
HAL Id: hal-00879463
https://hal.science/hal-00879463

Submitted on 4 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Higher-Dimensional String Theory for the
Modeling of Computerized Systems

David Janin

To cite this version:
David Janin. Towards a Higher-Dimensional String Theory for the Modeling of Computerized Sys-
tems. 40th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), Jan 2014, High Tatras, Slovakia. pp.7-20, �10.1007/978-3-319-04298-5_2�. �hal-00879463�

https://hal.science/hal-00879463
https://hal.archives-ouvertes.fr


LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1477-13

Towards a Higher-Dimensional String Theory for the
Modeling of Computerized Systems

October 2013

David Janin,
LaBRI, IPB, Université de Bordeaux



2



Towards a Higher-Dimensional String Theory for
the Modeling of Computerized Systems

David Janin?

LaBRI, Université de Bordeaux,
351, cours de la libération
F-33405 Talence, FRANCE

janin@labri.fr

Abstract. Recent modeling experiments conducted in computational
music give evidence that a number of concepts, methods and tools be-
longing to inverse semigroup theory can be attuned towards the concrete
modeling of time-sensitive interactive systems. Further theoretical devel-
opments show that some related notions of higher-dimensional strings
can be used as a unifying theme across word or tree automata theory. In
this invited paper, we will provide a guided tour of this emerging theory
both as an abstract theory and with a view to concrete applications.

1 Introduction

As Mozart’s character puts it in Milos Forman’s masterpiece Amadeus, opera
was for many years the only medium in which everyone could be talking at the
same time and still manage to understand each other. Today, this has become
common practice in communication networks.

Music theory has been developed empirically down the ages until it achieved
status as a recognized discipline. It now provides us with the means for describing
the underlying mechanisms and subtle interaction between musicians as they
perform, based on complex combinatory rules relating to rhythm, harmony and
melody. Computer science also aims to describe the subtle organization and
treatment of data. It therefore follows that the study of modeling in the field
of music might lead to the discovery of concepts, abstract tools and modeling
principles which are applicable to modern computer engineering.

It is by developing language theoretical models of musical rhythmic struc-
tures that the author of this paper eventually re-discovered inverse semigroup
theory: a part of semigroup theory that has been developed since the 50s. Further
experiments, both in the field of computational music and in the field of formal
language theory, provide evidence that such a theory can be further developed
and attuned towards concrete computer engineering.

The purpose of this paper is to give an overview of these recent experiments
and the underlying emerging ideas, methods and tools.
? CNRS temporary researcher fellow (2013-2014)



Mathematical frameworks for computer science and engineering.
In computer science and, more specifically, software or hardware engineering,

formal methods are mathematically rigorous techniques for the specification, de-
velopment and verification of computerized systems. Based on research fields in
theoretical computer science as varied as type theory, automata and language
theory, logic, these methods have already demonstrated their relevance for in-
creasing the reliability of both software and hardware systems.

For instance, in functional programming, it is now common knowledge that
proof and type theory does provide numerous metaphors and concepts that can
be efficiently used by systems architects and developers. Typed functional lan-
guages such as Haskell or OCAML illustrate how deep mathematical theories
can effectively be attuned towards relevant concepts which may be applied with
ease. A similar observation can be made concerning data-base system design
that now integrates highly usable methods and concepts that are deeply rooted
in model theory.

Mathematical frameworks for interactive system design.
One of the most demanding application areas of automata and formal lan-

guage theories is the domain of interactive system design. These systems are
commonly viewed as state/transition systems, that is automata, and the be-
havior of these systems is commonly represented by the sets of their possible
execution traces; that is, formal languages. A formal method such as event B
[1], whose applicability to industry is clearly demonstrated regards to its use in
automated public transport, is based on state/transition formalisms. With many
features inherited from method B [3], it offers a particularly good example of how
topics as varied as logic, proof theory, automata theory and formal languages
can be combined and shaped towards applications [36].

