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Abstract. Overlapping tile automata and the associated notion of rec-
ognizability by means of (adequate) premorphisms in finite ordered monoids
have recently been defined for coping with the collapse of classical recog-
nizability in inverse monoids. In this paper, we investigate more in depth
the associated algebraic tools that allows for a better understanding of
the underlying mathematical theory. In particular, addressing the sur-
prisingly difficult problem of language product and star, we eventually
found some deep links with classical notions of inverse semigroup theory
such as the notion of restricted product.

Introduction

Overlapping structures, be them linear shaped as in McAlister monoids [17], tree
shaped as in free inverse monoids [22, 19] or more generally higher-dimensional
(overlapping) strings as in Kellendonk’s tiling monoids [13, 14], are promising
high level models of system behaviors as already illustrated in musical applica-
tion modeling [12] and the associated programming language proposal [11], or
in distributed behavior modeling [2]. Be them for modeling/typing purposes or
system analysis, there is incentive to develop the language theory of overlapping
tiles.

Since Kellendonk’s tiling monoids are inverse semigroups, such a language
theory lies at the intersection between inverse semigroup theory [20, 16] and for-
mal language theory. A number of studies, such as [18, 23] to mention but a few,
already show deep connections between these fields. However, with Monadic Sec-
ond Order logic (MSO) in the background as yardstick of expressive power (see
e.g. [24]), classical language theoretic concepts and tools fail to be expressive
enough [23, 9]. Adaptation of the classical theory have thus recently been pro-
posed in order to cope with such a collapse in expressive power. The resulting
concepts: tile automata and quasi-recognizability have been proved to essentially
capture MSO both for linear tiles [10] or tree-shaped tiles [8].

Although, the resulting theory is somewhat robust – word or tree shaped tile
automata are essentially non deterministic word or tree automata with adapted
semantics [10, 8] – the resulting language theory remains mysteriously tricky.
For instance, the product of two quasi-recognizable languages is not necessarily
quasi-recognizable.
? partially funded by the project CONTINT 2012 - ANR 12 CORD 009 02 - INEDIT



In this paper, as an echoe of [21] in classical algebraic language theory, con-
tinuing the newly developed theory, we study the case of positive word tiles,
that is birooted words where the input root never occurs after the output root
– positive tiles are the word counterpart of the positive birooted trees that form
the elements of free ample monoids [4]. Our interest in studying the associated
algebraic language theory is that, restricted to positive birooted words or trees,
the class of quasi-recognizable languages is now closed under product and star.

Indeed, this can be proved as a corollary of the obtained logical characteriza-
tion of these languages. Yet, direct automata theoretic or algebraic constructions
were still missing. This is the purpose of the present paper.

Interestingly, these construction remains quite difficult unless, as we propose
here, we first consider the restricted product: a fundamental notion in inverse
semigroup theory [16] that was so far unused in our language theoretic investi-
gation.

As a result, the proposed study not only sheds a new light on the adequate
ordered monoids that are used as recognizers in quasi-recognizability, but also
strengthens quite in depth the underlying theoretical framework. The fact is that
our proposed recognizer definition can be seen as a follow-up to the research track
initiated by Fountain et al. [3, 15, 5, 1] on certain semigroups with local units.

Worth being mentioned, though we restrict our study to positive birooted
words as studied in [9, 7, 10], it is quite clear that our constructions can be
extended to the case of positive birooted trees as studied in [8]. It follows that the
algebraic tools proposed here are particularly well-suited for a language theory of
the free ample monoid [4] whose elements are, precisely, positive birooted trees.

Organization of the paper

In the first part, we give a formal definition of positive tiles as triplets of words,
and of the set of all tiles, including or not the 0 tile.

The following part presents our automatic tools, then the algebraic ones,
mainly Ehresmann monoids and premorphisms. The definition of adequate pre-
morphisms will bring that of restricted product, i.e. the product on the condition
of shared projections, which amounts for tiles to have the same domain.

The third part presents our algebraic construction : we explore all the decom-
positions in a restricted product of each element. For tiles, this is equivalent to
going through all the possible cutting points between input and output, which
simulates the existential quantifier. Since we only consider positive tiles, this
amounts to only going forward, "between input and output" therefore means "on
the root", while we would examine (i.e. existentially quantify on) the entirety of
the domain if we were considering positive and negative tiles, therefore gaining
the possibility to move forward and backward.

