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Abstract— Because product quality level is today a key factor 
for companies’ competitiveness and because it is really hard to 
control the manufacturing systems, there is a lot of scientific 
methods implemented on the shop-floor to improve quality at 
workstations. In our previous works, we have shown that the on-
line quality control assisted by Neural Network seems to be a 
good alternative to the well-known industrial methods such as 
Taguchi Method. Nevertheless we have highlighted that a drift 
appears between the model and the process reality. In this paper, 
we propose a way to resynchronize the on-line control system 
behavior with it. This approach allows us to assure that the 
model stay robust and adaptable for the quality prediction. We 
will illustrate this with the Acta-Mobilier case, which is a high 
quality lacquerer company in the furniture industry . 

Keywords— Multivariate quality control; product quality; 
neural networks; Optimal Experimental Design; on-line control. 

I.  INTRODUCTION 

Because customers become increasingly demanding, 
quality control becomes increasingly important for companies. 
Indeed, even if there are policies such as Total Quality 
Management (TQM) in order to provide to companies the best 
way to control it, quality remains the number-one priority. 
Products are the only important bridge between the company 
and the customer and so, the first and main requirement is to 
send them with the exact wanted quality level. Moreover, the 
quality must always be controlled because it has a non-
negligible impact on production processes.  

However, despite all the available tools to control it, there 
are a lot of constraints that make the task extremely complex. 
The on-line quality control ensures proper reactivity and limits 
the production of non-conforming products. Taguchi Optimal 
Experimental Design (ODE) is one of the best ways to control 
quality at its source. For complex workcenters or on 
workstations subject to multiple constraints preventing the 
implementation of an ODE, we proposed a more computerized 
approach with an on-line quality monitoring system [12]. This 
approach is based on a neural classifier which learns from past 
production data the factors impact on defect occurrence. This 

neural classifier is used to classify unknown quality patterns in 
order to perform an optimal tuning of process parameters.  

However, because the manufacturing process evolves over 
time, it can drift very quickly from this static neural network 
model. To be able to control this quality monitoring system and 
to correct neural classifier, a control charts is used to highlight 
the drift. 

In the next part, the quality monitoring issue is discussed. 
Part 3 presents the neural classifier used to control the product 
quality. At last, the classification results drift issue is discussed 
before to conclude. 

II. QUALITY MONITORING 

A. Why it is Necessary to Monitor Quality? 

Quality is an important point of production processes for 
two reasons. First, the product quality is an important customer 
requirement. And secondly, quality control processes affect the 
productivity performance of the system [4]. This importance is 
underlined by the huge of methods to manage this quality. One 
of them is the SPC (Statistical Process Control) which assumes 
that, because the products are produced by processes whose 
behavior fluctuates over time and tend to become disorganized, 
companies need a preventive approach to bring up any process 
to a defined regularity level and to hold it by means of a 
monitoring system [13]. KAIZEN Methods are also efficient, 
unlike pure innovation, because they favor the gradual quality 
improvements (instead of large steps resulting from inventions) 
by continuous efforts on production processes and commitment 
[9]. 

Moreover, in the concept of Product Driven System, quality 
is a product attribute which will vary all along the 
manufacturing process. It is the product itself which is able, 
thanks to its own attributes (time, space, shape, quality level 
…), to communicate with other products and machines in order 
to optimize its production process: i) each product, depending 
on its shape attribute, has one or several quality attributes; ii) 
each workstation, conveying devices or handling devices in the 
production system, affects all or part of product quality 



attributes; iii) some values of quality attributes can produce 
modification in piece/lot routes (loops in the manufacturing 
process). That causes disturbances all along the production 
line. Indeed, following workstations would be starved (delay in 
manufacturing of defective products), whereas previous 
workstations would be saturated (previous step repetition to 
repair or make again the product). So quality is well a major 
factor of disruption of the product flow.  

That is why, prediction and anticipation of the quality of 
the products is key elements of a well manufacturing process 
control. 

B. Difficulties for Quality Monitoring 

There are several ways to monitor quality and each way has 
advantages and drawbacks.  

