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1. Introduction

ABSTRACT

Getting relevant parameter estimation of a non-linear model is often a hard task from both an experi-
mental and numerical point of view. The objective of optimally designed experiments procedure is to
diminish the experimental effort needed such that the identification is within acceptable confidence
ranges. After each experiment, the next experiment is optimally designed, taking into account all past
experimental results. It allows quality information to be extracted from the experimental data with less
experimental time and resource consumption.

In this paper, we present an original approach and implementation of the classical A-, D- and E-
optimality on the estimation of 5 unknown (transfer related) coefficients in a compartmental model used
to describe the convective drying of rice. The originality of our method is that it uses reparameterization
of both parameter and protocol vectors which permits to avoid using a global optimization algorithm. The
presented method is implemented in Matlab as a Toolbox and fully tested on a pilot plant. The case study
(drying of rice) is typical in the field of process engineering: the dynamic model is strongly non-linear in
its parameters and cannot be analytically solved. In addition, the specific technical constrains (inertias,
limits, etc.) on the pilot are explicitly taken into account for improved experimental feasibility.

In this drying application, three experiments with non-constant drying conditions are shown to be
quite as effective as a two-factor three-level grid of nine experiments at constant conditions, with only
one third of the experimental effort.

usually formulated as a polynomial. This kind of calculation is well
documented in many books or websites. Unfortunately, using this

The design of experiment (DoE) can be considered as the opti-
mization of the experimental effort required to identify unknown
parameters with minimal confidence intervals.

In this paper, we present an original approach and implementa-
tion of the experimental estimation of 5 unknown (transfer related)
coefficients with a minimal number of experiments in the field of
drying of foodstuffs.

Apart from pure empirical approaches, it is quite common to
use freeware or commercial software to calculate a multi factor -
multi level plan. Implicitly, a simple LP (linear in its parameters)
model is assumed. Furthermore, the model is simple, algebraic and
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design methodology on dynamic models (i.e. described by differ-
ential equations) with strong non-linearities in their parameters is
just a work around leading to numerous experiments and minimal
guarantee on future parameter values.

On the other hand, some recent works [1-3] have described
optimal DoE methods for non-LP models (DoENL methods). For
instance, the X-optimality criterion was introduced by [2] to deal
with such problems. Their design methodology is requiring billions
of simulations which is incompatible with most engineering mod-
els where no analytical solution exists, hence requiring lengthy
numerical integration. This, and the induced complications, can
explain why most works dealing with non-LP models are using
optimal DoE methods for LP models (DoEL methods). As a mat-
ter of fact, in a recent and very interesting review [4], almost all
papers listed are using a DoEL method even with non-LP models.
In [4], about 70% of all papers listed are based on an analytical
(true or approximate) solution of the non linear model. Unfortu-
nately, in food engineering, having an analytical solution is not that
common.



Nomenclature

Roman letters
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water activity, see Eq. (5)

dry basis, for moisture content, short hand unit for
gwpg;ni

diffusion coefficient (m?2/s)

heat transfer coefficient, see Section 2.3.1
(Wm—2K-1)

volume to surface ratio (m)

decimal logarithm function

Fisher information matrix, 5 x 5 square matrix, see
(10) Section 2.4

Jacobian sensibility matrix, see (8) Section 2.4 (d.b.)
lack-of-fit vector, see Section 2.5 (d.b.)

number of weighting in experiment of protocol ¢
place holder for something not available
parameter

pressure (Pa)

time (s)

time of ith weighting in experiment of protocol ¢ (s)
product temperature (°C)

product moisture content (d.b.)

mean product moisture content (d.b.)

air moisture content (gva )

Greek letters

6 vector of parameters shown in Eq. (7)

61, 64, ... coefficients of the vector of parameters

0 density (kg/m3)

afz lack of fit (residual) variance, reflecting the lack of
prediction of experimental data by model identified
with these data (d.b.2)

o? lack of validation variance, reflecting the lack of pre-
diction of experimental data by model identified
independently (d.b.2)

) variance—covariance matrix, see Section 2.4 (d.b.2)

T compartment volume ratio, see Section 2.1

[9) vector of protocols shown in Eq. (6)

x> cumulated normal distribution [36, Section 10.2, p.
144]

Subscripts

0 at beginning of methodology, or at last set point
change

1,2 inner compartment, outer compartment

3,4,5,... relative to constants, see Constants

a air

da dry air

dm dry matter of rice

sat about saturation of vapor in air

wp water in product

va,vp  vapor in air, in product, see Eq. (4)

00 relative to set point values

ool, 002,... first, second, ...set point values

Superscripts

T transpose of a matrix

-1 inverse of a matrix

-2 square of inverse of a matrix

-1/2 square root of inverse

experimentally realized
mean on the rice

Constants

as decimal logarithm of saturated vapor pressure at
0°C(2.7858)

ay decimal logarithm of maximal saturated vapor pres-
sure (4.7142)

Ceolpurn  CONStant from Colburn analogy [43] (65.0m3K]~!)

