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Abstract

In this paper we determined explicitly the multiplicative inverses of the Dobbertin and
Welch APN exponents in Zy:_1, and we described the binary weights of the inverses of
the Gold and Kasami exponents. We studied the function Inv,(n), which for a fixed
positive integer d maps integers n > 1 to the least positive residue of the inverse of d
modulo 2" — 1, if it exists. In particular, we showed that the function Inv, is completely
determined by its values for 1 < n < 6;, where 6, is the order of 2 modulo the largest
odd divisor of d.!

Keywords: modular inversion — APN/AB exponents — power functions on finite fields
— algebraic degree — binary representation of integers.

1. Introduction

A mapping f : Fon — Fo is called almost perfect nonlinear (APN) if for every non-zero
a € Fy: the sets

{(fx+a)+ f(x) : xe€Fu}

contain exactly 2"! elements. When n is odd, a mapping f is called almost bent (AB) if
for every @ #0, S € Fm
Z (_I)Tr(aF(x)Jrﬁx) e {0, iz% }’

x€Fon

where Tr is the absolute trace on Fo.. Every AB mapping is APN, but not vice versa.
APN and AB mappings have various applications in cryptology, coding theory and com-
binatorics [2, 3, 7, 10].

Every mapping f of Fo» has a unique univariate polynomial representation over Fp: of
degree not exceeding 2" — 1. With respect to a fixed F,-basis of F,:, the mapping f has a
unique multivariate representation over Fp» such that its degree in every single variable is

IThe first part of this work is an extended version of the results presented in ISTT12 [9)].
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less than 2. This multivariate polynomial representation is basis dependent. However its
total degree does not depend on the basis choice, and it is called the algebraic degree of
the mapping f. The algebraic degree of a mapping can be computed from its univariate
polynomial representation: Recall that the binary weight of a nonnegative integer d is
the sum of the digits in its binary representation, i.e. if d = Zﬁ:o d2 with 0 < d; < 1,
then the binary weight of d is wt(d) = f:O d; € Z. The algebraic degree of the mapping
fx) = Z%i?)l axk on Fau is equal to maxy g 0{wt(k)}. In particular, a monomial mapping
given by x - x? with 1 < x < 2" — 2 has algebraic degree equal to wt(d).

When studying a special class of mappings of finite fields, one of the main questions to
be answered is: What are the properties of polynomials describing this class of mappings?
This question is widely open for AB/APN mappings. Even a much weaker question, what
are the possible degrees for univariate or multivariate representations of APN mappings,
is one of the open challenges in this research area. It is known that the algebraic degree
of AB mappings does not exceed % [3].

The two best understood classes of APN mappings are the so-called quadratic and
monomial ones. The univariate representation of a quadratic mapping contains only
terms with exponents of binary weight less or equal to 2, i.e. it is of the shape }; ; b;, jx2'+2'
€ Fy[x]. The monomial mappings are those of shape x — x¢ with a fixed integer 1 <d <
2" —2. An integer 1 < d < 2" -2 is called APN exponent on Fp: if the corresponding
monomial mapping x = x4 is APN on Fp. All currently known APN exponents can be
obtained from the ones listed below:

] \ Exponents d | Conditions | \
Gold 2F+1 ged(k,n) =1, APN
1<k<t AB if n is odd
Kasami 2%k 2k 4] ged(k,n) =1 APN
2<k<t AB if n is odd
Welch 213 n=2r+1 APN/AB
Niho 2427 —lifriseven | n=2+1 APN/AB
20425 —1ifris odd
inverse 27— 1 n=2+1 APN
Dobbertin | 2% + 23 +2% 427 — ] n=>5t APN

Table 1: Exponents defining APN/AB monomial mappings on F»

It is easy to prove that if d is an APN exponent then also 2 -d (mod 2" — 1) is so, as
well as the inverse d~! of d modulo 2" — 1 if it exists. While the multiplication of an APN
exponent d by 2 is a fairly easy operation, a better understanding of the inverse of d will
yield more insights on APN mappings. It is well known that an APN exponent on F»
is invertible in Zy_; if and only if n is odd. In [10, 11] the inverses of Gold’s and Niho’s
exponents were considered. In this paper we continue this study. In particular, we find
explicit formulas for the inverses of Welch’s and Dobbertin’s exponents (see Theorem
2.4 and 2.1 respectively) and obtain some partial results on the inverses of Gold’s and
Kasami’s exponents (see Theorem 3.7 and 3.10 respectively for the main results). Further
we study also the inverses of some other interesting classes of exponents.

When studying inverses of APN exponents d on F,:, two cases must be distinguished:
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e d depends on n (Dobbertin’s, Niho’s, Welch’s exponents and the field inverse)

e a fixed d is an APN exponent on Fp for infinitely many n (Gold’s and Kasami’s
exponents).

It appears that the study of the latter exponents is more difficult than the study
of the exponents of the first type. The exponents d defining APN mappings on F,: for
infinitely many n are called exceptional APN exponents [4]. In [6], it is shown that Gold’s
and Kasami’s exponents are the only exceptional APN ones. Finding the inverses of
exceptional APN exponents is an instance of the following general problem: Let d > 1 be
a fixed integer and define N; = {n e N : gcd(d,2" — 1) = 1}. How explicit can we describe
the function Inv,; : Ny — N, which maps n to the least positive integer describing the
inverse of d modulo 2" — 1?7 We show that the function Inv, is completely determined
by its values for 1 < n < 6;’, where 6, is the order of 2 modulo the largest odd divisor
of d. This dependence is given in Theorem 3.2. Based on properties of Inv,; we propose
Algorithm 1 for inversion in Zj._;, which may be of interest for some special applications.