In the last part, we use this construction to restricted product of languages,
using the fact that if a tile belongs to the restricted product of L1 and L2, any
tile with the same set of decomposition will also have that same decomposition
itself.
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1 Overlapping tiles

Let A be an alphabet and let A∗ be the free monoid generated by A, that is, the
set of finite words equipped with the concatenation operation. The empty word
is denoted by 1 and, for every two words u and v ∈ A∗, we write u · v or simply
uv for the concatenation of the word u and v.

The set A∗ is ordered by the prefix order ≤p (resp. the suffix order ≤s)
defined, for every word u and v ∈ A∗, by u ≤p v (resp. u ≤s v) when there exists
w ∈ A∗ such that uw = v (resp. wu = v).

A defined positive overlapping unidimensional tile (or just tile in the sequel)
on the alphabet A is any triple u of the form u = (u1, u2, u3) ∈ A∗ × A∗ × A∗.
Such a tile is depicted in Figure 2. The set of defined tiles on the alphabet A

u1 u2 u3

Fig. 1. A graphical representation of tile (u1, u2, u3)

is denoted by T+(A). It is ordered by the natural order relation ≤ defined, for
every tile u = (u1, u2, u3) and v = (v1, v2, v3), by

(u1, u2, u3) ≤ (v1, v2, v3) when u1 ≥s v1, u2 = v2, u3 ≥p v3

The (partial) product u · v of two such tiles u and v is defined, if it exists, as
the greatest tile w = (w1, w2, w3) in the natural order such that w1 ≥s u1,
w1u2 ≥s v1, w2 = u2v2, v2w3 ≥p u3 and w3 ≥p v3. Such a definition is depicted
in Figure 2. Completing the set T+(A) of positive tiles by an undefined tile 0,

u1 u2 u3

v1 v2 v3

w1 w2 w3

Fig. 2. A graphical representation of the product (u1, u2, u3)·(v1, v2, v3) = (w1, w2, w3)

the partial product is made complete by letting u · v = 0 when there exists no
such a defined product tile w and we put u · 0 = 0 = 0 · u for every defined or
undefined tile u.

It has already been shown in [9] that the set T+
0 (A) of positive tiles equipped

with such a product is actually a submonoid of the (inverse) monoid of McAl-
ister [17] with unit 1 = (1, 1, 1). Moreover, extending the natural order to the
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undefined tile by letting 0 ≤ u for every u ∈ T+
0 (A), the natural order is indeed

a partial order relation over T+
0 (A) that is also stable under product, i.e. for

every tiles u, v and w ∈ T+
0 (A), if u ≤ v then w · u ≤ w cot v and u · w ≤ v · w.

For every non zero tile u = (u1, u2, u3) ∈ T+(A), we define the left projection
uL = (u1u2, 1, u3) and the right projection uR = (u1, 1, u2u3) of the tile u. These
projections are extended to zero by taking 0L = 0 = 0R. Then it can be shown [9]
that for every u and v ∈ T+

0 (A) we have u ≤ v if and only u = uR · v if and only
if u = v · vL. Moreover, a tile u is idempotent, that is u · u = u if and only if
uL = u if and only if uR = u if and only if u ≤ 1.

Let U(T+
0 (A)) = {u ∈ T+

0 (A) : u ≤ 1} be the set of subunits of the monoid
of positive tiles. We have just seen that, in the monoid T+

0 (A) idempotents and
subunits coincide. It can also be shown that U(T+

0 (A)) ordered by the natural
is a complete lattice with product has meet.

2 Automata and algebra for overlapping tiles

Definition 1 (Tile automata [10]). A (finite) tile automaton on the alphabet
A is a triple A = 〈Q, δ,K〉 such that Q is a (finite) set of states, δ : A→ P(Q×Q)
is the transition function, and K ⊆ Q×Q is the set of accepting pairs of states.