Cpw water specific capacity(4210] kg=1K-1)

Cpdm specific capacity of calorific Rice [44]
(http://rpaulsingh.com/teaching/SpecificHeat1.htm
Arrowhead Mills’basmati), white unprepared
(1653J kg1 K1)

HRa3 relative humidity factor of Gompertz inertia
(0.5433%)

Hgaa relative humidity factor of exponential inertia
(0.8395%)

Hgas relative humidity normalization factor of exponen-
tial relative humidity inertia (0.8596%)

Hgas relative humidity normalization factor of Gompertz
relative humidity inertia (23.311%)

Ly latent heat of vaporization (2.357 x 106 kg=1)

5 length of inner compartment [45, p. 91, r] (0.5 mm)

Sspec specific surface to volume ratio, measured with the
spheroid prolate hypothesis (1989 m~1)

Tz temperature with water pressure equal to 10(¢3+44)/2
(237.3°Q)

Ty maximal temperature at which water activity of rice
is 0(2.5457°C)

Ta3 temperature factor of Gompertz inertia (0.9993 K)

Taa temperature factor of exponential inertia (0.0369 K)

Tas temperature normalization factor of exponential
temperature inertia (1.5810K)

Tus temperature normalization factor of Gompertz tem-
perature inertia (1.0231K)

Tmax maximal temperature of equipment (100 °C)

Tnin temperature of far air atmosphere (20°C)

t3 time delay of Gompertz inertia (833.1221s)

ty characteristic time of Gompertz inertia (394.9341 s)

ts characteristic time of exponential inertia (60 s)

te time interval between two weighting (60s)

tmax duration of each experiment (72005s)

Xo rice moisture content used in initial DoE (0.3 d.b.)

X3 Pfost moisture content at which the logarithm dif-
ferentiation of water activity in temperature is —1
(0.2873d.b.)

X4 Pfost moisture content at which the logarithm dif-
ferentiation of water activity in temperature is
—exp(1)(0.2380d.b.)

Ymax maximal moisture content of air of equipment
(0.3gvagy,)

Ymin moisture content of far air atmosphere

(O-OOngagJ; )

Pdm density of dry matter of rice [10, p. 305]
(1494.2 kg/m3)

ay standard deviation of measurement of moisture
content Section 3.2 (0.005d.b.)

In addition, in review [4], one can find some papers where non-
LP models are integrated numerically, just like food models need
to be. They all use DoEL methods, unfortunately most of them are
not experimentally validated. Finally, there is few works available
where models are non-LP, with numerical integration (i.e. no ana-
lytical solution available) and true experimental validation. These
latter papers can be split in two categories:



e Some papers are dealing with very specific DoEL methods like
trying to design sampling locations [5] or to identify one single
concentration [6] with a dedicated methodology.

e Others are based on a global optimization algorithm [7,8] leading
to extremely numerous simulations (hundreds of thousands [9]),
hence prohibitive computations.

In our applicative example (drying), the model [10] is non-LP
and does not admit any analytical solution. DoEL methods (A-
optimality, D-optimality, and E-optimality) are used. To avoid the
cumbersome global optimization algorithms, the model param-
eters and the protocol parameters are reparameterized [11-15],
allowing - in practice - the use of local optimizers leading to
only thousands of simulations to reduce the computation time of
the estimation. In our case, numerous various initial guesses are
randomly picked and given to the deterministic optimization algo-
rithm for more robust results.

The random excitation community knows that any varying
input is quite always better for parameter estimation than con-
stant inputs [16]. Hence, it is surprising that the usual method for
drying models identification consists in carrying out many drying
experiments (kinetics) each under different, but constant, drying
conditions.

A short survey on standard experimental strategies found
in publications in the field covered by the Drying Technologies
Journal, focusing on numbers 10 and 11 of 2009 issue, shows that
16 articles contain a two-factor experimental design for 4-28
experiments. For instance [17, p. 1128] contains 12 experiments
for ginger drying. None of these designs are mathematically related
to a drying model, even a polynomial one. The median number
of experiments is 9, in relation to the ‘two-factor and three-level’
experimental design.

Only one article [18, p. 1034], contains experiments with
dynamic conditions, with prescribed temperature and relative
humidity depending on current water content and human knowl-
edge (published in [19, p. 163]). One cannot speak of optimal
design here.

In this work, we present sequential DoEL of dynamic mod-
els [20] applied to drying; the originality of this work is the
construction of a detailed methodology including reparameteriza-
tion to apply DoEL to a drying dynamic model. This methodology
implements, as a Matlab toolbox, the A-, D- and E-optimality
on the estimation of 5 unknown (transfer related) coefficients
in a compartmental model used to describe the convective
drying of rice. This model, used in commercial simulators, con-
tains strong physical phenomena couplings and non-linearities.
Our method can take into account all technological constraints
to calculate the best non-constant drying conditions to obtain
the smallest uncertainties on estimated parameters at the low-
est experimental cost. First experiment is thus optimized on
the basis on an initial (plausible) guess of unknown parame-
ters while further identified parameters are used to optimize
the next experiment. In the methodology of sequential DoEL,
the parameter vector A is identified after each experiment
# i. Hence the succession of parameter vectors 6(1), 6(2), 93),

. form a sequence expected to converge rapidly (usually
in 2-3 Exp.) to true values with smallest possible uncertain-
ties.

The aim of this work is to demonstrate to the process com-
munity that a single (or a few) experiments under non-constant
conditions can do a better job than classical strategy based on
many experiments under constant conditions to achieve low
uncertainties on estimated parameters. This implies far less exper-
imental work, on much shorter global duration (e.g. 1 day instead
of 3).

Diffusion
coefficient: D

Heat transfer
coefficient: h

E vaporation
cocfficient:
h/p colburn /Ly

Compartment
#1: X, T

Compartment
#2: X, T

Air : Hya, Pya,
Ta, Va

Fig. 1. Two-compartment formalism of rice.