2. Inverses of APN exponents d on F,:, when d depends on n

After having the conjectural modular inverse for a given integer, usually the correct-
ness of it follows from easy calculations. Hence the main difficulty in finding inverses is
to guess them. For a generic integer d we cannot of course expect to be able to guess its
inverse modulo 2" — 1. However, if the binary representation of the integer d has a nice
combinatorial pattern, then the binary representation of its modulo 2" — 1 inverse does
not look random either, and therefore the problem could be solvable. Since the binary
representations of the APN exponents listed in Table 1 are far from being random, find-
ing their inverses explicitly is probably possible. Having this idea in mind we performed
numerical experiments, which led to the formulas for Dobbertin’s and Welch’s exponents
described below.

2.1. Dobbertin’s exponent

Theorem 2.1. Let k > 1 be an odd integer. The least positive residue of the inverse of
d = 2% + 2% 4+ 2% 4 2k — 1 modulo 2% — 1 is

_ 1(25k_1 2k+1_1 1)

2k -1 3

2

Furthermore,

4
2.t = Z 2ik+2j71 _1,

showing that wt(t) = %

Proof. Set A := 225::11 . ygi Then

2. A=A (mod2%*-1).



Observe that d =

Sk_
22k_11 — 2. Hence

1 1 (2% -1
dii = GA-d)= (

pA |
3\ AR P +2)

%1
1 (2%~ 1
g(ﬁ'(zkﬂ_z)”)

1 (mod 2 -1).

Clearly, t < 2°*—1 and thus ¢ is indeed the least positive residue of the inverse of d modulo
2%k 1. O

By Theorem 2.1 the inverse of Dobbertin exponent defines an APN mapping on Fp»
with algebraic degree exceeding (n + 1)/2. The only previously known such example
was the inverse mapping, with algebraic degree n — 1. This observation shows also that
the monomial mappings defined by Dobbertin’s exponents and their inverses are not AB,
which was originally proved in [2] by exploiting the divisibility properties of corresponding
codes.

Corollary 1. The monomial mappings with Dobbertin’s exponents and their inverses are
not AB.

2.2. Niho’s exponents

For the sake of the completeness, we give here the explicit inverses of Niho’s exponents
which were found in [11]. For n = 2m + 1, Niho’s exponent d has the shape

3m+1

de M4 2% — ] if m is even
Tl 2m+27F -1 ifmis odd,

or equivalently, with k > 1,

.- 2% 4 ok _ | if m=2k
=Y 032 L 02+l 1 if =2k + 1.

The inverses for Niho exponents depend on n (mod 8) as the next theorem shows.

Theorem 2.2. (a) Let n = 4k + 1 and d = 2% + 28 — 1 be the Niho exponent. Set t to
denote the least positive residue of the inverse of d modulo 2" — 1. Then

e if k is even, i.e. if n =1 (mod 8),

2k -1
t=—— (2% + 20 4 1) 4+ 2F 4 23 (1)

e ifkis odd, i.e. if n =15 (mod 8),

= 2k713—_1 (23k+2 + 22k+2 + 1) + 23k+1 + 22k+1 + 2/{71' (2)



In particular,
S jfn=1 (mod 8)
wi(t) = 3nt9
= ifn=5 (mod 8).

(b) Let n =4k +3 and d = 232 + 22*1 — 1 be the Niho exponent. Set t to denote the
least positive residue of the inverse of d modulo 2" — 1. Then

e ifk is even, i.e. if n =3 (mod 8),

2k —1
t = T (23k+4 + 2k+2 + 2) + 23k+3 + 2k+l. (3)

e ifk is odd, i.e. if n =7 (mod 8),

B 2k+1 -1

t= 3 (23k+3 + 22k+3 + 2) + 22k+2. (4)

In particular,
T jfn=3 (mod 8)
wi(t) =

L ifp=7 (mod 8).

Proof. We prove only the first statement of part (a), since the remaining cases follow by
similar arguments.

e Let n =4k + 1 and k be even. Then

2k -1
d-t = (22’wr2"—1)(—3 (23k+1+2k+1+1)+2k+23k+1)

= 2k3_ 1 (25k+1 + 24k+1 _ 23k+1 + 23k+1 + 22k+1 _ 2k+1 + 22k + 2k _ 1)
+23k + 22k _ 2k + 25k+l + 24k+] _ 23k+1
= 2k3_ 1 (22k+1 + 22k) _ 23k + 22k + 1

QK =12k =23k 2% 41
1 (mod 2%+ —1).

It remains to note that wt(r) =2+ 3 - wt(zkgl) -1=1+3- % = 313 gince

2k —1 1

t=T+2’<+2k+1_2k_ +23k+2+23k+1_(2k3_1 _1)

and
k1

p L R S
= o
i=0




2.3. Welch’s exponent

Let v be a nonnegative integer with binary representation v = Zf;& v;2! where v,_; # 0.

If ¥ > r, we say that
00...0v,_1 ...vi Vg
r—-r

is the sequence of length r’ representing the integer v. Two sequences a,_i...ap and
by_1...by are called complementary if ¢; = b; + 1 (mod 2) for all 0 < i < r—-1. For
a sequence a, we denote by a its complementary sequence. Note that if a sequence
a=a,_...ap represents the integer a, then its complementary sequence @ represents the
integer 2" — 1 — a. This follows from the fact that the sequence 11...1 represents the

r
integer 2" — 1. For two sequences a and b, we denote by alb their concatenation.

Lemma 2.3. Let s > 2 and 0 < u < 2° be integers. Then the binary representation of
length 2s of the integer (2° —1)-u is wlw, where w is the sequence of length s representing
the integer u — 1 and w is the complement of the binary sequence w and represents the
integer 2° —u. In particular, the binary weight of the integer (2°—1)-u is s.