However, while the mathematical frameworks that are available for func-
tional programming or database design have been considerably and successfully
developed and attuned towards applications over the last decades, the mathe-
matics for interactive system modeling does not yet seem to have reached the
same level of maturity. Since the early 80s, developing what became the theory
of concurrency, many authors promoted the idea of modeling interactive systems
by means of two distinct operators: the sequential composition and the parallel
composition of system behaviors (see e.g. [11, 29]). However, examples of (dis-
tributed) system modeling show that such a distinction does not necessarily fit
the abstraction/refinement methodology that system designers follow.

For instance, at the abstract specification level the well known distributed
algorithm for leader election in a graph (see e.g. [4]) is based upon the successive
execution of two global phases: the construction of a spanning tree followed by
the pruning of that spaning tree. However, at the (distributed) concrete execution
level these two phases overlap in time. Indeed, the pruning phase may start
locally as soon as the spanning tree phase is locally completed. In other words,
when composing two distributed algorithms one “after” the other, a composition
of this type is neither purely parallel nor purely sequential: it is a sort of mixed
product of some higher-dimensional models of spatiotemporal behaviors.

4



Towards a theory of higher dimensional strings.
This raises the question of whether there could be a mathematical theory of

higher-dimensional strings. By describing quasi-crystals in physics [22], Kellen-
donk showed how such strings should be composed.

In one dimension, each string has two ends and, once a convention has been
made on parity, a unique multiplication may be defined, called string concate-
nation, which enables pairs of strings to be multiplied, thereby giving rise to the
structure of a free monoid. In higher dimensions, there is no uniquely defined
way of composing patterns. Kellendonk hits upon the idea of labeling patterns by
selecting two tiles of the pattern: one to play the role of the input and the other
that of output. By using this labeling, a unique composition can be defined. The
resulting semigroup is no longer free but is some kind of inverse semigroup [22,
23].

In music system programming where the time vs space problematic also
appears (see e.g. [14]), similar ideas, also rooted in inverse semigroup theory,
have led to the definition of a higher abstraction layer into which both strings
and streams may be embedded into a single object type: tiled streams [20].
As a result, this new programming layer allows for the combination of both
(sequential) strings and (parallel) streams with a single mixed product: the tiled
product.

By capitalizing on theoretical developments within the general theory of in-
verse semigroups (see [25] for instance) and the associated emerging notion of
higher-dimensional strings [22, 23], we thus aim at developing the idea of an in-
verse semigroup theory for computer science much in the same way that the
development of logic for computer science is advocated in [36].

In this paper, we provide a guided tour of the first experiments conducted in
this direction, both as an abstract theory and with a view to concrete applica-
tions.

2 From partial observations to inverse semigroups

On the footpath of Kellendonk for describing the local structures of quasi-crystals
that leads to the discovery of (a notion of) tiling semigroups [22, 23], we aim here
at illustrating how inverse semigroup structures naturally arise by performing
partial observations of (the local structure of) computerized system behavior
spaces.
Partial observations.

We assume that the behavior of a system can be viewed as the traversal of
a complex space S of all potential behaviors that describe both the way data
are structured in space but also the way they can evolve as time passes. Then,
a partial observation is defined by the observation resulting of an out of time1

traversal of such a space S, that induces some domain of the traversal, together
with the starting point of such a traversal, called the input root, and the end
1 time flows does not matter at that stage

5



point of such a traversal, called the output root. Such a (meta) notion of partial
observation may be depicted as in Figure 1. Of course, the exact nature of a

(Global behaviors space)

•
•

•in •
outA

Fig. 1. A partial observation A

partial observation, that is, the nature of its domain and the associated input
and input roots, depends on the mathematical nature of the space S.

For instance, in the approach of Kellendonk [22], the space S is a quasi-
crystal, that is a collection of distinct tiles that tiles the Euclidian space Rd.
Then, a partial observation is defined as a set T of tiles of S that cover a
connected subset of Rd together with two distinguished tiles I ∈ T and O ∈ T
acting as input and output roots (see [22] and [23] for more details).

In free inverse monoids [32, 30], the space S is defined as the Cayley graph
of the free group FG(A) generated by a given alphabet A. Then, partial obser-
vations are defined as finite connected subgraphs of that Cayley graph with two
distinguished vertices: one for the input root and the other for the output root.