2. Theory
2.1. Model of rice drying

In this work, the validated rice drying model from [10] is con-
sidered. This 2-compartment dynamic model is composed of 3 ODE
with strong non-linearities brought mostly by ay and Ps, equa-
tions. The state vector is composed of inner and outer compartment
moisture contents, and one global temperature. Moisture is evap-
orating from outer compartment. Only the mean X of the two
compartment moisture contents is effectively measured online.
All parameters are known, except four parameters parameterizing
the transfer-related functions h=h(T,) (convective heat at the sur-
face) and D = D(T, X) (apparent water diffusion inside the kernel;
it should be noted that in the original publication, it is presented
in a slightly different formalism with water exchange coefficient),
and a fifth parameter which is the volume fraction t; of inner com-
partment, see Fig. 1.
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ar - I (X2 —X1) (M
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—— =—— X1 -X2)+ ———————(Pya — P 2
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Ta—T Pyq — P,

((ij_]t“ — hSspec a + ((Pva vp)/ Ceolburn) (3)
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The Pyp functionis a - strongly non-linear - function of the water
activity aw, thus of X5 (moisture content of outer compartment) and
T (uniform temperature). It is given by
Pyp = Psat@y = 1003+(ﬂ4—ﬂ3)T/(T+T3)aW (4)
where the water activity ay follows the Pfost equation [21] with
parameters identified by [22, p. 79] (see “Constants”):
aw = e—e(X3-X2>/(X3-X4>/(T—T4) (5)
Although identified on paddy rice, it was preferred to the standard
water activity because it was experimentally proven that this
latter is wrong at some drying conditions used in this paper (i.e.
for low temperatures (25 °C) and standard hygrometry (50%)) [23].
From [22], it is assumed that the logarithm of moisture diffusivity
D is linear in XT, and that the logarithm of the convective heat
transfer h is linear in T,. Hence four unknown parameters are
hidden in D and h. A fifth and last unknown parameter is the



volume fraction 7, of inner compartment.! The volume fraction of

the outer compartment is 7, =1 — 7.
Hence, we have:

~ TmaxXO —
D(T,X) =10 (—
( ) TrnaxX()
hT=10‘( X logo(h(Tmin)) +
( ) Tmax—Tmin gm( ( mm)) Tmax—Tmin

The mean moisture X is calculated as t1X; + 72X». It is the only
product related variable that is measured online. The variables that
can be modified during the experiments are Ty and Pyq, and they
are also measured online.

2.2. Prerequisites and general overview of DoEL methods
The methodology of DoEL [24] has a number of prerequisites:

(a) A vector (a “protocol”), ¢, formalizing [25] the degree of free-
dom in the experiments.

(b) A computer modelization (“model”) of experiments taking the
protocol ¢ in account.

(c) Aninitial guess for each unknown parameter of this model, 8(0).

(d) Information on the measurement error of X (standard devia-
tions oy).

All above prerequisites are also prerequisites to generic param-
eter identification with gradient method. A general DoE method,
given the above four elements ((a)-(d)), is the following [24]:

(i) Setito 1.
(ii) Find the A-optimal protocol ¢;, by optimization (DoEL).
(iii) Make an experiment as close as possible to the calculated pro-
tocol ¢;. Collect real air conditions and measurement times

in vector @;, and collect measurements )_(((ﬁi, ng) for n; =
1,2,...,Ng,.

(iv) Identify, by optimization, ith parameter vector 6@ with which
the model best predicts all available measurements.

(v) Quantify the parameter confidence region and intervals around
0. Depending on the acceptability of parameter confidence
intervals, the algorithm may loop back to (ii).

A general sequential DoEL methods loops the above general
DoEL method (ii)-(v), once only, or a few times, as illustrated in
Fig. 2.

This sequential DoEL method described in Section 2.2 and illus-
trated in Fig. 2 may be used on another model and on another pilot
plant. Then, X should be replaced by the output of the model, X
should be replaced by an experimental measurement, and n; should
be interpreted as an index of experimental measurement.

More details about prerequisites (a), (¢) and (d) and steps (ii),
(iv) and (v) are given below.

2.3. Improved reparameterization of protocol and parameter
vectors

To allow the use of standard optimization routines, the protocol
vector and the parameter vector should be reconditioned (normal-
ization) such that:

(1) Vector elements should be chosen in order to minimize coupled
effects on model predictions.

1 1 can be seen as a tuning parameter depending on the product.

(2) The total vector region should be parallelipipedic (i.e. simple
boundaries on each item) and each dimension should have a
domain of variation whose order of magnitude is close to one.

X X -
l0g10(D(T = 0, X))+ 7—~10g10(D(Tmax, X0))) = DT = 0, ko0 Tmaxko 1y, )™/ T
max:

— Imin log]()(h(TmaX))) — h(Tmin)(Tmax—T)/(Tmax—Tmin)h(TmaX)(T—Tmin)/(Tmax— min)

(3) Vector should be chosen to ensure significant and smooth influ-
ence on model predictions, on the whole domain of variation.

This leads to much faster computations. This reparametrization
technique is not limited to the rice drying case and can be applied to
other processes; it has already been done for the parameter vector
in[11, pp. 7-68, 5-13, 12].

For this application, we have chosen to model the protocol as
five segments for a total of tmax = 2h drying. These values (2 h and 5
segments) are set arbitrarily to get a compromise between per-
formance, practicability and equipment constraints (duration of
typical transitory regimes). The experimental inputs (temperature
and water content of air) are parameterized (Appendix A) accord-
ing to a preliminary evaluation of the real inertia of the drying pilot,
with varying transition times [4, p. 4855, 26]. So, each experiment
is divided into five periods. Each period has its air temperature set
point T, relative humidity set point Hg,.j, and planned duration
t.i, Withi=1,2, ..., 5, all gathered in the protocol definition ¢. To
allow the use of standard optimization routines, the protocol vector
is reconditioned (normalization) according to rules (1)-(3) above:
Hence the actual reparameterized protocol vector contains:

e The air temperature set points (divided by Tiax for normalization)
of each of the five periods.

¢ The set points of water addition Y — Yy, divided by maximum
available value (saturation, or maximum capacity Ymax reached)
for each of the five periods. These set points can be easily con-
verted in relative humidity set points.

e The duration of each first four periods divided by remaining time
of current experiment.

And the protocol writes:

0= |:Taao'l Taoo2 Taoos Yy - ymin
Tmax Tmax " Tmax ~~~ min(Ysar(Taeo1), Ymax) — Ymin
YS _ Ymin o1 o2
min(Ysat(Taoos ), Ymax) = Ymin~~~ tmax tmax — oot~
t,
o4 ] (6)
tmax — ool — boo2 — Loo3

We make multistage integration of the model as in [27].

