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On Inverses of APN Exponents

In this extended abstract we present results on the inverses modulo 2 n -1 of the known APN exponents. In particular, we describe explicitly the inverses of the Welch and Dobbertin exponents and give the main ideas of their proofs. Further, we observe that the inverse of the Dobbertin exponent defines an APN function on F2n of algebraic degree n+3 2 , which is the first example of such a function.

I. INTRODUCTION

The classical modular inversion is the problem to invert numbers modulo a fixed number. We consider a dual problem, inverting a fixed number d modulo 2 n -1 for all suitable n.

Let d be a fixed positive integer and n ≥ 2 such that gcd(2 n -1, d) = 1. Then d is invertible modulo 2 n -1 for all such n. We denote by d -1 the least positive residue of d modulo 2 n -1. Are there any properties shared by the inverses d -1 modulo any 2 n -1? Is it possible to find an explicit formula for d -1 modulo 2 n -1 for all n? In this paper we study these questions for several families of integers d: mainly for the exponents of the known APN power functions on F 2 n . We call integers defining APN power function APN exponents. The inverses of APN exponents are APN as well. It is usually said that the known AP N and AB power permutations are those listed in Table I (with their shifts and inverses modulo 2 n -1), cf. [START_REF] Carlet | Vectorial Boolean Functions for Cryptography[END_REF]. However, for a better understanding of AP N and AB exponents, it could be helpful to have explicit representations of these inverses. An important parameter for an APN exponent is its binary weight, which defines the algebraic degree of the corresponding function and thus resistance of it to some cryptological attacks. The study of inverses of APN exponents was originated in [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] and [START_REF] Portmann | Almost Perfect Nonlinear Permutations[END_REF], where the inverses and their binary weights for the so-called Gold and Niho exponents were found respectively. In this paper we give the inverses and their binary weights for the so-called Welch and Dobbertin exponents. Herewith the Kasami exponent remains the only known APN exponent for which the inverse is not completely understood. For the Kasami exponent we have some partial results. We generalize also the work of Nyberg [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF], and give results for exponents of the shape 2 k -1. This paper is an extended abstract, more complete studies will appear in a forthcoming article.

II. DIFFERENTIAL AND LINEAR PROPERTIES

Let F 2 n be the finite field of order 2 n , for basic theory on finite fields we refer to [START_REF] Lidl | Finite Fields[END_REF].

Definition 1. (a) A function F : F 2 n → F 2 n is called AP N (almost perfect nonlinear) if for any non-zero a ∈ F 2 n and any b ∈ F 2 n the equation F (x + a) + F (x) = b has at most 2 solutions. (b) A function F : F 2 n → F 2 n , n odd, is called AB (almost bent) if x∈F 2 n (-1) T r(αF (x)+βx) ∈ {0, ± 2 n+1 2 } for all α = 0, β ∈ F 2 n .
The AP N and AB functions provide the best resistance to differential and linear attacks, respectively, when used as S-boxes in cryptography. There are very few known examples of AP N and AB functions. The best studied such functions are the power functions x → x d , x ∈ F 2 n , where d is a fixed integer. Power AP N and AB functions play also an important role in coding theory and in the study of reversed Dickson polynomials [START_REF] Carlet | Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems[END_REF], [START_REF] Hou | Reversed Dickson polynomials over finite fields Original[END_REF].

It is easy to see that a power function F : F 2 n → F 2 n is bijective if and only if gcd(d, 2 n -1) = 1.The (compositional) inverse of a bijective power function F (x) = x d is given by F -1 (x) = x e where e is the inverse of d modulo 2 n -1, i.e. ed ≡ 1 (mod 2 n -1). 

x → x d on F 2 n is wt 2,n (d). Observe that if 1 ≤ d ≤ 2 n -1 then wt 2 (d) = wt 2,n (d).
The following theorem summarizes the properties of AP N and AB power functions, see for example [START_REF] Berger | Almost Perfect Nonlinear functions[END_REF], [START_REF] Carlet | Vectorial Boolean Functions for Cryptography[END_REF], [START_REF] Carlet | Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems[END_REF].

Theorem 1. 1) An AP N power function on F 2 n is bijective if n is odd, and it is 3 -to -1 if n is even (where 3 -to -1 means that every non-zero image has 3 preimages). 2) Any AB function is AP N .

