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In this paper we determined explicitly the multiplicative inverses of the Dobbertin and Welch APN exponents in Z 2 n -1 , and we described the binary weights of the inverses of the Gold and Kasami exponents. We studied the function Inv d (n), which for a fixed positive integer d maps integers n ≥ 1 to the least positive residue of the inverse of d modulo 2 n -1, if it exists. In particular, we showed that the function Inv d is completely determined by its values for 1 ≤ n ≤ θ d , where θ d is the order of 2 modulo the largest odd divisor of d. 1

Introduction

A mapping f : F 2 n → F 2 n is called almost perfect nonlinear (APN) if for every non-zero a ∈ F 2 n the sets { f (x + a) + f (x) : x ∈ F 2 n } contain exactly 2 n-1 elements. When n is odd, a mapping f is called almost bent (AB) if for every α = 0, β ∈ F 2 n x∈F 2 n (-1) T r(αF(x)+βx) ∈ {0, ±2

n+1 2 },
where T r is the absolute trace on F 2 n . Every AB mapping is APN, but not vice versa. APN and AB mappings have various applications in cryptology, coding theory and combinatorics [START_REF] Canteaut | Weight divisibility of cyclic codes, highly nonlinear functions on F 2 m , and cross-correlation of maximum-length sequences[END_REF][START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like cryptosystems[END_REF][START_REF] Hou | Reversed Dickson polynomials over finite fields[END_REF][START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF]. Every mapping f of F 2 n has a unique univariate polynomial representation over F 2 n of degree not exceeding 2 n -1. With respect to a fixed F 2 -basis of F 2 n , the mapping f has a unique multivariate representation over F 2 n such that its degree in every single variable is less than 2. This multivariate polynomial representation is basis dependent. However its total degree does not depend on the basis choice, and it is called the algebraic degree of the mapping f . The algebraic degree of a mapping can be computed from its univariate polynomial representation: Recall that the binary weight of a nonnegative integer d is the sum of the digits in its binary representation, i.e. if d = l i=0 d i 2 i with 0 ≤ d i ≤ 1, then the binary weight of d is wt(d) = l i=0 d i ∈ Z. The algebraic degree of the mapping f (x) = 2 n -1 k=0 α k x k on F 2 n is equal to max k,α k =0 {wt(k)}. In particular, a monomial mapping given by x → x d with 1 ≤ x ≤ 2 n -2 has algebraic degree equal to wt (d).

When studying a special class of mappings of finite fields, one of the main questions to be answered is: What are the properties of polynomials describing this class of mappings? This question is widely open for AB/APN mappings. Even a much weaker question, what are the possible degrees for univariate or multivariate representations of APN mappings, is one of the open challenges in this research area. It is known that the algebraic degree of AB mappings does not exceed n+1

2 [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like cryptosystems[END_REF]. The two best understood classes of APN mappings are the so-called quadratic and monomial ones. The univariate representation of a quadratic mapping contains only terms with exponents of binary weight less or equal to 2, i.e. it is of the shape i, j b i, j x 2 i +2 j ∈ F 2 n [x]. The monomial mappings are those of shape x → x d with a fixed integer 1 ≤ d ≤ 2 n -2. An integer 1 ≤ d ≤ 2 n -2 is called APN exponent on F 2 n if the corresponding monomial mapping x → x d is APN on F 2 n . All currently known APN exponents can be obtained from the ones listed below: It is easy to prove that if d is an APN exponent then also 2 • d (mod 2 n -1) is so, as well as the inverse d -1 of d modulo 2 n -1 if it exists. While the multiplication of an APN exponent d by 2 is a fairly easy operation, a better understanding of the inverse of d will yield more insights on APN mappings. It is well known that an APN exponent on F 2 n is invertible in Z 2 n -1 if and only if n is odd. In [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF][START_REF] Portmann | Almost perfect nonlinear permutations[END_REF] the inverses of Gold's and Niho's exponents were considered. In this paper we continue this study. In particular, we find explicit formulas for the inverses of Welch's and Dobbertin's exponents (see Theorem 2.4 and 2.1 respectively) and obtain some partial results on the inverses of Gold's and Kasami's exponents (see Theorem 3.7 and 3.10 respectively for the main results). Further we study also the inverses of some other interesting classes of exponents.

Exponents d Conditions Gold 2 k + 1 gcd(k, n) = 1, APN 1 ≤ k ≤ t AB if n is odd Kasami 2 2k -2 k + 1 gcd(k, n) = 1 APN 2 ≤ k ≤ t AB if n is odd Welch 2 t + 3 n = 2t + 1 APN/AB Niho 2 t + 2 t 2 -1 if t is even n = 2t + 1 APN/AB 2 t + 2 3t+1 2 -1 if t is odd inverse 2 2t -1 n = 2t + 1 APN Dobbertin 2 4t + 2 3t + 2 2t + 2 t -1 n = 5t APN
When studying inverses of APN exponents d on F 2 n , two cases must be distinguished:

• d depends on n (Dobbertin's, Niho's, Welch's exponents and the field inverse)

• a fixed d is an APN exponent on F 2 n for infinitely many n (Gold's and Kasami's exponents).