2.3.1. Definition of the parameter vector

Using the same reasoning (see items (1)-(3) above), the five
(unknown) parameters are grouped into a parameter vector as fol-
lows:

D(Tmax, X
o= [logm(D(T =0,X)), logyg ( (Tmax max)) i

D(T =0, X)

108 10((Tin )+ 1010(h(Timax)), r1] )

The initial guess (%) of each five parameters is collected from
references shown in Table 1.
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Fig.2. Function call structure of sequential design of optimal experiment. The main loop of main function does the following: the protocol vector ¢; is optimized, then the corre-

sponding experiment is done, giving experimental values X, then the parameter vector 6 is estimated. X, is a shorthand for the vector X(6, @i, 1), X(, ®i,2), ..., X(0, ®i, Ng;)
containing the measures of mean moisture in experiment ¢;. The stopping criterion is selected asi= 3, it could be replaced by something based on the acceptability of parameter
confidence intervals to the operator of the experiment.

2.4. Confidence regions and intervals that purpose, in the DoEL methods, the sensitivity (or Jacobian)
matrix, Mjacobian, and the Fisher information matrix, Mgisher must

It is important to describe how the prerequisite (d) of Section be defined.
2.2,i.e. knowing measurement errors, is used in point (v) of Section The sensitivity matrix, Mjaconian gives the sensitivities of the
2.2 to quantify the acceptability of parameter confidence. For model prediction in the parameter vector around a value of this



Table 1
Ranges and initial guesses for parameters, collected from publications.

Parameter Initial Minimal Maximal Unit Reference for initial guess

D(T=0, X) 4.8771 10-3 108 pm?/s [28, p. 330, Table 2, T=0] at 24% d.b.

D(Tmax, Xo) 79.2984 10 106 pwm?/s [29, p. 144, Eq. (2), p. 145, Eq. (6), p. 151] at 40°C and 40% d.b.
h(Tmin) 11.336 1 200 W/Km? [30,31, p.521] at 0°C,

h(Tmax) 10.0551 1 200 W/Km? [30,31, p. 521] at 100°C,

T 0.8225 0 1 m?/m3 [32, p. OP173].

parameter 6. It is a rectangular matrix, whose coefficient line i col-
umnj is the differentiation by jth parameter of the model prediction
of the ith available and ongoing design experimental data. In the
design of the third experiment, this matrix Mj,cobian iS:

ﬂ 2) g

&, (6, @1, 1)

dX _ dx _
E(G(Z),q)],l) d—es(e(z)»ﬁﬁl»U

dX dX dX
2002 3,.2 2002, %,.2 2002 5,.2
d(a]( , $1,2) d92(9 ,¢1,2) des( . 91,2)

dX _ dX _ dX _
d—el(e(z),QOuN@l) d—%(9(2>~§01,N¢,) d—95(9<2),s01.N¢1)

X o & g X g
d91(6 »@2.1) dez(é’ 2.1) d95(9 $2.1)

(%(5(6(2)’@2’2) (8)

Micobian = %(em, $2.2) %(em, 2.2)

dx - dx - dx _
d—&(e(z), @2, Ny, ) E(Gm’ @2,Ng,) - d_95(9(2)’ @2, Ny, )

dx dx dx
2 (6@ 1 —Z (6@ 1 (6@ 1
d91( , 93, 1) d92(9 ,93,1) d&s( 93, 1)

dX dX dX
d_el(G(Z)’(p3’N(03) d_62(9(2)’(p3’N(”3) d_65(9(2)’(p3’N¢3)

The model Egs. (1)—(3)is defined by a set of 3 ODEs. Using the direct-
differentiation method [33, 34, 5, p. 29] the sensitivity matrix can be
computed by numerical integration of a set of 18 ODEs: the original
3 ODEs Eqgs. (1)—(3) and their differentiation in the 5 parameters.
For example, the fourth equation is the differentiation of Eq. (1)
with respect to 61, namely:
d(dX(]j{d@]) _ (aD/alG1 )Sspec (X3 — X;) + DSlSpec (% _ %) (9)
1 1 1 1

The Fisher information matrix, Mgisper, iS @ matrix, which can be

computed by

T
MFisher =M,

Jacobian

x 271 x M]acobian (10)

where X is the variance/covariance matrix, here a diagonal matrix
(because we assume that the noise of measures are independent),
whose coefficient line i is the variance of the ith available mea-
sures (actually recorded in past experiments, or currently planned),
which is prerequisite (d) (see Section 2.2). Confidence intervals and
confidence regions can be computed using this Fisher information
matrix MEisher-

The confidence region of the parameter is an ellipsoid, centered
on the parameter vector, whose axis are the eigenvectors of the
Fisher information matrix, and whose axis lengths are proportional
to the square-root of the inverse of the respective eigenvalues [35].
As we have five parameters in this article, the proportion coefficient
is 6.654 since it is twice the square root of x2(5) value at 95%(cumu-
lated normal distribution with probability 95% and 5 degrees of
freedom [36, Section 10.2, p. 144]).

The specific confidence interval length of each estimated param-
eter is proportional to the square root of inverse of the diagonal
coefficients of the Fisher information matrix [24]. This proportion

coefficient is 3.92 since it is twice the square root of the product of
the x2(1) value at 95%.

The introduction stated that DOENL methods give more precise
result but for bigger computation times than DoEL methods. Hence
we used DoEL methods, and the confidence regions and confidence
intervals are only valid asymptotically (when the time interval
between two weighting tg is supposed very small) due to the non-
linearity of the model. Hence sometimes the confidence intervals
do not contain the final value.