3) The (compositional) inverse of an AP N/AB function is AP N/AB as well. 

d ≡ 2 i • d (mod 2 n -1)
for some 0 ≤ i ≤ n -1. When working modulo 2 n -1, we call

2 i • d a shift of d.
The known AP N and AB power permutations are those listed in Table I (with their shifts and inverses modulo 2 n -1), see for example Chapter 3 of [START_REF] Carlet | Vectorial Boolean Functions for Cryptography[END_REF].

exponents d Gold 2 k + 1 with gcd(k, n) = 1, AP N/AB 1 ≤ k ≤ t Kasami 2 2k -2 k + 1 with gcd(k, n) = 1 AP N/AB 2 ≤ k ≤ t inverse 2 2t -1 AP N Welch 2 t + 3 AP N/AB Niho 2 t + 2 t 2 -1 if t is even AP N/AB 2 t + 2 3t+1 2 -1 if t is odd Dobbertin 2 4k + 2 3k + 2 2k + k -1 if n = 5k AP N TABLE I EXPONENTS DEFINING AP N/AB POWER FUNCTIONS ON F 2 n , n = 2t + 1

III. QUADRATIC EXPONENTS

The integers of binary weight 2 define power functions of algebraic degree 2 on F 2 n , therefore they are often referred to as quadratic exponents. The next result is well known, a proof of it can be found, for example, in [START_REF] Mceliece | Finite Fields for computer Scientists and Engineers[END_REF]Lemma 11.1].

Lemma 1. Let n and k be positive integers. Then

n gcd(n,k) is odd if and only if gcd(2 k + 1, 2 n -1) = 1; and n gcd(n,k) is even if and only if gcd(2 k + 1, 2 n -1) = 2 gcd(n,k) + 1.
The quadratic AP N exponents are the Gold exponents in Table I.

Theorem 2. Let n and k be positive integers such that gcd(n, k) = s and t = n/s odd.

Then

(2 k + 1) -1 ≡   s-2 i=0 t-3 2 j=0 2 i+(2j+1)k   + t-1 2 j=0 2 s-1+2jk (mod 2 n -1) (1) 
with convention b i=a 2 i = 0 for a > b. Furthermore, wt 2,n ((2 k + 1) -1 ) = n -s + 2 2 .
Proof: Direct calculations show

(2 k + 1)     s-2 i=0 t-3 2 j=0 2 i+(2j+1)k   + t-1 2 j=0 2 s-1+2jk   ≡ s-1 i=0 t-1 j=0 2 i+jk + 1 (mod 2 n -1).
To complete the proof of (1), it remains to show that

s-1 i=0 t-1 j=0 2 i+jk ≡ 0 (mod 2 n -1). (2) 
Since 2 r ≡ 2 r (mod n) (mod 2 n -1), we can consider the exponents in (2) as elements of the cyclic group Z n . Let g be the subgroup of Z n generated by g ∈ Z n . Then

k = gcd(k, n) = s .
Using these observations we have

t-1 j=0 2 i+jk ≡ 2 i t-1 j=0 2 js (mod 2 n -1),
where the exponents of the latter sum describe the coset i+ s . Since the set of cosets of s partition Z n we get

s-1 i=0 t-1 j=0 2 i+jk ≡ 2 n -1 ≡ 0 (mod 2 n -1).
The above considerations show in particular that the different summands in (1) remain distinct modulo (2 n -1). Hence

wt 2,n ((2 k + 1) -1 ) = (s -1) • t -1 2 + t + 1 2 = n -s + 2 2 ,
completing the proof.

Remark 2. It is easy to see by direct calculations that

(2 k + 1) -1 ≡ 2 n-1 1 + (2 k -1)(2 k + 2 3k + • • • + 2 (t-2)k ) ≡ 1 + t i=1 (-1) i • 2 ki-1 (mod 2 n -1).
Further, sum (1) of Theorem 2 can be written as

2 k (2 s-1 -1) 2 2k t-1 2 -1 2 2k -1 + 2 s-1 2 2k t+1 2 -1 2 2k -1 .
As a special case of Theorem 2, we have:

Corollary 1. [13, Proposition 5]
Let n be odd, and gcd(n, k) = 1. Then

(2 k + 1) -1 ≡ 2 k(n+1) -1 2 2k -1 ≡ n-1 2 j=0 2 2jk (mod 2 n -1)
and wt 2,n ((2 k + 1) -1 ) = n + 1 2 .

IV. KASAMI EXPONENTS

We call integers 2 2k -2 k + 1 with 0 < k < n Kasami exponents. In our considerations we may assume k ≤ n 2 , since

2 2k -2 k +1 and 2 2(n-k) -2 n-k +1 lie in the same cyclotomic coset modulo 2 n -1. Indeed, (2 2(n-k) -2 n-k + 1)2 2k ≡ 2 2k -2 k + 1 (mod 2 n -1). Lemma 2.
1)

gcd(2 2k -2 k + 1, 2 k + 1) = 1 if k is even, 3 otherwise.
2) Let n be even and 0 < 2k < n. If gcd(2 2k -2 k +1, 2 n -1) = 1, then k is even as well.