At the process level, each workstation modifies quality and 
shape attributes of products. So, quality control is required to 
be on-line at each location where this quality could be changed. 
These multiple control points (where it is possible to collect 
quality data manually or automatically) are the first binding 
point. This involves adding a multitude of non-value steps. In 
addition, to be effective in the collection and storage of data 
quality, computer support is also necessary and, therefore, we 
must also provide a wider deployment of Information 
Technologies (IT) on the workshop. 

At the workstation level, Taguchi [19] was the first to 
propose, before the product manufacturing realization, a way to 
anticipate the quality through the adjustment and control of 
production system influent parameters. With his ODE, he was 
able to set up optimally the machine towards a quality 
objective. Taguchi method is a great complement of SPC [2]. 
Taguchi’s Quality Engineering (TQE) policy leads to a more 
5% quality level improvement [7]. But, as shown in our 
previous works, from the industrial point of view, an ODE is 
material and time consuming. These resources are sometimes 
not readily available because of their cost (expensive raw 
material or semi-finished product which may be degraded and 
therefore not sold) or utilization (bottleneck workstation). That 
is why deploying several ODE on each workstation which 
could have a significant impact on the quality level, is not 
necessarily conceivable.  

On the other hand, the production process for a given 
workstation evolves over time. Indeed, many settings closely 
linked to the machine or its environment (as example, structure 
of the used raw material, weather conditions, machine wear…), 
induce variation. Previously cited techniques can facilitate and 
eliminate the main causes of variability in the production 
system [1]. But if one of the varying parameters influencing the 
product quality is not known by experts (and therefore not 
included in the monitored variables), the machine settings 
won’t be optimal. Thus, for complex workstations or 
workstations subject to too many constraints, optimum setting 
could be unstable, too. So, quality can’t be followed by a static 
model. 

C. The Monitoring Quality Problem for the Company Acta-
Mobilier 

The company produces high quality lacquered panels made 
in MDF (Medium Density Fiberboard) for kitchens, bathrooms, 
offices, stands, shops, hotel furniture... With its certifications 
(ISO 9001, ISO 14001 and OHSAS 18001), the product quality 
is a constant preoccupation for Acta-mobilier. Manufacturing 
process is composed of several workshops. In these workshops, 
each workstation is likely to generate defects and the company 
has to include a quality control step there. This paper focuses 
on the robotic lacquering workstation according to the fact that 
it generates the main defects rate. 

Even if this workstation seems free of human factors, the 
production quality is unpredictable (the risk of defect 
occurrence is unknown) and fluctuating (percentage of defects 
may vary from 45% one day to 10% the next day without 
changing the settings). It is too much costly to spend time to 
realize a Taguchi experimental design in order to improve this 
setting. Indeed, robotic lacquering workstation is considered as 
a bottleneck workstation and it is very hard to save time for the 
experiments. On the other hand, the cost of these experiments 
is very expensive because they consume semi-finished 
products (which have already a high added value). 

III.  ON-LINE QUALITY MONITORING SYSTEM 

A. Géneralities 

“On-line” systems are generally essential in all industrial 
applications where decisions must be made in real time [10]. In 
such systems and due to its connectivity level, the “on-line” 
system is able to obtain, interpret and respond to the 
information received from its connected devices. Ideally, it can 
synchronize itself with the behavior of the real system. Many 
works underline the benefits of on-line approaches in many 
areas of research such as, for example, plasma spray devices 
[15], power transformer [18], CD [3]… 

B. Initial On-Line Quality Monitoring System 

Our goal is to prevent defects occurrence thanks to an on-
line control system by performing set-up optimal parameters 
and by using quality monitoring model in considering actual 
production conditions. The quality monitoring process is 
designed by extracting knowledge on defects occurrence risk 
from the past production data. Psarakis [14] shows that, in a 
SPC process, Neural networks (NN) are able to improve the 
ability to automate the process, to detect and recognize more 
quickly and accurately the status of it. 

