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Abstract

Gauss words are finite sequences of letters associated with self-intersec-
ting closed curves in the plane. (These curves have no "triple" self-
intersection). These sequences encode the order of intersections on the
curves. We characterize, up to homeomorphism, all curves having a given
Gauss word. We extend this characterization to the n-tuples of closed
curves having a given n-tuple of words, that we call a Gauss multiword
. These words encode the self-intersections of the curves and their pair-
wise intersections. Our characterization uses a canonical decomposition
of strongly connected graphs, called the atomic decomposition, that we
have defined and studied in a previous article.

1 Introduction

Many geometric configurations can be represented by finite combinatorial ob-
jects, up to appropriate equivalence relations, like homeomorphism in the case
of embeddings of graphs in surfaces. Gauss words are sequences of letters in-
tended to describe the self-intersections of closed curves in the plane (with no
triple intersection): each crossing is named by a letter, and a word with two
occurrences of each letter is obtained by following the curve and writing the
letter seen at each crossing. This definition raises the following questions:

(1) What are these words ?
(2) Which curves can be uniquely reconstructed, up to homeomorphism,

from the corresponding word ?
(3) What is the common structure of all curves having a same associated

word ?
Gauss words are characterized in several articles by Lovasz and Marx [LM],

Rosenstiehl [Ros] and de Fraysseix and Ossona de Mendez [FOM] to name a
few. These works answer Question (1). Some of them are reviewed in the book
by Godsil and Royle [GodRoy].
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Figure 1: Curves with Gauss word aabb.

Figure 2: Curve with Gauss word abcabc

We will address Questions (2) and (3). A word is unambiguous if it char-
acterizes a unique curve up to homeomorphism. Otherwise, it is ambiguous.
Figure 1 shows two curves that are not related by any homeomorphism of the
plane or of the sphere but yield the same ambiguous Gauss word aabb. On
the other hand, the word abcabc is unambiguous and Figure 2 shows a (the)
corresponding curve.

It is natural and convenient to extend the definitions and the corresponding
questions to tuples of curves, described by tuples of words such that any letter
has exactly two occurrences in one word or one occurrence in two of them.
Figure 3 shows three curves with corresponding unambiguous Gauss multiword
(abcd, aecf, bfde).

We will give in Proposition 23 a natural characterization of Gauss multiwords
that yields (by means of Proposition 15) a linear-time recognition algorithm.
This algorithm provides also a tuple of corresponding curves if there exists one.
However, this proposition does not generalize the characterizations of [LM],
[Ros], and [FOM].

For answering Questions (2) and (3), we will use several notions. First
we observe that intersecting and self-intersecting closed curves without triple
intersections are nothing but plane 4-regular graphs. We recall that a map is
a graph equipped, at each vertex, with a circular order of edges around it.
This order is called a rotation (see the book by Mohar and Thomassen [MT],
Chapter 3). Every embedding of the graph in an oriented surface yields a map.
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Figure 3: Three intersecting circles

Intersecting closed curves can be described up to homeomorphism by 4-regular
planar maps (we omit here some technical details).

Second, we use a single combinatorial object, constructed from an n-tuple
W of words where each letter has two occurrences, from which the planar maps
representing the n-tuples of curves with associated multiwordW can be defined.
This object is a 4-regular graph with transitions, that is, equipped, at each
vertex v, with a pairing of the half-edges, called darts, incident with v. We
call it a t-graph. In its embeddings in surfaces, two paired darts must form a
line that crosses the one formed by the two others incident darts. See Figure 5
for an example. (Pairings are represented by thickenings of certain darts. For
example, edges a and b are paired at their common vertex, and so are b and c).
A t-graph is essentially a 4-regular map in which we forget the orientation of the
surface around each vertex (we only retain how darts alternate around a vertex).
Hence, a t-graph contains more information than the underlying graph and less
than a map of this graph. A t-graph with an underlying planar graph may have
no plane embedding that satisfies the "crossing condition" on pairs of opposite
darts (see the right part of Figure 10). We will prove in Theorem 16 that, if
the underlying graph of a planar t-graph is loop-free and 3-edge-connected, then
this t-graph has a unique plane embedding, up to homeomorphism.

Third, we start our investigation with tuples of oriented curves (see Figure
4). The corresponding t-graphs are directed and each vertex has 2 incoming
edges and 2 outgoing edges. We say that they are (2,2)-regular. Figure 4 shows
the difference between oriented and nonorienting curves regarding the ambi-
guity of Gauss multiwords. It shows two plane embeddings of a (2,2)-regular
t-graph associated with the Gauss multiword (abcd, bc, ad) that are not home-
omorphic by any homeomorphism of the sphere. (To check this, just compare
the directions of the edges incident with the two faces bordered by 4 edges).
However, forgetting the directions of the edges yields two homeomorphic em-
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Figure 4: Two nonhomeomorphic embeddings of a same t-map.

beddings. Hence the multiword (abcd, bc, ad) is unambiguous for representing
intersections of nonoriented closed curves, but it is ambiguous for representing
intersections of oriented curves. It is actually easier to characterize the unam-
biguous Gauss multiwords representing oriented curves and we will start by this
case.

Our key tool will be a canonical decomposition of strongly connected (di-
rected) graphs that we have introduced in [CouAD] and called the atomic de-
composition. Figure 9 in Section 3.2 below shows an atomic decomposition: the
graphs G1, ..., G9 are undecomposable, they are the atoms of the decomposed
graph.This decomposition works for the corresponding undirected graphs (they
are the connected graphs without bridges), for t-graphs and for strongly con-
nected maps. It is related to the canonical decomposition of a connected graph
in 3-connected blocks due to Tutte [Tut]. From the atomic decomposition of the
t-graph associated with a Gauss multiword W , we can describe all tuples of ori-
ented curves (up to homeomorphism) whose associated Gauss multiword is W .
Then, we extend this characterization to solve the original questions concerning
nonoriented curves.

The article is organized as follows. Section 2 reviews definitions about graphs
and maps. Section 3 reviews from [CouAD] the atomic decomposition of strongly
connected graphs. Section 4 examines the decompositions of planar graphs and
maps. Section 5 develops the applications to the curves in the plane described
by given multiwords. Section 6 reviews open questions. For the reader’s conve-
nience, an appendix reviews the various equivalence and isomorphism notions
used in this article.

2 Definitions

All graphs and related objects (t-graphs, maps) will be finite.
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By saying that (e1, ..., ek) is a circular sequence, we mean that it can also
be specified as (ei+1, ..., ek, e1, ..., ei−1) and that its properties and associated
constructions do not depend on the initial element e1. (See also Section 5.1.1).

2.1 Graphs

2.1.1 Terminology and notation

Terminology and notation are as in [CouAD]. A directed graph G is defined as a
triple (VG,EG, vertG) consisting the set of vertices VG, the set of edges EG (with
VG ∩EG = ∅) and a mapping vertG : EG → VG× VG that defines incidences. If
vertG(e) = (x, y), we say that x is the tail of e, denoted by α(e), that y is its
head, denoted by β(e), we also write e : x→ y and we say that x and y are the
ends of e. If G is undirected, then vertG(e) is a set {x, y} of one or two vertices,
called the ends of e and we write e : x− y. In both cases, e is a loop if x = y.

We denote by Und(G) the undirected graph obtained from a directed one by
taking as incidence function vertUnd(G)(e) := {x, y} whenever vertG(e) = (x, y).
Note that we do not identify an edge with the pair or the set of its ends.

Walks and paths.
Let G be a graph and x,y ∈ VG. A walk from x to y is a sequence

(x0, e1, x1, e2, ..., en, xn) such that x0, x1, ..., xn ∈ VG, x0 = x, xn = y, e1, ..., en
∈ EG, ei : xi−1 → xi (ei : xi−1 − xi if G is undirected) for each i = 1, ..., n, and
ei 	= ej if 1 ≤ i < j ≤ n. It is a path if we (also) have xi 	= xj for 0 ≤ i < j ≤ n,
except possibly if i = 0 and j = n. A walk is closed if x0 = xn. A circuit is
a closed path in a directed graph. A cycle is similar in an undirected graph
(a cycle with two vertices consists of two parallel edges). An edge never occurs
twice in a walk. A vertex never occurs twice in a path except if x0 = xn. A walk
(x0, e1, x1, e2, ..., en, xn) of a directed graph can be described without ambiguity
by the sequence (e1, e2, ..., en). A walk, a path or a circuit in a directed graph
is said to be undirected if its edges can be traversed in any direction (i.e., with
ei : xi−1 → xi or ei : xi → xi−1 in the above definition).

A directed graph is strongly connected if, for any two distinct vertices x and
y, there is path from x to y. The class of strongly connected graphs is denoted
by SC.

Subgraphs
We write G ⊆ H (resp. G ⊆i H) if G is a subgraph (resp. an induced

subgraph) of H. If F ⊆ VG ∪ EG, then G − F is the subgraph of G obtained
by deleting the edges and vertices in F and the edges incident with a vertex in
F . We write it G − x if F = {x}. If X ⊆ VG, we denote by G[X] the graph
G− (VG −X): it is the induced subgraph of G with vertex set X.

Isomorphisms
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An isomorphism of G = (VG, EG, vertG) to G
′ = (VG′ , EG′ , vertG′) is a bijec-

tion h : VG∪EG → VG′ ∪EG′ that maps vertices to vertices, edges to edges and
preserves incidences, that is : vertG′(h(e)) = (h(x), h(y)) (resp. {h(x), h(y)}) if
vertG(e) = (x, y) (resp. vertG(e) = {x, y}). It is a v-isomorphism if VG = VG′ .
In this case, one can consider EG and EG′ as different sets of names used to
designate the edges of a graph with vertex set VG. If G

′ = G, we get the notions
of automorphism and of v-automorphism. The graph of Figure 2 has several v-
automorphisms. We denote by G ∼= G′ the existence of an isomorphism between
G and G′.

Darts.
To discuss plane embeddings it will be useful to split a directed edge e into

two darts e−, e+ with incidences defined by a function γ such that γ(e−) = x
and γ( e+) = y if e : x → y. We denote by D+

G the set of darts e+, by D−

G

the set of darts e− and by DG the set D
+
G ∪D

−

G. It is clear that D
+
G ⊆ D+

G′ and
D−

G ⊆ D−

G′ if G ⊆ G′. We will only use this notion for directed graphs.

2.1.2 Graphs with transitions

Definition 1 : (2,2)-regular graph.
A (2,2)-regular graph is a directed, 4-regular graph, each vertex of which

has 2 incoming edges and 2 outgoing edges. We denote by G2,2 the class of
connected (2,2)-regular graphs. Each such graph has an Eulerian tour, i.e., is
covered by a closed walk (covered means that the walk goes through all edges).
(See [Die], Section 1.8, where the proof given for undirected graphs extends
easily to directed ones). It is thus strongly connected.

