemma 2 we prove that γ(t) ∈ Γsize. It is important to mention that, in γ(t) all node v can
check if it is a heavy node or light node (see variable size). Let d0 be the smallest index such
that ξd0(γ(t)) 6= 0. Since we use a weakly fair scheduler, all the nodes are scheduled during the
execution of round t+ 1. Every node v at depth d < d0 does not change its value of variable `
(see the predicate Label), and therefore L(v) remains zero, so ξd(γ(t+ 1)) remains zero as well.
The nodes at depth d0 change their variable ` according to the variables ` and size[1] of their
parent (see Rule RLabel). Let v be a node at depth d0. The parent of v is at depth d < d0.
Thus, its variable ` have not changed, and therefore L(v) becomes zero after round t+ 1. As a
consequence, ξd0(γ(t+ 1)) = 0. Therefore, we get

Λ(γ(t+ 1)) < Λ(γ(t))

and thus the system will eventually reach a legitimate configuration for algorithm NCA-L. To
measure the number of rounds it takes to get into a legitimate configuration for algorithm
NCA-L, observe that δT decreases by at least one at each round. Since δT ≤ n − 1 for every
γ ∈ Γsize, we get that, starting from any configuration in Γsize configuration, the system reaches
a legitimate configuration for algorithm NCA-L in O(δT) rounds. Using lemma 1 and lemma 2,
we can conclude starting from any arbitrary configuration, the system reaches a legitimate
configuration for algorithm NCA-L in O(δT) rounds. 2

Lemma 4 (Closure for NCA-L) The set of legitimate configurations for NCA-L is closed. That
is, starting from any legitimate configuration, the system remains in a legitimate configuration.

Proof. According to Algorithm NCA-L, the labeling procedure is done using only Rule RLabel.
Let γ a legitimate configuration. For each node v in γ, we have Φ(γ) = 0 and Λ(γ) = 0.
Moreover in γ, Predicates SizeC(v) and Label(v) are true and Rules RLabel and RSize cannot
be executed by any node v ∈ V . In conclusion, starting from a legitimate configuration for
algorithm NCA-L the system remains in a legitimate configuration. 2

The following theorem is a direct consequence from Lemmas 3 and 4.

10

Theorem 1 Algorithm NCA-L is self-stabilizing for the informative nearest common ancestor
labeling scheme.

4 Self-Stabilizing Minimum Spanning Tree Algorithm

Labeling correction

Recovering phase

Cycle detection

Merging phase

MST

Figure 5: Relation between the different phases of Algorithm SS-MST.

In this section we describe our self-stabilizing algorithm for constructing the minimum span-
ning tree, called SS-MST algorithm. Our SS-MST algorithm uses the “blue rule” to construct a
spanning tree and the “red rule” to recover from invalid configurations (see section 2.2). In both
cases, it uses NCA-L algorithm to identify fragments and fundamental cycles. We assume in the
following that the merging phases have a higher priority than the recovering phases. That is,
the system recovers from an invalid configuration if and only if no merging is possible.

Unfortunately, due to arbitrary initial configuration, the structure induced by the parent
pointer of all nodes may contain cycles. We use first a well known approach to break cycles
before giving a detailed description of merging and recovering phases.

Figure 5 illustrates the different phases of Algorithm SS-MST. Starting from an arbitrary
configuration, first all the cycles are destroyed then fragments are defined and correctly labeled
using the parent pointers. Based on the label of nodes, the minimum outgoing edge (i.e., edge
whose extremities belong to different fragments) of each fragment is computed in a bottom-up
fashion, and allowing to a pair of fragments which have selected the same outgoing edge to be
merged together through this edge. A merging step gives a new fragment which is the result of
the merging of a pair of fragments. When a new fragment is created, the nodes of this fragment
have to compute their new label. This process is repeated until there is only one remaining
fragment spanning all the nodes of the network. In this case, the recovering phase can begin
by detecting that no outgoing edge can be selected. To handle this phase each fragment has to
compute its internal edges (i.e., edges whose extremities belong to the same fragment) and to
identify the nearest common ancestor based on the labels of the edge extremities. The weight
of the internal edges are broadcasted up in the tree from the leaves to the root. Let e = {u, v}
an internal edge of Tree T, due to the “red rule” if an edge f of the path path(u, nca(`u, `v)) in
T has a weight bigger than e, then e is an valid edge since e is part of an MST (by “red rule”).
More precisely, if during the bottom-up transmission of the weight of e, a node u has a parent
link edge f such that w(f) > w(e) then f is deleted from the tree T and u becomes the root of
a new fragment.

We present first the variables used by Algorithm SS-MST, then we describe the approach
used to delete the cycles, followed by the merging and recovering phases. Finally, we show the
correctness and the time and memory complexities of the algorithm.

11

4.1 Variables

We list below the eight variables maintained at each node v ∈ V :

• The three variables described in Section 3 are used, i.e., variables pv, sizev and `v.

• The distance of each node v from the root of the fragment is stored in variable dv.

• For handling the blue rule mentioned in section 2.2, the minimum outgoing edge of each
fragment is stored in Variable Outv. This edge is composed of three elements: the edge
weight, and the identifiers of the edge extremities. The i-th element of Outv is accessed
by Outv[i] with i ∈ {0, ..., 2}.

• Finally to broadcast the internal edges in the recovering phase, a last variable Inv stores
three elements related to an internal edge: the edge weight, and the labels of the edge
extremities. As for Variable Outv, the i-th element of Inv is accessed by Inv[i] with
i ∈ {0, ..., 2}.

4.2 Cycles detection and Labels correction

The previous section was dedicated to the labeling procedure for an unique tree, due to the
arbitrary starting configuration, the network can contain a forest of subtrees (several fragments)
and cycles. Therefore, the labeling procedure described in previous section (using Rules RSize

and RLabel) is executed separately in each subtree in Algorithm SS-MST. However, to apply this
procedure it is crucial to detect the cycles in the fragments induced by the parent pointers. To
this end, we use a common approach used to break cycles in a spanning structure [8]. Each
node computes its distance (in hops) to the root by using the distance of its parent plus one.
By following this procedure, there is at least a node which has a distance higher or equal than
the distance of its parent in the fragment. Therefore, this condition is used at each node to
detect a cycle. In this case, a node v deletes its parent pointer by selecting no parent and a
new fragment rooted at v is created. Unfortunately, due to the arbitrary initial configuration
a cycle can be falsely detected because of erroneous distances values at v and its parent. This
mechanism based on distances ensures that after O(n) rounds the network is cycle free. The
destruction of cycles is managed by rule RCorrect.

When all the cycles have been deleted, the labeling procedure is applied in Algorithm SS-MST.
Note that the cycle detection must have a higher priority over the labeling procedure. To this
end, Rule RCorrect is the first rule to execute and in exclusion with Rules RSize and RLabel in
Algorithm SS-MST. Furthermore, the labeling scheme must also have a higher priority over the
merging and recovering phases. Indeed, the label of the nodes are used to identify the internal
and outgoing edges of a fragment (see Figure 7). To guarantee the execution priority, the rules
of the labeling scheme can only be executed when Predicate Distance(v) is satisfied at node v.
In the same way, the rules of merging and recovering phases can only be executed at a node v
when Predicate CorrectF (v) is satisfied at v.

Distance(v) ≡ (pv = ∅ ∧ dv = 0) ∨ (pv 6= ∅ ∧ dv = dpv + 1)
SizeC(v) ≡ Leaf(v) ∨ (C(v) 6= ∅ ∧ sizev = nbrNdS(v))
Label(v) ≡ LabelR(v) ∨ LabelNd(v)
CorrectF (v) ≡ Distance(v) ∧ SizeC(v) ∧ Label(v)

Figure 6: Predicates used by Rule RCorrect and labeling rules.