Proof. The statement of the lemma follows from the observation that 2°—1)-u = (u -
1) - 2° + (2° — u). Moreover, the binary representation of the length s of 2° — u is the
complement of that of u — 1, since 2 —u)+(u—1)=2°-1. O

Theorem 2.4. Let n = 2k + 1. The least positive residue t of the inverse of Welch’s
exponent 25 + 3 modulo 2%+ — 1 is:

o If k=0 (mod 8) then

2k~ 1

— nk L nk+l
=204 T (13-2¢1+7)
with binary weight k + 1.
o Ifk=1 (mod 8) then
k-1
r=2" 42k (7-27+1)
17
with binary weight k + 1.
o [fk=2 (mod 8) then
242 _
_ k+1 k+3
r=1+2 +T<5'2 +16)
with binary weight k.
o [fk=3 (mod 8) then
P T | k+5
1=28 42 2 T (7,250 4 8)
17

with binary weight k.



e Ifk=4 (mod 8) then
k—4

A N il % (9-2¢ +3)

with binary weight k.
o [fk=5 (mod 8) then

265 -1

t=1+283 420 g ok okl g T

(2 +12)
with binary weight k.
o If k=6 (mod 8) then

t= 2/(75 + 2k74 + 2k72 + 2k+3 + 2k+4
k6 1

+ 2k+5 + 2k+6 +
17

(16 kT 10)

with binary weight k + 1.
e [fk=7 (mod 8) then

t= 2k—5 + 2k—4 + 2k—3 + 2k—2 + 2k+1 + 2k+2
287 -1
17

42k kT (1028 + 4)

with binary weight k + 1.

Proof. We only need to verify that (25 + 3) - ¢ = 1 (mod 2%**! — 1), since obviously all
listed integers ¢ are smaller than 2%*! — 1. We do this verification for k = 4 (mod 8), the
remaining cases are similar. Thus, let k =4 (mod 8) and consider

2k=4 _ 1
— (9.2 + 3)) (mod 22! — 1), (5)

2k +3)- (2’<-4 +2K2 okl kv

Observe that

2+3)-(9:2°+3)=17-(9+3-17-2%)  (mod 2%**! - 1),
and therefore (5) reduces to

2k +3)- (2k—4 $ 282 okl y 2k+4) + (-1 9+3-17-25 =
QF+2+1) (2’<—4 $ 2k okl 2k+4) F (25 2 )23 + 1+ 285 4 okt 4 okHL | ok
= 22k—4 + 22](—2 + 22/(—1 + 23 + 2/(—3 + 2](—1 + 2]( + 2k+5 + 2/(—4 + 2k—2 + zk—l + 2k+4 +
ok=1 4 k=4 4 4 92k | 92k=3 | 92k=4 _ 93 _ | _pk+5 _ pk+d _ oktl _ ok _
22k—4 + 22k—2 + 22k—1 + 2k—3 + 2k—1 _ 2k + 2k—4 + 2k—2 + 2k—4 + 22k + 22k—3 + 22k—4 —
22k + 22k71 + 22k72 + 22k73 +2. 22k74 _ Zk + Zkfl + 2k72 + 2k73 +2. 2k74 =
1 (mod 2%+ —1).



To complete the proof it remains to show that the binary weight of ¢ = 284 4+ 2k=2 4 2k=1 4
k-4
2k+4 4 % (9 D2k 4 3) is k. We firstly compute the binary weight of

k+5 2 -1, k+5
(9-2+3) = W(2—1)(9-2 +3)

24—
17

o

= @'-1(9-2+3) Z 28
j=0

- =

1
= 302*-1) Z 287 49024 — 1) Z 2841,
7=0

e
= 8

Note that the integers 3 and 9 are less than 2*, so Lemma 2.3 implies that the binary
[N L
weight of both integers 32* — 1) X 5, 2% and 92* — 1) 3., 2% is 4 &4 = &4 Thus

e
= 8

. . . k=4 _
the binary weight of is 2+ 5* +4 = k. O

Remark 1. The crucial step for guessing the inverses r of Welch’s exponent was the
observation that ¢ satisfies certain recurrence relations. For instance, we take n = 2k + 1
with k = 0 (mod 8). Set k = 8r with r > 0. Suppose ¢, is the binary sequence of length
n = 16r+1 representing the least positive residue of the inverse of Welch’s exponent 2% +3
modulo 2" — 1. Then for every r > 1

t, = 11000011|¢,_1]10110 1001
holds and ¢y = 1.

3. Inverses of a fixed integer d modulo all 2" — 1

In the previous section we described the inverses for Dobbertin’s, Niho’s and Welch’s
exponents, and herewith it remains to find the inverses for Gold’s and Kasami’s expo-
nents to have all presently known APN exponents explicitly. A fixed Gold’s or Kasami’s
exponent defines an APN mapping on infinitely many finite fields and therefore we aim
finding the inverses of a fixed integer modulo infinitely many 2" — 1. For example, Gold’s
exponents 3 and Kasami’s exponent 13 define bijective monomial APN mappings on F»
with any n odd. Hence we want to find inverses of 3 and 13 modulo all 2" — 1 where
n is odd. Motivated by this observation, in the next subsection we study the following
general problem: For a given fixed integer d > 1, let Ny ={n e N : gcd(d,2" - 1) = 1}.
What can we say about the function Inv,; : N; — N, whose output for n is the least
positive integer describing the inverse of d modulo 2" —17 Most of the results of the next
subsection can be directly generalized for modulo p" — 1, where p is a prime number.

3.1. General case

Definition 1. Let d be a fixed positive integer. For a positive integer n satisfying
ged(d,2" — 1) = 1, set Inv,(n) be the least positive residue of the inverse of d modulo
2" — 1, that is the integer Invy, (n) is defined by

0<Invy(n)<2"-1 and d-Invy(n)=1 (mod 2" -1).
8



In the rest of this section we assume, without loss of generality, that the fixed number
d is odd. Indeed, if d; = 2" - d with u > 0 then the study of the function Inv,; may be
reduced to the one of Inv, using

Invy (n) = 2" “Invy(n) (mod 2" —1).