For a traceability goal, data on defects and manufacturing 
conditions have been collected since February 2012 to 
September 2012. The initial quality monitoring system has 
been constructed by using this original database. Half of this 
data set was used to achieve the learning of 25 neural networks 
(1 per quality attribute seemingly predictable) while the other 
half was used to validate the obtained models. Chosen neural 
networks are Multilayers Perceptron (MLP) because Works of 
Cybenko [5] and Funahashi [8] have proved that, with only one 
hidden layer using a sigmoidal activation function and an 



output layer, we can approximate all non-linear functions with 
the wanted accuracy. Its structure is given by: 
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where 0
hx  are the n0 inputs of the MLP, 1

ihw  are the weights 

connecting the input layer to the hidden layer, 1
ib  are the biases 

of the hidden neurons, g1(.) is the activation function of the 
hidden neurons (here, the hyperbolic tangent), 2

iw  are the 
weights connecting the hidden neurons to the output one, b is 
the bias of the output neuron g2(.) is the activation function of 
the output neuron and z is the network output. Because the 
problem is to obtain a probability of defect occurrence, g2(.) is 
being chosen sigmoïdal. 

In order to determine the number of hidden neurons, the 
learning starts from an overparametrized structure. A weight 
elimination method is used to remove spurious parameters 
[16]. The learning of MLP is performed in three steps: Weights 
initialization [11], learning of parameters by using Levenberg-
Marquard algorithm with robust criterion [21] and weights 
elimination [18]. 

The resulting quality monitoring system (set of 25 neural 
classifiers) is embedded in the supervision tool of the 
lacquering workstation to be used by operators. The memory of 
these neural networks is physically remote in SQL database so 
that each independent program may access if needed. This tool 
is a decision support system and it requires a human/machine 
interfaces as intuitive as possible. It is directly implemented in 
the set-up interface of the robotic lacquering workstation (Fig. 
1.). Through this additional function, operator may, after 
entering production information (selected program, number of 
units produced…), assesses the risk of occurrence for a default 
(Fig. 2.). If the risk seems too large, he can change his 
production parameters (eg choose another program) and run the 
program in parallel to compare evaluation results until he 
obtains a satisfying result. 

The current version of the on-line quality monitoring 
system takes, on average, 12 seconds to display the result. In 
12 seconds, it has recovered the memory on SQL database, 
traveled the 25 neural networks and synthesizes the results 

Set up interface

Quality monitoring function
 

Fig. 1. Interface for collecting production data  

 

Fig. 2. The second reason concerns Defects occurence risk 

visually to facilitate interpretation by the operator, which 
means less than half a second calculation by neural network is 
needed.  

However, shortly after its implementation, the answers 
provided by our system are no more coherent with reality.  

C. Drift Evaluation 

There are two apparent reasons leading our monitoring 
system to move away from reality. The first one concerns the 
evolution of input parameters. With a learning model, the 
learning outcome is valid only on the learned domain. The 
model is able to provide a valid solution only in this concerned 
domain. 

 

Fig. 3. Difference between learning domain and running domain 



 

Fig. 4. Historic on grains on edges defect percentage 

For example, in the new database, 446 data was collected 
between September 2012 and January 2013 and the 
exploitation of the quality monitoring process leads to 73% of 
non-detection and 32% of false positives for one of the 25 
defects monitored. These poor results can be explained by the 
different process conditions between the two periods. As 
presented on the figure 3, in the first database, the temperature 
range varies between 0°C and 32°C when, in the new database, 
the temperature range varies between -5.2 °C and 24°C. These 
negative temperatures represent 25% of the new database and 
correspond to an operating range of the process which is not 
learned in the quality monitoring process. 

The second reason concerns the uncontrolled modification of 
the machine behavior. Indeed, by changing a parameter 
(voluntarily or not) which is not an input of the neural 
classifier, it is still possible that the behavior of the machine 
could be affected. In this case, we can conclude that this 
parameter should be part of the model inputs but, as it was 
considered constant for the duration of the learning step, it was 
not retained as such. Since this change, which may even be 
unknown to the operators and managers, the model will 
therefore provide results out of step with reality.  

For example, on the figure 4, we can clearly realize that the 
studied defect rate (grains on edges) increases sharply after 
June, 22. The capitalized data from the machine environment 
does not allow knowing if there is a change in a forgotten input 
influencing parameter or if the actual use domain is too 
different from the learning domain. 