12

RCorrect: [Correction]

If ¬Distance(v) Then
Outv = ∅; Inv = ∅
If (pv = ∅) ∧ dv 6= 0 Then dv := 0;
If (pv 6= ∅) ∧ (dpv + 1 < dv) Then dv := dpv + 1;
If (pv 6= ∅) ∧ (dpv ≥ dv) Then pv := ∅; `v := (Idv, 0); dv := 0;

We give below the rules associated with the labeling encoder (given in the previous section).
In order to use these two rules for the MST construction, we add Predicate Distance(v) in the
guards. This allow to disable these rules when a cycle is detected with Rule RCorrect.

RSize: [Size correction]

If Distance(v) ∧ ¬SizeC(v) Then
If C(v) = ∅ then sizev := (1,⊥)
Else sizev := nbrNdS(v);

RLabel: [Label correction]

If Distance(v) ∧ SizeC(v) ∧ ¬Label(v) Then
If sizepv [1] = Idv then `v := `pv ; `

−1
v [1] := `−1

v [1] + 1;
Else `v := `pv .(Idv, 0)

4.3 Merging phase

When the graph induced by the parent pointers is cycle free and every node v of a fragment
F has a correct label (see Predicate CorrectF (v)), then every node v ∈ F is able to determine
if F spans all the nodes of the network or not. This knowledge is given by the label of the
nodes, more precisely using the decoder given in Subsection 3.3. Indeed, given a non-tree edge
e = {u, v}, if the nodes u and v have no common ancestor then u and v are in two distinct
fragments. In this case, the merging phase can be executed at u and v. A merging phase is
composed of several merging steps in which at least two fragments are merged. Each merging
step is performed following four steps:

1. The root of each fragment F identifies the minimum-weight outgoing edge e = (u, v) of
its fragment (see Rule RMin).

2. After the computation of e each node x on the path between the root of F and v ∈ F
computes in variable newpx its future parent (see rule RMerge). The nodes in the sub-tree
rooted at every node x executes also Rule RMerge.

3. When the two merging fragments have finished the two first steps, then each node of these
two fragments can compute their future distance (see Rule RDist).

4. Finally, every node v belonging to these two fragments copies the content of its variables
newpv (resp. newdv) into variable pv (resp. dv).

13

Let us proceed with a more detailed description of the these steps. We process the compu-
tation of the minimum-weight outgoing edge of each fragment in a bottom-up manner (see Rule
RMin). Each node v can identify its adjacent outgoing edges e = {u, v} by computing locally
that e has no nearest common ancestor using the labels of u and v. This is done via the decoder
given in subsection 3.3 and Macro OE(v) at v. Each node v computes the minimum-weight
outgoing edge of its sub-tree (given by Macro Candidate(u)) by selecting the edge of minimum-
weight among its adjacent outgoing edges (given by Macro Candl(v)) and the one given by its
children (given by Macro Candc(v)). The weight and the identifier of the extremities of the
minimum-weight outgoing edge are stored in variable Outv at v. All these information will be
used for the merging step. Figure 7 depicts the selection of the minimum outgoing edge for two
fragments.

0

1 2

3 4 5

97 10 8

6

Heavy tree edge Light tree edge

(0,0)

(0,1)

(0,1)(4,0)

(0,3)

Non tree edge

(2,0)

(2,1)

(2,2)

(2,3)

(2,1)(9,0)

(0,2)

2

5

6

1 3

4

5 6

9

12

10

3

45

2

1,⊥

1,⊥

1,⊥

3,7 1,⊥

5,3

6,1

1,⊥2,6

4,8

5,5

2,6,7

2,6,7

2,6,7

2,6,7

empty

2,6,7

2,6,7

2,6,7

2,6,7

4
(0,2)(10,0)

4,8,10

7
7,4,5

0

1

2 2

3 3

0

1

2 2

3

Figure 7: Minimum weight outgoing edge computation based on Nearest Common Ancestor
Labeling scheme for a forest: The white bubble at each node v corresponds to the label of the
node. The black bubble at each node represent the selection of minimum outgoing edge. The
information under the node corresponds to the variable size and the information on top of the
node represent the distance of the node from the root.

When the computation of the minimum-weight outgoing edge e = (u, v) is finished at the
root r of a fragment F (i.e., Outr = Candidate(r)), then r can start the computation of the
future parent pointers in F (Predicate ChangeNewP (r) is satisfied), done in a top-down manner
(see rule RMerge). Let u be the extremity of e of minimum identity between u and v. If e is
selected as the minimum-weight outgoing edge of two fragments F and F ′, then u will become
the new root of Fragment F ′′ resulting from the merging between F and F ′. Otherwise, e is the
minimum-weight outgoing edge selected only by a single fragment, w.l.o.g. let F . In this case,
F will wait for that e is selected as the minimum-weight outgoing edge of F ′. In the two cases,
every node v of a fragment in a merging step computes its future parent pointer in variable
Outv. Each node on the path from the root of the fragment leading to the minimum-weight
outgoing edge selects its child on this path as its future parent, while the other nodes select
their actual parent.

14

C(v) = {u ∈ Nv : pu = Idv}
OE(v) = min{(u, v) : u ∈ Nv \ (C(v) ∪ {pv}) ∧ nca(`u, `v) = ∅}

NCand(val) =

{
min{(u, v) ∈ OE(v) : w(u, v) = val} If val = Candc(v)
min{Outu[1] : u ∈ C(v) ∧Outu[0] = val} Otherwise

Candc(v) = min{Outu[0] : u ∈ C(v)}
Candl(v) = min{w{v, u} : (u, v) ∈ OE(v)}
Candidate(v) = min{Candc(v),Candl(v)}

NewParent(v) =

{
min{u ∈ Nv : (u, v) = Outv[1]} If Outv[0] = Candl(v) ∧Outv[1] ∈ OE(v)
min{u ∈ C(v) : Outu = Outv} Otherwise

NewDist(v) =

0 If newpnewpv = v ∧ Idnewpv > Idv
1 If newpnewpv = v ∧ Idnewpv < Idv
newdnewpv + 1 Otherwise

NewChild(v) = {u : (u ∈ (C(v) ∪ {pv}) ∧ newpu = v)
∨(u ∈ Nv ∧ newpu = v ∧ newpv = u ∧ Idnewpv > Idv)}

CorrectF (v) ≡ Distance(v) ∧ SizeC(v) ∧ Label(v)
Reorientation(v) ≡ pv = ∅ ∨ (Outpv = Outv ∧ newppv = v)

ChangeNewP (v) ≡ (Reorientation(v) ∧ newpv 6= NewParent(v)) ∨ (Outpv 6= Outv ∧ newpv 6= pv)

ChangeNewD(v) ≡ (newpnewpv = v ∧ newdv > 1) ∨ (pnewpv = v ∧ newdv 6= newdnewpv + 1)

∨(newdpv 6= dpv ∧ newdv 6= newdpv + 1)

CopyV ar(v) ≡ (∀u ∈ NewChild(v), du = newdu ∧ pu = newpu)
∧(pv 6= newpv ∨ dv 6= newdv)

Figure 8: Macros and predicates used by Algorithm SS-MST for the merging.

When e is selected as the minimum-weight outgoing edge by F and F ′ and the computation
of the future parent is done (i.e., ¬ChangeNewP (v) is satisfied), then the future distance is
computed in variable newdv by each node v in F ∪F ′ (Predicate ChangeNewD(v) is satisfied),
in a top-down manner following the parent relation given by variable newpv (see Rule RDist).
Note that the extremity of e with the minimum identifier becomes the root of the new fragment
with a zero distance. Finally, when the future parent and distance are computed by every node
v in F ∪ F ′ then v can execute Rule REnd (see Predicate CopyV ar(v)) to copy the content of
variable newpv (resp. newdv) into variable pv (resp. dv). Note that this is done in a bottom-
up fashion following the parent relation given by variable newpv in order to not destabilize
Fragment F or F ′.