The following lemma describes Kasami exponents, which are invertible modulo (2 n -1).

Lemma 3. It holds gcd(2 2k -2 k + 1, 2 n -1) = 1 if and only if one of the following cases occurs:

• n gcd(n,k) is odd;

• n gcd(n,k) is even, k is even and gcd(k, n) = gcd(3k, n). Equivalently, gcd(2 2k -2 k + 1, 2 n -1) = 1 if and only if one of the following cases occurs:

• n is odd and k ≥ 1 is arbitrary • n = 2 r a and k = 2 r b, where a is odd and 1 ≤ r.

• n = 2 r 3 u a and k = 2 s 3 v b, where b is odd, 1 ≤ s < r and 0 ≤ u ≤ v.

Note that if

n gcd(n,k) is odd, then 2 k + 1 and 2 3k + 1 are invertible modulo 2 n -1. Then the observation 2 2k -2 k + 1 = (2 3k + 1)/(2 k + 1) together with Theorem 2 implies: Proposition 1. Let n and k be positive integers such that n gcd(n,k) is odd. Then

(2 2k -2 k + 1) -1 ≡ (2 k + 1)(2 3k + 1) -1 (mod 2 n -1).
Theorem 3. Let n = t • gcd(n, k) with t odd and d = 2 2k -2 k + 1. The least positive residue d -1 satisfies:

• If t ≡ 1 (mod 3), then d -1 ≡ 1 + 2 2k (2 3k -1)(2 k + 1) t-7 6 j=0 2 6kj ≡ 1 + 2 2k • (2 k + 1) • 2 n-k -1 2 3k + 1 (mod 2 n -1). In particular, if gcd(n, k) = k then wt 2,n (d -1 ) = n-k+2 2 . • If t ≡ 0 (mod 3), then d -1 ≡ 2 k-1   1 + 2 2k (2 3k -1)(2 k + 1) t-9 6 j=0 2 6kj   + 2 n-1 (mod 2 n -1).
In particular, if gcd(n, k) = k then wt 2,n (d -1 ) = n-3k+4 2 .

• If t ≡ 2 (mod 3), then

d -1 ≡ 2 2k   1 + 2 2k (2 3k -1)(2 k + 1) t-11 6 j=0 2 6kj   + 2 k -2 n-k (mod 2 n -1). In particular, if gcd(n, k) = k then wt 2,n (d -1 ) = n-k+2 2 
.

(Here we put b i=a 2 i = 0 for a > b.) Proof: Note that the Kasami exponent satisfies:

(2 2k -2 k + 1) (2 3k -1)(2 k + 1) = 2 6k -1.
The rest follows by direct calculations.

Remark 3. It is interesting to observe that Kasami exponents d = 2 2k -2 k + 1 with small ratio n k fulfill:

• if k = n/2 then c (d) = c (2 n/2+1 -1) • if k = n/3 then c (d -1 ) = c (2 k + 1) • if k = n/5 then c (d -1 ) = c (2 4k -2 2k + 1)
, where c (a) = c (b) denotes that the integers a and b are in the same cyclotomic coset.

V. WELCH EXPONENTS

For n = 2t+1, integers of the shape 2 t +3 are called Welch exponents when considered modulo 2 n -1. In contrast to the quadratic and Kasami exponents, the Welch exponent depends on n. In fact, it is proved in [START_REF] Hernando | Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions[END_REF], that the only APN exponents which do not depend on n are Gold and Kasami exponents.

Our considerations show that the main difficulty in finding the inverses modulo 2 n -1 for a given integer is to guess it. After having the conjectural inverse for an integer, usually the correctness of it follows by easy direct calculations. The following lemma helps us to guess the inverse of the Welch exponent.

Lemma 4. Let n = 2t + 1. Then the inverse ω of the Welch exponent 2 t + 3 modulo 2 n -1 is defined by the following identity ω • (2 4 + 1) ≡ 2 n -2 t+1 + 5 (mod 2 n -1).