Because it is not always possible to control changes in 
production parameters (uncontrollable one, weather, 
unanticipated change from the operator…), it is necessary at 
least to be able to detect them. By giving to the quality 
monitoring system the ability to verify its hypotheses by being 
kept informed on the reality, we can give it the ability to 
recognize its failure and thus to react accordingly. 

IV.  HOW TO CONTROL THE QUALITY MONITORING SYSTEM  

A. Generalities 

The monitoring of the quality system is a question of its 
synchronization with the reality. Because this synchronization 
is time consuming (a revision of the model can take from 
several minutes to several days), we have to optimize the 
synchronization frequency. Rather than consider a 
resynchronization frequency in response to events (arrival of 
new information from one of the connected devices, 
solicitation by an operator, etc…) or a periodically one (every 
hour, week, etc…), it is better to rely on statistical findings. 
Among the 7 basic tools for quality control, control charts, also 
known as Shewhart charts or process-behavior charts [17], are 
interesting Statistical Process Control (SPC) tools useful for 
our proposed system.  

B. Control Charts 

Control charts are particularly relevant to the dynamic 
quality control with the use of time-series data [20]. They can 
determine statistically if variation is no longer under control. 
Indeed, it is known that even when a process is under control 
there is approximately a 0.27% probability of a point exceeding 
3-sigma control limits (Pareto). These few isolated points 
should not trigger synchronization. But too many points will be 
detected and underline the presence of a special cause, even if 
it is not yet known.  

Combine the neural network with the control charts can 
therefore consider both the robustness of the statistical analysis 
and adaptability of the neural network. Li Du [6] has working 
on the inverse combination of both tools with a recognition 
algorithm of control charts using neural networks for getting 
alerts in case of quality problems and providing clues to define 
causes. 

C. Control Bounds 

Our control charts (p-charts) aims to determine if the 
misclassification rate (non-detection and false alarm) increases. 
The center line (CL) is given by the percentage of misclassified 



data on the validation data set. Only the Upper Control Limit 
(UCL) are considered here and calculated for representing 95% 
and 99.8% of data. These limits are given by:  
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where p correspond to the center line (CL) and n to the size 
of the sample. 

The Lower Control Limit (LCL) are presented on the 
figures but not used. The figure 5 presents two control charts 
performed on the new data where the sample size is set to 100 
values, which corresponds to slightly less than one week of 
production. The dotted line corresponds to a control charts 
without relearning. We can see that the quality process is under 
control for both samples 1 and 4 but not under control for 
sample 3 and for the sample 2 the results are between UCL95% 
and UCL99.8%. This is due to the new operating range 
detected in the data as explained in the previous part. So the 
quality monitoring process must be improved. This is done by 
relearning of the neural network by using data of the two first 
samples. The initial structure and weights of the network are 
those given by the original quality monitoring process, so no 
pruning phase is needed. The initial weights are close to the 
optimal ones. So, the relearning phase is fast and needs few 
iterations. In the considered case only 8 iterations are needed to 
achieve the learning. That means a great saving of time. 

The solid line represents the control charts when a 
relearning is performed after the second sample. This charts 
show that the relearning allows adapting the quality process 
monitoring to the new operating range. Results on the sample 3 
are greatly improved without degrading those on the sample 4 
(small improvement). This approach allows determining if an 
adaptation of the quality process monitoring is needed without 
using systematic relearning.  

V. CONCLUSION 

Quality has a significant impact on the production process. 
Being able to control it is an important issue in companies. The 
company Acta-Mobilier allowed us to deploy an on-line quality 
monitoring system on one of its most critical workstations: the 
robotic lacquering workstation. Thanks to a neural classifier 
system, it becomes possible to predict the occurrence of 
defects. But its predictions were quickly removed from reality, 
especially because the use domain is not superposed on the 
learning one and because of unforeseeable changes in the 
working conditions of the machine. To solve this problem, we 
have proposed a self-control of its predictions based on the 
statistical theory of control charts to give it the opportunity to 
start their own resynchronization and thus ensure the reliability 
of forecasts. This new capability makes it adaptable to 
manufacturing process changes and allows it to adapt to new 
input data domains.  

 

Fig. 5. Control charts with and without relearning 
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