RMin: [Minimum computation]
If CorrectF (v) ∧

(
Outv[0] 6= Candidate(v) 6= ∅

)
Then

Outv := (Candidate(v), NCand(Candidate(v)));

RMerge: [Merging]
If CorrectF (v) ∧

(
Outv[0] = Candidate(v) 6= ∅

)
∧ ChangeNewP (v) Then

newdv :=∞;
If Reorientation(v) Then newpv := NewParent(v);
Else newpv := pv

15

RDist: [New distance]
If CorrectF (v) ∧ ¬ChangeNewP (v) ∧ ChangeNewD(v) Then

newdv := NewDist(v);

REnd: [End of merging]
If Distance(v) ∧ ¬ChangeNewP (v) ∧ ¬ChangeNewD(v) ∧ CopyV ar(v) Then

pv := newpv; dv := newdv; Outv := ∅;
If newdv = 0 Then pv := ∅;newpv := ∅;

4.4 Recovering phase

This subsection is dedicated to the description of the recovering phase. Recall that, since the
system can start from an arbitrary configuration γ, edges which do not belong to any MST can
be part a fragment in γ. Given a fragment F , the addition of an edge e = (u, v) which do not
belong to F creates a unique cycle, called fundamental cycle related to e and denoted Ce (i.e.,
Ce = path(u, nca(`u, `v))∪path(nca(`u, `v), v)∪{e}). Thus, the ”red rule” may not be satisfied
for every constructed fragment, i.e., for some fundamental cycle defined by an internal edge of a
fragment the maximum edge weight belong to the fragment. To identify these edges, we verify
that for each internal edge e there is no edge in the fundamental cycle Ce with a higher weight
than w(e). To this end, in a fragment F the label of the nodes are used to identify the edges
e = {u, v} which do not belong to F such that u and v have a common ancestor.

u v

u' v'

nca

e'

e

a

b

f

(a)

u v

nca

e
u'

e'

(b)

u'

v' x'

u

v xe

e'

e''

e'''

f

f'

f''

g

g'

g''

(c)

Figure 9: Use of internal edges for fundamental cycles verification

Let us consider a fragment F and an edge f = {x, y} belonging to F such that f ∈ Ce \ {e}.
If w(f) > w(e) then e must become an edge of F . Consequently, we need to verify all the edge
weights of Ce \ {e}. To achieve this task, the weight of e = (u, v) is sent up in F along the two
paths path(u, nca(`u, `v)) and path(nca(`u, `v), v). Clearly, to maintain low space complexity,
the nodes cannot store the information about all internal edges. Consequently, we decide that
each node stores only the information of a single internal edge at a time. Specifically, we need
to organize the circulation of the internal edges. A natural question to ask at this point is
whether the information of all non-tree edges are needed. To answer to this question, we first
make some observations.

16

First, suppose the following case (see Figure 9(a)): let e = {u, v} and e′ = {u′, v′} be internal
edges such that nca(`u, `v) = nca(`u′ , `v′), and u′ and v′ are closer to nca(`u, `v) than u and v.
On path(u′, nca(`u, `v)) and path(v′, nca(`u, `v)) only the internal edge with the smallest weight
is needed. To justify this assertion, let us consider without loss of generality that w(e) < w(e′)
and f = {a, b} is a tree edge such that w(f) > w(e′). Moreover, suppose that all edges in
a path(u, u′) and path(v, v′) have a weight smaller than w(e). Consequently, f is not part
of the MST, and if we delete f , the minimum outgoing edge of the fragment composed by the
path(a, u) is edge e. Consider now, the case when several adjacent edges of node v have the
same common ancestor (see Figure 9(b)). In this case only the internal edge with the smallest
weight is relevant on the path(v, nca(`u, `v)) to avoid the maximum weight of the fundamental
cycles. The last case considered is the following (see Figure 9(c)). Consider a path between two
nodes u and v, and u′, v′ ∈ path(u, v) such that f = {u, u′} and g = {v, v′}. Let e = {v, x}
be an edge such that nca(`v, `x) = u and e′ = {v′, x′} an edge such that nca(`v′ , `x′) = u′. If
w(e′) < w(e), the weight of e′ is needed to verify if the weights of the edges on path(v′, u′)
have a higher weight than e′. However, the weight of e is needed to verify the weight of edge
f . Consequently, we need to collect all the outgoing edges from the leaves to the root, from the
farthest to the nearest of the root.

IECA(v, ca) = min{w(u, v) : u ∈ Nv \ (C(v) ∪ {pv}) ∧ nca(`u, `v) = ca ∧ nca(`u, `v) � `v}a
IEl(v) = {(w(u, v), `u, `v) : u ∈ Nv \ (C(v) ∪ {pv}) ∧ nca(`u, `v) 6= ∅

∧w(u, v) = IECA(v, nca(`u, `v)}
IEc(v) = {Inu : u ∈ C(v) ∧ nca(Inu[1], Inu[2]) � `v}
minIE(v, ca) = min{e : e ∈ (IEl(v) ∪ IEc(v)) ∧ nca(e[1], e[2]) � ca}

IE(v) =

{
minIE(v, nca(Inv[1], Inv[2])) If minIE(v, nca(Inv[1], Inv[2])) 6= ∅
minIE(v,⊥) Otherwise

EndForward(v) ≡ (pv = ∅ ∨ nca(Inv[1], Inv[2]) = `v) ∧ Inv = IEl(v)
Forwarded(v) ≡ (nca(Inv[1], Inv[2]) = `v ∨ Inpv = Inv) ∧ Inv 6∈ IEc(v)

BetterEdgeP (v) ≡ pv 6= ∅ ∧ nca(Inv[1], Inv[2]) 6= `v
∧nca(Inpv [1], Inpv [2]) = nca(Inv[1], Inv[2]) ∧ Inpv < Inv

SelectEdge(v) ≡ EndForward(v) ∨ Forwarded(v) ∨BetterEdgeP (v)
Recover(v) ≡ pv = newpv ∧ dv = newdv ∧ newdv = newdpv + 1 ∧ Candidate(v) = ∅

∧SelectEdge(v)

aOperator � is the lexicographical order used for the node labels, we consider ⊥ as the smallest element.

Figure 10: Macros used by Algorithm SS-MST for the correction of the MST.

The rule for collecting the relevant internal edges is based on the above observations (see
rule RRec). The internal edges are sent up in the fragment from the leaves to the root using
variable Inv at every node v. The internal edges are collected locally by beginning from the
edge with the farthest nearest common ancestor to the edge with the nearest common ancestor,
i.e., following the lexicographical order on the nearest common ancestor labels and beginning
by the smallest one. In case there exist several edges with the same nearest common ancestor,
only the edge with the smallest weight is kept. The list of the ordered internal edges at node v
is given by Macro IE(v). This list is computed by different predicates (see Macros in Figure 10).
Each node v compares the weight stored in variable Inv[0] with the weight of the edge leading
to its parent. If Inv[0] < w(v, pv) then v knows that the internal edge indicated by Inv must
belong to the MST. Consequently v deletes the edge (v, pv) from the fragment (only if v is not the
nearest common ancestor of the internal edge given by Inv), and v becomes the root of the new

17

fragment (see Rule RRec). A node v can select a new internal edge by executing Rule RRec in the
following case (i.e., Predicate Recover(v) is satisfied): (i) the internal edge of v is propagated
up by its parent and v has no more child propagating the same internal edge (see Predicate
Forwarded(v)), (ii) v is the nearest common ancestor of the adjacent internal edge actually
selected (see Predicate EndForward(v)), or (iii) v is neither the root of the fragment nor the
nearest common ancestor of the selected internal edge e′ and its parent propagates an internal
e′′ related with the same common ancestor but w(e′′) < w(e′) (see Predicate BetterEdgeP (v)).
This allows to obtain a piplined propagation of the internal edges. Figure 11 illustrates the
bottom-up spread of the internal edges.