(3)

Proof: Note that the Welch exponent satisfies:

(2 t + 3) • 2(2 t -3) = 2 n -18 ≡ -17 (mod 2 n -1).
Multiplying both sides of the above identity by -ω implies:

17 • ω ≡ -2 t+1 + 6 ≡ 2 n -2 t+1 + 5 (mod 2 n -1).
Remark 4. From Lemma 4 and Theorem 2 it follows that the inverse of the Welch exponent 2 t + 3 modulo 2 n -1 can be calculated as

(2 n -2 t+1 + 5) • t i=0 2 8i (mod 2 n -1). ( 4 
)
Observe that ( 4) is not the least positive residue of the inverse of the Welch exponent modulo 2 n -1, since some of its summands exceed 2 n -1.

The advantage of defining identity (3) of ω is that the involved numbers 17 and 2 n -2 t+1 + 5 = 2 t+1 (2 t -1) + 5 have binary representations with "easy" combinatorics. This allows us to find the binary representation of the least positive residue of ω (mod 2 n -1), which will yield the explicit form and the algebraic degree of the compositional inverse of the Welch power function.

Theorem 4. Let ω be the least positive residue of the inverse of Welch exponent modulo 2 n -1 with n = 2t + 1.

• If t ≡ 0 (mod 8) then ω = 2 t + 2 t -1 17 13 • 2 t+1 + 7
with binary weight t + 1.

• If t ≡ 1 (mod 8) then ω = 2 t-1 + 2 t + 2 t-1 -1 17 7 • 2 t+2 + 1
with binary weight t + 1.

• If t ≡ 2 (mod 8) then ω = 1 + 2 t+1 + 2 t-2 -1 17 5 • 2 t+3 + 16
with binary weight t.

• If t ≡ 3 (mod 8) then ω = 2 t + 2 t+2 + 2 t+3 + 2 t-3 -1 17 7 • 2 t+5 + 8
with binary weight t.

• If t ≡ 4 (mod 8) then ω = 2 t-4 + 2 t-2 + 2 t-1 + 2 t+4 + 2 t-4 -1 17 9 • 2 t+5 + 3
with binary weight t.

• If t ≡ 5 (mod 8) then ω = 1 + 2 t-3 + 2 t-1 + 2 t + 2 t+1 + 2 t-5 -1 17 2 t+6 + 12
with binary weight t.

• If t ≡ 6 (mod 8) then ω = 2 t-5 + 2 t-4 + 2 t-2 + 2 t+3 + 2 t+4 + 2 t+5 + 2 t+6 + 2 t-6 -1 17 16 • 2 t+7 + 10
with binary weight t + 1.

• If t ≡ 7 (mod 8) then ω = 2 t-5 + 2 t-4 + 2 t-3 + 2 t-2 + 2 t+1 + 2 t+2 + 2 t+4 + 2 t+7 + 2 t-7 -1 17 10 • 2 t+8 + 4
with binary weight t + 1.

Proof: We demonstrate the proof ideas for t ≡ 0 (mod 8). Let t = 8k, n = 16k + 1 and ω k,0 be the least positive residue of the inverse of Welch exponent modulo 2 n -1. We denote by ω k,0 the binary representation of ω k,0 of length n. The main observation yielding the proof is that ω k,0 can be found recursively as follows: In particular, the binary weight of ω k,0 is 8k + 1 = t + 1. By Lemma 4 it is enough to show that ω k,0 satisfies identity [START_REF] Blondeau | Differential properties of x → x 2 k -1[END_REF]. Note that ω k,0 satisfy identity (3) if and only if the sum (with carry) of the sequence ω k,0 with its 4-shift is the sequence 

VI. NIHO EXPONENTS

For completeness, we give here also results for Niho exponents obtained by Portmann and Rennhard [START_REF] Portmann | Almost Perfect Nonlinear Permutations[END_REF]. For n = 2t + 1, integers d of the shape

d = 2 t + 2 t 2 -1 if t is even = 2 t + 2 3t+1 2
-1 if t is odd are called Niho exponents. The inverses for Niho exponents depend on n (mod 8). Observe, that in the case n ≡ 1 (mod 4), that is n = 4a + 1, the Niho exponent is d = 2 2a + 2 a -1. In the case n ≡ 3 (mod 4), that is n = 4a + 3, the Niho exponent is given by 2 3a+2 + 2 2a+1 -1.