Definition 2 : Graph with transitions.
A (2,2)-regular graph with transitions is a pair (G, τ)consisting of a (2,2)-

regular graph G and a transition function defined as a bijection τ : D+
G → D−

G

such that γ(τ(d)) = γ(d)for every d ∈ D+
G.We say in this case that dand τ(d)

are opposite darts. For shortness sake, we will say that there is a transition
from eto f(or even that (e, f)is a transition) if γ(f−) = γ(e+) and τ(e+) = f−.
If H = (G, τ), we let Graph(H) denote G, VHdenotes VG and similarly for
other items. A t-graph is a connected (2,2)-regular graph with transitions. We
denote by Gt2,2 the class of t-graphs.

An isomorphism or a v-isomorphism of t-graphs must respect transitions in
an obvious way. (An appendix reviews the different notions of isomorphism and
equivalence relation used in this article.)

Definition 3 : Straight walk
A walk (x0, e1, x1, e2, ..., en, xn)in a (2,2)-regular graph with transitions is

straight if it is not closed and τ(e+i ) = e−i+1for each i = 1, ..., n − 1or if it is

closed and, in addition to this condition, τ(e+n ) = e−1 . Every t-graph is the
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Figure 5: A planar t-map.

union of a set of pairwise edge-disjoint closed straight walks, in a unique way.
�

Figure 5 shows a (plane embedding of a) t-graph. The transition function is
represented by thickening some darts: two bold darts are related by the transi-
tion, and so are two light darts. For example τ(a+) = b−and τ(f+) = g−.This
graph is covered by the closed straight walks (a, b, c, d)and (f, g, i, j, k, h). Its
Eulerian tour (a, b, c, d, f, g, i, j, k, h)is not straight.

2.2 Maps

Maps are combinatorial objects that represent embeddings of connected graphs
in oriented surfaces, up to orientation preserving homeomorphisms. We review
the classical definitions (cf. [MT], Chapter 3 for detailed definitions), and we
introduce some new notions.

If Eis an embedding of a graph G in a surface, we denote by E(u)the point
representing a vertex u, by E(e)the line segment representing an edge eand
by E(W )the union of the segments representing the edges of a walk W . As
usual, we call plane an embedding of a graph in the sphere, and we define a
homeomorphism of plane embeddings as a homeomorphism of the sphere that
maps an embedding onto the other.

Definition 4: Map
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Figure 6: Three planar maps M,N,P ∈M2,2

A map is a pair M = (G, ρ)consisting of a connected and directed graph
Gand a bijection ρ : DG → DG such that, for every din DG, the set {ρ

i(d) | i ≥
0}is the set of darts incident with γ(d). This bijection is called the rotation of
M . We denote Gby Graph(M)and DGby DM .

From an embedding Eof a connected and directed graph Gin an orientable
surface, we get a map (G, ρ)by letting ρ(d) be the dart following din the circular
order, "around the vertex γ(d)" (and according to the orientation of the surface)
of the darts incident with γ(d). For any two embeddings of Gin the sphere with
same associated map, there is an orientation preserving homeomorphism of the
sphere that maps Eto E ′. (See [MT], Theorem 3.2.4 for the proof, and a more
general statement concerning orientable surfaces.). A map is planar if it is
associated with a plane embedding, i.e., an embedding in the sphere.

If E is a plane embedding of a connected and directed graph Gwith map
M = (G,ρ)then M−1 := (G, ρ−1) is the symmetric map ofM : it corresponds to
an embedding E ′of Gthat is homeomorphic to E , with a reversal of orientations.
We say that two maps Mand M ′are equivalent if M ′ =Mor M ′ =M−1.(They
have the same underlying graph).

We denote respectively byMSCandM2,2 the classes of maps of graphs in
SCand in G2,2.

Definition 5 : Transitions defined from rotations.
Let M = (G, ρ)be a map in M2,2. It is a t-map if the mapping τdefined

by τ(d) := ρ2(d)for d ∈ D+
Gis a transition function. The associated t-graph

is Grapht(M) := (G, τ). We let Mt
2,2denote the class of t-maps. Two t-maps

Mand Nare t-equivalent if Grapht(M) = Grapht(N), which we denote by
M ∼t N . Clearly, M ∼t M−1. Figure 4 shows two t-maps Mand Nthat are
t-equivalent but not equivalent: they are different but N 	= M−1. (Another
similar example can be obtained from Figure 1).

In Figure 6, the planar mapM at the left is a t-map because ρ2(a+) = b−and
ρ2(b+) = a−, hence ρ2is a transition function. The map N in the middle is not
because ρ2(c+) = d+. (We will denote by 8 the corresponding graph in G2,2).
The rightmost map P is not either because ρ2(d+) = b+. The planar map of
Figure 5 is a t-map.
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Definition 6 : Planar t-graph
A plane embedding of a t-graph Grespects the transition if the corresponding

map M is such that Grapht(M) = G.A t-graph Gis planar if it has a plane
embedding, hence, if and only if it is Grapht(M)for some planar t-map M .

We denote by PSC, PG2,2, PG
t
2,2, PMSC, PM2,2 and PM

t
2,2the classes

of graphs, t-graphs and maps that belong respectively to SC, G2,2, G
t
2,2,MSC,

M2,2 and M
t
2,2and are planar. These classes of graphs and maps, are related

by inclusions and by the mappings Graphand Grapht.We have in particular :

M2,2 ⊇ Mt
2,2

↓ ↓
G2,2 ← Gt2,2 .

This square diagram shows that:

Graph(M) = Graph(Grapht(M)) for every M ∈Mt
2,2.

These relations and facts extend to planar graphs and maps. Hence, we have
the similar square diagram with analogous meaning:

PM2,2 ⊇ PMt
2,2

↓ ↓
PG2,2 ← PGt2,2

The symmetrization mappingM �→M−1 preserves each of the classesMSC,
M2,2,Mt

2,2, PMSC, PM2,2, PM
t
2,2.

3 Atoms of graphs and maps

A canonical decomposition of strongly connected graphs into so-called atoms is
defined and studied in [CouAD]. It is applicable in a straightforward manner to
maps. We review some definitions and show that they are applicable to t-graphs
and to the graphs, t-graphs and maps of the classes of Definition 6.

3.1 Circular composition of directed graphs and maps

We define an operation that composes directed graphs and maps. We will actu-
ally use it mainly to decompose these objects.

Definition 7 : Circular composition.
We letG1, G2 be disjoint directed graphs and ei ∈ EGi

for i = 1, 2. We define
G1 ⊞e1,e2 G2 as the graph H such that VH := VG1

∪ VG2
, EH := EG1

∪ EG2

and the incidence function vertH is defined as follows:
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Figure 7: G (to the right) is the circular composition of G1, ..., G4.

vertH(e1) := (α(e1), β(e2)),

vertH(e2) := (α(e2), β(e1)),

vertH(e) := vertGi
(e) if e ∈ EGi

− {ei}, i = 1, 2.

We call G1 ⊞e1,e2 G2 a circular composition of G1 and G2. If G1, ..., Gk are
pairwise disjoint and ei is an edge of Gi for each i, we let:

⊞e1,...,ek(G1, ..., Gk) := (...(G1 ⊞e1,e2 G2)⊞e2,e3 G3)...)⊞ek−1,ek Gk

= ⊞e1,...,ek−1(G1, ..., Gk−1)⊞ek−1,ek Gk.

Here are examples. We let G,H,K be the respective graphs of the maps
M,N,P of Figure 6. We have K = G ⊞b,c H. The left part of Figure 7 shows
graphs G1, ..., G4 with distinguished edges e1, ..., e4 (note that e2 is a loop). The
right part shows ⊞e1,...,e4(G1, G2, G3, G4). This figure explains the terminology.

We have introduced and studied circular composition in [CouAD]. In the
present article we will mainly use its "binary" versionG1⊞e1,e2G2. The following
properties are easy to check from definitions.

Proposition 8 : Let G1, G2, G3 be pairwise disjoint directed graphs and
ei ∈ EGi

for i = 1, 2, 3. We have the following equalities (in each case, both
handsides are defined):

(1) G1 ⊞e1,e2 G2 = G2 ⊞e2,e1 G1,

(2) (G1 ⊞e1,e2 G2)⊞e2,e3 G3 = G1 ⊞e1,e3 (G2 ⊞e2,e3 G3),

(3) (G1⊞e1,e2G2)⊞f,e3G3 = G1⊞e1,e2(G2⊞f,e3G3) if f ∈ EG2
−{e2}.
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From (1) and (2) we get the following circular associativity :

(G1 ⊞e1,e2 G2)⊞e2,e3 G3 = (G2 ⊞e2,e3 G3)⊞e3,e1 G1.

The graph H = ⊞e1,...,e4(G1, G2, G3, G4) at the right of Figure 7 can be
expressed by (G1 ⊞e1,e2 G2)⊞e2,e4 (G3 ⊞e3,e4 G4).

It is easy to check that G1⊞e1,e2G2 is strongly connected if G1 and G2 are so.
However, the connectedness of G1 and G2 does not imply that of G1 ⊞e1,e2 G2:
just take G1 = e1 and G2 = e2.

Definition 9: Circular composition of t-graphs and maps.

(a) We recall that G2,2 ⊆ SC. If G1 and G2 belong to G2,2, then so does
any circular composition G1⊞e1,e2 G2. If they are disjoint t-graphs (i.e., if they
belong to Gt2,2), then, we define H = G1 ⊞e1,e2 G2 as the t-graph with vertices
and edges as in Definition 7 for graphs and transition function τH defined by:

τH(e
+
1 ) := τG2

(e+2 ),

τH(e
+
2 ) := τG1

(e+1 ),

τH(d) := τGi
(d) if d ∈ D+

Gi
− {e+i }, i = 1, 2.

Hence, H belongs to Gt2,2 because it is strongly connected and the degree
conditions at each vertex are satisfied.

(b) Similarly, for pairwise disjoint strongly connected maps M1 and M2, we
define a map N =M1⊞e1,e2 M2 with underlying graph H = Graph(M1)⊞e1,e2
Graph(M2) and rotation ρN defined as follows:

ρN(e
+
1 ) := ρM2

(e+2 ),

ρN(e
+
2 ) := ρM1

(e+1 ),

ρN(d) := e+1 if d ∈ DM2
− {e+2 } and ρM2

(d) = e+2 ,

ρN(d) := e+2 if d ∈ DM1
− {e+1 } and ρM1

(d) = e+1 ,

ρN(d) := ρMi
(d) if d ∈ DGi

, i = 1, 2 and the above cases do not
apply.

Then, H is strongly connected and N is a map. If furthermore M1 and M2

belong toM2,2 orMt
2,2, then N belongs to the same class.