2.5. Optimization

2.5.1. Step (ii): optimizing the experimental protocol ¢

The A-, D- and E-optimal criteria are, respectively, the trace, the
determinant, and the spectral radius [24] of the matrix inverse of
the Fisher information matrix. In the last two of them, the matrix
inversion may be bypassed, when its computation time overhead
on simulation model is not negligible. For most ODE problems,
this overhead is way negligible. A protocol is A-, D- and E-optimal
when the respective criterion is minimal. To overcome possible
over-influence of some matrix coefficient and ensure that a nearly
singular information matrix does not give undue advantage to a
protocol vector, the inversion is re-balanced by adding 4+3 x 10~13
or 3 x 10-11% to its matrix coefficient. This coefficient is selected
according to the fact it maximizes the A-, D- or E-optimal criterion
of DoEL. The optimal protocol ¢ is computed using a non-linear
optimization routine according to the selected criterion.

For example, during the real protocol design, before experiment
number 3, the protocol ¢3 was A-optimally designed by minimiz-
ing the trace of the re-balanced inverse of the Fisher information
matrix, which is a 5 x 5 matrix whose element line n; and column
neis

2 Ny e . _ .
l . ax(e(z)v Dne » nt) % ax(e(z)? Dne » nf)
2
ot 06, 06y,
1+tmax/te

1 0X(69), g3, tene — t6) , IX(60?), @3, tent — t5)

+
o2 n, 0,

ﬂr=1

2.5.2. Step (iv): identifying model parameters 0

A parameter 6 is considered to be identified when it is found to
be the only one minimizing the criterion of identification. This cri-
terion is the least square criterion (M, x X~1 x MT)!/2 where M, is
a line vector whose jth coefficient contains the difference between
jth available experimental measure, and its model prediction. The
square of criterion to identifying 6() is

3 Ng
1 Yng 5 ~ .
;ZZ'X(GB)? (ﬂne, nl’) _X(9(3)7 ¢’ne, nl’)|2

y ne=1n;=1

The initial guess 8(®) shown in Table 1 is retained as an initial
guess for the first estimation only. The experimentally measured
temperature T, and water content of air (expressed as a (par-
tial) pressure Py, of vapour in air) are interpolated (by Matlab’s
interpl) and replaced equations Eqs. (A.1) and (A.2) of Appendix



A. The estimated parameter vector 6(-1) is retained as an initial
guess for next DoE and estimation.

3. Materials and methods
3.1. Rice samples

Rewetting of rice was done with adding all required water at
once to the rice in a big sealed container, followed immediately
(and also one day after) by the slow rotation of the container for
1 h. The rice container is stored in a cooled place, except for the last
hour before experimentation where it is stored at 20 °C. Just before
experimentation, the water content of a rewetted rice sample is
measured [37, p. 73]; the subsequent DoEs take this measure in
account. This measure is not available for initial planification, which
used instead Xy =30% d.b. as the best guess.

3.2. Experimental dryer

An experimental dryer is installed at the INRA’s associated lab-
oratory at AgroParisTech (Fig. 3). The inlet air temperature, relative
humidity and velocity are controlled by three independent PID con-
trollers, under the supervision of the master PC. Velocity is fixed to
1 m/s. Product (rice here) is weighted every minute (depending on
the computer settings) by diverting the air flow with the air switch
and releasing the pneumatic jacks supporting the basket over the
balance. The current mean moisture content can be computed from
this weight; it is the only product related variable that is measured
online.

Besides its numerous advantages, this type of dryer presents
some drawbacks for this study:

e Duetoits strong thermal inertia, one cannot expect sharp changes
in air temperature (e.g. Table “Constants” defines in t3 the lag
between set point change and actual change).

e Due to the presence of moving parts, it is impossible to guaranty
good thermal insulation everywhere, leading to water leakage
wherever humid air may saturate in contact of ambient air.

e Due to steam injection prior to final temperature adjustment,
100% of air relative humidity is unreachable.

oy is retained for the experimental measurement error, corre-
sponding to aload of 100 g of dry matter of rice for each experiment,
and a standard deviation error weighting of 0.5 g on measurements
estimated from the actual performance of the weighting device.
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Fig. 3. Experimental dryer scheme INRA-AgroParisTech in Massy, France.

3.3. Technological constraints on the experimental device.

The equipment constraints on the coefficients of the protocol
vector Eq. (6) are the following: Minimal value is Ty [Tmax for first 5
protocol coefficients, and 0 for last 9 protocol coefficients. Maximal
value for all protocol coefficients is 1.

The control of air drying conditions is done by PID control set
points, according to the vector protocol. Hence, it is necessary to
inject, in the model, the pilot inertias in response of set point
changes to mimic correctly in the simulation what will happen in
real.

The inertias of the air temperature and relative humidity are
evaluated with 15 h of experiments in dynamic conditions, see Fig. 4
and discussion in Appendix A. This evaluation gives a model for
inertia, detailed in Appendix A. It should be noted that this is just
an empirical approximation of pilot dynamics but it is assumed to
be sufficient for the extrapolation of calculated protocol to actual

t (hours)

Fig. 4. Comparison between measured (-) and predicted (-) (from set points values by model in Appendix A) inertias of air relative humidity (above) and temperature (below)

of variable drying conditions.



Table 2

Convergence of DoE with simulated experiments. (a) A-optimal, (b) D-optimal and (c) E-optimal criterion is used; true parameters used in simulated experiments are displayed
on (d) (these simulated experiments are placeholders for step (iv) of Section 2.2). Last column gives of/oy, which is the mean lack of fit oy, divided by the mean experimental
error oy. When a confidence interval covers several orders of magnitude without containing 0, only its bounds are shown, in the form [x, y].