Theorem 5. (a) Let n = 4a + 1 and d = 2 2a + 2 a -1. Then • if a is even d -1 = a 2 i=0 2 2i + a-1 i= a 2 2 2i+1 + 2 3a+2 + n-3 2 i= 3a 2 +1 2 2i+1 • if a is odd d -1 = a-1 2 i=0 2 2i + 2 2a+1 + 3a+1 2 i=a+1 2 2i + n-3 2 i= 3a+1 2 2 2i+1
In particular,

wt 2,n (d -1 ) = 3n+5 8 if n ≡ 1 (mod 8) 3n+9 8 if n ≡ 5 (mod 8). (b) Let n = 4a + 3 and d = 2 3a+2 + 2 2a+1 -1. Then • if a is even d -1 = a 2 i=0 2 2i+1 + a i= a 2 +1 2 2i + 2 3a+3 + n-1 2 i= 3a 2 +2 2 2i • if a is odd d -1 = a-1 2 i=0 2 2i+1 + 2 2a+2 + 3a+1 2 i=a+1 2 2i+1 + n-1 2 i= 3a+3 2 2 2i
In particular,

wt 2,n (d -1 ) = 3n+7 8 if n ≡ 3 (mod 8) 3n+11 8
if n ≡ 7 (mod 8).

VII. DOBBERTIN EXPONENTS

We call the integer 

2 4k + 2 3k + 2 2k + 2 k -1 = 2 5k -1 2 k -1 -2 considered modulo 2 n -1 with n = 5k Dobbertin's exponent.
= 2 4k + 2 3k + 2 2k + 2 k -1 modulo 2 n -1 is d -1 = 1 2 2 5k -1 2 k -1 • 2 k+1 -1 3 -1 .
Furthermore,

2 • d -1 = ( 4 i=0 k-1 2 j=0 2 ik+2j ) -1,
showing that wt 2,n (d -1 ) = 5k+3 2 .

Proof:

Set A := 2 5k -1 2 k -1 • 2 k+1 -1 3 . Then 2 k • A ≡ A (mod 2 5k -1),
and direct calculations using the above identity show that 2d -1 • d ≡ 2 (mod 2 n -1).

Not much is known about the possible algebraic degrees of APN functions. By Theorem 6 the inverse of Dobbertin exponent defines an APN function on F 2 n with algebraic degree exceeding (n + 1)/2 for n odd. The only previously known such example was the inverse function, with algebraic degree n -1. This observation with Theorem 1 [START_REF] Canteaut | Weight divisibility of cyclic codes, highly nonlinear functions on F 2 m , and cross-correlation of maximum-length sequences[END_REF] shows that the functions defined by Dobbertin exponent and their inverses are not AB, which was originally shown in [START_REF] Canteaut | Weight divisibility of cyclic codes, highly nonlinear functions on F 2 m , and cross-correlation of maximum-length sequences[END_REF] by exploiting the divisibility properties of corresponding codes. In [START_REF] Blondeau | Differential properties of x → x 2 k -1[END_REF] it is shown that the exponents 2 k -1 have interesting properties for cryptological applications. Here we give the inverse of these exponents: Theorem 7. For coprime positive integers n and k it holds

(2 k -1) -1 ≡ k -1 -1 (mod n) i=0 2 ki (mod 2 n -1) = 2 k•k -1 -1 2 k -1 .
Furthermore, wt 2,n ((2 k -1) -1 ) = k -1 (mod n).

IX. CONCLUSIONS

The classical modular inversion is the problem to invert numbers modulo a fixed number. We consider a dual problem, inverting a fixed number d modulo 2 n -1 for all suitable n. In this paper we found explicitly the inverses for Welch and Dobbertin exponents. A future project is a systematic study of this problem for other fixed integers d.
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 2 Let d and n be positive integers. We denote by wt 2 (d) the Hamming weight of the binary representation of d, and by wt 2,n (d) the Hamming weight of the least positive residue of d modulo 2 n -1. The algebraic degree of the power function

ω 1 ,

 1 0 = 1100 0011 1 0110 1001 and for k ≥ 2 it holds ω k,0 = 1100 0011 ω k-1,0 0110 1001.

  Observe that ω k,0 = a ā . . . a ā 1 c c c c . . . c c, where a = 1100 and c = 0110, and ā, c are their binary complements respectively. And thus the sum corresponding to (1 + 2 4 ) • ω k,0 is a ā . . . a ā 1 c c c c . . . c c ā . . . a ā 1 c c c c . . . c c a 111 . . . 11 11110 000 . . . 00 0101 proving the statement.

Theorem 6 .

 6 Let k ≥ 1 be an odd integer and n = 5k. Then the least positive residue of the inverse of d

Corollary 2 .

 2 Power functions with Dobbertin exponents and their inverses are not AB.VIII. 2 k -1 EXPONENTS

4 )

 4 An exponent d defines AP N/AB function if and only if 2 • d does so. 5) The algebraic degree of an AB function on F 2 n does not exceed (n + 1)/2.

	Remark 1. We say that d and d are in the same cyclotomic
	coset modulo 2 n -1 if
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