For the maps of Figure 6, we have the equality P =M⊞b,cN . Figure 7 shows
the circular composition of four planar maps represented in the plane, with
distinguished edges drawn "on the outer face". Figure 8 shows the composition
G1⊞e1,e2 G2 of two planar maps G1 and G2 , represented similarly, but with e2
not on the outer face.
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Figure 8: Composition of planar maps

The equational properties of circular composition stated in Proposition 8 are
also valid for t-graphs and maps.

In Definitions 7 and 9, circular composition is a partial operation because of
the disjointness condition on the arguments. We will use it to decompose given
maps and graphs. That is, for given H, we will try to find graphs (or maps) G1
and G2 such that H = G1⊞e1,e2 G2. Hence, the disjointness condition does not
raise any difficulty.

3.2 Terms defining graphs and maps.

Definition 10: Atoms and terms.
An atom is a strongly connected graphG that cannot be expressed asG1⊞e,f

G2, equivalently, that has no two edges e and f such that G − {e, f} is not
connected. The latter condition means that G is 3-edge connected, hence that
any two vertices are linked by 3 edge-disjoint undirected paths (by a theorem
by Menger, cf. [Die] Theorem 3.3.6).

A t-atom (resp. an atomic map or t-map) is a t-graph (resp. a map or
t-map) that cannot be expressed as the circular composition of two t-graphs
or maps. If the context makes things clear, we will call them also atoms. (By
Proposition 13 below they are the t-graphs, maps or t-maps whose underlying
graphs are atoms.)

The graph Graph(M) = Graph(N) where M,N are at the left of Figure 6
and the graph of Figure 5 are atoms.

Let A be a set of pairwise disjoint graphs, t-graphs or maps included in
one of the classes of Definition 6. A term over A is a term t built with cicular
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composition and elements of A used as constants, each of them having at most
one occurrence in the term. It defines a graph, a t-graph or a map, depending
on the types of the elements of A. We denote this object by val(t): it is the value
of t. We also say that t defines val(t). We say that t uses A if each element of
A has one (and only one) occurrence in t.

Every strongly connected graph, t-graph or strongly connected map G is
defined by a term over atoms (of the corresponding type): if it is defined by a
term t using G1, ..., Gk such that Gi is not an atom, then Gi = H ⊞e,f K and
Gi can be replaced in t by H ⊞e,f K. Proposition 8 shows that different terms
(even over atoms) can have the same value. We will say that two such terms
are equivalent. For example, the following two terms define the graph shown in
Figure 9:

t = ⊞e1,e2,e3(G1, [(G2 ⊞h2,h7 G7)⊞f2,f4 (⊞g4,g5,g6(G4, G5, G6))], G3)

t′ = G7 ⊞h7,h2 [⊞e1,e2,e3(G1, G2, G3)⊞f2,f4 (⊞g4,g5,g6(G4, G5, G6))].

Theorem 11 ([CouAD], Theorem 17) : Every strongly connected graph G
is defined by a term over atoms. Any two terms defining it use the same set of
atoms.

The set of atoms arising in the second assertion is called the set of atoms
of G. We proved in [CouAD] that the different terms over atoms that define a
strongly connected graph G can be represented by a single (canonical) structure
called the atomic decomposition of G. It is a directed cactus, i.e., a loop-free
strongly connected graph whose 2-connected components are circuits. Each
vertex of this cactus is an atom of G (Figure 9 shows an example). In the
present article, we will only use terms over atoms and the unicity property of
the previous theorem.

Theorem 12 ([CouAD], Theorem 27) : There exists a linear-time algorithm
that constructs, for every strongly connected graph, a term over atoms that
defines it.

By the following proposition, these theorems extend to the classes of graphs,
t-graphs and maps of Definition 6.

Proposition 13 : (1) If G,H1,H2 are directed graphs such that G =
H1 ⊞e1,e2 H2, then G is strongly connected (resp. is in G2,2) if and only if H1

and H2 are strongly connected (resp. are in G2,2). Furthermore, if G,H1,H2

are strongly connected, then G is planar if and only if H1 and H2 are planar.
(2) If G is a t-graph such that Graph(G) = H1 ⊞e1,e2 H2 for some directed

graphs H1 and H2, then there are unique transition functions τ1, τ2 such that
G = G1⊞e1,e2 G2 and for each i, Gi = (Hi, τi) ∈ Gt2,2. Furthermore, G is planar
if and only if G1 and G2 are planar.
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(3) If M is a strongly connected map (resp. a map in M2,2 or a t-map)
such that Graph(M) = H1⊞e1,e2H2 for some directed graphs H1 and H2, then
there are unique rotations ρ1, ρ2 such that M = N1 ⊞e1,e2 N2 where, for each
i, Ni = (Hi, ρi) is a map (resp. is in M2,2 or in Mt

2,2). Furthermore, M is
planar and strongly connected if and only if N1 and N2 are planar and strongly
connected.

Proof : (1) Let G,H1,H2 be directed graphs such that G = H1 ⊞e1,e2 H2.
Every closed walk of G that goes through e1 must also go through e2. It follows
then that G is strongly connected if and only if H1 and H2 are so. The "local"
conditions on edges for membership in G2,2 are easy to check.

Let G,H1,H2 be strongly connected. If H1 and H2 are planar, then a plane
embedding of G can be built from plane embeddings of H1 and H2 (cf. Figures
7 and 8). Conversely, assume that G = H1 ⊞e1,e2 H2 is planar, with plane
embedding E. Let P be a path in G from x = α(e1) to y = β(e2) (y is a vertex
of H2) that goes through e1, some edges of H2 and finally e2. Then, E(P ) links
E(x) to E(y). We obtain in this way a plane embedding of H1. That H2 is
planar is proved similarly. (If we only assume that H1 ⊞e1,e2 H2 is planar and
H2 is connected, then H1 may not be planar.)

(2) Let G be a t-graph such that Graph(G) = H1⊞e1,e2 H2 for some H1,H2

in G2,2. The graphs Graph(G),H1 andH2 are strongly connected. The existence
of unique transition functions τ1, τ2 such that G = (H1, τ1)⊞e1,e2 (H2, τ2) and
(H1, τ1), (H2, τ2) ∈ Gt2,2 follows easily. From plane embeddings of (H1, τ2) and
(H2, τ2), one can build a plane embedding of G. The converse is proved as in
(1).

(3) LetM be a strongly connected map such that Graph(M) = H1⊞e1,e2H2

for some graphs H1,H2. These graphs must be strongly connected. The proof
goes as for (2). �

Theorem 14: Let C be any one of the classes PSC, G2,2,PG2,2, G
t
2,2, PG

t
2,2,

MSC, PMSC, M2,2, PM2,2, M
t
2,2 or PM

t
2,2. Every element of C is defined

by a term over atoms of C. Any two terms defining it use the same set of atoms.
There exists a linear-time algorithm that constructs, for every element of C, a
term over atoms that defines it.

Proof : The proof is the same for all cases. Let us do it for, say, C = PGt2,2.
Let G ∈ C. The graph H = Graph(G) is strongly connected, hence de-

fined by a term t using the atoms H1, ...,Hk. By means of an induction on
the structure of t, Proposition 13 entails the existence of unique transition
functions τ1, ..., τk such that (Hi, τi) ∈ C and G is defined by a term using
(H1, τ1), ..., (Hk, τk). Since H1, ...,Hk are atoms in SC, (H1, τ1), ..., (Hk, τk) are
atoms in C.

For proving the second assertion, consider a term s′ using the atomsG′1, ..., G
′

ℓ

in C that defines G. We get from it a term s using the atoms Graph(G′1), ...,
Graph(G′ℓ) in SC that definesH. Hence, k = ℓ and {H1, ...,Hk} = {Graph(G

′

1),
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Figure 9: The graph definied by term t.

Figure 10: Three atomic t-maps.

..., Graph(G′k)}. Since in Proposition 13(2) the transition functions τ1, τ2 are
uniquely defined, we have {(H1, τ1), ..., (Hk, τk)} = {G

′

1, ..., G
′

k}.
The algorithm of Theorem 12 can construct the atoms H1, ...,Hk of H. By

Definition 9, one can get the transition functions τ1, ..., τk in linear-time.�

Figure 5 shows an atomic planar t-map. Figure 6 shows an atomic planar
t-map M , and an atomic planar map N that is not a t-map. The first two
drawings of Figure 10 represent atoms that are planar considered as graphs,
t-graphs or maps. The third one shows an atom that is planar as a graph but
is not a planar t-graph or map.

We will need the following proposition of independent interest. A loop e of
G ∈ Gt2,2 has a transition to itself if τ(e+) = e−.
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Proposition 15: There is a linear-time algorithm that checks if a t-graph
is planar, and constructs if possible a plane embedding.

Proof : Let G ∈ Gt2,2. If Graph(G) has 1 or 2 vertices, we check if G is
planar by looking at its transition function.

Otherwise, we first eliminate the loops. Let G have a loop e at vertex u. If
e has a transition to itself, then G is not planar. Otherwise, we remove e, we
fuse the two remaining edges incident with u (hence, we also remove u) and we
repeat these removals until there is no more loop or we get a t-graph with 1 or
2 vertices. We obtain a t-graph G′ ∈ Gt2,2 that is planar if and only if G is. If
G′ has 1 or 2 vertices, we conclude by looking at the transition function.

Otherwise G′ has at least three vertices and no loop, and we construct a
graph H as follows:

(1) We subdivide each edge e into two edges by putting a new vertex xe in
its "middle".

(2) Let u be any vertex. For any two edges e and f 	= e incident with u such
that there is no transition at u between e and f , we add an edge between xe
and xf . We say that we make G′ rigid at u. We define H by making G′ rigid
at all its vertices.

It is clear thatH is planar if and only ifG′ is, and that every plane embedding
of H yields one of the t-graph G′ (that respects its transitions), from which we
get easily one of the given t-graph G.

The constructions of G′ from G and of H from G′ can be done in time
O(|VG|+ |EG|); the size of H defined as |VH |+ |EH | is also O(|VG|+ |EG|). The
classical linear-time planarity test applied to H gives the answer. This algorithm
constructs plane embeddings of H, G′ and G when they exist. �

4 Planar t-graphs and t-maps

In order to answer our initial questions about curves in the plane, we now focus
our attention on planar t-graphs and t-maps.