Given δ∗ : A∗ → P(Q×Q) the closure of the transition function inductively
defined by δ(1) = {(q, q) ∈ Q × Q : q ∈ Q} and δ(wa) = {(p, q) ∈ Q × Q :
∃r ∈ Q, (p, r) ∈ δ∗(w), (r, q) ∈ δ(a)} for every a ∈ A and w ∈ A∗, a run of the
tile automaton A on a defined tile u = (u1, u2, u3) is defined as a pair of states
(p, q) ∈ Q × Q, such that there is a start state s ∈ Q and an end state e ∈ Q
such that (s, p) ∈ δ∗(u1), (p, q) ∈ δ∗(u2) and (q, e) ∈ δ∗(u3). By convention,
there exists no run of the automaton A on the undefined tile 0.

For every tile u ∈ T+
0 (A), we write ϕA(u) ⊆ Q × Q for the set of runs of

the automaton A on the tile u. The language L(A) of tiles recognized by the
automaton A is defined by L(A) = {u ∈ T+

0 (A) : ϕA(u) ∩K 6= ∅}.

By definition, every such recognized language is upward closed in the natural
order. We have already shown that:

Theorem 2 (Logical characterization [10]). A language of tiles L ⊆ T+
0 (A)

is recognizable by a finite state tile automaton if and only if it does not contain
zero, it is upward closed and definable in Monadic Second Order (MSO) logic.

And, as a corollary:

Corollary 3 (Closure property [10]). The union, intersection, product and
star of languages recognizable by finite state tile automata are recognizable by
finite state tile automata.

Remark. For every language L ⊆ T+
0 (A) recognizable by a (finite) tile automaton

A, we have L = ϕ−1
A (ϕA(L)), i.e. the language L is recognized by the mapping

ϕA. However, although the set P(Q × Q) can seen as a monoid with product
X · Y = {(p, q) ∈ Q × Q : ∃r ∈ Q, (p, r) ∈ X, (r, q) ∈ Y } for every X and
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Y ⊆ Q×Q, the mapping ϕA : T+
0 (A)→ P(Q×Q) is not a monoid morphism.

Indeed, we only have ϕA(u · v) ⊆ ϕA(u) · ϕA, that is, the mapping ϕA is a
∨-premorphism (see [6]). This observation leads us in [7] and [10] to make the
properties of both the monoid P(Q × Q) and the premorphism ϕA explicit in
order to define an effective notion of algebraic recognizability called here quasi-
recognizability.

The notion of quasi-recognizability itself is the main object of study in the
present paper and is a refined version of the one proposed in [10] and [8].

The recognizers we use are called E-preordered monoid in reference to Ehres-
mann monoids defined in [15].

Definition 4 (Ehresmann preordered monoid). A preordered monoid is
a monoid S equipped with a preorder relation 4, i.e. a reflexive and transitive
relation, that is stable under product, i.e. for every x, y, z ∈ S, if x 4 y then
zx 4 zy and xz 4 xy.

Such a preordered monoid is said to be an Ehresmann preordered monoid, or
just E-monoid, when it satisfies the following properties:

(A0) S possesses a minimum 0, i.e. for any x ∈ S, 0 4 x and if x 4 0 then
x = 0,

(A1) relation 4 restricted to the set U(S) is an order and the set U(S) = {x ∈
S | x 4 1} of subunits of S ordered by 4 is a ∧-semilattice with ∧ as product,

(A2) the left projection xL = min{y ∈ U(S) | xy = x} and the right projection
xR = min{y ∈ U(S) | yx = x} are defined for every x ∈ S,

(A3) left and right projections are monotonic, i.e. if x 4 y then xL 4 yL and
xR 4 yR for every x and y ∈ S,

(A4) left and right projections induce right and left semi-congruence, i.e. we
have (xy)L = (xLy)L and (xy)R = (xyR)R for every x and y ∈ S.

Remark. One easily checks that Property (A1) implies that all subunits are
idempotents and commute since the product is a meet for the order induced on
the subunits by the preorder on S.

One can also check that in the case where S is finite then Property (A1)
implies Property (A2) since we have xR =

∏
{z ≤ 1 : zx = x} and xL =

∏
{z ≤

1 : xz = x}. In all cases, whenever x ≤ 1 then we have xL = x = xR hence the
mappings x 7→ xL and x 7→ xR are indeed projections.

Surprisingly, the link between the monotonicity hypothesis (Property (A3))
and Properties (A0) to (A2) is far from being clear. Intuition says that, in the
finite case at least, the Property (A3) may well be implied by the previous ones.