It appears that the study of the latter exponents is more difficult than the study of the exponents of the first type. The exponents d defining APN mappings on F 2 n for infinitely many n are called exceptional APN exponents [START_REF] Dillon | Geometry, codes and difference sets: exceptional connections[END_REF]. In [START_REF] Hernando | Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF], it is shown that Gold's and Kasami's exponents are the only exceptional APN ones. Finding the inverses of exceptional APN exponents is an instance of the following general problem: Let d ≥ 1 be a fixed integer and define N d = {n ∈ N : gcd(d, 2 n -1) = 1}. How explicit can we describe the function Inv d : N d → N, which maps n to the least positive integer describing the inverse of d modulo 2 n -1? We show that the function Inv d is completely determined by its values for 1 ≤ n ≤ θ d , where θ d is the order of 2 modulo the largest odd divisor of d. This dependence is given in Theorem 3.2. Based on properties of Inv d we propose Algorithm 1 for inversion in Z 2 n -1 , which may be of interest for some special applications.

Inverses of APN exponents d on F 2 n , when d depends on n

After having the conjectural modular inverse for a given integer, usually the correctness of it follows from easy calculations. Hence the main difficulty in finding inverses is to guess them. For a generic integer d we cannot of course expect to be able to guess its inverse modulo 2 n -1. However, if the binary representation of the integer d has a nice combinatorial pattern, then the binary representation of its modulo 2 n -1 inverse does not look random either, and therefore the problem could be solvable. Since the binary representations of the APN exponents listed in Table 1 are far from being random, finding their inverses explicitly is probably possible. Having this idea in mind we performed numerical experiments, which led to the formulas for Dobbertin's and Welch's exponents described below.

Dobbertin's exponent

Theorem 2.1. Let k ≥ 1 be an odd integer. The least positive residue of the inverse of

d = 2 4k + 2 3k + 2 2k + 2 k -1 modulo 2 5k -1 is t = 1 2 2 5k -1 2 k -1 • 2 k+1 -1 3 -1 .
Furthermore,

2 • t =           4 i=0 k-1 2 j=0 2 ik+2 j-1           -1,
showing that wt(t) = 5k+3 2 .

Proof.

Set A := 2 5k -1 2 k -1 • 2 k+1 -1 3 . Then 2 k • A ≡ A (mod 2 5k -1). Observe that d = 2 5k -1 2 k -1 -2. Hence d • t ≡ 1 2 (3A -d) = 1 2 2 5k -1 2 k -1 • (2 k+1 -1) - 2 5k -1 2 k -1 + 2 = 1 2 2 5k -1 2 k -1 • (2 k+1 -2) + 2 ≡ 1 (mod 2 5k -1).
Clearly, t < 2 5k -1 and thus t is indeed the least positive residue of the inverse of d modulo 2 5k -1.

By Theorem 2.1 the inverse of Dobbertin exponent defines an APN mapping on F 2 n with algebraic degree exceeding (n + 1)/2. The only previously known such example was the inverse mapping, with algebraic degree n -1. This observation shows also that the monomial mappings defined by Dobbertin's exponents and their inverses are not AB, which was originally proved in [START_REF] Canteaut | Weight divisibility of cyclic codes, highly nonlinear functions on F 2 m , and cross-correlation of maximum-length sequences[END_REF] by exploiting the divisibility properties of corresponding codes.

Corollary 1. The monomial mappings with Dobbertin's exponents and their inverses are not AB.

Niho's exponents

For the sake of the completeness, we give here the explicit inverses of Niho's exponents which were found in [START_REF] Portmann | Almost perfect nonlinear permutations[END_REF]. For n = 2m + 1, Niho's exponent d has the shape

d = 2 m + 2 m 2 -1 if m is even 2 m + 2 3m+1 2 -1 if m is odd, or equivalently, with k ≥ 1, d = 2 2k + 2 k -1 if m = 2k 2 3k+2 + 2 2k+1 -1 if m = 2k + 1.
The inverses for Niho exponents depend on n (mod 8) as the next theorem shows. Theorem 2.2. (a) Let n = 4k + 1 and d = 2 2k + 2 k -1 be the Niho exponent. Set t to denote the least positive residue of the inverse of d modulo 2 n -1. Then

• if k is even, i.e. if n ≡ 1 (mod 8), t = 2 k -1 3 2 3k+1 + 2 k+1 + 1 + 2 k + 2 3k+1 . (1) 
• if k is odd, i.e. if n ≡ 5 (mod 8),

t = 2 k-1 -1 3 2 3k+2 + 2 2k+2 + 1 + 2 3k+1 + 2 2k+1 + 2 k-1 . (2) 
In particular,

wt(t) =        3n+5 8 if n ≡ 1 (mod 8) 3n+9 8
if n ≡ 5 (mod 8).

(b) Let n = 4k + 3 and d = 2 3k+2 + 2 2+1 -1 be the Niho exponent. Set t to denote the least positive residue of the inverse of d modulo 2 n -1. Then

• if k is even, i.e. if n ≡ 3 (mod 8), t = 2 k -1 3 2 3k+4 + 2 k+2 + 2 + 2 3k+3 + 2 k+1 . (3) 
• if k is odd, i.e. if n ≡ 7 (mod 8), t = 2 k+1 -1 3 2 3k+3 + 2 2k+3 + 2 + 2 2k+2 . (4) 
In particular,

wt(t) =        3n+7 8 if n ≡ 3 (mod 8) 3n+11 8
if n ≡ 7 (mod 8).

Proof. We prove only the first statement of part (a), since the remaining cases follow by similar arguments.