Let d = 3 and 6, be the (multiplicative) order of 2 modulo d, that is 6, is the least
positive integer o such that 2° =1 (mod d). We set §; = 0. The next results show that in
the study of the function Inv, the magnitude 6; plays an important role: |6, /2] many
values of the function Inv; completely determine it.

The following proposition shows that if Inv, (r) is known for some 1 < r < 6; — 1, then
it yields the value of Inv,(6; — 7).

Proposition 3.1. Let 1 <r < 6; —1 and gcd(d,2" — 1) = 1. Then ged(d,2% 7" - 1) =1
and
(d+1 - ZOEN 0l — 1) 4

Proof. Note that ged(d,2% " —1) = 1, since 2" - (2%~ —1) =2% —1 - (2" - 1). Set ¢ be the
rational number at the right hand side of (6), i.e.

Invy;(6; — 1) =

(d+1-EUOE 0l — 1) 4+

;e -1
' d

First we show that f is an integer, or equivalently that

(d+1_Invd(r)-d—1

2041 _ 1)+ 1
-1 )( )+

is divisible by d. Since gcd(d,2” — 1) = 1, it is enough to show that

I -d-1
@ - 1)((1 - %)(2"” 1+ 1) =0 (mod d),
which in its turn reduces to

Q@ -1)2%" —(Invg(r)-d-DR% 7T -1)=0 (mod d).
The left hand side of the latter congruence is

2% _ 1 - Invy, (r)-d-(ZH"_’ - 1),

which is divisible by d by the definition of 6, .
Finally it is easy to see that t-d =1 (mod 2% " —1)and 1 <r <20 1.

O
The following identity is obtained directly from (6):
Corollary 2. Let 1 <r<6; — 1 with gcd(d,2" —1)=1. Then
d-I 6 —r—-1 1 -d—1
vy (B — 1) . nvy (1) —d+l 1)

2001 — | 2 —1
9



The next theorem is the main result of this section. It shows that the value of Inv, (n)
can be computed from Inv, (r) where r is the least positive residue of n modulo 6;. We
give three different expressions for this dependence, each of them appears to be more
convenient for a certain situation. Observe that Theorem 3.2 implies in particular that
in order to determine values of the inverses of d modulo all 2" — 1 it is enough to compute
only finitely many of them.

Theorem 3.2. Let n > 1 with ged(d,2" — 1) =1 and 1 <r < 6; — 1 such that n = r
(mod 6;). Then

(a)

d-I -1 AR |
Inv, (n) = Invy (r)- 2" + ( I;:d_(? - 1) s (8)

(b)

m m—1
Invy (n) = Invy (r) - Z 20714 (2% — 1 = Invy (64 - 1) 2" Z 201, (9)
i=0 i=0
where m = %’. Equivalently,
29d {(m+1) _ 1 29,, m_ 1
Ian (I’l) = IIlVd (r) . W + (29d T-1- IIlVd (Gd - r)) 2" ﬁ.
(c)
Inv, (r)(2" - 1) - =%
Invy;(n) = 1 .
Proof. (a) Set
- I -1 AT |
fi= Invd(r)'2’”+(% 1) —

Clearly, t is a positive integer, since 2"—1 divides d-Inv, (r)—1 and d divides 2"7"—1. Next
we show that r < 2" — 1. Note that Inv, (r) < 2" — 2, since otherwise Inv,; (r) = 2" -2 =d,
which contradicts the assumption that d is odd. Hence we have

Inv;(r) < 2'-2 =
d-Invy(r) < d-2'-2) =
d-Invy(r)-1 < d-2"-1)-d+1) =

@ Iovg ()= D@ =D 50y, @D -1
-1 -1

(d'Ian(zrr)_—ll)(z—l)Jrl < @-D-d-d+D+1 >

(d-Ian(zrr)_—ID(Z"—UH < @-D-d >

d-Inv;(r)—1

227
( T

+(d - Tnvy(-D+1 < @2"=1)-d.

10



It remains to observe that the left hand side of the last inequality is

d-1 1
(2"—2’)~%ﬂdimdm—l)ﬂ=
I 1
27 (d - Tnvg () = 1) + (2" — 1) % +1=
I 1
2 d - Tnvy (r) + (2" — 1)(% - 1) —1-d,

proving that indeed ¢ < 2" — 1.
To complete the proof we must show that ¢ is the inverse of d modulo 2" — 1. From

the above observation, we have

d-I -1
t-d = (2"—2’)-I;L(?+(d-lnvd(r)—l)+l
d-I -1 d-I -1
S R I Ao A Rk N VAL Rk P B S G S
2r—1 2r—1
= 1 (mod2"—1).
(b) Set
d-Invy(n)—1
Sqm)y=—"49"""
a (1) 1
Then Corollary 2 shows that
Sa (r)+Sd(9d —r) =d+ 1. (10)

Multiplying the right side of (9) by d, we have

m m—1
d- [Inw (1) 2% 4 (2% = 1 = Tnvg (6, - )27 D 2% ]

i=0 i=0

= (8a(N@ = 1)+ 1) ) 2%
i=0

m—1 m—1

+2’d(29d -r _ 1 Z 904 _or (Sd 0y - r)(zﬁ),,fr “+ 1) Z i
i=0 i=0
m—1 m—1 m
=8,4(r) {2’ [2”—’ + Z 204 'i] _ (1 4 00 Z 2@,-1‘]) i Z i
i=0 pary pary