Number of experiments done D(T=0, X) (wm?/s) D(Tmax, Xo) (m?/[s) h(Tiin) (W/Km?) h(Timax) (W/Km?2) 71 (m3/m3) oyloy
(a) A-optimal design, simulation run

1 39+25 468 +10° 1.05+400 [1,12,000] 0.63+0.16 1.0592
2 31+£3 [25,9500] 11.9+1.7 96.2+2.1 0.61+0.025 1.0873
3 31+2 [85, 2500] 11.6+1.1 110.456+1.8 0.618 £0.017 1.02
(b) D-optimal design, simulation run

1 10+ 0 [10, 108] [1,200] [1, 200] 0.63+0.2 1.0272
2 33+4 [10, 26,500] 109+0.8 91+1.1 0.60+0.02 1.07

3 34+£26 [20, 8200] 10.9+0.6 85+1 0.591+.013 1.02

4 31.6+2 [60, 3500] 11+04 88.1+0.7 0.60+0.01 1.02
(c¢) E-optimal design, simulation run

1 36+11 405+ 106 10.6+0.8 91+1 0.56+0.06 1.0402
2 32+3 [26, 6000] 10.6+0.5 105+1 0.57 +£0.03 0.98

3 32+2 [70, 2550] 10.8+£0.5 99.1+£0.8 0.59 £0.02 1.03
(d) Parameter expected for simulation runs

00 31.4361 4452138 11.0314 100.433 0.6 1

experiment. This assumption will be proved to be correct in Section
4.2,

In addition, the experiments in which the minimal difference
between rice temperature and dew point temperature is less than
10°C are forbidden, to ensure that unexpected condensation on an
exposed part of the weighting system would not disturb experi-
ment and increase this weighting error.

3.4. Optimization setups

3.4.1. For estimation of parameter 0 (as in step (iv) Section 2.2)

The estimated parameters are found by Nelder-Mead optimiza-
tion [38]. They are further enhanced with Levenberg-Marquardt
optimization [39], with a maximal number of iterations set to 4000.
To avoid local minima, numerous (10) various initial guesses for
parameter vector are randomly picked, leading to lengthy compu-
tation times.

3.4.2. For design of protocol ¢ (as in step (ii) Section 2.2)

Due to the intrinsic ‘discrete’ nature of the X measurement
(assessed every minute), the criterion for the optimization algo-
rithm is clearly non-smooth and easily brings local minima. Some of
these local minima correspond to weight measurements occurring
seconds after a set point change.

The experiments in which the difference between rice temper-
ature and dew point temperature is less than 10°C are forbidden
according to Section 3.3. To enforce this constraint, the design crite-
rion must be modified, such that, the sooner this rule is not satisfied,
the bigger the criterion is.

So, before the real DoEL, a fake DoEL was made, with 21 ran-
domly chosen initial protocol guesses. This fake DoEL assumed
that:

(f1) The weighing aborted its one-minute-sleep at each set points
change, to ensure that no weighing occurred during the 60s
after each set points change.

(f2) A penalty was added to ensure that, the sooner the difference
between rice temperature and dew point temperature is less
that 10°C, the greater the design criterion is.

The penalty is useful to let the optimizing routine find experi-
ments in which this constraint is satisfied.

The 21 results of these fake DoEs were then used as initial
guesses for the real protocol design.

For example, during the fake protocol design, summarizing
elements explained in Section 3.4, before experiment number
i=1...3, the protocol ¢; was A-optimally designed by minimizing

the sum of the penalty and of the trace of the re-balanced inverse
of the 5 x 5 matrix whose element line n; and column n¢ is

2 Nlﬁng _ _
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960,
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The design loop (ii)-(v) of Section 2.2 was stopped after three iterations in
this paper due to practical constraints. The Nelder-Mead algorithms were con-
figured with a maximal number of iteration set to 2000. Both Nelder-Mead and
Levenberg-Marquardt algorithms were configured to stop when objective and pro-
tocol/parameter changes are less than the machine precision.

4. Results

The disadvantage of experiments with non constant conditions compared to
experiments under constant conditions is on the way higher computation time
required: 3h on a cluster of 12 processors (about a day on one processor) to run
on average 290,000 times the drying model. The estimation only ran on average
3000 x i times the drying model, where i is the number of realized experiment.

4.1. Pure simulation run of DoEL

The first objective here is to choose between A-, D- and E-optimality, and to
check the feasibility (mostly as a quick error-checking procedure) at no experi-
mental cost. The experimental data are replaced here by simulations with random
added noise (using standard deviation oy, ) on measures predicted with another set
of parameters shown in Table 2(d), named true parameters. These true parameters
are the expected results of the DoE algorithm in this simulated environment.

In these favorable conditions, as shown in Table 2(a), the A-optimal algorithm
converges after only 3 - simulated - experiments while D-optimality performs sig-
nificantly worse in terms of quantity of bad confidence intervals than A-optimality
and E-optimality.

On the basis of this pure simulation run, A-optimality is preferred to E-optimality
because A-optimal criterion is smoother than the E-optimal criterion [5, p. 293]. It
is not a generic conclusion, and this conclusion is also debatable because we used
DoEL methods instead of DoENL methods.

4.2. DOE confronted to experiment

The same methodology of sequential design was then applied in a real experi-
mental setup.

Step #1. After the simulation validation, the A-optimal protocol used in first line of
Table 2(a) is actually used on the experimental pilot, leading to data and to a new
set of estimated parameters (shown in first line of Table 3(a)).



Table 3

Experiment design convergence. Test with experiments done on drying pilot plant. (a) A-optimal design in three iterative steps and (b) standard two-factor three-level
design. Last column gives oo, which is the lack of fit oy, divided by the mean experimental error o,. When a confidence interval covers several orders of magnitude without

containing 0, only its bounds are shown, in the form [x, y].