• Let n = 4k + 1 and k be even. Then

d • t = (2 2k + 2 k -1) 2 k -1 3 2 3k+1 + 2 k+1 + 1 + 2 k + 2 3k+1 ≡ 2 k -1 3 2 5k+1 + 2 4k+1 -2 3k+1 + 2 3k+1 + 2 2k+1 -2 k+1 + 2 2k + 2 k -1 +2 3k + 2 2k -2 k + 2 5k+1 + 2 4k+1 -2 3k+1 ≡ 2 k -1 3 2 2k+1 + 2 2k -2 3k + 2 2k + 1 ≡ (2 k -1)2 2k -2 3k + 2 2k + 1 ≡ 1 (mod 2 4k+1 -1).
It remains to note that wt(t)

= 2 + 3 • wt 2 k -1 3 -1 = 1 + 3 • n-1 8 = 3n+5 8 , since t = 2 k -1 3 + 2 k + 2 k+1 • 2 k -1 3 + 2 3k+2 + 2 3k+1 • 2 k -1 3 -1 and 
2 k -1 3 = k 2 -1 i=0 2 2i .

Welch's exponent

Let v be a nonnegative integer with binary representation v = r-1 i=0 v i 2 i where v r-1 = 0. If r ≥ r, we say that 0 0 . . . 0

r -r v r-1 . . . v 1 v 0
is the sequence of length r representing the integer v. Two sequences a r-1 . . . a 0 and b r-1 . . . b 0 are called complementary if

a i = b i + 1 (mod 2) for all 0 ≤ i ≤ r -1.
For a sequence a, we denote by ā its complementary sequence. Note that if a sequence a = a r-1 . . . a 0 represents the integer a, then its complementary sequence ā represents the integer 2 r -1a. This follows from the fact that the sequence 1 1 . . . 1 r represents the integer 2 r -1. For two sequences a and b, we denote by a|b their concatenation.

Lemma 2.3. Let s ≥ 2 and 0 < u < 2 s be integers. Then the binary representation of length 2s of the integer (2 s -1) • u is w| w, where w is the sequence of length s representing the integer u -1 and w is the complement of the binary sequence w and represents the integer 2 su. In particular, the binary weight of the integer (2 s -1) • u is s.

Proof. The statement of the lemma follows from the observation that (2 s -1)

• u = (u - 1) • 2 s + (2 s -u). Moreover, the binary representation of the length s of 2 s -u is the complement of that of u -1, since (2 s -u) + (u -1) = 2 s -1. Theorem 2.4. Let n = 2k + 1.
The least positive residue t of the inverse of Welch's exponent 2 k + 3 modulo 2 2k+1 -1 is:

• If k ≡ 0 (mod 8) then t = 2 k + 2 k -1 17 13 • 2 k+1 + 7
with binary weight k + 1.

• If k ≡ 1 (mod 8) then t = 2 k-1 + 2 k + 2 k-1 -1 17 7 • 2 k+2 + 1
with binary weight k + 1.

• If k ≡ 2 (mod 8) then t = 1 + 2 k+1 + 2 k-2 -1 17 5 • 2 k+3 + 16
with binary weight k.

• If k ≡ 3 (mod 8) then t = 2 k + 2 k+2 + 2 k+3 + 2 k-3 -1 17 7 • 2 k+5 + 8
with binary weight k.

• If k ≡ 4 (mod 8) then t = 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + 2 k-4 -1 17 9 • 2 k+5 + 3
with binary weight k.

• If k ≡ 5 (mod 8) then t = 1 + 2 k-3 + 2 k-1 + 2 k + 2 k+1 + 2 k-5 -1 17 2 k+6 + 12
with binary weight k.

• If k ≡ 6 (mod 8) then t = 2 k-5 + 2 k-4 + 2 k-2 + 2 k+3 + 2 k+4 + 2 k+5 + 2 k+6 + 2 k-6 -1 17 16 • 2 k+7 + 10
with binary weight k + 1.

• If k ≡ 7 (mod 8) then t = 2 k-5 + 2 k-4 + 2 k-3 + 2 k-2 + 2 k+1 + 2 k+2 + 2 k+4 + 2 k+7 + 2 k-7 -1 17 10 • 2 k+8 + 4
with binary weight k + 1.

Proof. We only need to verify that (2 k + 3) • t ≡ 1 (mod 2 2k+1 -1), since obviously all listed integers t are smaller than 2 2k+1 -1. We do this verification for k ≡ 4 (mod 8), the remaining cases are similar. Thus, let k ≡ 4 (mod 8) and consider

(2 k + 3) • 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + 2 k-4 -1 17 9 • 2 k+5 + 3 (mod 2 2k+1 -1). (5) 
Observe that

(2 k + 3) • 9 • 2 k+5 + 3 ≡ 17 • (9 + 3 • 17 • 2 k ) (mod 2 2k+1 -1),
and therefore (5) reduces to

(2 k + 3) • 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + (2 k-4 -1) • (9 + 3 • 17 • 2 k ) = (2 k + 2 + 1) 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + (2 k-4 -1)(2 3 + 1 + 2 k+5 + 2 k+4 + 2 k+1 + 2 k ) ≡ 2 2k-4 + 2 2k-2 + 2 2k-1 + 2 3 + 2 k-3 + 2 k-1 + 2 k + 2 k+5 + 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + 2 k-1 + 2 k-4 + 1 + 2 2k + 2 2k-3 + 2 2k-4 -2 3 -1 -2 k+5 -2 k+4 -2 k+1 -2 k = 2 2k-4 + 2 2k-2 + 2 2k-1 + 2 k-3 + 2 k-1 -2 k + 2 k-4 + 2 k-2 + 2 k-4 + 2 2k + 2 2k-3 + 2 2k-4 = 2 2k + 2 2k-1 + 2 2k-2 + 2 2k-3 + 2 • 2 2k-4 -2 k + 2 k-1 + 2 k-2 + 2 k-3 + 2 • 2 k-4 ≡ 1 (mod 2 2k+1 -1).
To complete the proof it remains to show that the binary weight of

t = 2 k-4 + 2 k-2 + 2 k-1 + 2 k+4 + 2 k-4 -1 17 9 • 2 k+5 + 3 is k.
We firstly compute the binary weight of