In this case, partial observations are birooted trees, that is, finite directed tree-
shaped graphs with deterministic and co-deterministic A-labeled edges. Exten-
sion with labeled vertices are considered in [18] in connection with tree walking
automata and also in [16] in connection with non deterministic tree automata.

Restricting to linear birooted trees, we obtain what may be called birooted
words, structures that already appear in the 70’s as elements of the monoid of
McAlister [26].
Observation composition.

Two observations A and B can be composed in a two step procedure defined
by, first, a synchronization that amounts to sewing the output root of A with the
input root of B, followed secondly by a fusion that amounts to merging the sub-
domains that may overlap. Such a (meta) notion of composition of observations
can be depicted as in Figure 2.

•
•

•in A •
••

out
B

outA/inB

Fig. 2. The product A · B of two partial observations A and B

In many settings, the fusion operation may fail hence, apriori, the product of
two observations is a partial product. In such a case, it is completed by adding an

6



undefined observation, denoted by 0, that simply acts as zero, i.e. A·0 = 0 = 0·A
for every observation A. It is an easy exercise to check that such a zero element
is necessarily unique and idempotent, i.e. 0 · 0 = 0.

It may also be the case that the structure of observations allows for the
definition of a special element, the unit, denoted by 1, that is neutral for the
product, i.e. A · 1 = A = 1 · A for every observation A. It is an easy exercise to
check that, necessarily, such a neutral element is also unique and idempotent.
The semigroup/monoid of partial observations.

In general, nothing guarantees that such a product is associative so we simply
assume this, that is, we assume that (A ·B) ·C = A ·(B ·C) for every observation
A, B and C. Though simple, let us insists on the fact that associativity is the
first key property for a robust and usable implementation for it means that a
complex product can be specified and computed in any order.

In algebra, the resulting structure is known as a semigroup. In the case there
is also a unit, it is a monoid.

Without any further assumptions, two special observations can already be
defined out of a given one. Indeed, given an observation A, we may also consider
the observation AR, called the reset or right projection of A, defined by moving
the output root to the input root, and, symmetrically, the observation AL, called
the co-reset or left projection of A, defined by moving the input to the output
root. The resulting observations are depicted in Figure 3. We observe that the

•
•

•in •
out

AR

•
•

•in •
outA •

•• in•
outAL

Fig. 3. The reset and co-reset operators

mapping A 7→ AL and A 7→ AR are indeed projection since, for every observation
A, we have (AL)L = AL = (AL)R and (AR)L = AR = (AR)R. The left and right
projection are extended to zero by taking 0L = 0 = 0R. It is then possible
to define two derived operators, called fork and join, by fork(A, B) = AR · B
and join(A, B) = A · BL. These derived operators are depicted in Figure 4.

•
•

•in AR

•
•

•in
•

out
B •

•
•in A

•
••

out
BL

Fig. 4. The fork and join derived operators

Interpreting for a while the paths from input to output roots as time flows, in
the fork operation, everything looks as if the two observations “start” at the

7



same “time” in their input roots. Similarly, in the join operation, it looks as if
the two observations “end” at the same “time” in their output roots.

More generally, at the abstract syntactic level, the composition A · B of two
successive observations A and B, actually admits, at the concrete model level,
some parallel flavored characteristics induced by the possible overlaps that may
arise in the resulting structure. In other words, everything looks as if the ob-
servation product we are defining here at some meta level is a good candidate
for the mixed sequential and parallel operator we are looking for as mentioned
above.
Example. In computational music, such an approach is already used as follows.
Every finite audio stream is enriched with input and output synchronization
marks that, when mixing two streams, allows for automatically positioning them
in time, one with respect to the other. Doing so, synchronization specifications
have thus been internalized in some sense into the audio streams themselves,
much like music bars in a music score. The resulting algebra [2], with product,
left and right projections, and some other operators acting on tempos, provides
a fairly robust and versatile language for music composition. Further implemen-
tation experiments have been conducted in [21].
Product by synchronized superposition.