RRec: [Recovering]

If CorrectF (v) ∧Recover(v) Then

Inv := IE(v);

If nca(Inv[1], Inv[2]) 6= `v ∧ w(v, pv) > Inv[0] Then pv := ∅; dv := 0; `v := (Idv, 0);

0

1 2

3 4 5

96 7 8

10
7 12

8 4

6

6

12

8

5 2

11

106

5

15

11

(0,0)

(0,0)(2,0)(0,1)

(0,2)

(0,3)

(0,0)(2,1)

(0,0)(2,2)

(0,0)(2,3)

(0,1)(4,0)

(0,2)(7,0) (0,0)(2,1)(9,0)

6,(0,2)

12,(0,1)

7,(0,0)

6,(0,2)

7,(0,0)

10,(0,0)(2,1)10,(0,0)(2,1)

7,(0,0)

7,(0,0)

12,(0,1)

Heavy tree edge Light tree edge Non tree edge

Figure 11: The white bubble at each node v corresponds to the label of the node. The black
bubble at each node represents the internal edges.

4.5 Correctness and complexity

This subsection is dedicated to the correctness of the self-stabilizing Minimum Spanning Tree
construction. We can define a Minimum Spanning Tree as in Definition 3.

Definition 3 (MST) Let G = (V,E,w) be a network with V the set of nodes, E the set of
undirected links and the function w : E → N. A graph T = (VT , ET) of G is called a Minimum
Spanning Tree if the following conditions are satisfied:

18

1. VT = V and ET ⊆ E, and

2. T is a connected graph (i.e., there exists a path in T between any pair of nodes x, y ∈ VT)
and |ET | = |V | − 1, and

3. There exists no spanning tree T ′ of G whose the weight w(T ′) is lower than w(T).

We give a formal specification to the problem of constructing a Minimum Spanning Tree,
stated in Specification 1.

Specification 1 (MST Construction) Let Γ be the set of all possible configurations of the
system. An algorithm AMST solving the problem of constructing a stabilizing MST tree satisfies
the following conditions:

[TC1] Starting from any configuration in Γ, Algorithm AMST reaches in finite time a set of
configurations L ⊆ Γ which satisfies Definition 3, and

[TC2] From every configuration γ ∈ L, Algorithm AMST can only reach a configuration in L.

Let Γ be the set of all possible configurations of the system. A fragment F rooted at node
rF is a subtree such that for every node v ∈ F there is a path to rF and Predicate Distance(v)
is true. In the following theorem we start by showing that until a legitimate configuration is
reached there is no deadlock in the system.

Theorem 2 Let the set of configurations B ⊆ Γ such that every configuration γ ∈ B satisfies
Definition 3. ∀γ ∈ (Γ− B, ∃v ∈ V such that v is enabled in γ.

Proof. Assume by the contradiction, that ∃γ ∈ (Γ − B) such that ∀v ∈ V no rule is enabled
at v in γ. Since γ 6∈ B, there is either a cycle, several fragments, or a single fragment which
is not a MST in γ. If there is a cycle or incorrect distances in γ then there exists a node
v such that dv 6= dpv + 1. This implies that Predicate Distance(v) is not satisfied and Rule
RCorrect is enabled at v, a contradiction. Otherwise, ∀v ∈ V Predicate Distance(v) is satisfied.
If there exists a node v in γ with an incorrect label, then either Predicate SizeC(v) or Label(v)
is satisfied and Rule RSize or RLabel is enabled at v (see proofs of Section 3.4 for more details),
a contradiction. Otherwise, Predicate CorrectF (v) is satisfied ∀v in γ. If there are several
fragments in γ then there is at least one node v ∈ V such that Macro CCandidate(v) 6= ∅.
If there is a node v in γ which has not computed the correct outgoing edge of its subtree
(i.e., Outv[0] 6= Candidate(v)), then Rule RMin is enabled at v, a contradiction. Otherwise, in
each fragment F in γ we have ∀v ∈ F,Outv[0] = Candidate(v). Consider first a node v in
a fragment F in γ which is on the path between the root of F and the minimum outgoing
edge of F (i.e., Outpv = Outv). If there exists such a node v with newpv 6= NewParent(v)
and Predicate Reorientation(v) is satisfied, then Predicate ChangeNewP (v) Rule RMerge is
enabled at v, a contradiction. Otherwise, consider the other node v in F which are not on
the path between the root and the minimum outgoing edge of F (i.e., Outpv 6= Outv). If
there exist such a node v such that newpv 6= pv then Predicate ChangeNewP (v) is satisfied
and Rule RMerge is enabled at v, a contradiction. Otherwise in each fragment F in γ, we
have ∀v ∈ V, (newpv = NewParent(v) ∨ newpv = pv) ⇒ ¬ChangeNewP (v). Either for the
future root v (i.e., newpnewpv = v) of a fragment F in γ we have newdv > 1 then Predicate
ChangeNewD(v) is satisfied and Rule RDist is enabled at v, a contradiction. Or for the other
node v in F we have newdv 6= newdpv + 1 then Predicate ChangeNewD(v) is satisfied and
Rule RDist is enabled at v, a contradiction. Otherwise, we have ∀v ∈ V,¬ChangeNewP (v) ∧

19

ChangeNewD(v) in γ. If in a fragment F in γ there is a node v such that every of its
future children u after the merging (given by Macro NewChild(v)) in the fragment satisfies
¬CopyV ar(u) and pv 6= newpv ∨ dv 6= newdv, then Predicate CopyV ar(v) is satisfied and Rule
REnd is enabled at v, a contradiction. Finally, otherwise there is only a single fragment F in γ and
we have ∀v ∈ F,CorrectF (v). Moreover, for every node v ∈ V Predicate Recover(v) is satisfied,
since (¬ChangeNewP (v)∧¬ChangeNewD(v)∧¬CopyV ar(v)∧CorrectF (v))⇒ Recover(v).
Therefore, Rule RRec is enabled at every v in γ. By contradiction the fragment F in γ is not a
MST, so there exists a node v in γ such that pv 6= ∅ and v is adjacent of an internal edge with a
weight lower than w(v, pv) (i.e.,w(v, pv) > Inv[0]). Thus, v becomes the root of a new fragment
when v executes Rule RRec, a contradiction. 2

We denote by ΓCF the set of configurations in Γ such that there are no cycles in the subgraph
induced by parent link relations (i.e., for every γ ∈ ΓCF we have ∀v ∈ V,Distance(v)).

Lemma 5 Starting from any arbitrary configuration, the system reaches in O(n) rounds a
configuration in ΓCF.

This lemma can be proved using the same arguments given in [8].

4.5.1 Correctness and complexity of the merging phase

We now define some notations and predicates which will be used in the following proofs. Given
a configuration γ ∈ Γ, we note the set of all fragments in γ by F(γ). Moreover, we define below
several sets of fragments with different properties and the notion of attractor, introduced by
Gouda and Multari [25], will be used to show that during the convergence of Algorithm SS-MST

each fragment gains additional properties. We define five sets of fragments in a configuration
γ ∈ Γ:

• Let F1(γ) = {F ∈ F(γ) : (∀v ∈ F : CorrectF (v))} be the set of fragments in γ in which
all the nodes are correctly labeled.

• Let F2(γ) = {F ∈ F1(γ) : (∀v ∈ F : Outv[0] = Candidate(v) 6= ∅)} be the set of fragments
correctly labeled in γ in which every node has computed its minimum-weight outgoing
edge of its subtree for the merging phase.

• Let F3(γ) = {F ∈ F2(γ) : (∀v ∈ F : ¬ChangeNewP (v))} be the set of fragments correctly
labeled in γ in which every node has computed its future parent used when the merging
phase is done.

• Let F4(γ) = {F ∈ F3(γ) : (∀v ∈ F : ¬ChangeNewD(v))} be the set of fragments
correctly labeled in γ in which every node has computed its future distance used when
the merging phase is done.

• Let F5(γ) = {F ∈ F4(γ) : (∀v ∈ F : ¬CopyV ar(v))} be the set of fragments in γ for
which the merging phase is done.

We obtain the following lemma by applying Rules RSize and RLabel according to Lemmas 1
to 4 and Theorem 1.