2 k-4 -1 17 9 • 2 k+5 + 3 = 2 k-4 -1 2 8 -1 (2 4 -1) 9 • 2 k+5 + 3 = (2 4 -1) 9 • 2 k+5 + 3 k-4 8 -1 j=0 2 8 j = 3(2 4 -1) k-4 8 -1 j=0 2 8 j + 9(2 4 -1) k 4 -1 l= k+4 8 2 8l+1 .
Note that the integers 3 and 9 are less than 2 4 , so Lemma 2.3 implies that the binary weight of both integers 3(2 4 -1)

k-4 8 -1 j=0 2 8 j and 9(2 4 -1) k 4 -1 l= k+4 8 2 8l+1 is 4 • k-4 8 = k-4 2 . Thus the binary weight of t is 2 • k-4 2 + 4 = k. Remark 1.
The crucial step for guessing the inverses t of Welch's exponent was the observation that t satisfies certain recurrence relations. For instance, we take n = 2k + 1 with k ≡ 0 (mod 8). Set k = 8r with r ≥ 0. Suppose t r is the binary sequence of length n = 16r +1 representing the least positive residue of the inverse of Welch's exponent 2 8r +3 modulo 2 n -1. Then for every r ≥ 1 t r = 1100 0011 | t r-1 | 0110 1001 holds and t 0 = 1.

Inverses of a fixed integer d modulo all 2 n -1

In the previous section we described the inverses for Dobbertin's, Niho's and Welch's exponents, and herewith it remains to find the inverses for Gold's and Kasami's exponents to have all presently known APN exponents explicitly. A fixed Gold's or Kasami's exponent defines an APN mapping on infinitely many finite fields and therefore we aim finding the inverses of a fixed integer modulo infinitely many 2 n -1. For example, Gold's exponents 3 and Kasami's exponent 13 define bijective monomial APN mappings on F 2 n with any n odd. Hence we want to find inverses of 3 and 13 modulo all 2 n -1 where n is odd. Motivated by this observation, in the next subsection we study the following general problem: For a given fixed integer

d ≥ 1, let N d = {n ∈ N : gcd(d, 2 n -1) = 1}.
What can we say about the function Inv d : N d → N, whose output for n is the least positive integer describing the inverse of d modulo 2 n -1 ? Most of the results of the next subsection can be directly generalized for modulo p n -1, where p is a prime number. 

0 < Inv d (n) < 2 n -1 and d • Inv d (n) ≡ 1 (mod 2 n -1).
In the rest of this section we assume, without loss of generality, that the fixed number d is odd. Indeed, if d 1 = 2 u • d with u ≥ 0 then the study of the function Inv d 1 may be reduced to the one of Inv d using 

Inv d 1 (n) ≡ 2 n-u Inv d (n) (mod 2 n -1).
Inv d (θ d -r) = d + 1 -Inv d (r)•d-1 2 r -1 (2 θ d -r -1) + 1 d . (6) 
Proof. Note that gcd(d, 2

θ d -r -1) = 1, since 2 r • (2 θ d -r -1) = 2 θ d -1 -(2 r -1
). Set t be the rational number at the right hand side of (6), i.e.

t := d + 1 -Inv d (r)•d-1 2 r -1 (2 θ d -r -1) + 1 d .
First we show that t is an integer, or equivalently that

d + 1 - Inv d (r) • d -1 2 r -1 (2 θ d -r -1) + 1 is divisible by d. Since gcd(d, 2 r -1) = 1, it is enough to show that (2 r -1) 1 - Inv d (r) • d -1 2 r -1 (2 θ d -r -1) + 1 ≡ 0 (mod d),
which in its turn reduces to

(2 r -1)2 θ d -r -(Inv d (r) • d -1)(2 θ d -r -1) ≡ 0 (mod d).
The left hand side of the latter congruence is

2 θ d -1 -Inv d (r) • d • 2 θ d -r -1 ,
which is divisible by d by the definition of θ d . Finally it is easy to see that t

• d ≡ 1 (mod 2 θ d -r -1) and 1 ≤ t ≤ 2 θ d -r -1.
The following identity is obtained directly from (6):

Corollary 2. Let 1 ≤ r ≤ θ d -1 with gcd(d, 2 r -1) = 1. Then d • Inv d (θ d -r) -1 2 θ d -r -1 + Inv d (r) • d -1 2 r -1 = d + 1. (7) 
The next theorem is the main result of this section. It shows that the value of Inv d (n) can be computed from Inv d (r) where r is the least positive residue of n modulo θ d . We give three different expressions for this dependence, each of them appears to be more convenient for a certain situation. Observe that Theorem 3.2 implies in particular that in order to determine values of the inverses of d modulo all 2 n -1 it is enough to compute only finitely many of them.