Property (A4) indeed equivalently says that the equivalence induced by the
left (resp. right) projection is a right (resp. left) congruence. Indeed, assume
that xL = yL then, for every z ∈ S, we have xLz = yLz, and, by applying
Property (A4), we have (xz)L = (xLz)L and (yz)L = (xLz)L and thus (xz)L =
(yz)L. A symmetrical argument proves the right case.

Last, left and right projections are related with Green left and right preorders
as follows. Recall that for a semigroup S, the left and right Green’s preorders are
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defined, for every x, y ∈ S by x ≤R y when x = yz for some z ∈ S and x ≤L y
when x = zy for some z ∈ S. If we assume that S is an E-monoid then one can
easily check that for every x and y ∈ S we have that if x ≤R y then xR ≤ yR

and if x ≤L y then xL ≤ yL, i.e. left and right projections are refinements of the
left and right Green’s classes.

Examples. Examples of E-monoids are numerous. First, every semigroup ex-
tended with a zero and trivially ordered by the relation x ≤ y when x = 0 or
x = y is an E-monoid. Every inverse semigroup, possibly extended with a zero,
and ordered by the natural order (see [16]) is also an E-monoid with projection
xL = x−1x and xR = xx−1 for every element x. Every submonoid with a zero of
an inverse monoid naturally ordered and closed under left and right projection
as above is also an E-monoid. In particular, the monoid T +(A) of positive tiles
and naturally ordered is an E-monoid.

Less obvious, one can check that the monoid P(Q×Q) of relations over the
set Q, ordered by inclusion, is also an E-monoid with projection XL = {(q, q) ∈
Q×Q : ∃p ∈ Q, (p, q) ∈ X} and XR = {(p, p) ∈ Q×Q : ∃q ∈ Q, (p, q) ∈ X} for
every X ⊆ Q×Q. Every submonoid of P(Q×Q) that contains ∅ (the zero for the
relation product) and that is closed under the above left and right projections
is an E-monoid.

Examples of E-monoids with preorders that are not partial order relations
arise in the remainder of the text when defining the E-monoid of decompositions.

The following definition is an extension of the well-known notion of restricted
product in inverse semigroup theory.

Definition 5 (Restricted product). Let S be an E-monoid. For every x, y ∈
S, the restricted product x • y of x and y is defined when xL = yR and, in that
case, it equals xy. In the sequel, we shall write ∃x • y to denote both the fact
that the restricted product x • y is defined and, if needed, its value.

The restricted product is extended to subsets of S by taking X • Y = {xy ∈
S : x ∈ X, y ∈ Y, ∃x • y}.

Remark. The restricted product is associative in the sense that, for every x, y, z ∈
S, we have ∃x • (∃y • z) = ∃(∃x • y) • z. Indeed, this is a direct consequence
of Property (A4) hence the fact that for every x, y, z ∈ S, we have (x • y)R =
(xyR)R = (xxL)R = xR and (y • z)L = (yL • z)L = (zR • z)L = zL. In that case,
we simply write ∃x • y • z.

We can now define adequate premorphisms and quasi-recognizability .

Definition 6. Let S be an E-monoid. A premorphism ϕ : T +(A) → S is a
monotonic mapping such that ϕ(uv) � ϕ(u)f(v). It is called adequate when,
moreover, it satisfies the following properties :

. it preserves left and right projections, i.e. for every u ∈ T +(A), we have
ϕ(uR) = ϕ(u)R and ϕ(uL) = ϕ(u)L,
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. it preserves disjoint product, i.e. for every tile u = (u1, u2, u2) and v =
(v1, v2, v3), if u3 = 1 = v1 then ϕ(uv) = ϕ(u)ϕ(v),

. it also preserves restricted product, i.e. for every u, v ∈ T +(A) such that
∃u • v, we have ϕ(u • v) = ϕ(u) • ϕ(v).

Remark. We have already seen that for very set Q, the monoid P(Q×Q) ordered
by inclusion is an E-monoid. One can check that the mapping ϕA : T +(A) →
P(Q×Q) defined out a tile automaton A as above in an adequate premorphism.