# Exp. done D(T=0, X)(pm?/s) D(Tmax, Xo) (wm?/s) h(Timin) (W/Km?) h(Tmax) (W/Km?) 71 (m?/m?) ofloy
(a) A-optimal design, experimental run

1 20+5 100+ 00 [3,20] [6, 23] .554+0.02 1.09
2 7.5+0.9 [135, 5500] [3,200] [1,200] 0.68 +0.03 1.01
3 59+0.9 [200, 9500] 13.7+£0.9 11.1+£0.8 0.56+0.01 1.34
(b) two-factor three-level design, experimental run

9 6.9+0.5 [180, 3200] 6.5+0.5 13.0+0.5 0.69+£0.01 1.74

Step #2. Then, a second A-optimal protocol of 2 h is designed, taking in account
these parameters, and then applied in the drying lab, leading to more data and to
another set of estimated parameters (see second line of Table 3(a)).

Step #3. Then, a third A-optimal protocol of 2h is designed and then applied in
the drying lab, leading to more data and to the final parameter set with acceptable
confidence intervals (see last line of Table 3(a)).

The discrepancies shown in Fig. 5 between designed and actual protocols can be
explained by the difficulty to integrate technological constraints in the optimization
procedure. Indeed, there are strong couplings between the increase of the RH by
steam addition and temperature control (steam is heating air very fast), and the
dynamics of their inertia are, overall, predicted by their model shown in Appendix
A.

It is observed, in general, that the computed A-optimal protocol tends to maxi-
mize the amplitude of the variations of air drying conditions. The drier the product
gets, the longer the segment tends to be to compensate for smaller mass varia-
tions. The experimentally obtained drying conditions share the same characteristics,
despite the above discrepancies: hence, even if they are not exactly equal to optimal
designs, they nonetheless give a similar amount of information on average, accord-
ing to the A-optimal criterion. This validates the model of inertia (see Appendix
A), which is precise enough for DoEL methods. In addition, it is observed that first
experiment reaches directly the right parameter neighborhood in terms of order of
magnitude.

Fig. 6(a)-(c) displays both the simulated and the actual mean moisture content,
for the three successive experiments. Fig. 6(a) clearly shows that, after 40 min of
drying, there is a fast and temporary unmatched increase of water content, which
may be due to condensation (at the same time, the moisture content of air is close to
saturation in Fig. 5). Despite this, the lack of fit (o, /0y ) is only 1.09 times bigger (see
Table 4) than the measurement error, which is good. Fig. 6(b) Exp. #1 shows again the
dataof first dynamic experiment, but fitted together with the data of second dynamic
experiment. The influence of unmatched increase of water on the prediction seems
to decrease, which is positive. Fig. 6(b) Exp. #2 shows the data of second dynamic
experiment. We can see that the experimental data of first experiment is not better
fitted as in Fig. 6(a), but the predicted moisture content of outer compartment is
different, reflecting that more information was gained from these two experiments.
As can be observed in Fig. 6(c), the agreement is quite good after only three short
drying experiments. Observed error is less than 1.4 times the measurement error
on average (see Table 4), and uncertainties on identified parameters are low (see
Table 3(a)).

4.3. Validation: comparison to classical DoEs.

4.3.1. Step #4: validation of prediction

Tovalidate the results showninTable 3(a), the model estimated at step #3 is used
to predict the data obtained by a two-factor three-level grid of nine experiments,
combining three temperature levels of 50°C, 70°C and 90°C, and three levels of
relative humidity 0%, 20% and 40%.

Fig. 6(d) shows the comparison between prediction by parameter identified in
step #3 and these nine experiments. In this comparison, the mean error is 4.33 times
the measurement error. Our laboratory notebook shows that a mismanipulation
occurred during experiments #6 and #8 (leading to lower air velocities), which is
the likely reason for this error. However, the value 4.33 is to be compared to 1.73
which is the minimum value it could have had.

4.3.2. Step #5: independent estimation

The parameters were also estimated from the nine experiments #4-12 in con-
stant conditions, excluding the three dynamic conditions. The resulting predicted
simulations are shown in Fig. 7(a), and respective predicted values are in Table 3(b).
The observed mean error is 1.84 times the measurement error, which is fairly accept-
able. The comparison of results of the two independently identified parameter sets is
possible from last two lines of Table 3. Their disagreement is due to the experimental
problems as stated above.

4.3.3. Step #6: validation of experiments with static conditions

on variable conditions

Parameters from step #5 were used to predict the result of dynamic exper-
iments, see Fig. 7(b). There is a slight global overestimation of the prediction of
dynamics for similar reasons as stated previously.

The observed mean error of prediction is 3.25 times the measurement error
according to Table 4. The cross-validation comparison between this validation
and the validation of A-optimal designed experiment (see step #4) is hence
only marginally in favor of 9 experiments on static conditions, it has about
33% smaller validation errors. Thanks to the reparameterization of the parame-
ter and protocol vectors and to the use of numerous various initial guesses in
minimization algorithms, initial value of the protocol 8 and the initial assump-
tion of parameter ¢; were found to have no significant influence on the final
results.
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Fig. 5. Comparison between planned (-) and measured (-) air relative humidity and temperature of variable drying conditions of the three designed dynamic experiment.
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Table 4
Experimental validation of A-optimal DoEL method: for each line of Table 3, this table details the experiments used to identify the parameter set in first four columns, and,
in the same line, the experiments used to validate this same parameter set, in last four columns.