Theorem 3.2. Let n ≥ 1 with gcd(d, 2 n -1) = 1 and 1 ≤ r ≤ θ d -1 such that n ≡ r (mod θ d ). Then (a) Inv d (n) = Inv d (r) • 2 n-r + d • Inv d (r) -1 2 r -1 -1 • 2 n-r -1 d . ( 8 
) (b) Inv d (n) = Inv d (r) • m i=0 2 θ d •i + 2 θ d -r -1 -Inv d (θ d -r) 2 r m-1 i=0 2 θ d •i , (9) 
where m = n-r θ d . Equivalently,

Inv d (n) = Inv d (r) • 2 θ d •(m+1) -1 2 θ d -1 + 2 θ d -r -1 -Inv d (θ d -r) 2 r • 2 θ d •m -1 2 θ d -1 . (c) Inv d (n) = Inv d (r)(2 n -1) -2 n -2 r d 2 r -1 .
Proof. (a) Set

t := Inv d (r) • 2 n-r + d • Inv d (r) -1 2 r -1 -1 • 2 n-r -1 d .
Clearly, t is a positive integer, since 2 r -1 divides d •Inv d (r)-1 and d divides 2 n-r -1. Next we show that t < 2 n -1. Note that Inv d (r) < 2 r -2, since otherwise Inv d (r) = 2 r -2 = d, which contradicts the assumption that d is odd. Hence we have

Inv d (r) < 2 r -2 ⇒ d • Inv d (r) < d • (2 r -2) ⇒ d • Inv d (r) -1 < d • (2 r -1) -(d + 1) ⇒ (d • Inv d (r) -1)(2 n -1) 2 r -1 < (2 n -1) • d - (d + 1)(2 n -1) 2 r -1 ⇒ (d • Inv d (r) -1)(2 n -1) 2 r -1 + 1 < (2 n -1) • d -(d + 1) + 1 ⇒ (d • Inv d (r) -1)(2 n -1) 2 r -1 + 1 < (2 n -1) • d ⇒ (2 n -2 r ) • d • Inv d (r) -1 2 r -1 + (d • Inv d (r) -1) + 1 < (2 n -1) • d.
It remains to observe that the left hand side of the last inequality is

(2 n -2 r ) • d • Inv d (r) -1 2 r -1 + (d • Inv d (r) -1) + 1 = 2 n-r (d • Inv d (r) -1) + 2 n-r -1 d • Inv d (r) -1 2 r -1 + 1 = 2 n-r • d • Inv d (r) + 2 n-r -1 d • Inv d (r) -1 2 r -1 -1 = t • d,
proving that indeed t < 2 n -1.

To complete the proof we must show that t is the inverse of d modulo 2 n -1. From the above observation, we have

t • d = (2 n -2 r ) • d • Inv d (r) -1 2 r -1 + (d • Inv d (r) -1) + 1 = (2 n -1) • d • Inv d (r) -1 2 r -1 -(2 r -1) • d • Inv d (r) -1 2 r -1 + (d • Inv d (r) -1) + 1 ≡ 1 (mod 2 n -1). (b) Set S d (n) = d • Inv d (n) -1 2 n -1 = S d (r)(2 n -1) + 1 + 2 θ d m-1 i=0 2 θ d •i + 2 r (2 θ d -r -1) (d -S d (θ d -r) -S d (r)) -2 r m-1 i=0 2 θ d •i = 1 + S d (r)(2 n -1) + 2 r (2 θ d -r -1) (d -S d (θ d -r) -S d (r) + 1) m-1 i=0 2 θ d •i ≡ 1 (mod 2 n -1),
where we apply [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] to get the congruence modulo 2 n -1.

(c) This identity follows from (8) of part (a) of this theorem.

Inv d (n) = Inv d (r) • 2 n-r + d • Inv d (r) -1 2 r -1 -1 • 2 n-r -1 d = d • Inv d (r) • 2 n-r (2 r -1) + (d • Inv d (r) -1)(2 n-r -1) -(2 n-r -1)(2 r -1) d • (2 r -1) = d • Inv d (r) (2 n -1) -(2 n-r -1) -(2 n-r -1)(2 r -1) d • (2 r -1) = Inv d (r)(2 n -1) -2 n -2 r d 2 r -1 .
Formulas ( 8) and ( 9) of Theorem 3.2 imply that the binary representation of inverses modulo 2 n -1 have a nice combinatorial structure: Then t n is obtained by concatenating sequences a r , bθ d -r and u θ d = bθ d -r | a r as follows:

t n = a r | u θ d | u θ d | . . . | u θ d m = a r | bθ d -r | a r | . . . | bθ d -r | a r , where m = n -r θ d . Example 3.1. Let d = 7
. Then θ 7 = 3 and for every n not divisible by 3, we have r = 1, 2 ≡ n (mod 3). Moreover, Inv 7 (1) = Inv 7 (2) = 1, thus from Theorem 3.2, we deduce

Inv 7 (n) = 2 n-r + 6 2 r -1 -1 • 2 n-r -1 7 .
Suppose that r = 1, then the binary representation of Inv 7 (n), say t, is as follow:

t = 1 | u | u | . . . | u = 1 | 10 | 1 | 10 | 1 | . . . | 10 | 1,
where u is a binary sequence of length 3 representing the integer

d•Inv d (r)-1 2 r -1 -1 • 2 θ d -1 d = 5.
Suppose that r = 2, then the binary representation of Inv 7 (n), say t , is as follow:

t = 01 | u | u | . . . | u = 01 | 0 | 01 | 0 | . . . | 01,
where u is a binary sequence of length 3 representing the integer

d•Inv d (r)-1 2 r -1 -1 • 2 θ d -1 d = 1.
Lemma 3.3. Let θ d be even and let d divide 2 θ d /2 + 1. Further, suppose n ≥ 1 is such that d and 2 n -1 are coprime, and let 1 ≤ r ≤ θ d -1 be the least positive residue of n (mod θ d ). Then the following properties hold:

(a) wt(Inv d (n)) = wt(Inv d (r)) + n -r 2 . (b) wt(Inv d (θ d -r)) = wt(Inv d (r)) + θ d 2 -r. (11) 
Proof. By Corollary 3 the binary weight of

