
HAL Id: hal-00879548
https://hal.science/hal-00879548v1

Submitted on 4 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Decentralised Architecture for Multi-Objective
Autonomic Management

Sylvain Frey, Philippe Lalanda, Ada Diaconescu

To cite this version:
Sylvain Frey, Philippe Lalanda, Ada Diaconescu. A Decentralised Architecture for Multi-Objective
Autonomic Management. 4th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2010), 2010, pp.267. �10.1109/SASO.2010.34�. �hal-00879548�

https://hal.science/hal-00879548v1
https://hal.archives-ouvertes.fr

A Decentralised Architecture for Multi-Objective Autonomic Management

Sylvain Frey
ENSIMAG (student)

Grenoble INP
Grenoble, France

sylvain.frey@ensimag.imag.fr

Philippe Lalanda
LIG Laboratory

University of Grenoble
Grenoble, France

philippe.lalanda@imag.fr

Ada Diaconescu
CNRS LTCI

Télécom ParisTech
Paris, France

ada.diaconescu@telecom-paristech.fr

Abstract—Designing and organising large numbers of
autonomic resources into a coherent system is a difficult
endeavour. It necessitates handling complex interactions
among dynamic, heterogeneous components, autonomic
managers and human policies. Several architectural models
have been proposed for organising these interactions. This
paper focuses on a decentralised approach, while also
considering two other possibilities – centralised and
hierarchical. An architectural model is proposed and a
prototype implementation with corresponding experimental
results are subsequently presented and discussed.

Keywords : autonomic, architecture, decentralised, conflict

I. CONTEXT AND VISION

An architectural blueprint for autonomic computing from
IBM [1] defined an autonomic system as “a collection of
self-managing resources”, with Autonomic Managers (AMs)
organised according to “design patterns that offer models for
the structure and arrangement of components”.
Heterogeneous, volatile software elements interacting in an
unpredictable environment raise complex design and
administration issues, notably due to multiple unpredictable
interactions and incompatibilities – or conflicts – which may
appear among the resources, as well as among their AMs.

Given the high specialisation of reusable domain-related
components, administrators are not always able to
understand the internal logic of the resources and the AMs
they manage. This happens a fortiori when the administrator
is not a computer engineering expert, as it would commonly
be the case in a pervasive computing context (e.g. intelligent
home applications). This situation reinforces the need for
autonomic models that shelter administrators from complex
resource-level management.

Furthermore, human administrators can also be a source
of conflicts. Poor knowledge of the applicative layer leads to
imprecise management policies that can prove conflicting at
the lower, domain-specific level. Even an expert
administrator may set up contradictory high-level
instructions, such as 'maintain performance' and 'reduce
resource consumption'. In our view, autonomic systems
should be able to handle this sort of situation.

II. ARCHITECTURAL DISCUSSION

A standard conflict situation is the following: several
AMs administer the same software resource and try to set the
same parameter according to their own policy. A centralised

way of solving the conflict is to add an arbitrator, i.e. a
higher-level AM. This arbitrator can decide which AM is
“right”, or get all the proposals and deduce its own final
value. In contrast, in a decentralised solution the conflicting
AMs are expected to find a “collective” solution by
themselves, without necessitating any additional decision
logic from a central controller.

While a centralised solution provides a better control of
conflicts, it also necessitates a domain-related management
logic which is not always available, or even conceivable. On
the other hand, a decentralised, bottom-up architecture
provides less control, but generates opportunistic behaviours
that may compensate for the lack of well-defined solutions.
The difficulty here lies in providing sufficient flexibility to
these behaviours, while guaranteeing conformity with critical
system requirements.

None of these two solutions provides a definitive answer
to all the possible conflict-resolution issues. Centralised or
decentralised control will be most suitable in different
contexts. In a mixed solution, based on a hierarchical
architecture, managers solve conflicts locally when possible
and delegate to a higher-level manager otherwise.
Conceiving such hierarchy requires an architecture providing
both centralised and decentralised patterns.

III. MULTI-OBJECTIVE ARCHITECTURE

The aim of the proposed architecture is to enable the
creation of multi-objective management systems by
integrating reusable, domain-specific AMs dealing with a
single management concern (e.g. performance or energy
savings). Each resource is encapsulated into a membrane that
contains all its AMs, as shown in Fig. 1. Communication is
based on messages (publish/subscribe model).

Figure 1. Example of multi-management architecture.

mailto:philippe.lalanda@imag.fr
mailto:ada.diaconescu@telecom-paristech.fr
mailto:sylvain.frey@ensimag.imag.fr

The resource's sensors publish data that can be read by
AMs in the membrane only. Additionally, AMs may interact
with the membrane’s exterior (e.g. read user policies from
dedicated “goal” topics or negotiate with AMs of other
resources – see below). Effector instructions produced by
conflicting AMs are intercepted by negotiators. Negotiators
share a common negotiation area where they perform a
collective synthesis of all concurrent AM proposals. Each
negotiation area corresponds to one resource effector and
provides a local conflict-resolution medium for AMs
tackling different, possibly incompatible goals.