—_

+ (2’(29d T —1)(d -S40, - 1) - 2’) b i

3

(=)

m—1

m—1
=84 (r) ((zn - 1) + (2r - 294) . Z 20¢1‘i] + [1 + 29(1 Z 2(~)d.i]
i=0

i=0

—_

+ (2’(29d 1) (d -S40 — 7)) - 2’) 20

L

3

1l
(=]

11



m—1

=8, (N = 1)+ 1+ 2% sz’”

i=0
m—1
+(27Q@% " = 1)(d -S4 (04 — 1) =S (r) = 27) Z 20t
i=0
m—1
=148, "= D+2" Q%"= 1)(d=S404 —1r) =Sz (") + 1) Z 0ai
i=0
=1 (mod?2"-1),
where we apply (10) to get the congruence modulo 2" — 1.
(c) This identity follows from (8) of part (a) of this theorem.
d-1 -1 pA |
Tnvy (n) = Tnvy (r) - 2" + 12““’_ (’1") - 1) =
Cd-Tnvg(r)- 2" Q20 = 1)+ (d - Invy () — DR - 1) = 2" = D27 - 1)
a d-27-1)
Cd Invg(NQ' =1 - (2" - 1= Q2" = )2 - 1)
B d-2r-1)
Invy (r)(2" - 1) - &%
- 2r —1 ’

O

Formulas (8) and (9) of Theorem 3.2 imply that the binary representation of inverses
modulo 2" — 1 have a nice combinatorial structure:

Corollary 3. Letn > 1 with ged(d,2"—-1)=1and 1 <r <6; —1 such thatn = r (mod 6,).
Set

- t, be the binary sequence of length n representing Invy (n);

0,
- ug, be the binary sequence of length 6, representing (% - 1)~ ZiT_];

- a, be the binary sequence of length r representing Inv,(r);

- I_)gd —r be the complementary sequence of the binary sequence of length 6, — r repre-
senting the Invy (6, —r).

Then t, is obtained by concatenating sequences a,, I_Jgd —r and ug, = I_)gd _rla, as follows:

n—r

tn=ar|u0,1 |u04 |-"|u9,1 =arlbﬁd—r|ar|-~|b04—r|ar» 'theTem=
— d

m

Example 3.1. Let d = 7. Then 6; = 3 and for every n not divisible by 3, we have
r=1,2 = n (mod 3). Moreover, Inv; (1) = Inv;(2) = 1, thus from Theorem 3.2, we
deduce

Inv7(n)=2"—’+( 6 —1)-2 -1

2r—1 7
12



Suppose that r = 1, then the binary representation of Invy (n), say t, is as follow:
t=1|ulul...lu=1[10]1]10|1]...|10]1,
d-Inv, ()-1 21 _
4 - 1)==5.

or—
Suppose that r = 2, then the binary representation of Inv; (n), say ¢, is as follow:

where u is a binary sequence of length 3 representing the integer (

=01 |u]...|u =01]0]01]|0]...]|01,

¢Invy -1 _ 1). 2 _

where u’ is a binary sequence of length 3 representing the integer ( >4 v

1.

Lemma 3.3. Let 6; be even and let d divide 2%/> + 1. Further, suppose n > 1 is such
that d and 2" — 1 are coprime, and let 1 < r < 6; — 1 be the least positive residue of n
(mod 6;). Then the following properties hold:

(2) n-r

wt(Invy (n)) = wt(Invy (r)) + >

(b)

wt(Invy (0 — 1)) = wt(Invg () + %1 -r (11)

Proof. By Corollary 3 the binary weight of Inv, (n) is
n—r
wt(Invy (n)) = wt(Invy (r)) + O—Wl‘(ugd ),
d

where ug, is the binary sequence of length 6; representing the integer

d-Invg(r)-1 .2“‘1—1: d-Invg(r)-1 '2”“2+1. 0w
27— 1 d 27— 1 d

By Lemma 2.3, the weight of ug, is 6, /2, which completes the proof of (a). The statement
of (b) follows from the fact that

ug, = bod—r|ar,

and therefore
0,
7”’ = wiug, ) = 04 — r — wi(Invy (8, — r)) + wi(Invy (r)).

O

Remark 2. Let Inverse be an algorithm for inversion modulo 2" — 1. Theorem 3.2 and
discussions of this subsection show that for several classes of integers finding their inverses
modulo 2" — 1 can be reduced to computations modulo 2" — 1 with n’ much smaller than
n. We summarize this observation in the following algorithm.

13
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23

Data: positive integers d and n such that ged(d,2" — 1) = 1.

Result: Inv,(n), the inverse of d modulo 2" — 1.
if n=1ord=1 then
‘ return 1
end
if d is even then
\ return 2"*11nv% (n) (mod 2" — 1)
end
0, « the order of 2 modulo d;
r < n (mod 6, );
if r # n then
A « Invy,(r);

return A - 2" + d'A_l—l ~27 -1 ;
2r—1 d

else
d «d (mod 2" - 1);
if d’ # d then

‘ return Inv, (n)
else

if n>06,/2 then
return d+1- IDVLIZ(”j{:ﬁAd_] ) @' -D+1
d
else
‘ Compute Inv,(n) using Inverse;
end
end
end

= Inv, (n)

Algorithm 1: Recursive inversion

Algorithm 1 reduces the computation of the inverse of d modulo 2" — 1 to one of
modulo 2" — 1 with 1 < r < ;. In particular, this algorithm is effective for integers d
with 6; much smaller than n or for integers d with known small factors. Furthermore,
this algorithm performs good for several special integers d, like Gold’s and Kasami’s

exponents considered in the next subsections.
The next two examples compute inverses using Algorithm 1.