Experiments used to identify the parameter Experiments predicted to validate the parameter
Step Serial number of Type ofloy Step Serial number of Type o,/0y
experiments implied experiments implied
NA 0 Table 1 NA NA 4-12 Constant 23
#1 1 Dynamic 1.09 NA 4-12 Constant 2.60
#2 1,2 Dynamic 1.01 NA 4-12 Constant 2.31
#3 1-3 Dynamic 1.34 #4 4-12 Constant 4.33
#5 4-12 Constant 1.73 #6 1-3 Dynamic 3.25
21 randomly picked initial guesses were found to be sufficient to obtain an A variation of Table 2, not shown in this paper, was generated, taking
acceptable criterion on protocol optimization. Practically, it was found that increas- an initial guess for the parameters which is far from the solution (namely
ing the number of initial guesses did not improve the overall performance of the 0© =[10% wm?2/s, 10° um?2/s, 150 W/Km2, 170 W/Km?2, 0.001]). It was verified that
protocol optimization (optimality criterion). the optimally designed estimations still converged to the solution: estimation
We checked that 10 initial guesses were enough to obtain an acceptable esti- based only on first optimally designed experiment gave a parameter which is
mation of parameter vector, by observing that all minimizations either converged quite close to the value of the “true parameter” shown in Table 2(d), for A- and
to the same neighbourhood or exited with high residuals. D-optimality.
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on parameters computed from data recorded from experiments Exp. #4-12 shown in (a). (For interpretation of the references to color in this figure legend, the reader is
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5. Discussion

A-optimality performed better than D-optimality in our case; this is also the
case of other works [40, 3, p. 395, 397]. The big differences between the marginal
confidence intervals obtained with the different design criteria (Table 2) is probably
due to the strong nonlinearities in the model.

The A-optimally designed experiment depends on the choice of the reparame-
terization of the parameters: hence the prerequisites (2) and (3) in Section 2.3 are
important to ensure that each parameter is identified with a confidence interval
consistent with its own relative influence on the predictions.

The computational cost (290,000 model calls), compatible with the cost of global
optimizers, is due to a naive implementation of assumption (f2) defined in Section
3.4.2. This assumption is a constraint on the optimizer to avoid the condensation
forbidden at end of Section 3.3. The naive implementation alternates up to 20 times
the optimization of the design criterion with the optimization of the duration of
experiment without condensation. We think a better implementation of assumption
(f2) would result in a gain of at least an order of magnitude.

The influence of unmatched increase of water content of Exp. #1 on the predic-
tion seems to decrease when more experiences are taken in account. Ideally, this
unmatched could have been eliminated from the data, but we were not able to find
an objective criterion to eliminate that data. It would be possible if condensation
was assessed by independent measures that are not available on the pilot.

As the final confidence ellipsoid will, in this article, not be close to the bound-
aries, the loss of information of DoEL methods are of the order of magnitude of 14%,
when compared to DoENL methods [1, p. 1144].

6. Conclusions

We used a methodology which lets us replace nine experiments with static dry-
ing conditions by three A-optimally designed experiments with dynamic conditions.
Our methodology let us divide by three the time of experimentation and the amount
of used product. The confidence intervals on the identified parameters were quite
as effective.

Our methodology of sequential DoEL was tested in a virtual environment; the
A-optimality was shown to be somehow better than the E-optimality and far better
than the D-optimality. It was observed that first experiment reaches directly the
right parameter neighborhood in terms of order of magnitude.

We used reparameterization of the parameter and protocol vectors which let us
use standard local optimisation algorithms to make design of experiment (DoE) on
models without analytical solution and the use of global optimizer or proprietary
optimizers was avoided (such optimizers are used in existing works doing DoEs on
model without analytical solution [7,8,41,42], and the typical global optimizer calls
10° times the model subroutine [9]). We used standard local optimizers for DoE of
a nonlinear model that have been confronted to real experiments.

We used degraded DoEL methods: in the experimental environment, experi-
mental temperature profile might differ, to some extent, from the designed one; we
used criteria of design (A-, D- and E-optimality) that are less exact than X-optimality
for models nonlinear in 6. This methodology was shown to give nonetheless
good results: identifying simultaneously five transfer-related constants in three A-
optimally designed experiments gave a precision only 33% worse than the classical
identification based on nine experiments with static drying conditions. Hence, this
methodology let us divide by three the time of experimentation, and the amount of
used product, for a similar quality of identification.

It is generally observed that the computed A-optimal protocol tends to max-
imize the amplitude of the variations of experimental conditions. The proposed
methodology has shown, on this particular example, its ability to minimize the
experimental work needed to identify unknowns in a given non-linear dynamic
model. Furthermore, it optimizes confidence levels on the estimates while classical
strategies cannot give any guarantee on that point.

Current work in progress is trying to apply this so-called generic method to
totally different classes of dynamic models. Supplementary research and simula-
tions are planned to study the sensibility of the optimal design to the choice of
the various constants, the optimality criteria and the minimization algorithms. This
would constitute a useful guide for the drying experimentator.
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Appendix A. Model of pilot inertias

The combination (Hraeo — Hra)/Hras — (Tass — Ta)/Tas has an exponential decrease
exp (—t/ts); the combination (Hgrge — Hra)/Hgas *(Taso — Ta)/Tas has a Gompertz
decrease exp ((1—e~t%)/t3) (which corresponds to the Gompertz adimensional con-
stant c=exp (t4/t3)).

Expanding these details, we obtain the following non-linear model for air tem-
perature and relative humidity set point changes, based on air temperature Tgo and
relative humidity Hgqo before set point change, and at set point air temperature Ty,
and relative humidity Hrg~o:

o =Tawo+Ta3 x(1—-¢

e—(13/14) _lt—13)/1g) Hgaoo —Hrao | Taoo — Tao
) x +
Hgag Tas

_ Ta4 « (1 _ e_(t/[s)) « HRaoo — HRaO _ Tu:x — TaO (A.])
Hgas Tas

. = Hraoo — H Taos — T,
Hga = Hrao + Hraz x (1 —¢€° (t3/t4) _e(t f3)/‘4) < Raoo Ra0 | Taw = la0
Hras Tas

+ HRaa x (.1 _ e_([/[s)) % Hgaso — Hrao _ Taso — Tao (A.Z)
Hras Tas

The fit between this model Egs. (A.1)and (A.2) and dedicated 15 h of experiments
is shown in Fig. 4.
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