Lemma 6 Starting from any configuration γ ∈ ΓCF, after O(n) rounds the system reaches a
configuration γ′ such that for each fragment F ∈ Fγ we have F ∈ F1(γ′).

20

Lemma 7 Let any fragment F ∈ F1(γ) in a configuration γ ∈ ΓCF. In O(hF) rounds, we have
F ∈ F2(γ′), with γ′ ∈ ΓCF and hF the height of F .

Proof. In the following we define the potential function M. First, let wm: V → N be the
function defined by:

wm(v) = |Outv[0]−min
(

min{Outu[0] : u ∈ C(v)},min{w{v, u} : (u, v) ∈ OE(v)}
)
|.

Note that, we have wm ≥ 0. Variable Outv has a correct value at node v if and only if wm = 0.
Let a fragment F ∈ F1(γ) in a configuration γ ∈ ΓCF, and M : Γ → N be the function defined
by:

M(γ) =

hf∑
d=0

md(γ)(n+ 1)d

where md(γ) is the number of nodes v at height d in F with wm(v) 6= 0. We denote nF the
number of nodes in fragment F . Note that 0 ≤ md(γ) ≤ nF , and 0 ≤ M(γ) ≤ (nF + 1)hF+1.
Moreover, the variable Out has a correct value at every node in F if and only ifM(γ) = 0. We
note γ(t) the configuration of the system after round t. Let d0 be the largest index such that
md0(γ(t)) 6= 0. Since we use a weakly fair scheduler, all the nodes of Fragment F are scheduled
during the execution of round t+ 1. Every node v at height d > d0 does not change the value
of its variable Out (see Rule RMin), and therefore wm(v) remains equal to zero, so md(γ(t+ 1))
is equal to zero as well. The nodes v at height d0 change their variable Outv according to the
variable Outu of their children u ∈ F (see Rule RMin). Let v be a node at height d0. The children
of v ∈ F (if any) are at height d > d0. Thus, their variable Out has not changed, and therefore
wm(v) becomes zero after round t+ 1. As a consequence, md0(γ(t+ 1)) = 0. Therefore, we get

M(γ(t+ 1)) <M(γ(t))

and thus the system will eventually reach a configuration where all the variables Out contains
the minimum outgoing edge of the sub-fragment rooted at v ∈ F (see Predicate Candidate(v)).

To measure the number of rounds it takes to converge, observe that d decreases by at least
one at each round. Since d ≤ hF , we get that starting from any configuration γ ∈ ΓCF with
F ∈ F1(γ) the system reaches a configuration where for every node v in Fragment F the variable
Outv is correct after O(hF) rounds. 2

Lemma 8 In every configuration γ ∈ ΓCF, there are at least two fragments F1 and F2, F1, F2 ∈
F2(γ) which select the same minimum-weight outgoing edge for merging.

Proof. Assume, by the contradiction, that there exists a configuration γ ∈ ΓCF with less
than two fragments in F2(γ) which select the same minimum-weight outgoing edge. This
implies in γ that either at least one fragment F ∈ F(γ) which has not computed its minimum-
weight outgoing edge, or every fragment F ∈ F2(γ) has selected a different minimum-weight
outgoing edge. In the former case, there is a contradiction since according to Lemma 7 in
O(hF) additional rounds the system reaches a configuration γ′ in which at least two fragments
F1 and F2, F1, F2 ∈ F2(γ) which select the same minimum-weight outgoing edge for merging.
Otherwise, let |F2(γ)| denotes the number of fragments in the set F2(γ) in γ. In the latter
case, exactly |F2(γ)| minimum-weight outgoing edges have been selected in γ. However, we can
observe that we can define a total order on the outgoing edges in each configuration in ΓCF based
on the tuple defined by the edges weight and the identifiers of the extremities of the edges. By
using this total order, n fragments could select at most the n − 1 minimum outgoing edges.

21

Thus, since Algorithm SS-MST uses these method to select the minimum-weight outgoing edge
of each fragment (see Macros Candidate(v) and NCand(Candidate(v))) then at most |F2(γ)|−1
different outgoing edges are selected in γ. So, there are at least two fragments F1, F2 ∈ F2(γ)
which select the same minimum outgoing edge, a contradiction. 2

Lemma 9 Let any fragment F, F 6∈ F3(γ), of a configuration γ ∈ ΓCF. If F ∈ F2(γ) then every
computation suffix starting from γ contains a configuration γ′ ∈ ΓCF such that F ∈ F3(γ′).

Proof. Assume, by the contradiction, that there exists a suffix e′′ starting from γ with no
configuration γ′ ∈ ΓCF such that F ∈ F3(γ′) in computation e = e′e′′. Consider the configuration
γ. Since F ∈ F2(γ) and F 6∈ F3(γ), only Rule RMerge could be enabled at a node v ∈ F (by
definition of F2(γ) and according to the guards of rules given in the formal description of
Algorithm SS-MST). Moreover, as F 6∈ F3(γ) there exists at least one node v ∈ F such that
Predicate ChangeNewP (v) is satisfied at v. Consider a computation step γ 7→ γ′′ of e. Assume
that Rule RMerge is enabled at v in γ and not in γ′′ but v did not execute Rule RMerge. If v is the
root of F (i.e., pv = ∅) or v is on the path between the root of F and the selected minimum-weight
outgoing edge then ¬ChangeNewP (v) implies that newpv = NewParent(v), a contradiction
since Rule RMerge is the only rule in γ which can change variable newpv. Otherwise, for every
other node v ∈ F , ¬ChangeNewP (v) implies that newppv = pv, a contradiction since Rule
RMerge is the only rule in γ which can change variable newpv. By weakly-fairness assumption
on the daemon, every node v ∈ F executes Rule RMerge and satisfies ¬ChangeNewP (v).

Finally, we can observe that the set of fragments F3(γ) is included in the set F2(γ) by
definition in a configuration γ. 2

Lemma 10 Let any fragment F ∈ F2(γ) in a configuration γ ∈ ΓCF. In O(hF) rounds, we have
F ∈ F3(γ′), with γ′ ∈ ΓCF and hF the height of F .

Proof. Let dF (v) denotes the height of v in F . We show by induction the following proposition:
In at most O(j+1) rounds, we have ∀v ∈ F, dF (v) ≤ j ⇒ ([(pv = ∅∨Outpv = Outv)⇒ newpv =
NewParent(v)] ∨ newpv = pv).

In base case j = 0. Consider the root v of Fragment F (i.e., pv = ∅). If newpv 6=
NewParent(v) then Rule RMerge is enabled at v in round 0, since (pv = ∅∧newpv 6= NewParent(v))⇒
ChangeNewP (v). Therefore, since the daemon is weakly fair then in the first configuration of
round 1, v executes Rule RMerge and we have newpv = NewParent(v) at v which verifies the
proposition.

Induction case: We assume that in round j = hF − 1 we have ∀u ∈ F, dF (v) ≤ j ⇒
([(pv = ∅ ∨ Outpv = Outv) ⇒ newpv = NewParent(v)] ∨ newpv = pv). We have to show that
in round j + 1 we have ∀v ∈ F, dF (v) ≤ j + 1 ⇒ ([(pv = ∅ ∨ Outpv = Outv) ⇒ newpv =
NewParent(v)] ∨ newpv = pv). Consider any node v ∈ F of height j + 1 in F . By induction
hypothesis, we have either newppv = NewParent(pv) = v or Outpv 6= Outv. In the former
case, if newpv 6= NewParent(v) and Outv = Outpv then Rule RMerge is enabled at v in round
j (because (newppv = NewParent(pv) = v ∧ Outv = Outpv ∧ newpv 6= NewParent(v)) ⇒
ChangeNewP (v)). In the latter case, if newpv 6= pv and Outv 6= Outpv then Rule RMerge is
enabled at v in round j (because (Outv 6= Outpv ∧ newpv 6= pv) ⇒ ChangeNewP (v)). Thus,
since the daemon is weakly fair then in the first configuration of round j + 1 v executes Rule
RMerge. So, we have ([(pv = ∅ ∨ Outpv = Outv) ⇒ newpv = NewParent(v)] ∨ newpv = pv) at
v. Therefore, in at most O(hF) rounds we have ∀v ∈ F, dF (v) ≤ hF ⇒ ([(pv = ∅ ∨ Outpv =
Outv) ⇒ newpv = NewParent(v)] ∨ [Outpv 6= Outv ∧ newpv = pv]) and this implies that
∀v ∈ F,¬ChangeNewP (v). 2

22

Lemma 11 Let any two fragments F1 and F2, F1, F2 6∈ F4(γ), of a configuration γ ∈ ΓCF. If
F1, F2 ∈ F3(γ) and the same minimum-weight outgoing edge is selected by the two fragments then
every computation suffix starting from γ contains a configuration γ′ ∈ ΓCF such that F1, F2 ∈
F4(γ′).