We first recall a basic fact. Let M be a map and G = Graph(M). If P is
an undirected path in G from x to y (cf. Section 2.1 for definitions) whose edge
sequence is (e1, ..., ek), if d is the dart of e1 such that γ(d) = x and d′ is that
of ek such that γ(d

′) = y, they we say d and d′ are the end darts of P .
LetM be planar, and let P1, P2, P3 be vertex-disjoint undirected paths from

x to y with respective end darts d1, d2, d3 that are incident with x and d′1, d
′

2, d
′

3

incident with y. If the circular order of d1, d2, d3 (around x) is (d1, d2, d3), then
that of d′1, d

′

2, d
′

3 around y is (d
′

3, d
′

2, d
′

1) (see [Cou00]). It follows that the circular
order of d1, d2, d3 determines that of d

′

1, d
′

2, d
′

3.

We recall from Definition 5 that two mapsM and N inMt
2,2 are t-equivalent

if and only if Grapht(M) = Grapht(N), and that they are equivalent if and only
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if M = N or M = N−1. Two equivalent maps are t-equivalent. For atoms, we
have the following converse.

Theorem 16 : If two maps M and N in PMt
2,2 are t-equivalent and

Graph(M) is an atom, then, they are equivalent. A planar t-atom has a unique
plane embedding.

As atoms are 3-edge connected, this result is similar to the fact that a 3-
connected planar graph has a unique plane embedding ([Die, MT]). In the fol-
lowing definition and proofs, we will consider undirected paths and walks in
directed graphs, that we will simply call paths and walks.

Definition 17 : Let G ∈ Gt2,2 and let P and Q be two edge-disjoint walks
from x to y 	= x. We say that they cross at a vertex u belonging to P and Q if
u 	= x, u 	= y and the two darts of the edges of P that are incident with u are
opposite (and so must be the two darts of the edges of Q that are incident with
u). If P and Q are vertex-disjoint (except for x and y), they do not cross (at
any vertex).

Similarly, we say that P crosses itself at u if it is of the form (..., e, u, e′,
..., f, u, f ′, ...) where the darts of e and e′ incident with u are opposite (and so
must be the darts of f and f ′ incident with u).

Lemma 18 : Let G ∈ Gt2,2 be atomic. Between any two distinct vertices,
there are three edge-disjoint paths that pairwise do not cross.

Proof : If G = 8 the assertion is trivially true. Otherwise, since G is
atomic, there are three edge-disjoint paths between any two distinct vertices
(cf. Definition 10). Let P,Q,R be a triple of edge-disjoint paths from x to y 	= x
and let p be the total number of vertices at which they cross. Let u be a vertex
at which P and Q cross. Since G is (2,2)-regular, u is not on R. Then P = P1P2
and Q = Q1Q2 such that the paths P1 and Q1 go from x to u, the paths P2
and Q2 go from u to y. Then, P1Q2 and Q1P2 are two walks from x to y.
They are still edge-disjoint (and also edge-disjoint with R). The total number
of self-crossings of P1Q2 and Q1P2 and of crossings between P1Q2, Q1P2 and
R is p − 1. If P1Q2 is not a path, we can shorten it into a path P ′ from x
to y by removing some closed subwalks. Similarly, we can shorten Q1P2 into a
path Q′ from x to y. We get a triple P ′, Q′, R of edge-disjoint paths from x to
y whose total number of crossings is at most p− 1 (because the shortenings of
P1Q2 and Q1P2 into P

′ and Q′ can only reduce the number of crossings). By
repeating this step, we get three edge-disjoint paths from x to y that pairwise
do not cross. �

Proof of Theorem 16 : Let M , N ∈ PMt
2,2 be t-equivalent such that

Graph(M) is an atom. If Graph(M) = 8, then the result is clear. Otherwise,
G = Graph(M) is loop-free (because if it has a loop, it has two edges e, f such
that G = H1 ⊞e,f H2 and is not an atom).

17



Let x ∈ VG. If the rotations ρM and ρN are not the same on the darts
incident with x, we have ρM = ρN−1 at x because Grapht(M) = Grapht(N)
and so, there are only two rotations around a vertex that yield (cf. Definition
5) a given transition function. We now replace N by N−1, and then ρM and
ρN are the same on the darts incident with x.

We now prove that for every vertex y 	= x, the rotations ρM and ρN are
the same on the darts incident with y. We first consider the case where x and
y are linked by three vertex-disjoint paths. Then, since the circular order of
the corresponding three end darts incident with x is the same in M and in
N , the same holds for the circular order of the three darts around y because
of the three vertex-disjoint paths. The position of the fourth dart incident
with y among the first three is determined by the transition. Since we have
Graph

t(M) = Graph
t(N), the rotations ρM and ρN are the same on the four

darts incident with y.
We now consider the general case, where x and y are linked by three edge-

disjoint paths P,Q,R that are not vertex-disjoint. By Lemma 18, we can assume
that they pairwise do not cross. Let W be the set of vertices different from x
and y that belong to two of these paths. We add vertices to subdivide each edge
of G that has an end in W and we also add edges between these new vertices,
so as to make G rigid at all vertices of W (this notion is defined in the proof
of Proposition 15). We obtain a graph H. Thanks to the newly added edges
and because P,Q,R do not cross pairwise, x and y are linked in H by three
vertex-disjoint paths P ′, Q′, R′ that avoid the vertices of W . We identify in a
obvious way the darts of G incident with x and y with the corresponding ones
in H.

Consider plane embeddings E and E ′ ofM and N that respect the transition
relations. By adding some line segments to E , one can make it into a plane
embedding E1 of H, and similarly, one can make E ′ into a plane embedding E ′1
of H. The circular orders of darts around x are the same inM and N , and thus
also in E1 and E

′

1. Since we have three vertex-disjoint paths P
′, Q′,R′ between

x and y, the corresponding circular orders of their end darts around y are the
same in E1 and E

′

1, hence in M and in N . As observed above, and since M and
N are t-equivalent, the rotations ρM and ρN are the same on the four darts
incident with y.

We obtain that M = N , which gives the result. (We recall that the initial
map N may have been replaced by N−1 at the beginning.) �

Our objective is now to describe all maps in PMt
2,2 that are t-equivalent to

a given map. For doing that we will use terms over atoms.

Lemma 19 : LetM,M ′, N,N ′, P, P ′ ∈ PMt
2,2 be such thatM ∼t M ′,M =

N⊞e,fP ,M ′ = N ′⊞e,fP ′, Graph(N) = Graph(N ′) andGraph(P ) = Graph(P ′).
Then N ∼t N ′ and P ∼t P ′.

Proof : The transition functions of Grapht(N) and Grapht(M) are related
as follows:
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τGrapht(N)(e
+) = τGrapht(M)(f

+),

τGrapht(N)(d) = τGrapht(M)(d) for every d ∈ D+
Grapht(N)

− {e+},

and similarly for M ′ and N ′. Since Grapht(M) = Grapht(M ′), we have
Grapht(N) = Grapht(N ′) and similarly, Grapht(P ) = Grapht(P ′). Hence N ∼t

N ′ and P ∼t P ′. �

Let t be a term over atomic maps. We will write terms by using atomic maps,
the operation ⊞ and also the symmetrization −1 that is well-defined on maps.
We define as follows a set ▽(t) of such terms:

▽(t) := {t, t−1} if t is an atomic map,

▽(t) := {s′ ⊞e,f s
′′ | s′ ∈ ▽(t′), s′′ ∈ ▽(t′′)} if t = t′ ⊞e,f t

′′.

Since for maps M and N we have (M ⊞e,f N)
−1 =M−1⊞e,f N

−1, we need
not add the terms (s′ ⊞e,f s

′′)−1 to ▽(t) in the second case. In other words, the
operation −1 can be used equivalently anywhere in a term or only on atoms.

Theorem 20 : Let M ∈ PMt
2,2 be defined by a term t over atomic t-maps.

The maps that are t-equivalent to M are those defined by the terms in ▽(t).

Proof: We use an induction on the structure of t. If t is an atom, the result
follows from Theorem 16.

Otherwise, t = t′ ⊞e,f t
′′. Lemma 19 shows that the t-maps that are t-

equivalent to M are those of the form N ⊞e,f P where N ∼t val(t′) and P ∼t

val(t′′). By induction, these maps N and P are those defined respectively by
the terms in ▽(t′) and in ▽(t′′). Hence, the t-maps t-equivalent to M are those
defined by the terms in ▽(t).�

Corollary 21 : Let M ∈ PMt
2,2 be defined by a term t using p atomic

maps. There are 2p−1 pairwise inequivalent maps in PMt
2,2 for the t-graph

Grapht(M). One can determine them from t.

Proof: We first observe that for allM andN in PMt
2,2, the t-mapsM⊞e,fN

and M ⊞e,f N
−1 are t-equivalent but not equal. To prove this, we let P =

M⊞e,fN and P ′ =M⊞e,fN
−1. Then, ρP (e

+) = ρN(f
+), ρP ′(e+) = ρN−1(f+)

and ρN−1(f+) 	= ρN(f+) because the head of f has degree 4 in N. Hence,
P 	= P ′. Furthermore, P ′−1 = (M⊞e,fN

−1)−1 =M−1⊞e,fN , hence P 	= P ′−1

by the same argument andM⊞e,f N andM⊞e,f N
−1 are not equivalent either.

It follows that two distinct terms t′ and t′′ in ▽(t) define different (but t-
equivalent) maps. The set ▽(t) contains 2p terms that define 2p maps. Each
of these maps Q is equivalent to a unique map Q−1 in the same set, and Q 	=
Q−1 because these maps are 4-regular. Hence, we obtain exactly 2p−1 pairwise
inequivalent maps. By fixing one atom of a term t and by replacing in all possible
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ways some of the other atomsM byM−1, we obtain 2p−1 terms that define the
2p−1 pairwise inequivalent maps in PMt

2,2 for the t-graph Graph
t(M). �

For an example, the multiword W = (abcd, bc, ad) is ambiguous (see the
introduction or the next section for the definition) since it is associated with the
two triples of curves of Figure 4. The t-graph tGra(W ) has two atoms, hence,
has two inequivalent planar maps, shown in Figure 4.

Remark : The maps M ⊞e,f N and M ⊞e,f N
−1 are not equivalent because

M and N are 4-regular. For comparison, we have P = P−1 if P is the (unique)
map of a path or a circuit. It follows that M ⊞e,f N =M ⊞e,f N

−1 if N is the
map of a circuit containing the edge f .

5 Curves in the plane

5.1 Oriented curves

5.1.1 Definitions and basic facts

We make precise some definitions sketched in the introduction.

Circular sequences
We denote by V ∗ the set of possibly empty sequences of elements of a finite

set V , also considered as words over V (whence the term "Gauss word"). The
empty sequence is denoted by ε. Two sequences u and v are conjugate, which
we denote by u ≡ v, if u = w1w2 and v = w2w1 for some w1, w2 ∈ V ∗. This
relation is an equivalence and its classes are the circular sequences of elements
of V . Their set is denoted by V ⊛ . We denote by Conj(u) the set of sequences
conjugate with u.