In the concrete inverse semigroups mentioned above, the definition of the
product of two partial observations can be refined as follows:

Definition 1. The product A ·B of two observations A and B is defined to be
the observation C (assumed to be uniquely defined up to isomorphism when it
exists) such that there exist two embeddings ϕA : A → C and ϕB : B → C so
that:

– the input root of A (resp. the output root of B) is mapped to the input root
(resp. the output root) of C,

– the output root of A and the input root of B are mapped to the same image,
– the domain of C is the union of the domains of ϕA(A) and ϕB(B),

the product being completed by zero when no such observation C exists.

Remark. In other words, in that case, everything looks as if the product A · B
is performed by translating the two observations A and B in such a way that
their output and input root coincide. Then, the fusion just amounts to checking
that the resulting overlapping subdomains are isomorphic.

More generally, Stephen’s representation theorem of inverse semigroups [34]
tells that every elements of every inverse semigroup have a graphical representa-
tions. In view of applications, this fact that is of high interest. However, it may
be the case that the product induces a graph composition that does not fit the
above definition.

In other words, the informal point of view that has been previously given is
still worthy of being kept in mind when looking for new instances of models of
partial observations and the related compositions.

8



Resulting idempotents (system states).
When the observation product is defined by synchronized superposition, as

well as with Stephen graphical representation of inverse semigroups, and prob-
ably in many other settings still to be defined and studied, elements for which
the input and output root coincide plays an especially important rôle.

In a context even more general than inverse semigroups as shown in the next
section, these elements are be called subunits. By definition, both the left and
right projection AL and AR of an arbitrary observation A, are subunits.

The fact is that subunits are both idempotent and commute, that is, for every
elements E and F with identical input and output roots, we have E · E = E
and E · F = F ·E. They can thus be partially ordered as follows. For every two
subunit observation E and F , we say that E is smaller than F , which is written
E ≤ F , when E = E · F .

One can easily check that this indeed defines a partial order relation, that is,
a reflexive, transitive and antisymmetric relation. Moreover, the meet E ∧ F of
every two subunits E and F , that is the greatest subunit below both E and F ,
exists and can simply be computed by E ∧ F = E · F . Such an order relation is
called the natural order for it can be defined within the semigroup itself [31].
Example. Potential application oriented views of such an order relation are
numerous. For instance, one may view every subunit as the partial description
of the state of the modeled system. The underlying domain of a subunit E tels
how far in the past, in the future and also in the present time the system has
been observed in E.

Then, the natural order tells us how wide such an observation is: the wider the
observation is, the lower it is in the natural order, until it becomes incoherent. In-
deed, the lowest subunit is zero. Then, the product of two partial states/subunit
observations simply describes the union of the descriptions associated with these
two partial states.

Quite strikingly, as recently observed by Dominique Méry and the author,
when observations are viewed as models of behaviors, realizing a system that
goes from a state specification S0 to a state specification S1 amount to finding
a system behavior X such that 0 < (S0 ·X)L ≤ S1. Some modeling experiments
of similar ideas have been conducted in [6].
The inverse semigroup of partial observations.

The inverse semigroup of observations arises when we assume, as is the case
with the product by superposition, that, for every observation A, the observation
A−1 obtained just by inverting the input and the output root of the observation
A, as depicted in Figure 5, satisfies the following properties:

A ·A−1 ·A = A and A−1 ·A ·A−1 = A−1 (1)

for every observation A, and,

A ·A−1 ·B ·B−1 = B ·B−1 ·A ·A−1 (2)

for every observation A and B.

9



In semigroup theoretical terms, Property (1) says that elements A and A−1

are semigroup inverses one with respect to the other. Property (2) says that
the resulting idempotent elements of the form A · A−1 commute. Indeed, by

•
•

•in •
outA •

•• in
•

out
A−1

Fig. 5. An observation and its inverse

associativity, we have (A · A−1) · (A · A−1) = (A · A−1 · A) · A−1 hence, by
applying Property (1), we have (A · A−1) · (A · A−1) = A · A−1. Then we also
have AR = A · A−1 and AL = A−1 · A, as depicted in Figure 6. Even more, we
have AR ·A = A = A ·AL, i.e. these projections are (the least) local units of the
observation A. Forming an inverse semigroup, the natural order on observations