Example 3.2. Let n = 97 and d = 2!' + 1 = 2049. We compute the inverse of 2049

modulo 2% — 1:

1: 02049 «— 22

2: r < 9=97 (mod 22)

3: 9 # 97 then return Invy (9) - 288 4 (

)

28— 1

511

3.1: now n =9 and d = 2049
14

2049 - IIlV2049 (9) -1 _ )

2049



3.2: Oypg9 «— 22

3.3: r <9 (mod 22) then

3.4: d « 5=2049 (mod 2° - 1)
3.5: return Invs(9)

3.5.1: nown=9and d=5
3.5.2: 5 «— 4
3.5.3: r—1=9 (mod 4)
28— 1

3.5.4: 1 #9 then return 28 + 3 - 5

21\ 2049 (28 +3- 24) -1 )2
511 2049

4: Invag (97) = (28 +3-

Note that in this example, we do not need to call the algorithm Inverse.

Example 3.3. Let n = 101 and d = 13. We compute the inverse of 13 modulo 2!°' — 1:
1: 615 < 12

2: r«—5=101 (mod 12)

3: Using Inverse we compute that the inverse of 13 modulo 2° — 1 is 12

155 2% _ ]
: Invi3(101) =12-2% + (— - 1)- T

'

31

Note that the computation of the inverse of 13 modulo 2'%' — 1 was reduced to the one
modulo 2° — 1.

3.2. Gold’s exponent

An integer 1 < d < 2" -2 is called Gold’s exponent if d = 2¥ + 1 and ged(n, k) = 1. The
assumption ged(n, k) = 1 is necessary and sufficient for the mapping x — x? to be APN
on Fy.. In this section we use the term Gold’s exponent to refer to the integers d = 2€ + 1
with n/ ged(n, k) odd. The assumption n/ ged(n, k) odd ensures that 2% + 1 is invertible
modulo 2" — 1, cf. [5, Lemma 11.1]:

Lemma 3.4. Let n and k be positive integers. Then

1 if —gcd:‘”’k) is odd,

k n_ -
ged +1,2° -1 { 28cdnk) 4 1 otherwise.

The inverses of APN Gold’s exponents were considered in [10, Proposition 5]:

Proposition 3.5. Let n be odd, and gcd(n,k) = 1. Then

n-l
2

2k(n+l) -1 i
Invory (n) = W = 247 (mod 2" — l)
7=0
n+1
and wt(Invy,; (n)) = 7

15



Note that the integer 22221_1 is equal to the least positive residue of the inverse of

2% + 1 modulo 2" — 1 if and only if k = 1. For k = 1, the statement of Proposition 3.5

reduces to Invs(n) = 2n+31_1 for all n odd.

Lemma 3.6. Let k > 1 be an integer. The order of 2 modulo 2F + 1 is 6,y = 2k.

Proof. Clearly, k is the smallest positive integer satisfying
2= —1 (mod 2%+ 1),
implying that 6y, = 2k. O

Lemma 3.6 and Theorem 3.2 show that to invert a fixed Gold’s exponent 2¢+1 modulo
all 2" —1 (n > 1) it is enough to obtain the inverses Invs, (r) for 1 < r < 2k. In some of
the arguments of this section it will be enough to consider only 1 < r < k, because of the
following easy observation:

Claim 1. Let 0 <r <k. Then2*+1=25-(2"+1) (mod 2" —1). In particular, the least
positive residues of inverses of 2" + 1 and 2¥ + 1 modulo 28" — 1 have the same binary
weight.

The following theorem summarizes the main results on the inverses of Gold exponents.

Theorem 3.7. Let n,k > 1 with ged(n, k) = s and n/s odd. Set r be the least positive
residue of n modulo 2k. Then

(a) k
L (@ 1) Inva, () -1 2" -1
Invyigg (n) = Invyey () - 2" + or _ZIH -1 (2k -D 2%k —1°

(b) Set

- gn be the binary sequence of length n representing Invy,; (n);

k1) _
- wi be the binary sequence of length k representing w -2;

- a, be the binary sequence of length r representing Invy, (r).
Then g, is obtained by concatenating sequences a,, wy and Wi as follows:

gn=a,|wi|wi|...|wi|wg.

In particular, wt(gn) = wt(a,) + 5-.
(c) The binary weight of Invau, (n) is

n—s n—s+2
+1l=—
2 2

Proof. Statement (a) follows from Theorem 3.2 (a). To prove (b), set

. @+ 1) Invy, (D1

2r —1
16
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From the definition of Invy,, (r), it easily follows that u < 2¥. Lemma 2.3 combined
with the part (a) of this theorem complete the proof of (b). We prove statement (c) by
induction on k;, where k; = k/s. If k; = 1 (or equivalently k = s), then n = s (mod 2s),
since n/s is odd. Consequently, r = s. Observe that Invys,i(s) = 2°~!. From (b), we have
n—s n—s
=1 .

)

Suppose now that the statement holds for all k; < € and take k = s€. Let 1 < r < 2sf be
the residue of n (mod 2s¢). Then by (b) the problem reduces to finding the weight of the
inverse of 2* + 1 modulo 2" — 1. Note that if r < s¢, then there is ¢’ < € such that

wt (Invysy1(n)) = wt (Invas,(s)) +

241=2 41 (mod 2" -1).
Hence the inverse of 2*¢ + 1 modulo 2" — 1 is equal to the one of 2°¢ + 1, and we get

n—r
wt (IHVZ.v[+1(n)) wt (IIle.vf+1(l")) + —

2
= wt(Invzszr+1(r))+n;r
_ oyl n-r

2 2
= 1+n—s
2

To complete the proof we must prove the statement for the case r > s€. Let r = s€ +r'.
Then r = s’ for some ¢’ < £. Using Claim 1, the binary weight of the inverses of 2 + 1
and 2°* + 1 modulo 2°*** — 1 are equal, which completes the proof. O

Remark 3. The reason, why it was possible to determine the binary weight of the inverse
of a Gold exponent in (c) of Theorem 3.7, is the fact that Algorithm 1 does not call the
algorithm Inverse, when computing the inverse for a Gold exponent.