It must be mentioned that in [10], the adequate premorphism are not required
to preserve restricted product. The fact is that, when arbitrary tiles are involved
as in [10], it may be the case that the premorphism ϕA does not preserve the
restricted product. So the definition of adequacy given here is really suited to
the case of positive tiles.

Definition 7. A language L ⊆ T (A) of non zero positive tiles is quasi-recognizable
(QR) when there exists a finite E-monoid S and an adequate premorphism
ϕ : T +(A)→ S such that L = ϕ−1(ϕ(L)).

One can easily drive from the analogous statement proved in [8] for birooted
trees and with an automata theoretic proof:

Theorem 8 (Logical characterization [8]). A language L ⊆ T (A) of non
zero positive tiles is quasi-recognizable (QR) is quasi-recognizable if and only if
it is a finite boolean combination of upward closed MSO definable languages of
non zero positive tiles.

3 Restricted decompositions monoid

We aim at providing algebraic tools for the product of two languages of positive
tiles. Beware that by the product of two languages X and Y ⊆ T+

0 (A) we mean
the product X ·Y = {xy ∈ T+

0 (A) : x ∈ X, y ∈ Y, xy 6= 0}, i.e. the undefined tile
is systematically omitted from the resulting point-wise product.

Though our logical characterization of languages of positive tiles by finite
state automata or finite E-monoids (and adequate premorphism) guarantees that
these classes are closed under product, the need to account for all the different
configurations that may arise makes such a construction lengthy and tedious.

The algebraic tools developed here are thus defined for the restricted product
and, fortunately, the arbitrary product can still be expressed quite simply in
terms of the restricted one.

We define in this section out of any E-monoid, the monoid of its decomposi-
tions and show how this construction preserves in some sense quasi-recognizability
on positive tiles.

Then, in the next section, such a restricted decomposition monoid can used
for achieving an algebraic proof that the restricted product (and henceforth the
product) of two quasi-recognizable languages is quasi-recognizable.
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From now on, let S be an E-monoid preordered by the relation4. The relation
4 is extended to pairs over S × S by taking the product preorder defined by
(x, x′) 4 (y, y′) when x 4 x′ and y 4 y′ for every (x, x′), (y, y′) ∈ S × S. It is
then extended to P(S×S) by taking X 4 Y when for every x ∈ X, there exists
y ∈ Y so that x 4 y, for every X,Y ∈ P(S × S). Similar constructions can be
found in the context of ordered semigroup in [21].

Definition 9 (Restricted decompositions monoid).We define the setDr(S) ⊆
P(S × S), preordered by 4, by

Dr(S) = {X ∈ P(S × S) | ∃c ∈ S, (c, cL) ∈ X,
(cR, c) ∈ X,∀(x, y) ∈ X, x • y = c}.

The product ∗ is defined for every (x, x′), (y, y′) ∈ S × S by:

(x, x′) ∗ (y, y′) = {(x(x′yy′)R, xLx′yy′), (xx′yy′R, (xx′y)Ly′)}.

and extended to Dr(S) in a point-wise manner, that is, for every X,Y ∈ Dr(S),
by

X ∗ Y =
⋃

(x,x′)∈X
(y,y′)∈Y

(x, x′) ∗ (y, y′).

Lemma 10. The set Dr(S) equipped with the product ∗ and ordered by the re-
lation � is an Ehresmann preordered monoid.

Proof. The detailed proof is a little long (it is detailed in the appendix) but
presents no real difficulties as soon as the appropriate definition has been found.

2

Let then L ⊆ T +(A) be a language recognized by adequate premorphism ϕ :
T +(A) −→ S into the E-monoid S. We build out of ϕ an adequate premorphism
from T +(A) to the decomposition Dr(S) that still recognizes L.

For that purpose, let ψ : T +(A) → Dr(S) be defined, for every u ∈ T +(A)
by ψ(u) = {(ϕ(u1), ϕ(u2)) | u = ∃u1 • u2}.

Lemma 11. The mapping ψ : T +(A)→ DrS is an adequate premorphism that
recognizes L.