Proof. Assume, by the contradiction, that there exists a suffix e′′ starting from γ with no
configuration γ′ ∈ ΓCF such that F1, F2 ∈ F4(γ′) in computation e = e′e′′. As Rule RDist is the
only rule to modify variable newdv such that ¬ChangeNewD(v) is satisfied when executed,
this implies that there exists a node v ∈ (F1 ∪ F2) which never executes Rule RDist in the
computation suffix e′′. Consider the configuration γ. According to the formal description
of Algorithm SS-MST, Rules RCorrect,RSize,RLabel,RMin,RMerge, and RRec are disabled for any
node v ∈ (F1 ∪ F2) since F1, F2 ∈ F3(γ). Moreover, Rule REnd is disabled at any node v ∈
(F1 ∪ F2) as we have du 6= newdu for every node u ∈ NewChild(v), because F1, F2 6∈ F4(γ)
and newdv = ∞ by the execution of Rule RMerge. So, only Rule RDist could be enabled at
every node v ∈ (F1 ∪F2). This implies that Rule RDist is disabled for every node v ∈ (F1 ∪F2)
(i.e., we have ¬ChangeNewD(v)). Consider without loss of generality Fragment F = F1. Note
that F ∈ F3(γ), F 6∈ F4(γ), and ∀v ∈ F we have newdv = ∞ due to the execution of Rule
RMerge. If v ∈ F is the future root of F (after the merging phase) then either newpnewpv 6= v,
a contradiction because F1 and F2 have selected the same minimum-weight outgoing edge,
or newdv ≤ 1, a contradiction since newdv 6= ∞. If v ∈ F is any other node in F then
we have (newdv = newdnewpv + 1) ⇒ ¬ChangeNewD(v), a contradiction since newdv 6= ∞.
Therefore, the system reaches a configuration γ′ ∈ ΓCF in which for every node v ∈ F we have
¬ChangeNewD(v), so F ∈ F4(γ′).

Finally, we can observe that the set of fragments F4(γ) is included in the set F3(γ) by
definition in a configuration γ. 2

Lemma 12 Let any fragment F ∈ F3(γ) in a configuration γ ∈ ΓCF. In O(hF) rounds, we have
F ∈ F4(γ′), with γ′ ∈ ΓCF and hF the height of F .

Proof. We can show by induction on the height of F that in O(hF) rounds every node v ∈ F
satisfies ¬NewChangeD(v)) using the same method as in proof of Lemma 10. 2

Lemma 13 Let any fragment F, F 6∈ F5(γ), of a configuration γ ∈ ΓCF. If F ∈ F4(γ) then
every computation suffix starting from γ contains a configuration γ′ ∈ ΓCF such that F ∈ F5(γ′).

Proof. Assume, by the contradiction, that there exists a suffix e′′ starting from γ with no
configuration γ′ ∈ ΓCF such that F ∈ F3(γ′) in computation e = e′e′′. Consider the configuration
γ. Since F ∈ F4(γ), only Rule REnd could be enabled at a node v ∈ F (by definition of F4(γ)
and according to the guards of rules given in the formal description of Algorithm SS-MST).
Moreover, as F 6∈ F5(γ) there exists at least one node v ∈ F such that Predicate CopyV ar(v) is
satisfied at v. Consider a computation step γ 7→ γ′′ of e. Assume that Rule REnd is enabled at v
in γ and not in γ′′ but v did not execute Rule REnd. If v ∈ F is a leaf and v is not adjacent to the
minimum-weight outgoing edge of F then ¬CopyV ar(v) implies that pv = newpv ∧ dv = newdv
(because v has no neighbor u ∈ Child(v)), a contradiction since Rule REnd is the only rule which
could copy the value of newpv (resp. newdv) in pv (resp. dv). Otherwise for every other node
v ∈ F , ¬CopyV ar(v) implies that either pv = newpv ∧ dv = newdv or ∃u ∈ NewChild(v) such
that du 6= newdu ∨ pu 6= newpu). In the former case, there is a contradiction since Rule REnd is
the only rule which could copy the value of newpv (resp. newdv) in pv (resp. dv). In the latter

23

case, there is a neighbor u ∈ NewChild(v) which modified its variable pu or du by executing
Rule RCorrect or RRec, a contradiction since only Rule REnd could be enabled at a node v ∈ F
in γ. By weakly-fairness assumption on the daemon, every node v ∈ F executes Rule REnd and
satisfies ¬CopyV ar(v).

Finally, we can observe that the set of fragments F5(γ) is included in the set F4(γ) by
definition in a configuration γ. 2

Lemma 14 Let any fragment F ∈ F4(γ) in a configuration γ ∈ ΓCF. In O(hF) rounds, we have
F ∈ F5(γ′), with γ′ ∈ ΓCF and hF the height of F .

Proof. We can show by induction on the height of F that in O(hF) rounds every node v ∈ F
satisfies ¬CopyV ar(v)) using the same method as in proof of Lemma 10. 2

Lemma 15 Let a configuration γ ∈ ΓCF such that |F(γ)| > 1. We have |F(γ′)| < |F(γ)| for
any configuration γ′ ∈ ΓCF obtained after a merging step in every computation suffix starting
from γ.

Proof. Assume, by the contradiction, that there exists a suffix e′′ starting from γ with a
configuration γ′ ∈ ΓCF obtained after a merging step for which |F(γ′)| ≥ |F(γ)| in computation
e = e′e′′. This implies that in e′′ either there are no two fragments F1, F2 ∈ F(γ) which can
merge together using the same minimum-weight outgoing edge, or F1 and F2 does not belong
to the same fragment after a merging step. First of all, by Lemmas 6 and 7 every fragment
F ∈ F(γ) which does not satisfies CorrectF (v) and Outv[0] = Candidate(v) executes Rules
RSize,RLabel and RMin to belong to F2(γ). So, we consider that every fragment in F(γ) belongs
to F2(γ). In the first case, this is a contradiction with Lemma 8 which shows that in γ there
are at least two fragments F1 and F2, F1, F2 ∈ F2(γ) which select the same minimum-weight
outgoing edge for merging. In the latter case, by Lemma 9 every fragment F ∈ F2(γ) computes
its future parent after the merging step, so F1, F2 ∈ F3(γ). Moreover, by Lemma 11 we have
F1, F2 ∈ F4(γ′) in e′′. So, by Lemma 13 every node v ∈ (F1 ∪ F2) can execute Rule REnd and
then Rules RSize and RLabel to form a new fragment in F(γ′) composed of F1 and F2 in e′′, a
contradiction. 2

Note that for each fragment F ∈ F5(γ) in γ ∈ ΓCF, we have that each node v ∈ F satisfies
Predicate Distance(v) but does not satisfies Predicate CorrectF (v) (because of the merging
step the labels of each node v is no more correct). So, every node v ∈ F can execute again
Rules RSize and RLabel.

Lemma 16 Let any fragment F ∈ F5(γ) of a configuration γ ∈ ΓCF such that ∀v ∈ F,CorrectF (v).
If F does not span all the nodes of the system, then Rule RMin is enabled in at least one node
v ∈ F in γ.