The actual nature of a negotiation area is a domain-
specific question, depending on the context, on the nature of
the AMs and on the managed resource. The negotiations may
be based on direct message exchanges between negotiators
or may necessitate additional services such as a blackboard.
Some examples of distributed algorithms include: priority-
based elicitation, computation of a mean, inhibition of
concurrent negotiators or priority-based weighted sum.
When a centralised resolution is conceivable and preferable,
introducing an arbitrator is also a possibility. Adapting the
resolution mechanisms to the context – possibly at run-time
– is an important meta-management feature, notably when
the resolution logic is not clearly defined (e.g. see part V.).

Given this local architecture the overall application is
constituted of interacting membranes. The important task of
translating application-level semantics (e.g. user's goals) into
resource-level semantics (e.g. setting an effector) is
performed by the AMs in the membranes. As a consequence,
user goal conflicts result in local effector conflicts and will
be resolved as such.

Gathering conflicting AMs in negotiation areas is also
the model for organising interactions between AMs of
different resources. The difference is that inter-membrane
negotiations deal with global, application-level issues
whereas negotiations inside a membrane concern the setting
of an effector. In both cases a standard domain-related
negotiation protocol defining the semantics of the
communications must be specified.

IV. PROTOTYPE IMPLEMENTATION

In order to simulate a dynamic, unpredictable but also
intuitive environment the context of a house with autonomic
equipments (heaters consuming electricity, thermometers,
windows) was chosen. A simulator was implemented using
iPOJO [2], a component-oriented service framework; the
autonomic layer was developed using Cilia [3] - a data
mediation framework built on top of iPOJO. Each room of
the house is modelled according to Newton's laws of heat
transfer and exchanges heat with its neighbours. The
temperature of the outside world oscillates so as to simulate a
day/night cycle. Heater power levels are adjusted by
thermostats. In this context, each of the manageable
equipments (e.g. heaters and windows) can be encapsulated
in a management membrane. At the highest level the user
can dynamically set management objectives, such as room
temperatures, global electrical consumption and the relative
priority between these two goals.

Each heater is managed by two conflicting AMs trying to
set the thermostat according to their own objective:
temperature or consumption. In the prototype, conflict

resolution is performed by decentralised negotiators
computing the final thermostat value as an average of
proposed AM values, weighted by priorities deduced from
simple high-level user policies (e.g. temperature more
important than energy savings). Specific AMs opening and
closing windows allow seeing indirect influences among
resources (e.g. window and heater in the same room). Inter-
membrane communications addressing this issue will be
developed in our future work.

V. RESULTS AND ANALYSIS

After some initial adaptation and tuning, the expected
behaviour was obtained: the user could dynamically set
different goals with variable priorities and the system self-
adapted in order to reach them as closely as possible.
External perturbations, such as a temperature fall, proved the
system’s capacity to stabilise. Further documentation and
commented results are available online [4].

The main difficulty lied in finding suitable response
times and amplitude values for the AMs’ reactions to
external changes. The choice of the negotiation mechanism
(e.g. collective computation of a weighted mean vs.
inhibition of concurrent negotiators) also necessitated several
trials and failures. Such meta-management concerns are the
key to the viability of the proposed management system.
Clearly separating conflict resolution from AM logic, while
providing dynamic adaptation of negotiators, are the first
steps towards a systematisation of meta-management.
Therefore, the discovery of viable management solutions
through the use of automatic procedures (e.g. machine
learning) may be envisaged.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a decentralised architecture for
integrating heterogeneous AMs. Although the proposed
architecture supports the introduction of centralised
controllers and hierarchies of AMs, the presented
implementation does not use them. These possibilities have
been largely developed in Ceylon [5] which uses the same
iPOJO technology. The strong similarities between these
approaches suggest the possibility of a hybrid, hierarchical
solution mixing centralised and decentralised control.
Finally, the discovery of undefined autonomic behaviour
through the use of machine-generated solutions would be a
significant step towards the definition of generic conflict
resolution mechanisms.

REFERENCES

[1] IBM, Autonomic Computing: “An architectural blueprint for
autonomic computing”, white paper, fourth edition, 2006.

[2] iPOJO Project: www.ipojo.org

[3] CiliaMediation Project: www.ciliamediation.org

[4] perso.telecom-paristech.fr/~diacones/am-bb/results.pdf

[5] Y. Maurel, A. Diaconescu and P. Lalanda, "Creating complex,
adaptable management strategies via the opportunistic integration of
decentralised management resources", ICAIS, 2009.

[6] www2.ece.arizona.edu/~hpdc/projects/Autonomia_Programmable/

[7] AutoMate Project: www.caip.rutgers.edu/TASSL/Projects/AutoMate/

[8] Johann Bourcier, “Auto-Home: A Framework for Autonomic
Pervasive Applications”, PhD Thesis, Grenoble University, 2008.

http://www.ciliamediation.org/

	I. Context and Vision
	II. Architectural Discussion
	III. Multi-objective Architecture
	IV. Prototype Implementation
	V. Results and Analysis
	VI. Conclusions and Future Work