Proof. The detailed proof is a little long (it is detailed in the appendix) but,
again, presents no real difficulties as soon as the appropriate definitions have
been found. 2

4 Application to the restricted and unrestricted products
of languages

In the previous section, given any adequate premorphism ϕ : T +(A) → S we
have defined ψ : T +(A) → Dr(S) that allows for computing ϕ on the two
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components of any restricted decomposition of a positive tile. In some sense, for
every positive tile u, when u is seen as a FO-structure with edges labeled over
the alphabet A, this construction allows for simulating any existential first order
quantification over the vertices between and including the input root and the
output root.

This intuition is used here to prove our main theorem:

Theorem 12. Let L1, L2 ⊆ T +(A) quasi-recognizable languages, the language
L1 • L2 is quasi-recognizable.

Proof. Let S1, S2 E-monoids and L1, L2 ⊆ T +(A) respectively recognized by
adequate premorphisms ϕ1 : T +(A) −→ S1 and ϕ2 : T +(A) −→ S2. First, we
define

ϕ : T +(A) −→ S1 × S2

u −→ (ϕ1(u), ϕ2(u))

Remark that S1 × S2 is an E-monoid and ϕ is an adequate premorphism recog-
nizing both L1 and L2.

We now consider premorphism ψ : T +(A) → Dr(S1 × S2) as defined in the
previous section from the adequate premorphism ϕ. By Lemma 10, the monoid
Dr(S1 × S2) is an E-monoid and, by Lemma 11, the mapping ψ is an adequate
premorphism. We will now prove that ψ recognizes L1 • L2.

Let u1 ∈ L1 and u2 ∈ L2 so that ∃u1 • u2, and let v ∈ T +(A) so that
ψ(v) = p(u1 • u2). So we have (ϕ(u1), ϕ(u2)) ∈ ψ(v), therefore there exists
v1, v2 ∈ T +(A) so that v1 • v2 = v and

(ϕ(u1), ϕ(u2)) = (ϕ(v1), ϕ(v2)).

Since ϕ recognizes L1 and L2, we have v1 ∈ L1 and v2 ∈ L2. Consequently,
v = v1 • v2 ∈ L1 • L2. 2

We aim now at applying the restricted product case to the general product
case.

Lemma 13. Let L1, L2 ⊆ T +(A) quasi-recognizable languages. We have

L1L2 =
(

(A∗)LL1(A∗)R • L2

)
∪
(
L1 • (A∗)LL2(A∗)R

)
∪
(

(A∗)LL1 • L2(A∗)R
)
∪
(
L1(A∗)R • (A∗)LL2

)
Proof. We first show that

L1L2 ⊆
(

(A∗)LL1(A∗)R • L2

)
∪
(
L1 • (A∗)LL2(A∗)R

)
∪
(

(A∗)LL1 • L2(A∗)R
)
∪
(
L1(A∗)R • (A∗)LL2

)
Let u = (u1, u2, u3) ∈ L1, v = (v1, v2, v3) ∈ L2, so that uv 6= 0. By definition of
the product, we have four possibilities :
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. if v1 is a suffix of u1u2 and u3 is a prefix of v2v3, then wv1 = u1u2 for a
w ∈ A∗ and u3w

′ = v2v3 for a w′ ∈ A∗, so

uv = (u1, u2, u3w
′) • (wv1, v2, v3) ∈ L1(A∗)R • (A∗)LL2,

. if u1u2 is a suffix of v1 and u3 is a prefix of v2v3, then wu1u2 = v1 for a
w ∈ A∗ and u3w

′ = v2v3 for a w′ ∈ A∗, so

uv = (wu1, u2, u3w
′) • (v1, v2, v3) ∈ (A∗)LL1(A∗)R • L2,

. if v1 is a suffix of u1u2 and v2v3 is a prefix of u3, then wv1 = u1u2 for a
w ∈ A∗ and v2v3w

′ = u3 for a w′ ∈ A∗, so

uv = (u1, u2, u3) • (wv1, v2, v3w
′) ∈ L1 • (A∗)LL2(A∗)R,

. if u1u2 is a suffix of v1 and v2v3 is a prefix of u3, then wu1u2 = v1 for a
w ∈ A∗ and v2v3w

′ = u3 for a w′ ∈ A∗, so

uv = (wu1, u2, u3) • (v1, v2, v3w
′) ∈ L1 • (A∗)LL2(A∗)R.