3.3. Kasami’s exponent

We call integers d = 2% — 2F + 1, where k is a positive integer, Kasami exponents.
Such exponents define APN mappings on Fy. if and only if ged(k,n) = 1. The next lemma
summarize properties of Kasami exponents, which we need for later results:

Lemma 3.8. Let k,n be positive integers. Then ged(2% — 2% +1,2" — 1) = 1 if and only
if one of the following cases occurs:

(a) m is odd, that is ged(n, 2k) = ged(n, k);
(b) m is even, k is even and ged(k,n) = gcd(3k,n).
Equivalently, ged(2? =25 +1,2" — 1) = 1 if and only if one of the following cases occurs:
e nis odd and k > 1 is arbitrary
e n=2"a and k =2"b, where a is odd and 1 <r.

e n=2"3%q and k = 2°3'b, where b is odd, 1 < s<r and 0 <u <.
17



Proof. Let d = 2°% —2F+ 1. In this proof, we use extensively Lemma 3.4. First we remark
that

ged(d, 28 + 1) = ged(2%F — 2%+ 2k 4 1)
= ged21 2 - 1), 28 4+ 1)
=ged2 = 1,25+ 1)
_ { 1 if k is even,

peedkk=1) 4 1 =3 otherwise.

Clearly, for any n and k, the integer is either even or odd.

(a) Let ﬁ =1 (mod 2).

Then ged(2”*+1,2"—1) = 1 holds for all » > 1 odd. Hence in this case ged(d,2"—1) =
1, since ¥+ 1)-d=2%+1.

_n
ged(n,k)

n

Then ged(2® + 1,2" — 1) = 28400 4 1 holds for all » > 1 odd. If k is odd, then
3 =gcd(d, 2% + 1) | ged(d,2" — 1) because 3 | 2" — 1 for all n even.

Finally if k is even, it implies ged(d, 2% + 1) = 1 and thus
ged(d - 2K+ 1),2" = 1) = ged(d, 2" — 1) - ged(2* + 1,2" - 1).
That is 284830 1 1 = ged(d, 2" — 1) - (28400 4 1), Then ged(n, k) = ged(n, 3k) becomes
necessary and suficient to get ged(d,2" — 1) = 1.
O

Proposition 3.9. Let k > 1 be an integer. Then the order of 2 modulo the Kasami
exponent 22 — 2K + 1 is 6, = 6k.

Proof. Tt is enough to show that 3k is the least positive integer satisfying 2% = —1
(mod 2%%—2k+1). The congruence 23 = —1 (mod 2%—-2¥+1) holds, since clearly 2%k _2k 11
divides 2% + 1. Let an integer 0 < o < 3k be such that 2 = =1 (mod 2%* — 2% + 1). Then
o >2k-1,since 1 <2/ < 2% 2% for 0 <1< 2k —1. Hence suppose o = 2k + i with
0 <i< k. Note that

22+ = 2i2k 1) (mod 2% - 2% + 1).

To complete the proof it remains to observe that 2/(2F — 1) < 2* - 2Fif 0 <i < k.

Theorem 3.2 implies for the Kasami exponents:

Theorem 3.10. Let n,k > 1 with gcd(22k —2841,2"— 1) = 1. Let r be the least positive
residue of n modulo 6k. Then

(a) Invyu_oiy (n) is equal to

Invou_ gy (1) - 277" + 7 _1 2k _ 2k 4+ 1°

18
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(b) Let

- gn be the binary sequence of length n representing Invyx_ok,q (n);

- w3 be the binary sequence of length 3k representing

((22k _ 21( + ]) . InVZZk_2k+] (r) -1
2r—1

—1)-(2"+1)—1;
- a, be the binary sequence of length r representing Invyx_s 1 (r).
Then g, is obtained by concatenating sequences a,, wix and Wi as follows:

&n = arw3iwagl. .. warlway.

n—r

In particular, wt(gn) = wt(a,) + 5-.

Proof. The statement follows from Theorem 3.2 and Lemma 2.3, similarly to the proof
of Theorem 3.7. O

Example 3.4. Consider the Kasami exponent 13 = 2% =22 + 1. Lemma 3.8 shows that
gcd(13,2" — 1) = 1 if and only if n # 0 (mod 12). Then using Theorem 3.10, we get:

e if n=1 (mod 12) then

n—l_l

Inviz(n) =2""" +11- ER

since Invys (1) = 1. The binary weight of Invi3 (n) is (n + 1)/2.
e if n =2 (mod 12) then
22
13
since Inv;3(2) = 1. The binary weight of Inv3 (n) is n/2.

Inviz(n) =2"2 +3

e if n =3 (mod 12) then

273 — 1

Invi3(n) =6-2"3+10- 3

since Inv;3(3) = 6. The binary weight of Inv3 (n) is (n + 1)/2.
e if n=4 (mod 12) then

P |
13

since Inv;z(4) = 7. The binary weight of Inv3 (n) is (n + 2)/2.

Invis(n)=7-2"*+5

e if n=5 (mod 12) then

25— |

Inviz(n) =12-2"3 +5 3

since Invyz (5) = 12. The binary weight of Invz(n) is (n — 1)/2.
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e if n=6 (mod 12) then

L
13

since Inv;z(6) = 34. The binary weight of Invz(n) is (n — 2)/2.