The reversal (or mirror image) of a sequence u is denoted by �u. Two se-
quences u and v are reversal-conjugate, which we denote by u ≍ v, if u ≡ v
or u ≡ �v. This is also an equivalence relation. Its equivalence classes are the
reversal-circular sequences over V and their set is denoted by V ⊚ .We will usu-
ally designate an element of V ⊛ or V ⊚ by some sequence of the corresponding
equivalence class.

A double occurrence multiword over V is a tuple of circular sequences over
V where each element of V has two occurrences (either two occurrences in one
sequence or one occurrence in two sequences).We denote by DOn(V ) the set
of such n-tuples. If X ⊆ V and W ∈ DOn(V ), we denote by W ↾ X the
multiword in DOn(X) obtained by removing from the sequences composing W
the elements not in X. If W,W ′ ∈ DOn(V ), we write W ≍ W ′ if, for each i,
the i-th component of W is ≍-equivalent to the i-th component of W ′.

Curves in the plane
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Let C be a closed oriented curve in the plane, with finitely many self-
intersections but no triple (or more complex) self-intersection. The term ori-
ented means that C is given with a traversal direction. We let V be the set of
self-intersection points, or more precisely, a set of letters naming these points.
By following the curve from some of these points according to its traversal di-
rection, we get a circular sequence w(C) of elements of V where each element of
V has two occurrences (hence, (w(C)) ∈ DO1(V )). If C has no self-intersection,
i.e., if it is homeomorphic to a circle, then, w(C) = ε. The sequence w(C)
is circular because the starting point is arbitrary. If C is not oriented, then
w(C) ∈ V ⊚ because the traversal direction is also arbitrary. Such sequences
are called Gauss words, and have been studied in many articles (e.g., [ChaWeb,
FOM, LRS, LM, Ros]).

Some sequences, for instance abab, are not Gauss words as one checks easily.
(But a curve yielding it can be drawn on the torus). The Gauss word abcabc
represents the curve of Figure 2. A square, i.e., a sequence of the form uu
(where u is a nonempty sequence) is a Gauss word if and only if u has odd
length.

We wish to characterize the cases where C can be reconstructed from w(C),
in a unique way up to homeomorphism. This is not always the case: Figure 1
shows two curves that do not correspond via any homeomorphism of the sphere
but have the same Gauss word aabb. We will characterize the Gauss words
which correspond to a unique curve, where as usual, unicity is understood up
to homeomorphism.

Tuples of curves and graphs.
We will consider more generally finite tuples of intersecting and self-intersec-

ting closed curves on the plane. With such an n-tuple of oriented curves
(C1, ..., Cn), we associate the n-tuple of circular sequencesW (C1, ..., Cn) = (w(C1),
..., w(Cn)) ∈ DOn(V ) where V is the set of intersection and self-intersection
points, or rather a set of names for these points. We call W (C1, ..., Cn) a Gauss
multiword. Examples are (ε, ε, ε), (abcd, bfde, aecf) and (abcd, abcd). The first
one corresponds to three disjoint circles, the second one corresponds to the three
curves of Figure 3 and the third one to two ellipses with 4 intersections. This
last example shows that a same sequence may occur twice in a multiword. The
2-tuple (a, a) represents two curves on the torus with a single intersection, but
does not represent two curves on the plane, this is a consequence of the following
proposition.

Proposition 22 : Each component of a Gauss multiword has even length.
The number of letters that occur in any two components of a Gauss multiword
is even.

Proof: It follows from the Jordan Curve Theorem (see [MT], Chapter 2)
that any two closed curves without self-intersections (they are homeomorphic to
circles) cross at an even number of points. Hence, the two assertions hold for the
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Gauss multiwords associated with curves without self-intersections. (They are
the Gauss multiwords such that each letter occurs in two different components.)

We now prove the general case by induction on the total number of self-
intersections of the curves C1, ..., Cn that define the considered multiword. We let
W =W (C1, ..., Cn) and, without loss of generality, we assume that C1 has a self-
intersection named a. Hence w(C1) ≡ auav. One can delete the self-intersection
a by replacing C1 by C′1 such that w(C

′

1) = u�v. The two assertions hold for W
if they hold for W (C′1, C2, ..., Cn). The result follows.�

t-graphs from multiwords.
We will mainly consider connected tuples of curves (C1, ..., Cn), i.e., tuples

whose union is a connected subset of the sphere (in which we define our "plane
embeddings"). If n > 1, each curve has intersections with other curves. Except
if the tuple consists of one circle, the union of C1, ..., Cn is a plane embedding E
of a (nonempty) t-graph G = G(C1, ..., Cn) ∈ PG

t
2,2 that we now define. We split

each curve Ci into a union of consecutive segments si,1, si,2, ..., si,ni whose ends
are the intersection and self-intersection points, and we let V be (in bijection
with) the set of ends of these segments. We define G as follows:

its vertex set VG is V ,

its edges are the pairs (i, j) such that 1 ≤ i ≤ n and 1 ≤ j ≤ ni,

vertG((i, j)) is the pair (v,w) such that the segment si,j links v to
w,

the transition is defined by : τG((i, j)
+) := (i, j + 1)− if 1 ≤ j < ni,

and τG((i, ni)+) := (i, 1)−.

A plane embedding E of G is defined by E((i, j)) := si,j . It is clear that
G is a planar t-graph (in particular because (C1, ...,Cn) is assumed connected)
and that E respects its transition (cf. Definition 6). This t-graph has n closed
straight walks ω1, ..., ωn: the edges of ωi are those of the form (i, j) and E(ω1),...,
E(ωn) are the curves C1, ..., Cn.

For the example of Figure 3 with trigonometric orientation of the curve, the
graph G(C1, C2, C3) has vertices {a, b, ..., f}, edges a→ b, b→ c, c→ d,..., b→ f ,
f → d,..., a→ e, e→ c,..., f → a and transitions (a→ b, b→ c), (b→ c, c→ d),
..., (b→ f, f → d), ... , (c→ f, f → a).

We have a bijection between the edges of G(C1, ..., Cn) and the segments
si,j of the curves C1, ...,Cn. Every other plane embedding E ′ of G(C1, ..., Cn)
yields a tuple of oriented curves (C′1, ..., C

′

n) (with C′i = E ′(ωi) ) such that
W (C′1, ..., C

′

n) =W (C1, ..., Cn).

We now show that the t-graphG(C1, ..., Cn) can be constructed fromW (C1, ...,
Cn).

Definition 23 :
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(a) A multiwordW ∈ DOn(V ) is connected if there is no bipartition (V1, V2)
of V (with V1, V2 possibly empty) such that some components of W are in V ∗1
and others in V ∗2 . This is equivalent to the property that the graph (V,RW ) is
connected where RW := {(a, b)/ wabw′ or bwa is a factor of some component of
W for some words w,w′}. (Hence (ε) is connected but (ε,w2, ..., wn) is not.)

If L ⊆ V ∗, u, v ∈ L, we say that u and v are connected via L if there
exist z1, ..., zp in L such that u = z1, v = zp and for each i, zi and zi+1 have
at least one letter in common. Then W is connected if and only if any two
distinct components are connected via its set of components. It is clear that
W (C1, ..., Cn) is connected if and only if (C1, ...,Cn) is connected.

(b) A multiword W = (w1, w2, ..., wn) ∈ DOn(V ) is prime if it is connected,
different from (ε) and there is no bipartition (V1, V2) of V (with V1, V2 nonempty)
and index i such that wi is conjugate to a word in V +1 V +2 and wj ∈ V +1 ∪ V +2
for every j 	= i. For example, (aa) and (abab) are prime whereas aabb is not.
The multiword (abcd, abcd) is prime whereas (abcd, ab, cd) is not. The prime
multiword (abcd, abef, cdfe) corresponds to the curves of Figure 3.

(c) The t-graph associated with a connected multiword.
LetW = (w1, w2, ..., wn) ∈ DOn(V ) where each wi is nonempty and written

vi,1..., vi,ni with vi,j ∈ V. We assume that each letter of V has occurrences in
W . We define a t-graph tGra(W ) as follows:

VtGra(W) := V ,
EtGra(W ) := {(i, j) | 1 ≤ j ≤ ni},
verttGra(W)((i, j)) := (vi,j , vi,j+1) if j < ni and verttGra(W)((i, ni)) :=

(vi,ni , vi,1),
τtGra(W )((i, j)

+) := (i, j + 1)− if j < ni and τtGra(W )((i, ni)
+) := (i, 1)−.

If W ′ = (w′1, ..., w
′

n) where w′i ≡ wi, then
tGra(W ′) is v-isomorphic to

tGra(W ): some edges (i, j) of tGra(W ) are just mapped to (i, j′). Here is
an example. For W = (ab, abcc), we have v1,1 = v2,1 = a, v1,2 = v2,1 = b,
v2,1 = v2,2 = c. Then tGra(W) is the t-graph G with vertices a, b, c, edges
(1, 1) : a → b, (1, 2) : b → a, (2, 1) : a → b, (2, 2) : b → c, (2, 3) : c → c and
(2, 4) : c → a. If W ′ = (ab, ccab), then tGra(W ′) is v-isomorphic to tGra(W )
by the bijection on edges that exchanges (2, 1) and (2, 3), and (2, 2) and (2, 4).

If W is not connected, tGra(W) is defined as above but may not be con-
nected. It is a (2,2)-regular graph with transitions. (It may still be connected if
W has empty components).

Lemma 24: A double occurrence multiword W is is prime if and only if
tGra(W ) is atomic and not empty.

Proof : Let W = (w1, w2, ..., wn) ∈ DOn(V ). We assume that it is not
prime because of a bipartition (V1, V2). Without loss of generality, we assume
that w1 = uv with u ∈ V +1 , v ∈ V +2 , w2, ..., wn ∈ V +1 ∪ V +2 . We let a be the
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first letter of u, b be its last letter, c be the first letter of v and d be its last
letter. We may have a = b, c = d and even u = a = b or v = c = d. (An
example is (ac, agg, chh) that is not a Gauss multiword). The only edges of
tGra(W ) between V1 and V2 are e : b → c and f : d → a. It follows that
Graph(tGra(W )) = H ⊞e,f K for some graphs H with vertex set V1 and K
with vertex set V2. Hence,

tGra(W ) is not prime.
For the converse, we assume that G = Graph(tGra(W )) = H ⊞e,f K for

some graphs H and K. Every closed walk of G that goes through e must go
through f . The t-graph tGra(W ) is covered by a union of pairwise edge-disjoint
closed straight walk. One of them contains e and f and can be written ePfQ
where P and Q are paths, respectively inK and in H. The other closed straight
walks are either in H or in K. It follows that the bipartition (VH , VK) of VG
shows that W is not prime. �

Proposition 25:
(1) If (C1, ..., Cn) is a connected n-tuple of curves, then

tGra(W (C1, ..., Cn)) is
v-isomorphic to G(C1, ..., Cn), in such a way that the i-th closed straight walk of
tGra(W (C1, ..., Cn)) is transformed into the i-th closed straight walk ofG(C1, ...,
Cn).