Inv d (n) is wt(Inv d (n)) = wt(Inv d (r)) + n -r θ d wt(u θ d ),
where u θ d is the binary sequence of length θ d representing the integer

d • Inv d (r) -1 2 r -1 -1 • 2 θ d -1 d = d • Inv d (r) -1 2 r -1 -1 • 2 θ d /2 + 1 d • (2 θ d /2 -1).
By Lemma 2.3, the weight of u θ d is θ d /2, which completes the proof of (a). The statement of (b) follows from the fact that

u θ d = bθ d -r | a r ,
and therefore

θ d 2 = wt(u θ d ) = θ d -r -wt(Inv d (θ d -r)) + wt(Inv d (r)).
Remark 2. Let Inverse be an algorithm for inversion modulo 2 n -1. Theorem 3.2 and discussions of this subsection show that for several classes of integers finding their inverses modulo 2 n -1 can be reduced to computations modulo 2 n -1 with n much smaller than n. We summarize this observation in the following algorithm.

Data: positive integers d and n such that gcd(d, 2 n -1) = 1.

Result: 

Inv d (n), the inverse of d modulo 2 n -1. if n = 1 or d = 1 then 1 return 1 2 end 3 if d is even then 4 return 2 n-1 Inv d 2 (n) (mod 2 n -1) 5 end 6 θ d ← the order of 2 modulo d; 7 r ← n (mod θ d ); 8 if r = n then 9 A ← Inv d (r); 10 return A • 2 n-r + d • A -1 2 r -1 -1 • 2 n-r -1 d ; 11 else 12 d ← d (mod 2 n -1); 13 if d = d then 14 return Inv d (n) 15 else 16 if n > θ d /2 then 17 return d + 1 -Inv d (θ d -n)•d-1 2 θ d -n -1 (2 n -1) + 1 d = Inv d (n) ;
4: Inv 2049 (97) = 2 8 + 3 • 2 8 -1 5 • 2 88 +         2049 • 2 8 + 3 • 2 8 -1 5 -1 511 -1         • 2 88 -1 2049 5 
Note that in this example, we do not need to call the algorithm Inverse.

Example 3.3. Let n = 101 and d = 13. We compute the inverse of 13 modulo 2 101 -1:

1: θ 13 ← 12 2: r ← 5 ≡ 101 (mod 12)

3: Using Inverse we compute that the inverse of 13 modulo 2 5 -1 is 12

4: Inv 13 (101) = 12 • 2 96 + 155 31 -1 • 2 96 -1 13
Note that the computation of the inverse of 13 modulo 2 101 -1 was reduced to the one modulo 2 5 -1.

Gold's exponent

An integer

1 ≤ d ≤ 2 n -2 is called Gold's exponent if d = 2 k + 1 and gcd(n, k) = 1.
The assumption gcd(n, k) = 1 is necessary and sufficient for the mapping x → x d to be APN on F 2 n . In this section we use the term Gold's exponent to refer to the integers d = 2 k + 1 with n/ gcd(n, k) odd. The assumption n/ gcd(n, k) odd ensures that 2 k + 1 is invertible modulo 2 n -1, cf. [START_REF] Mceliece | Finite Fields for Computer Scientists and Engineers[END_REF]Lemma 11.1]: Lemma 3.4. Let n and k be positive integers. Then

gcd(2 k + 1, 2 n -1) = 1 if n gcd(n,k) is odd, 2 gcd(n,k) + 1 otherwise.
The inverses of APN Gold's exponents were considered in [10, Proposition 5]: Proposition 3.5. Let n be odd, and gcd(n, k) = 1. Then

Inv 2 k +1 (n) ≡ 2 k(n+1) -1 2 2k -1 ≡ n-1 2 j=0 2 2 jk (mod 2 n -1)
and wt(Inv

2 k +1 (n)) = n + 1 2 .
(b) Let g n be the binary sequence of length n representing Inv 2 2k -2 k +1 (n);

w 3k be the binary sequence of length 3k representing

(2 2k -2 k + 1) • Inv 2 2k -2 k +1 (r) -1 2 r -1 -1 • (2 k + 1) -1;
a r be the binary sequence of length r representing Inv 2 2k -2 k +1 (r).

Then g n is obtained by concatenating sequences a r , w 3k and w3k as follows:

g n = a r |w 3k | w3k | . . . |w 3k | w3k .
In particular, wt( g n ) = wt(a r ) + n-r 2 . Proof. The statement follows from Theorem 3.2 and Lemma 2.3, similarly to the proof of Theorem 3.7.

Example 3.4. Consider the Kasami exponent 13 = 2 4 -2 2 + 1. Lemma 3.8 shows that gcd(13, 2 n -1) = 1 if and only if n ≡ 0 (mod 12). Then using Theorem 3.10, we get:

• if n ≡ 1 (mod 12) then Inv 13 (n) = 2 n-1 + 11 • 2 n-1 -1 13 ,
since Inv 13 (1) = 1. The binary weight of Inv 13 (n) is (n + 1)/2.

• if n ≡ 2 (mod 12) then

Inv 13 (n) = 2 n-2 + 3 • 2 n-2 -1 13 since Inv 13 (2) = 1. The binary weight of Inv 13 (n) is n/2. • if n ≡ 3 (mod 12) then Inv 13 (n) = 6 • 2 n-3 + 10 • 2 n-3 -1 13
since Inv 13 (3) = 6. The binary weight of Inv 13 (n) is (n + 1)/2.