Proof. First of all, Predicate CorrectF (v) is satisfied at every node v ∈ F because F ∈ F5.
Assume, by the contradiction, that F does not spans all the nodes of the system in γ and Rule
RMin is disabled at every node v ∈ F . This implies that there is a node v ∈ F which adjacent
to an edge (u, v) such that u 6∈ F . So, we have Candl(v) 6= ∅ ⇒ Candidate(v) 6= ∅. Moreover,
since F ∈ F5, v has executed Rule REnd and we have Outv = ∅. Therefore, Rule RMin is enabled
at v, a contradiction. 2

24

Lemma 17 Starting from any configuration γ ∈ Γ which contains several fragments, the system
reaches a configuration γ′ ∈ ΓCF which contains a single fragment spanning all the nodes of the
system in O(n2) rounds, with n the network size.

Proof. First of all, according to Lemmas 5 and 6 in O(n) rounds the system reaches a config-
uration γ1 ∈ ΓCF in which each fragment F ∈ F1(γ1). Moreover, according to Lemmas 7, 10, 12
and 14 by summing up the complexities each merging step is performed using at most O(n)
rounds (since n is an upper bound for the height of any fragment). Finally, in a configuration we
can not have more than n fragments so to obtain a spanning tree we can perform at most n− 1
merging phases (attained when only two fragments can be merged at each step). Moreover,
by Lemma 15 after each merging step the number of fragments is decreased by at least one.
Therefore, by the above elements we obtain that a spanning tree is constructed in O(n2) rounds
starting from an arbitrary configuration. 2

Lemma 18 In every configuration γ ∈ ΓCF which contains a single fragment T ∈ F5(γ) span-
ning all the nodes of the system and correctly labeled, then for every node v ∈ T no rule of
Algorithm SS-MST, except Rule RRec, is enabled at v.

Proof. Assume, by the contradiction, that there is an enabled rule, except Rule RRec, of
Algorithm SS-MST in a node v ∈ T in γ. For every node v ∈ T Predicate Distance(v) is satisfied
in γ ∈ ΓCF (by definition of ΓCF), so Rule RCorrect is disabled at v, a contradiction. Since T is
correctly labeled, we have ¬CorrectF (v) ⇒ (SizeC(v) ∧ Label(v)), so Rules RSize and RLabel

are disabled at v, a contradiction. Since T spans all the nodes of the system, for every node
v ∈ T we have Candidate(v) = ∅ and Rule RMin is disabled at v, a contradiction. Finally, we
have that T ∈ F5(γ) and by definition of F5(γ) Rules RMerge,RDist,REnd, and RRec are disabled
at v, a contradiction. 2

4.5.2 Correctness and complexity of the recovering phase

Lemma 19 Let a configuration γ ∈ ΓCF such that |F(γ)| = 1 and F be the fragment of F(γ).
At least one node v ∈ F can execute Rule RRec.

Proof. First of all, we consider that every node v ∈ F the distance and the label are correct
(i.e., CorrectF (v) and ¬CopyV ar(v) are satisfied which implies we have pv = newpv ∧ dv =
newdv∧newdv = newpv +1). Assume, by the contradiction, that Rule RRec is disabled for every
node v ∈ F . This implies that for every node v ∈ F we have either Candidate(v) 6= ∅, or another
internal edge can not be selected. In the first case, by hypothesis of the lemma there is only one
fragment in F(γ), so for every node v ∈ F we have Candidate(v) = ∅, a contradiction. In the
second case, this implies that an internal edge of minimum-weight associated to the common
ancestor of the edge is not propagated up in F . If v is the common ancestor of a locally
internal edge (given by Macro IEl(v)), then we have EndForward(v) ⇒ Recover(v) and Rule
RRec is enabled at v, a contradiction. If v has selected a local internal edge (i.e., Inv ∈ IEl(v)
and Inv 6∈ IEc(v)) and the internal edge has been propagated by pv (Inv = Inpv), then this
implies we have Forwarded(v) ⇒ Recover(v) and Rule RRec is enabled at v, a contradiction.
Otherwise, for an internal edge propagated by a child u in F either v is the common ancestor,
or the internal edge has been propagated by pv (Inv = Inpv) and u has selected another internal
edge (i.e., Inv 6∈ IEc(v)). This implies we have Forwarded(v) ⇒ Recover(v) and Rule RRec is
enabled at v, a contradiction. 2

25

Corollary 1 In any configuration γ ∈ ΓCF such that |F(γ)| = 1, by executing Rule RRec every
node v ∈ F sends up in F the internal edges selected by v and its descendants ordered locally
on the nearest common ancestors (given by Macro IE(v)), with F the fragment in F(γ).

Lemma 20 Let a configuration γ ∈ ΓCF such that |F(γ)| = 1 and F be the fragment of F(γ).
Every internal edge related to the nearest common ancestor x is not propagated up in F .

Proof. According to Corollary 1, x propagates up in F the internal edges selected by its
descendants and itself. Assume, by the contradiction, that the parent x of the nearest common
ancestor y related to an internal edge e ∈ E propagates up in F the internal edge e = (u, v),
described by its weight w(u, v) and the labels of its extremities `u and `v stored in variable Iny
at y. This implies that when x executes Rule RRec then Macro IE(x) returns edge e. Macro
IE(x) returns an edge from the union set of edges given by Macros IEl(x) and IEc(x). We must
consider only Macro IEc(x) since y is the common ancestor of e. However, according to the
formal description of Algorithm SS-MST Macro IEc(x) contains only internal edges f = (a, b)
whose the nearest common ancestor related to f has a label higher or equal to x’s label following
the lexicographical order (i.e., nca(`a, `b) � `x). Thus, we have e 6∈ IE(x), a contradiction. 2

Lemma 21 Let a configuration γ ∈ ΓCF such that |F(γ)| = 1 and F be the fragment of F(γ).
If a node v ∈ F selects by executing Rule RRec an internal edge e = (x, y) such that w(x, y) <
w(v, pv) and v is not the common ancestor related to (x, y) then the edge (v, pv) is deleted by v
from F .

Proof. Assume, by the contradiction, that v ∈ F selects by executing Rule RRec an internal edge
e = (x, y) such that w(x, y) < w(v, pv) but the edge (v, pv) is not deleted from F . According
to the formal description of Algorithm SS-MST, a node can delete an edge of a fragment by
executing Rule RRec. So, this implies that by executing Rule RRec the edge (v, pv) is not deleted
from F by v ∈ F . Consider the internal edge e = (x, y) stored in Inv by executing Rule RRec

at v such that Inv[0] < w(v, pv). By description of Rule RRec, v does not delete the edge (v, pv)
only if nca(Inv[1], Inv[2]) = `v), which is a contradiction with the hypothesis of the lemma. 2

Lemma 22 Starting from any configuration γ ∈ ΓCF which contains a single spanning tree T ,
the recovering phase is performed in O(n2) rounds, n the network size.

Proof. First of all, every node v ∈ T sends up in T the internal edge of minimum weight
associated to each common ancestor ca, given by Macro IE(v) based on Macro minIE(v, ca).
Moreover, by Lemma 20 every internal edge e is not propagated by the ancestors of the common
ancestor e in T . By Lemma 1, every node v ∈ T sends up in the tree the internal edges selected
by v and its descendants ordered locally on the nearest common ancestors, that is following
the lexicographical order on the label of nearest common ancestors. Observe that every node
v ∈ T is the common ancestor of at most hT internal edges selected to be propagated up in T ,
with hT the height of T . Furthermore, each propagated internal edge reaches its related nearest
common ancestor in O(hT) rounds. However, the propagation of the internal edges is pipelined
in T , since a node v ∈ T can execute Rule RRec when its parent propagates its internal edge or
the nearest common ancestor is reached (see Predicate SelectEdge(v)). Thus, for every nearest
common ancestor v ∈ T the propagation of the internal edges related to v is performed in O(hT)
rounds. Finally, there are at most n nearest common ancestors in the spanning tree T , so the
propagation of all the internal edges of T is performed in O(n.hT) ≤ O(n2) rounds. 2

26

Lemma 23 Starting from every configuration γ ∈ ΓCF satisfying Definition 3, the system can
only reach a configuration γ′ ∈ ΓCF which satisfies Definition 3.