(2) Let W ∈ DOn(V ) be connected. It is a Gauss multiword if and only if
the t-graph tGra(W ) is planar.

Proof: (1) We let W (C1, ..., Cn) = (w1, ..., wn), with each sequence wi non-
empty and written (vi,1, ..., vi,ni).We first assume that each segment si,j of Ci
links vi,j to vi,j+1 (and si,ni links vi,ni to vi,1). Then,

tGra(W (C1, ..., Cn)) =
G(C1, ..., Cn). Otherwise, a segment si,j of Ci may link vi,j′ to vi,j′+1 and then,
tGra(W (C1, ..., Cn)) and G(C1, ..., Cn) are v-isomorphic.

(2) Consider a plane embedding of the t-graph tGra(W ). Its closed straight
walks define curves C1, ..., Cn such that W = W (C1, ..., Cn). Conversely, if W is
a Gauss multiword defined as W (C1, ...,Cn), then C1, ..., Cn form a plane embed-
ding of tGra(W ).�

The second assertion of this proposition yields a natural characterization of
the Gauss multiwords and a linear-time recognition algorithm based on that of
Proposition 15.

Corollary 26: Let W ∈ DOn(V ) be a connected Gauss multiword.
(1) The tuples of curves (C1, ...,Cn) such thatW (C1, ..., Cn) =W are obtained

from the plane embeddings E of the t-graph tGra(W ) by defining Ci = E(ωi)
where ωi is the closed straight walk of

tGra(W ) consisting of the edges (i, j).
(2) Two such tuples are homeomorphic if and only the corresponding em-

beddings of tGra(W ) are homeomorphic.

Proof: (1) Clear from the previous constructions.
(2) If E and E ′ are two homeomorphic embeddings of tGra(W ), the corre-

sponding tuples of curves are homeomorphic.
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The converse may look evident, but a careful proof is necessary. Assume that
ϕ : S → S is a homeomorphism of the sphere S to itself that maps (C1, ..., Cn)
defined from E to (C′1, ..., C

′

n) defined from E ′. Since the intersection points are
designated by the elements of V , we have ϕ(E(v)) = E ′(v) for each v ∈ V .
Furthermore, ϕ(E(ωi)) = E

′(ωi) for each i. Hence, for each edge (i, j) we have:
ϕ(E((i, j))) = E ′((i, j′)) where j′ may be different from j.

Let us examine this case: the edges (i, j) and (i, j′) have same tail and head.
Since E and E ′ preserve the transitions of tGra(W ) and ϕ maps E(ωi) to
E ′(ωi), we also have ϕ(E((i, j + 1))) = E ′((i, j′ + 1)) and thus (i, j + 1) and
(i, j′ + 1) have also same tail and head. Since every v ∈ V has at most two
occurrences in each walk ωi, this means that the tails of (i, j) and (i, j

′) are the
two occurrences (in W ) of some v, and the same is true for their heads, and for
those of (i, j + 1) and (i, j′ + 1). Hence, since W is connected, we have n = 1
and W = (ww) for some sequence w, hence is a square.

Hence, if W is not a square, ϕ(E((i, j))) = E ′((i, j′)) implies j′ = j, and E
and E ′ are homeomorphic embeddings of tGra(W ). If W is a square, then
tGra(W ) is a planar t-atom (cf. Figure 2) and has a unique plane embedding
up to homeomorphism by Theorem 16. So the result holds in both cases. �

The proof of Assertion (2) shows that, unless W is a square, there is a
unique v-automorphism of tGra(W ) that preserves each closed straight walk. If
W is a square there are two such v-automorphisms. Note for comparison that
if W = (w,w), then there is a v-automorphism of tGra(W ) that exchanges the
two closed straight walks.

5.1.2 Unambiguous Gauss multiwords

We say that a Gauss multiword W is unambiguous if any two systems of curves
that define it are homeomorphic. It is thus unambiguous if and only if tGra(W )
has a unique embedding (by Corollary 26), hence if and only if it is an atom by
Corollary 21. We now characterize this property in terms of W .

Theorem 27 : A connected Gauss multiwordW is unambiguous if and only
if it is prime. If it is ambiguous, all tuples (C1, ..., Cn) such that W (C1, ..., Cn) =
W can be determined from the planar maps of the t-graph tGra(W ) by means
of any term over t-atoms that defines it.

Proof : A connected Gauss multiword W that is unambigous if and only if
tGra(W ) is atomic by Corollary 21 and tGra(W ) is atomic if and only if W is
prime by Lemma 24.

If a connected Gauss multiwordW is ambiguous, the tuples of curves (C1, ..., Cn)
such that W (C1, ..., Cn) = W are in bijection with the planar maps of the t-
graph tGra(W ) by Corollary 26. Theorem 20 and Corollary 21 show that these
maps can be determined from any term over t-atoms that defines this t-graph.�
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If in a Gauss multiword W = W (C1, ..., Cn) defined by (w1, ..., wn) ∈ (V ∗)n

we replace some wi by�wi, then we obtain the Gauss multiwordW
′ correspond-

ing to the same tuple of curves where the orientation of Ci is reversed. Hence,
the ambiguity of W does not depend on the orientations of the curves it rep-
resents. Furthermore, there is a bijective correspondence between the tuples of
curves corresponding to W and to W ′.

5.1.3 Small components of multiwords.

We now consider tuples of curves such that at least one curve has exactly two
intersection points with the others. The associated multiwords have several com-
ponents and at least one of them has length 2. By "reducing" these multiwords,
we will be able to extend Theorem 27 to tuples of nonoriented curves.

Definition 28 : Small components and reduction.
(1) LetW = (w1, ..., wn) be a Gauss multiword. A component wi ofW of the

form ab with a 	= b is a small component. Some other component wj must contain
a and b. We define W ′ from W by removing wi and the letters a and b from
wj ; it is a Gauss multiword because, if W is associated with a tuple of curves
(C1, ..., Cn), thenW ′ is associated with the (n−1)-tuple obtained from (C1, ..., Cn)
by removing Ci. We write this W → W ′ and we call this transformation a
reduction step. It is clear that W is connected if and only if W ′ is. (Since (ε) is
defined as connected, this is true for W = (ab, ab)).

(2) A Gauss multiword W is reducible if it has small components; if further-
more it is connected, either it is of the form (ab, ab) or it can be written without
loss of generality (by reordering its components if necessary):

W = (a1b1, a2b2, ..., apbp, w1, ..., wm)

where a1, b1, ..., ap, bp, are pairwise distinct and each component w1, ..., wm
has length at least 4. Each pair ai, bi occurs in one of the components w1, ..., wm.
We let X = {a1, b1, a2, b2, ..., ap, bp} and we define Red(W ) as (w′1, ..., w

′

m)
where w′i := wi ↾ (V − X) (cf. Section 5.1.1 for notation). Clearly, W →∗

Red(W ). However, Red(W ) may have small components that we do not remove.
For an example Red((ab, cd, abef, cdef)) = (ef, ef).

Reduction viewed in terms of graphs.

Our objective is to show that if W is a connected Gauss multiword that
reduces into W ′ by the removal of a small component ab, then there exists a
planar t-atom D with vertices a and b such that (up to technical details):

tGra(W ′) = H ⊞K and tGra(W ) = H ⊞D ⊞K
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for some unique t-graphs H and K that can be defined from W . (H and/or
K may be empty).

Before starting the description of H and K, we define D4(x, y; e, f, g, h) as
the planar t-atom with vertices x and y, edges e, h : x → y and f, g : y → x
and transitions (e, g), (g, e), (f, h) and (h, f) (that yield the two closed straight
walks (e, g) and (f, h)). Figure 11 (right part) shows D4(a, b; g, f

′, g′, e′).
Let W ∈ DOn(V ) be a connected Gauss multiword defined as W (C1, ..., Cn)

where C1 has two intersections, a and b, with one of the other curves. Without
loss of generality (by reordering the tuple and taking a conjugate of w2), we can
assume thatW = (ab, aw′2bw

′′

2 , w3, ..., wn).We haveW →W ′ = (w′2w
′′

2 , w3, ..., wn).
We first assume that w′2 and w

′′

2 are not empty. The curve C1 separates the
sphere into two connected open sets F1 and F2. (Our plane embeddings are in
the sphere). Let F1 be the one that contains the intersections represented by the
letters of w′2. Let V1 and V2 be the set of letters of the components wi, 3 ≤ i ≤ n,
that are connected, respectively, to w′2 and to w

′′

2 via the components ofW . The
curves whose words are connected to w′2 (resp. to w

′′

2 ) are in F1 (resp. in F2),
hence, (V1, V2) is a bipartition of V − {a, b}. (If W is not a Gauss multiword,
then V1 and V2 may not be disjoint : take for instance W = (ab, acbd, cdee)).

We can reorder the components of W so that w′2, w3, ..., wp ∈ V ∗1 and
w′′2 , wp+1, ..., wn ∈ V ∗2 . Note thatW1 = (w′2, w3, ..., wp) andW2 = (w′′2 , wp+1, ..., wn)
are connected Gauss multiwords, respectivelyW (C2, C3, ...,Cp) andW (C2, Cp+1, ..., Cn).

We let G := tGra(W ), G′ := tGra(W ′) and Gi :=
tGra(Wi) fori = 1, 2.

We will denote in the same way the associated underlying graphs. In order to
relate precisely G1 and G2 to G, we let c and c′ be respectively the first and
last letter of w′2, and d and d′ be similarly the first and last element of w′′2 . In
G, we have the following edges that we name e, e′, f, f ′, g and g′ :

e : c′ → b, e′ : a→ c, f : d′ → a , f ′ : b→ d, g : a→ b and g′ : b→ a,

cf. the left part of Figure 11.
Then G1 is G[V1] augmented with an edge : c

′ → c that we name e, and,
similarly, G2 is G[V2] augmented with f : d′ → d. The transitions making
them into t-graphs are as follows: τG1

(e+) := τG(e′+) and τG2
(f+) := τG(f ′+);

otherwise, τG1
(x) and τG2

(x) are τG(x). It is then clear that

G′ = G1 ⊞e,f G2.and G = G1 ⊞e,e′ D4(a, b; g, f ′, g′, e′)⊞f ′,f G2.

If w′2 	= ε and w′′2 = ε, then V1 	= ∅, V2 = ∅ and G2 is undefined. In
G := tGra(W ), we have the following edges:

e : c′ → b, e′ : a→ c, f ′ : b→ a, g : a→ b and g′ : b→ a,

with transitions(e, f ′), (f ′, e′), (g, g′) and (g′, g).