• if n ≡ 4 (mod 12) then

Inv 13 (n) = 7 • 2 n-4 + 5 • 2 n-4 -1 13
since Inv 13 (4) = 7. The binary weight of Inv 13 (n) is (n + 2)/2.

• if n ≡ 5 (mod 12) then Inv 13 (n) = 12 • 2 n-5 + 5 • 2 n-5 -1 13 
since Inv 13 (5) = 12. The binary weight of Inv 13 (n) is (n -1)/2.

• if n ≡ 6 (mod 12) then

Inv 13 (n) = 34 • 2 n-4 + 6 • 2 n-4 -1 13 
since Inv 13 (6) = 34. The binary weight of Inv 13 (n) is (n -2)/2.

Then using identity (3.3), we obtain that:

• if n ≡ 7 (mod 12) then the binary weight of Inv 13 (n) is (n-1)/2, since wt(Inv 13 ( 7)) = 3.

• if n ≡ 8 (mod 12) then the binary weight of Inv 13 (n) is (n+2)/2, since wt(Inv 13 (8)) = 5.

• if n ≡ 9 (mod 12) then the binary weight of Inv 13 (n) is (n+1)/2, since wt(Inv 13 (9)) = 5.

• if n ≡ 10 (mod 12) then the binary weight of Inv 13 (n) is n/2, since wt(Inv 13 (10)) = 5.

• if n ≡ 11 (mod 12) then the binary weight of Inv 13 (n) is (n+1)/2, since wt(Inv 13 ( 11)) = 6.

Open question: Is it possible to express the binary weight of the inverse of Kasami's exponent 2 2k -2 k + 1 modulo 2 n -1 in terms of k and n? 

Inv 2 2k -2 k +1 (n) = 2 n-k/b + 2 k (2 k -1) 2 k/b -1 -1 • 2 n-k/b -1 2 2k -2 k + 1 . (b) Inv 2 2k -2 k +1 (k -1) = 2 k -1 3 . (c) Inv 2 2k -2 k +1 (k + 1) = 2 k+2 -1 3 + 1. (d) Inv 2 2k -2 k +1 (2k) = (2 k + 2) • 2 k -1 3 + 1. (e) If n ≡ 3k/b (mod 6k), where b ≥ 1 is a divisor of k with gcd(b, 3) = 1. Let b be the least positive residue of b modulo 3, then Inv 2 2k -2 k +1 (3k/b) = 2 3k/b-1 + 2 b •k/b-1 . (f ) Inv 2 2k -2 k +1 (4k) = (1 + 2 k+1 + 2 2k + 2 3k+1 ) • 2 k -1 3 + 2 k . (g) Inv 2 2k -2 k +1 (5k) = 2 5k -2 4k + 2 2k + 2 k -1 ≡ 2 2k (2 4k -2 2k + 1) (mod 2 5k -1). (h) Inv 2 2k -2 k +1 (6k -1) = (2 3k -1)(2 k + 1).
Note that in cases (c)-(k) of the above proposition n depends on k, and hence we are in a similar situation discussed in Section 2.

For any b dividing k and being coprime to 5, we conjecture that Inv 2 2k -2 k +1 (5k/b) is congruent to a Kasami exponent, that is, Inv 2 2k -2 k +1 (5k/b) ≡ 2 u (2 2v -2 v +1) (mod 2 5k/b -1) for some integers u and v.

Finally we want to remark that in some cases the computation of inverses for Kasami exponents can be reduced to the one for the Gold exponents.

Claim 2. Let the positive integers k, n be such that n gcd(n,k) is odd. Then both 2 k + 1 and 2 3k + 1 are coprime to 2 n -1, and therefore Inv d (n) ≡ (2 k + 1)Inv 2 3k +1 (n) (mod 2 n -1) holds.

2 k -1 exponent

In [START_REF] Blondeau | Differential properties of x → x 2 k -1[END_REF] it is shown that the power mappings with exponents 2 k -1 have interesting properties for cryptological applications. It is well known that gcd(2 n -1, 2 k -1) = 2 gcd(n,k) -1, and therefore 2 k -1 is invertible modulo 2 n -1 if and only if n and k are coprime. Moreover this indicates also that the calculation of the inverse of 2 k -1 modulo 2 n -1 reduces to the one of k modulo n. Theorem 3.12. Let n, k ≥ 2 be coprime integers. Then

Inv 2 k -1 (n) ≡ 2 k•s -1 2 k -1 (mod 2 n -1),
where s is any positive integer satisfying s • k ≡ 1 (mod n). More precisely, if k -1 n is the least positive residue of the inverse of k modulo n, then

Inv 2 k -1 (n) = k -1 n -1 i=0 2 ki (mod n) . ( 12 
) Proof. Let s • k -1 = n • m. Then (2 k -1) • 2 k•s -1 2 k -1 = 2 k•s -1 = 2 nm+1 -1 ≡ 1 (mod 2 n -1).
The second statement follows if we put s = k -1 n .

Conclusion

This paper is motivated by a problem to find explicitly the inverses of the known APN exponents. We succeed this for Welch and Dobbertin exponents. The case of the exceptional APN exponents, that is of the Gold and Kasami exponents, is more difficult as we show in Section 3. For the Gold exponents 2 k + 1, we found the binary weights of their inverses modulo 2 n -1 in terms of n and k. For the Kasami exponents 2 2k -2 k + 1, we showed that the binary weight of the inverses is uniquely defined by the binary weight of its inverse modulo 2 r -1, where r is the least positive residue of n modulo θ 2 2k -2 k +1 = 6k. Presently, it is not clear to us whether we may expect more explicit results on Kasami exponents than those given in Theorem 3.10.