Conversely, let u = (u1, u2, u3) ∈ L1, v = (v1, v2, v3) ∈ L2, and w,w′ ∈ A∗.
If ∃(wu1, u2, u3w

′) • (v1, v2, v3) = t, or if ∃(u1, u2, u3w) • (w′v1, v2, v3) = t, or
if ∃(wu1, u2, u3) • (v1, v2, v3w

′) = t, or if ∃(u1, u2, u3) • (wv1, v2, v3w
′) = t, then

t = uv.
2

We then have to show that these "completions" on the right or left (the
product with (A∗)L or (A∗)R) preserves quasi-recognizability. First, we prove
that it preserves the recognizability by automaton with simple constructions.

Lemma 14. Let L ⊆ T +(A) be a language recognized by an automaton A,
therefore there exists automatons Ar and Al that recognize respectively L(A∗)R

and (A∗)LL.

Proof. Let A = 〈Q, δ,K〉 be an automaton recognizing a language L ⊆ T +(A),
we define Al = 〈Q ∪ ∗, δl,K〉 and Ar = 〈Q ∪ ∗, δr,K〉, with for any a, δl(a) =
δ(a) ∪ {(∗, ∗), (∗, q) | q ∈ Q} and δr(a) = δ(a) ∪ {(∗, ∗), (q, ∗) | q ∈ Q}.
We see that any tile of the type (a1a2 . . . aku, v, w), with (u, v, w) ∈ L, is recog-
nized by Al, by a run of the form ∗a1 ∗ a2 ∗ . . . ∗ akR, R being a run of A on
(u, v, w).
Reciprocally, any run we have tile (u, v, w) by Al is of the form ∗a1∗a2∗. . .∗akR,
where a1a2 . . . ak is a prefix of u, and R a ∗-less run on (u′, v, w) where u =
a1a2 . . . aku

′, i.e. a run of A on (u′, v, w). Therefore, if (u, v, w) is recognized by
Al, then (u′, v, w) is recognized by A, so (u, v, w) ∈ (A∗)LL.
We demonstrate symmetrically that Ar recognizes L(A∗)R. 2

We can now show that these "completions" on the right or left preserves
quasi-recognizability. This is accomplished by noting that quasi-recognizable lan-
guages are combinations of upward-closed languages, that can be recognized by
automatons.
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Lemma 15. Let L ⊆ T +(A) be a quasi-recognizable language, therefore L(A∗)R

and (A∗)LL are quasi-recognizable.

Proof. Let L ⊆ T +(A) be a quasi-recognizable language, then L is a linear
combination of languages recognized by automatons. As a consequence,

L =
⋃

14i4n

(Di ∩ Ui)

where n ∈ N and for any i, U1 is a quasi-recognizable upward-closed language (i.e.
recognized by an automaton) and Ui is a quasi-recognizable downward-closed
language (i.e. the complement of one recognized by an automaton).Therefore,

L(A∗)R =
( ⋃

14i4n

(Di ∩ Ui)
)

(A∗)R

=
⋃

14i4n

(
Di(A∗)R ∩ Ui(A∗)R

)
For any i, since Di is downward closed, Di(A∗)R = Di, and lemme 14 shows
that Ui(A∗)R is quasi-recognizable. Therefore, since ∪ and ∩ preserve quasi-
recognizability, L(A∗)R is quasi-recognizable. 2

Corollary 16. Let L ⊆ T +(A) be a quasi-recognizable language, therefore (A∗)LL(A∗)R

is quasi-recognizable.

Theorem 17. Let L1, L2 ⊆ T +(A) quasi-recognizable languages, therefore L1L2
is quasi-recognizable.

Proof. This follows directly from lemma 13, lemma 15 and corollary 16, and
theorem 12. 2

5 Conclusion

We have thus shown, by means of algebraic tools, that both the restricted
product (Theorem 12) and the arbitrary product (Theorem 17) of two quasi-
recognizable languages of positive tiles are quasi-recognizable. By using the no-
tion of restricted decomposition monoid (Definition 9) we have eventually ex-
tended to positive tiles classical algebraic techniques that, over words, are used
to simulate existential FO-quantification when letters are modeled by labeled
graph edges. We do believe that a similar technique can be used to prove the
closure under iterated product (Kleene star).
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