Here, W ′ = (w′2, w3, ..., wn). and we have :

G := tGra(W ′)⊞e,e′ D4(a, b; g, f
′, g′, e′).
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Figure 11: Assertion (1) of Proposition 29

If w′2 = w′′2 = ε, then V1 = V2 = ∅, W = (ab, ab),W ′ = (ε) and:

tGra(W ) = D4(a, b; g, f
′, g′, e′)

for an appropriate naming of the edges.

These constructions establish the following:
Proposition 29 : Let W = (ab, aw′2bw

′′

2 , w3, ..., wn) be a connected Gauss
multiword with a small component ab that reduces to W ′ = (w′2w

′′

2 , w3, ..., wn).

(1) If w′2, w
′′

2 	= ε, then tGra(W ′) = G1 ⊞e,f G2 and G = G1 ⊞e,e′
D4(a, b; g, f ′, g′, e′)⊞f ′,f G2,

(2) if w′2 	= ε andw′′2 = ε, then tGra(W ′) = tGra(W ′)⊞e,e′D4(a, b; g, f
′, g′, e′),

(3) if w′2 = w′′2 = ε, then tGra(W ) =D4(a, b; g, f
′, g′, e′),

where G1, G2, e′, e′ etc. are as in the construction.�

Remarks 30: (1) The order in which the edges occur inD4(a, b; g, f
′, g′, e′)

in Proposition 29 is important. Figure 12 shows for comparison the graph

H = G1 ⊞e,e′ D4(a, b; g, g
′, f ′, e′)⊞f ′,f G2.

The corresponding Gauss multiword is W = (baw′2, abw
′′

2 , w3, ..., wn).
(2) Proposition 29 and the unicity assertion of Theorem 14 show that tGra(W ′)

has exactly one atom less than tGra(W ) : this atom is D4(a, b; g, f
′, g′, e′).

Construction of curves.
A face of a plane embedding E of a graph G is a connected component of

S − E . It is an open set and its (topological) border is the union of some line
segments representing edges of G.
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Figure 12: The graph H of Remark 30(1).

Lemma 31: A plane embedding of a graph G = H ⊞e,f K ∈ SC has two
faces whose borders contain the line segments representing e and f .

Proof: Let E be a plane embedding of G = H ⊞e,f K ∈ SC. The graphs
H − e and K − f are connected, disjoint and G− {e, f} = (H − e) ∪ (K − f).
The restriction of E to G− {e, f}, denoted by E ↾ (G − {e, f}) is the union of
E ↾ (H − e) and E ↾ (K − f). Then, E ↾ (H − e) is included in a face FK of
E ↾ (K − f) whose border we denote by B. Similarly, E ↾ (K − f) is included in
a face FH of E ↾ (H − e) whose border we denote by B′. Then E ↾ (G−{e, f})
has a face F = FH ∩FK whose border is B∪B′. Since E(e) ∩F 	= ∅ and E(f)
∩F 	= ∅, each of e and f has one end vertex in B and the other in B′ (otherwise
E is not plane). It follows that E(e) and E(f) divide F into two faces of E
whose borders contain both of them.�

Proposition 32 : Let W be a connected Gauss multiword that reduces to
W ′ by deletion of one small component, and S ′ be a tuple of oriented curves
such that W ′ =W (S′).

(1) If W ′ = (ε), there is a unique way, up to homeomorphism, to extend S ′

into a pair S such that W (S) =W.
(2) IfW ′ 	= (ε), there are exactly two ways, up to homeomorphism, to extend

S′ into a tuple S such that W (S) =W.

Proof : (1) In this case, W = (ab, ab), S ′ is one circle (without self-intersec-
tion), and there is a unique way to extend S ′ into S such that W (S) = (ab, ab)
because tGra(W ) is a t-atom.

(2) Assume first that tGra(W ′) = G1 ⊞e,f G2 (cf. Proposition 29(1)).and
consider its embedding E ′ defined by S ′. One of its curves contains E ′(e) and
E ′(f). Note that the edges e and f are the unique ones in tGra(W ′) that link
respectively V1 to V2 (i.e., a vertex of V1 to a vertex of V2) and V2 to V1 (so
that E ′(e) and E ′(f) are defined in a unique way as segments of a line). The
curve to be added to S ′ must cross these two segments and no other one. By
Lemma 31, E ′ has two faces F and F ′ whose borders contain these segments.
Let us subdivide these segments by adding two points xe and xf representing
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the two vertices of tGra(W ) not in tGra(W ′). The t-graph tGra(W ) has edges
g: xf → xe and g′: xe → xf with transitions (g, g

′) and (g′, g). We make E ′

into a plane embedding E of tGra(W ) by adding line segments in exactly two
possible ways (up to homeomorphism): we can draw g in F and g′ in F ′ or vice
versa. Figure 11 shows one possibilty. The other one is obtained by exchanging
g and g′.

If now that V2 = ∅ thenG = tGra(W ′)⊞e,e′D4(a, b; g, f
′, g′, e′) (Proposition

29(2)). Consider the embedding E ′ of tGra(W ′) defined by S ′. The edge e of
tGra(W ′) links c to c′ that are respectively the first and last element of w′2, cf.
Lemma 31. If W ′ is not a square, there is a unique segment of some line that is
E ′(e), see Corollary 26(2). The new line must intersect it twice, at a and b, in
the order c, b, a, c′. Again there are exactly two ways, up to homeomorphism to
define it. If W ′ is a square (ww), there are two line segments representing edges
from c to c′. This seems to yield four ways to extend S′ into S, but actually we
get only two, up to homeomorphism, because these two segments correspond to
two edges related by a v-automorphism of tGra(W ′). �

Anticipating on the sequel, we observe that in Case (2), there are two ways
to extend S′ into S because the curves are oriented. If we consider nonoriented
curves, we get a unique extension, up to homeomorphism.

5.2 Curves without orientation

We now consider curves C1, ..., Cn having no particular orientation. The com-
ponents of W (C1, ..., Cn) are thus reversal-circular: we need not distinguish a
sequence from its reversal. For the three nonoriented curves of Figure 3, we
get W (C1, C2, C3) defined by (abcd, aecf, bfde) as well as by (abcd, fcea, bfde)
or (cdab, afce, debf).

Consider again the oriented curves of Figure 4. The corresponding multi-
word W = (abcd, bc, ad) is ambiguous as already observed. However, if we omit
the orientations, the two triples of curves are homeomorphic and W is not am-
biguous for describing nonoriented curves. The difference between the oriented
and nonoriented cases is due to the presence of curves with two intersections
because reversing the orientation of such a curve that has two crossings with the
others changes the corresponding map in PMt

2,2 but not its undirected version.

If the curves of a tuple (C1, ..., Cn) are not oriented, we define G(C1, ..., Cn)
as Und(G(C′1, ..., C

′

n)) where C
′

i is an orientation of Ci.

Let (C1, ..., Cn) and (C
′

1, ..., C
′

n) be two tuples of oriented curves such that
W (C1, ..., Cn) ≍ W (C′1, ..., C

′

n). (The equivalence ≍ combines conjugacy and
reversal.) If they are homeomorphic, then, the tuples of corresponding nonori-
ented curves are also homeomorphic. Hence if W (C1, ..., Cn) =W is ambiguous
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for nonoriented curves, it is also for oriented ones. The converse is not always
true. However, it is for a multiword W provided the nonoriented curves of any
tuple that yields it can be equipped with an orientation depending only on W .
This fact motivates the following definition.

Definition 33 : Orientable components of multiwords.

(1) A reversal-circular sequence in V ⊚ is orientable if it is defined by w ∈ V ∗

such that Conj(w) 	= Conj( �w) (Conj(w) is the set of conjugate words of w, cf.
Section 5.1.1). It is easy to see that, if this condition is true for w, then it is
also true for every sequence ≍-equivalent to w. A palindrome is a sequence w
such that w = �w. A sequence ≍-equivalent to a palindrome is not orientable.
Neither is ab, where a, b ∈ V .

(2) Let ≤ be an arbitrary but fixed linear order on V . From it we get a
lexicographic linear order on the set of finite subsets of V ∗, that we also denote
by ≤. For every orientable w ∈ V ∗, we define:

(2.1) µ(w) = w if Conj(w) < Conj( �w), and

(2.2) µ(w) = �w if Conj( �w) < Conj(w).

If all components of W = (w1, ..., wn) ∈ (V
∗)n are orientable, we define:

µ(W ) = (µ(w1), ..., µ(wn)).

Lemma 34 : A component of a Gauss multiword is orientable except if it
is (conjugate to) a palindrome or has length 2.

Proof: In the following proof, a, b, c denote elements of V and u, v, w,w1
etc. denote elements of V ∗.

Fact: A Gauss multiword has no component of the form aub�u or aua�u with
u 	= ε. (Otherwise, by constructing the closed straight walk associated with
aub�u or aua�u we get a contradiction with planarity).�

Let w be a component of a Gauss multiword such that Conj(w) = Conj( �w).
We prove that it is of the form ab, with a 	= b or is conjugate to a palindrome.
We distinguish several cases. Recall that w can be replaced by any conjugate
sequence, and that its length is even.

Case 1 : w has at least two different letters a, b that have only one oc-
currence. Then w = aubv and w ∈ Conj( �w) = Conj(�vb�ua). We must have
w = a�vb�u, hence v = �u. But this contradicts the initially observed fact, except
if u = v = ε, which gives w = ab.

In the next two cases, all letters in w have two occurrences in this word.
Case 2 : w = uv where u and v are sequences over two disjoint nonempty al-

phabets (or w is conjugate to such a sequence). Then w ∈ Conj( �w) = Conj(�v�u)
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implies w = �u�v, hence u = �u and v = �v are two palindromes. If they have both
even length, then w = u1�u1v1 �v1. It is conjugate to the palindrome �u1v1 �v1u1.
If they have odd length, then w = u1a�u1v1b �v1. But a and b belong to disjoint
alphabets, hence, they cannot have two occurrences. This case cannot happen.

The first letter of w differs from the last one. The only remaining possibilities
are:

Case 3 : w = auavbxb and w = aubvaxb.
In the first case, we have w ∈ Conj(b�xb�va�ua). We must have auavbxb =

a�uab�xb�v, hence, v = ε and u and x are palindromes. If u and x have even
length, then w is conjugate to a palindrome (cf. Case 2). If they have odd
length, we have w = au1c�u1abx1c�x1b, hence w is conjugate to c�u1abx1c�x1bau1
which contradicts the initial fact.

Very similar arguments using the initial fact eliminate the case where w =
aubvaxb. �

If (C1, ..., Cn) is an n-tuple of oriented curves, we denote by NO(C1, ..., Cn)
the tuple of nonoriented curves obtained by forgetting the orientations.