Generally, for a fixed positive integer we considered the function Inv d , which maps n to the least positive residue of the inverse of d modulo 2 n -1, where d is a fixed positive integer. We are not aware whether the function Inv d was studied before. We think that a better understanding of Inv d in general, as well as for special values of d, is a fundamental problem deserving a further development. In particular, it would be interesting to see if there are any connections with the algebraic feedback shift register sequences (see [START_REF] Goresky | Algebraic Shift Register Sequences[END_REF]) yielding new insights on the problem.

Bibliography

3. 1 .
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Note that the integer 2 k(n+1) -1 2 2k -1 is equal to the least positive residue of the inverse of 2 k + 1 modulo 2 n -1 if and only if k = 1. For k = 1, the statement of Proposition 3.5 reduces to Inv 3 (n) = 2 n+1 -1 3 for all n odd. Lemma 3.6. Let k ≥ 1 be an integer. The order of 2 modulo 2 k + 1 is θ 2 k +1 = 2k.

Proof. Clearly, k is the smallest positive integer satisfying

implying that θ 2 k +1 = 2k. Lemma 3.6 and Theorem 3.2 show that to invert a fixed Gold's exponent 2 k +1 modulo all 2 n -1 (n ≥ 1) it is enough to obtain the inverses Inv 2 k +1 (r) for 1 ≤ r < 2k. In some of the arguments of this section it will be enough to consider only 1 ≤ r ≤ k, because of the following easy observation:

In particular, the least positive residues of inverses of 2 r + 1 and 2 k + 1 modulo 2 k+r -1 have the same binary weight.

The following theorem summarizes the main results on the inverses of Gold exponents. Theorem 3.7. Let n, k ≥ 1 with gcd(n, k) = s and n/s odd. Set r be the least positive residue of n modulo 2k. Then (a)

(b) Set g n be the binary sequence of length n representing Inv 2 k +1 (n);

w k be the binary sequence of length k representing

a r be the binary sequence of length r representing Inv 2 k +1 (r).

Then g n is obtained by concatenating sequences a r , w k and wk as follows:

In particular, wt(

Proof. Statement (a) follows from Theorem 3.2 (a). To prove (b), set

From the definition of Inv 2 k +1 (r), it easily follows that u < 2 k . Lemma 2.3 combined with the part (a) of this theorem complete the proof of (b). We prove statement (c) by induction on k 1 , where

Suppose now that the statement holds for all k 1 < and take k = s . Let 1 ≤ r < 2s be the residue of n (mod 2s ). Then by (b) the problem reduces to finding the weight of the inverse of 2 s + 1 modulo 2 r -1. Note that if r < s , then is < such that

Hence the inverse of 2 s + 1 modulo 2 r -1 is equal to the one of 2 s + 1, and we get

To complete the proof we must prove the statement for the case r ≥ s . Let r = s + r . Then r = s for some < . Using Claim 1, the binary weight of the inverses of 2 s + 1 and 2 s + 1 modulo 2 s +s -1 are equal, which completes the proof.

Remark 3. The reason, why it was possible to determine the binary weight of the inverse of a Gold exponent in (c) of Theorem 3.7, is the fact that Algorithm 1 does not call the algorithm Inverse, when computing the inverse for a Gold exponent.

Kasami's exponent

We call integers d = 2 2k -2 k + 1, where k is a positive integer, Kasami exponents. Such exponents define APN mappings on F 2 n if and only if gcd(k, n) = 1. The next lemma summarize properties of Kasami exponents, which we need for later results: Lemma 3.8. Let k, n be positive integers. Then gcd(2 2k -2 k + 1, 2 n -1) = 1 if and only if one of the following cases occurs:

Equivalently, gcd(2 2k -2 k + 1, 2 n -1) = 1 if and only if one of the following cases occurs:

• n is odd and k ≥ 1 is arbitrary

• n = 2 r a and k = 2 r b, where a is odd and 1 ≤ r.

• n = 2 r 3 u a and k = 2 s 3 v b, where b is odd, 1 ≤ s < r and 0 ≤ u ≤ v.

In this proof, we use extensively Lemma 3.4. First we remark that

Clearly, for any n and k, the integer n gcd(n,k) is either even or odd.

(a) Let n gcd(n, k) ≡ 1 (mod 2).

Then gcd(2 rk +1, 2 n -1) = 1 holds for all r > 1 odd. Hence in this case gcd(d,

Then gcd(2 rk + 1, 2 n -1) = 2 gcd(n,rk) + 1 holds for all r > 1 odd. If k is odd, then

Finally if k is even, it implies gcd(d, 2 k + 1) = 1 and thus

That is 2 gcd(n,3k) + 1 = gcd(d, 2 n -1) • (2 gcd(n,k) + 1). Then gcd(n, k) = gcd(n, 3k) becomes necessary and suficient to get gcd(d, 2 n -1) = 1.

Proposition 3.9. Let k > 1 be an integer. Then the order of 2 modulo the Kasami exponent

Proof. It is enough to show that 3k is the least positive integer satisfying 2 3k ≡ -1 (mod 2 2k -2 k +1). The congruence 2 3k ≡ -1 (mod 2 2k -2 k +1) holds, since clearly 2 2k -2 k +1 divides 2 3k + 1. Let an integer 0 < σ < 3k be such that

Hence suppose σ = 2k + i with 0 ≤ i < k. Note that 2 2k+i ≡ 2 i (2 k -1) (mod 2 2k -2 k + 1).

To complete the proof it remains to observe that 2 i (2 k -1) < 2 2k -2 k if 0 ≤ i < k.