Invi3(n) =34-2"%+6

Then using identity (3.3), we obtain that:

e if n =7 (mod 12) then the binary weight of Invz (n) is (n—1)/2, since wt(Inv3 (7)) =
3.

e if n =8 (mod 12) then the binary weight of Invz (n) is (n+2)/2, since wt(Inv3 (8)) =
5.

e if n =9 (mod 12) then the binary weight of Invyz (n) is (n+1)/2, since wt(Inv3 (9)) =
5.

e if n =10 (mod 12) then the binary weight of Invz (n) is n/2, since wt(Inv;; (10)) = 5.

e ifn =11 (mod 12) then the binary weight of Invyz (n) is (n+1)/2, since wt(Invz (11)) =
6.

Open question: Is it possible to express the binary weight of the inverse of Kasami’s
exponent 2% — 2¢ + 1 modulo 2" — 1 in terms of k and n?

r 1135|7911 |13 |15 ]| 17
wt(Invy(r)) || 1|1 |2 |42 6 | 6|79

Table 2: Weights of the inverse of d =26 - 23+ 1 modulo 2" =1,  <r < 17

r 1 2 3 4 5 6 7 8 9 | 10| 11 | 12
wt(Invy (1)) 1 1 2 1 3 2 4 5 5 3 4 2

r 1314|1516 | 17 | 18 | 19 | 20 | 21 | 22 | 23
wit(Invy (1)) 5 5 8 9 9 8 [ 10| 9 | 11| 11 | 12

Table 3: Weights of the inverse of d =28 =2 + 1 modulo 2" -1, 1 <r <23
r 1357|911 13|15 |17 |19 |21 |23 |25 | 27| 29

wt(Invy(r)) || 1 |2 | 1|3 |5 ] 5 7T 2 9 9 (11|11 | 11|14 15

Table 4: Weights of the inverses of d = 2! —=2% + 1 modulo 2" -1, 1 < r <29

Tables 2—4 contain the weights of the inverses for the Kasami exponents defined with
k=3,4,5. Some of the values in these tables follow from the results of Proposition 3.11:
20



Proposition 3.11. Let k,n > 1 and gcd(2* =2+ 1,2" - 1) = 1.
(a) If n=b (mod 6k) with b > 1 a divisor of k, then Invox_oiy (k/b) =1 and

2k(2k -1 on—k/b _ 1
b1 ) 2%k _k4

Invou_ sk, () = kb (

(b) Invou_piyy (k—1) = 2k3__1
(c) Invou o,y (k+1) = % +1.
(d) Invyx_oky (2k) = 2" +2)- L;l +1.

(e) If n = 3k/b (mod 6k), where b > 1 is a divisor of k with gcd(b,3) = 1. Let b’ be the
least positive residue of b modulo 3, then Invyu_si . (3k/b) = 23K/b=1 4 o k/b=1

(f) Tnvou_oey; (4k) = (1 + 2841 422 4 231y 22l 4 ok,
(9) Tnvym_peyy (5k) = 2% — 2% 4+ 2% 4 2k — 1 = 2%(2% — 2% 1 1) (mod 2% - 1),
(h) Invp gy 6k — 1) = 2% - D2k + 1).

Note that in cases (c)—(k) of the above proposition n depends on k, and hence we are
in a similar situation discussed in Section 2.

For any b dividing k& and being coprime to 5, we conjecture that Inv,x_n, (5k/b) is
congruent to a Kasami exponent, that is, Invyu_y, (5k/b) = 24(2%" =2"+1) (mod 23%/> 1)
for some integers u and v.

Finally we want to remark that in some cases the computation of inverses for Kasami
exponents can be reduced to the one for the Gold exponents.

Claim 2. Let the positive integers k, n be such that m is odd. Then both 2 + 1 and

23% 41 are coprime to 2" — 1, and therefore
Invy (n) = 2% + DInvyn, (n) (mod 2" — 1)

holds.

3.4. 28— 1 exponent

In [1] it is shown that the power mappings with exponents 2¥ — 1 have interesting
properties for cryptological applications. It is well known that ged(2" — 1,28 — 1) =
2840k _ 1 and therefore 2F — 1 is invertible modulo 2" — 1 if and only if n and k are
coprime. Moreover this indicates also that the calculation of the inverse of 2¥ — 1 modulo
2" — 1 reduces to the one of k£ modulo n.

Theorem 3.12. Let n,k > 2 be coprime integers. Then
k-s

2k —1

where s is any positive integer satisfying s -k = 1 (mod n). More precisely, if k,' is the
least positive residue of the inverse of k modulo n, then

Invy_i(n) = (mod 2" - 1),

k-1

Invy (1) = Z ok (mod ) (12)
i=0
21



Proof. Let s-k—1=n-m. Then

(2k—1)-w—_1=2k'f—1=2""'+1—151 (mod 2" — 1)
2k-1 '
The second statement follows if we put s = k. O

4. Conclusion

This paper is motivated by a problem to find explicitly the inverses of the known
APN exponents. We succeed this for Welch and Dobbertin exponents. The case of the
exceptional APN exponents, that is of the Gold and Kasami exponents, is more difficult
as we show in Section 3. For the Gold exponents 2* + 1, we found the binary weights of
their inverses modulo 2" —1 in terms of n and k. For the Kasami exponents 2% — 2%+ 1, we
showed that the binary weight of the inverses is uniquely defined by the binary weight of
its inverse modulo 2" — 1, where r is the least positive residue of n modulo 0,x_5.; = 6k.
Presently, it is not clear to us whether we may expect more explicit results on Kasami
exponents than those given in Theorem 3.10.

Generally, for a fixed positive integer we considered the function Inv,, which maps
n to the least positive residue of the inverse of d modulo 2" — 1, where d is a fixed
positive integer. We are not aware whether the function Inv, was studied before. We
think that a better understanding of Inv, in general, as well as for special values of d,
is a fundamental problem deserving a further development. In particular, it would be
interesting to see if there are any connections with the algebraic feedback shift register
sequences (see [8]) yielding new insights on the problem.
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