Proof. By Lemma 18, in every configuration γ ∈ ΓCF every rule of Algorithm SS-MST, except
Rule RRec, is disabled at v ∈ V . Consider any configuration γ ∈ ΓCF which satisfies Definition 3.
This implies that there is only a single spanning tree T in γ and in every fundamental cycle
defined by each internal edge of T Lemma 21 can not be applied. Therefore, by executing Rule
RRec at any node v ∈ T no new fragment is created and the constructed minimum spanning
tree T is preserved. 2

Theorem 3 Algorithm SS-MST is a self-stabilizing algorithm for Specification 1 under a weakly
fair daemon with a convergence time of O(n2) rounds and memory complexity of O(log2 n) bits
per node, with n the network size.

Proof. We have to show first that starting from any configuration the execution of Algorithm
SS-MST verifies Property [TC1] and [TC2] of Specification 1.

First of all, by Theorem 2 while the system does not reach a configuration satisfying Def-
inition 3, there is a rule enabled, except Rule RRec, at a node v ∈ V . According to Lem-
mas 15, 21, 17 and 22, from any configuration Algorithm SS-MST reaches a configuration γ ∈ Γ
satisfying Definition 3 in finite time, which verifies Property [TC1]. Moreover, according to
Lemma 23 from a configuration γ ∈ Γ satisfying Definition 3 Algorithm SS-MST can only reach
a configuration in Γ satisfying Definition 3, which verifies Property [TC2] of Specification 1.

We consider now the convergence time and memory complexity of Algorithm SS-MST. Ac-
cording to Lemmas 17 and 22, each part of the algorithm (merging and recovering part) have
a convergence time of at most O(n2) rounds to construct a minimum spanning tree. Moreover,
Algorithm SS-MST maintains height variables at every node v ∈ V , composed of six variables
of size log(n) bits (variables pv, dv, newpv, newdv, sizev, and Outv) and two variables of size
O(log2(n)) bits used to stored labels of nodes (variables `v and Inv). According to [20], Vari-
able `v necessitates Θ(log2 n) bits of memory at every node v ∈ V . Therefore, no more than
O(log2(n)) bits per node are necessary. 2

5 Conclusion

We extended the Gallager, Humblet and Spira (GHS) algorithm, [9], to self-stabilizing settings
via a compact informative labeling scheme. Thus, the resulting solution presents several advan-
tages appealing for large scale systems: it is compact since it uses only poly-logarithmic in the
size of the network memory space (O(log2(n)) bits per node) and it scales well since it does not
rely on any global parameter of the network. The convergence time of the proposed solution
is O(n2) rounds. Quite recently, another self-stabilizing algorithm was proposed by Korman et
al. [16] for the MST problem with a convergence time of O(n) rounds and memory complexity
of O(log(n)) bits. However, this approach requires the use of several sub-algorithms leading to
a complex solution to be used in a practical situation, comparing to our algorithm.

References

[1] Stephen Alstrup, Cyril Gavoille, Haim Kaplan and Theis Rauhe . Nearest common ances-
tors: a survey and a new algorithm for a distributed environment. Theory of Computing
Systems, 37(3):441–456, 2004.

27

[2] Doina Bein, Ajoy Kumar Datta and Vincent Villain. Self-Stablizing Pivot Interval Routing
in General Networks. ISPAN, pages 282–287, 2005.

[3] Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru and Stephane Rovedakis Fast
Self-stabilizing Minimum Spanning Tree Construction - Using Compact Nearest Com-
mon Ancestor Labeling Scheme. 24th International Symposium on Distributed Computing
(DISC), volume 6343 of Lecture Notes in Computer Science, pages 480–494, 2010.

[4] Lélia Blin, Maria Potop-Butucaru, Stephane Rovedakis and Sébastien Tixeuil. A New
Self-stabilizing Minimum Spanning Tree Construction with Loop-Free Property. 23rd In-
ternational Symposium on Distributed Computing (DISC), volume 5805 of Lecture Notes
in Computer Science, pages 407–422. Springer 2009.

[5] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[6] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[7] Janna Burman and Shay Kutten. Time Optimal Asynchronous Self-stabilizing Spanning
Tree. 21st International Symposium on Distributed Computing (DISC), volume 4731 of
Lecture Notes in Computer Science, pages 92-107. Springer 2007.

[8] Shlomi Dolev, Amos Israeli and Shlomo Moran, Uniform Dynamic Self-Stabilizing Leader
Election. IEEE Trans. Parallel Distrib. Syst., volume 8-4, pages 424–440, 1997.

[9] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

[10] Gheorghe Antonoiu and Pradip K. Srimani. Distributed Self-Stabilizing Algorithm for
Minimum Spanning Tree Construction. 3rd International Conference on Parallel and Dis-
tributed Computing (Euro-Par), volume 1300 of Lecture Notes in Computer Science, pages
480-487. Springer 1997.

[11] Sandeep K. S. Gupta and Pradip K. Srimani. Self-stabilizing multicast protocols for ad
hoc networks. J. Parallel Distrib. Comput., 63(1):87–96, 2003.

[12] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal Computing, 13(2):338-355, 1984.

[13] Lisa Higham and Zhiying Liang. Self-stabilizing minimum spanning tree construction on
message-passing networks. In 15th International Conference on Distributed Computing
(DISC), volume 2180 of Lecture Notes in Computer Science, pages 194–208, 2001.

[14] S Katz and KJ Perry. Self-stabilizing extensions for message-passing systems. Distributed
Computing, 7:17–26, 1993.

[15] Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees. In
Distributed Computing, 20(4): pages 253–266, 2007.

[16] Amos Korman and Shay Kutten and Toshimitsu Masuzawa. Fast and compact self sta-
bilizing verification, computation, and fault detection of an MST. In 30th Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 311–320, 2011.

[17] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman
problem. Proc. Amer. Math. Soc., 7:48–50, 1956.

28

[18] Jungho Park, Toshimitsu Masuzawa, Kenichi Hagihara and Nobuki Tokura. Distributed
Algorithms for Reconstructing MST after Topology Change. 4th International Workshop
on Distributed Algorithms (WDAG), pages 122–132, 1990.

[19] Jungho Park, Toshimitsu Masuzawa, Ken’ichi Hagihara and Nobuki Tokura. Efficient
distributed algorithm to solve updating minimum spanning tree problem. Systems and
Computers in Japan, 23(3):1–12, 1992.

[20] David Peleg, Informative Labeling Schemes for Graphs, MFCS, pages 579–588, 2000.

[21] David Peleg, Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000.

[22] R.C. Prim. Shortest connection networks and some generalizations. Bell System Tech. J.,
pages 1389–1401, 1957.

[23] R. E. Tarjan, Data Structures and Network Algorithms. SIAM, volume 44, 1983.

[24] Gerard Tel. Introduction to distributed algorithm. Cambridge University Press, Second
edition, 2000.

[25] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing Communication Protocols. IEEE
Trans. Computers, volume 40(4), pages 448-458, 1991.

[26] Paola Flocchini and Toni Mesa Enriquez and Linda Pagli and Giuseppe Prencipe and Nicola
Santoro. Distributed Computation of All Node Replacements of a Minimum Spanning Tree.
13th International Conference on Parallel and Distributed Computing (Euro-Par), volume
4641 of Lecture Notes in Computer Science, pages 598-607. Springer 2007.

[27] Paola Flocchini and Toni Mesa Enriquez and Linda Pagli and Giuseppe Prencipe and Nicola
Santoro. Distributed Minimum Spanning Tree Maintenance for Transient Node Failures.
IEEE Trans. Computers, 61(3):408–414, 2012.

29