Proposition 35 : LetW be a connected Gauss multiword that is orientable
or has a single component.

(1) W is unambiguous if and only if it is for describing nonoriented curves.
(2) If W is ambiguous, there is a bijection that preserves homeomorphisms

between the n-tuples of oriented and of nonoriented curves described by W .
Both sets of n-tuples can be described from any term over atoms that defines
tGra(W ).

Proof: We first assume that W = (w1, ..., wn) is orientable.
Claim: There exists a bijection ν between the n-tuples (C1, ..., Cn) of nonori-

ented curves described by W and the n-tuples of oriented ones described by
µ(W ) such that (C1, ..., Cn) = NO(ν(C1, ..., Cn)). Furthermore, if (D1, ...,Dn) is
homeomorphic to (C1, ..., Cn), then ν(D1, ...,Dn) is homeomorphic to ν(C1, ..., Cn)
by the same homeomorphism of the sphere to itself.

Proof of the claim: Let W and (C1, ..., Cn) be as stated. Then (C1, ..., Cn) =
NO(C′′1 , ..., C

′′

n) where C
′′

1 , ..., C
′′

n are oriented curves such thatW =W (C′′1 , ..., C
′′

n).
Let I be the set of indices i such that µ(wi) =�wi (i.e., Case (2.2) of Definition
33 applies). Then we define ν(C1, ..., Cn) as the n-tuple (C

′′

1 , ..., C
′′

n) except that
we reverse the orientation of C′′i whenever i ∈ I.

It is then clear that NO(ν(C1, ..., Cn)) = (C1, ...,Cn). The mapping ν is a
bijection because the orientations of the curves in ν(C1, ..., Cn) are determined
from W . The last assertion is also clear.�

This claim and the remark after Theorem 27 show that there is a bijection
between the homeomorphism classes of the n-tuples of nonoriented and of ori-
ented curves described byW, which proves (1) and (2) for orientable multiwords.
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It remains to consider the case where n = 1 and W is not orientable. By
Lemma 34, this means that W = (w) and w is a palindrome.

Let M be a planar map of tGra(W ). The map M ′ obtained from M by
reversing all edge directions is a planar map of tGra(( �w)) that is v-isomorphic to
M−1. Hence, up to homeomorphism, the same oriented and nonoriented curves
are described by w and by �w which proves (1) and (2). Note that tGra(W ) is
prime, hence that w is unambiguous if and only if w = aa. �

With the hypotheses of this proposition, if p is the number of atoms of
the t-graph tGra(W ), then the number of pairwise nonhomeomorphic tuples
of oriented (resp. nonoriented) curves described by W is 2p−1 by Corollary 21.
Another consequence of this proposition is that a Gauss word (representing a
single curve) is unambiguous for describing nonoriented curves if and only if it
is prime. This fact is proved in a completely different way in [ChaWeb].

We now use the reduction of Definition 28 to handle the general case.

Lemma 36 : LetW be a connected Gauss multiwordW that is not a palin-
drome. There is a bijection θ between the homeomorphism classes of the tuples
of nonoriented curves described byW and those of oriented curves described by
Red(W ).

Proof : LetW be orientable and defined byW = (a1b1, a2b2, ..., apbp, w1, ...,
wm) ∈ (V

∗)n as in Definition 28. The sequences µ(w1), ..., µ(wm) are defined
because w1, ..., wm have length at least 4 and are not palindromes. We let
w′i := µ(wi) ↾ (V − {a1, ..., ap, b1, ..., bp}. Hence, Red(W ) ≍ (w′1, ..., w

′

m).
For every n-tuple of nonoriented curves (C1, ..., Cn) such thatW (C1, ..., Cn) ≍

W , we let (C′1, ..., C
′

n) be an n-tuple of oriented curves such that NO(C′1, ..., C
′

n) =
(C1, ..., Cn) and w(C′i) = µ(wi−p) for each i = p + 1, ..., n. Hence, the curves
C′p+1, ..., C

′

n have a canonical orientation based on the orientability of their
associated sequences. For the curves C′1, ..., C

′

p, we take any orientation. It
is then clear that W(C′p+1, ..., C

′

n) = (w′1, ..., w
′

m). We define θ(C1, ...,Cn) as
(C′p+1, ..., C

′

n).
Every m-tuple of oriented curves (E1, ..., Em) such that W (E1, ...,Em) =

(w′1, ..., w
′

m) is θ(C1, ..., Cn) for some C1, ..., Cn such that W (C1, ..., Cn) ≍W .
Let (D1, ...,Dn) be an n-tuple of nonoriented curves such thatW (D1, ...,Dn) ≍

W . If it is homeomorphic to (C1, ..., Cn), then θ(D1, ...,Dn) is homeomor-
phic to θ(C1, ..., Cn). This is so because the n-tuple (D

′

1, ...,D
′

n) associated with
(D1, ...,Dn) as (C′1, ...,C

′

n) is with (C1, ..., Cn) is homeomorphic to (C′1, ..., C
′

n) up
to the orientations of the curves D′1, ...,D

′

p that have two intersections with the
others.

Note that NO(θ(C1, ..., Cn)) = (Cp+1, ..., Cn). Proposition 32 shows that, up
to homeomorphism, there is a unique way to extend this (n−p)-tuple by nonori-
ented curves C1, ..., Cp in such a way that W (C1, ..., Cn) ≍ W . This observation
shows that if θ(D1, ...,Dn) is homeomorphic to θ(C1, ..., Cn), then (D1, ...,Dn) is
homeomorphic to (C1, ..., Cn). �
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Figure 13: An 11-tuple of nonoriented curves.

Figure 13 shows an 11-tuple of nonoriented curves. The small components of
the associated multiwordW correspond to curves 1 to 6. The reduced multiword
Red(W ) has small components corresponding to curves 7 and 9.

Algorithm 37 : Analysis of a double occurrence multiword.

Let be given a double occurrence multiword W intended to describe nonori-
ented curves.

1. We first check if it is connected. If it is not, we treat separately each of
its connected submultiwords.

2. We construct the t-graph tGra(W ) and we check its planarity.
3. If it is planar, then W is a connected Gauss multiword, and we reduce it

into W ′ = Red(W ) (cf. Definition 28) by keeping track of the reduction steps.
4. We construct the (planar) t-graph tGra(W ′) and a term t over atoms that

defines tGra(W ′) (we use Theorem 14). Let p be the number of atoms used by
t.

5. By using Proposition 15, we determine a planar t-map for each t-atom
occurring in t.

6. By using Corollary 21, we compute the 2p−1 (terms defining the) planar
t-maps that represent the different plane embeddings of tGra(W ′), hence, the
different tuples of curves that yield W ′.

7. Since we have recorded the sequence of reductions done at Step 3, and
by using this sequence backwards, we can compute the 2p−1 planar t-maps of
tGra(W ), hence, the different tuples of curves (extending those we have by step
6) described by W .
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6 Some open questions

Knots and knot diagrams
The reader will find the definitions and basic facts in the books [Ada], [Bol]

and [GodRoy]. Let us consider oriented links and knots. A (connected) link
diagram is nothing but a map in Mt

2,2 whose vertices are labelled by over or
under, to indicate the type of crossing. A knot diagram is such a map that
has a unique straight walk. We let k map a diagram to the corresponding link
or knot. Knots can be composed by a binary (multivalued) operation denoted
in [Ada] by # such that for every two knot diagrams D and D′, every edge e
of D and every edge f of D′, we have k(D ⊞e,f D

′) = k(D)#k(D′). It follows
that the diagrams of prime knots are atoms. We leave as a research topic to
investigate the relationships between the unique factorization of a knot and the
atomic decompositions of its diagrams.

Planar t-graphs.
A t-graph G contains more information than the underlying graph Graph(G)

and less information than a mapM inMt
2,2 such that Graph

t(M) = G. Planar
graphs and planar maps are characterized by finitely many forbidden minors
([Die, MT] for graphs, [Cou00, CouDus] for maps). Our question is:

Are planar t-graphs characterized by finitely many forbidden sub-
structures of some kind?

We have given a natural characterization of Gauss multiwords (Proposition
25(2)), hence, of Gauss words. However, there exist other characterizations of
Gauss words: the one of [LM] uses a notion of forbidden structure on words and
the one of [Ros, FOM] uses the interlacement graph associated with a double
occurrence word.

Can these characterizations be extended to Gauss multiwords?

Many extensions remain to be investigated. First, intersections of curves
on other surfaces than the plane (see [LRS]). Our characterization of Gauss
multiwords in terms of the planarity of an associated t-graph extends easily to
other surfaces. Since the embeddability of a graph in an arbitrary given surface
can be checked in linear time by an algorithm that produces embeddings ([Moh]),
the algorithm of Proposition 15 can be turned into a linear-time algorithm for
checking if a double occurrence multiword is associated with curves in a given
surface.

Can one extend to other surfaces the characterization (resulting from
Corollary 21 and its consequences) of all tuples of curves in a given
surface that correspond to a given double occurrence multiword ?

35



Some other questions:

Can the results of this article be generalized to the description of
curves with multiple intersections?

Gauss multiwords are defined from curves that cross, themselves or pairwise.
One could also consider curves that have touching points i.e., that can share a
vertex without crossing at it. This notion is used in [FOM]. Special labels in
double occurrence multiwords could encode touching points.

What are the associated multiwords and when are they unambiguous?
What are the tuples of curves with crossing and touching points as-
sociated with a given multiword ?

Acknowledgement: I thank E. Gioan and the late M. Las Vergnas for
many helpful comments.
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Appendix : Review of some definitions.

Isomorphisms
Isomorphism of graphs : notation G ∼= H, Section 2.1.1, p. 6
v-isomorphism of graphs (identity on vertices) : Section 2.1.1, p. 6.
Automorphisms and v-automorphisms : Section 2.1.1., p. 6
v_isomorphisms of t-graphs : Definition 2, Section 2.1.2., p. 6

Homeomorphisms
Homeomorphisms that preserve the orientation correspond to the equality

of maps; general homeomorphisms correspond to equivalence of maps : Section
2.2, Definition 4,p.8.

Equivalences
Conjugacy of sequences : notation ≡, Section 5.1.1,p.20.
Conjugacy combined with reversal : notation ≍ , Section 5.1.1,p.20.

Equivalent maps (M = N or M = N−1) : Section 2.2, Definition 4,p.8.
Equivalent multiwords (by reversal of some components) : notationW ≍W ′,

Section 5.1.1,p.20.

t-equivalent maps (same associated t-graph): notation ∼t, Definition 5, p.8
(it is implied by equivalence).

Equivalent terms (same value) : Section 3.2, Definition 10.
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