•
•

•in •
out

A · A−1
•

•
•in •

outA •
•• in•

outA−1 · A

Fig. 6. Inverses and left and right projections

is extended to all semigroup elements by letting A ≤ B when A = AR · B or,
equivalently, A = B · AL. This order relation is depicted in Figure 7. One can
easily check that the natural order is stable under product, i.e. if A ≤ B then
A·C ≤ B ·C and C ·A ≤ C ·B for every observations A, B and C. In the concrete
cases mentioned so far, we even have A ≤ B when there exists an embedding
ϕ : B → A that preserves input and output roots. Let us mentioned that many

•
•

•in •
outA ≤ •

•
•in •

outB

Fig. 7. The natural order

other properties of inverse semigroups can be found in [25] that provide a much
deeper (and precise) description of such a peculiarly rich theory.
Remark. It may be the case that the partial observations described so far are
defined on a structure space that forces input root and output root to be ordered,
the input root always preceding or being equal to the output roots, as this can
be the case with positive birooted words studied in [17] or positive birooted trees
that are known to be the elements of the free ample monoids [10].

10



The resulting semigroups are no longer inverse semigroups for inverses them-
selves are not elements of these semigroups. However, these semigroups are quasi-
inverse in some sense: the natural order and the left and right projections are
still available.

It must mentioned that, since the late 70s in semigroups theory, Fountain
et al. have develop a theory of semigroups with local units (see [9, 24, 12, 5]),
quasi-inverse in the above sense, which underlying concepts are of high interest
for developing a language theory of higher-dimensional strings as in the next
section.

3 On languages of higher-dimensional strings

In view of applications to computer science, there is a need for a language the-
ory for observations. Indeed, when specifying the expected behavior of a system
one generally describes some characteristic properties of its correct behavior. In
general, especially in the context of an abstraction/refinement designed method,
there is no reason for such specifications to characterize a single possible be-
havior. In this section, we thus aim at defining adequate algebraic tools for a
language theory of observations.
Recognizability and logic: the classical approaches.

In the absence of concrete structures, as it is the case in the general and ab-
stract setting described here, algebraic recognizability is a major tool for defining
languages, that is, subsets of peculiar semigroups or monoids.

More precisely, a mapping ϕ : S → T from a semigroup S to a semigroup T is
a semigroup morphism when ϕ(x · y) = ϕ(x) ·ϕ(y) for every x and y ∈ S. When
both S and T are monoid, the semigroup morphism ϕ is a monoid morphism
when ϕ(1) = 1. A subset L ⊆ S of a semigroup S (resp. monoid S) is said to
be recognizable by a semigroup (resp. monoid) T when there exists a semigroup
(resp. monoid) morphism such that X = ϕ−1(ϕ(X)).

In the case of languages of words, that is subsets of the free monoid, the
algebraic notion of recognizability does coincide with the notion of recognizability
by finite state automata.

Indeed, given a morphism ϕ : A∗ → S with finite monoid S, one can define the
automaton AS with set of state S, initial state 1, and deterministic transition
s

a→ t whenever s · ϕ(a) = t. Then, for every X ⊆ S, the language ϕ−1(X)
exactly correspond to the language of words recognized by the automaton AS

with accepting states X. Incidentally, this observation also gives a fairly efficient
way to compute ϕ(w) for every w ∈ A∗ given as input.

However, if we restrict target semigroups to be inverse as in [27], or if we
consider languages of free inverse monoids as in [33], besides the inherent interest
of the results established in these studies, the notion of recognizability by or even
from inverse semigroups collapses. Indeed, when logical definability in monadic
second order (MSO) logic [35] is available, as with birooted words [17] or birooted
trees [16], the languages that are recognizable by means of finite monoids and

11



morphisms are far simpler than the languages definable by means of an MSO
formula (see [17, 33, 16]).

This comes from the fact that the direct image of an inverse semigroup by a
semigroup morphism is an inverse semigroup hence the automaton AS defined
above is of a very special kind: it is reversible in some sense.
Relaxing morphisms into premorphisms.

A remedy to the above mentioned collapse is based on the fact that inverse
monoids are partially ordered by means of their natural order. Then, we can relax
the morphism condition into the following condition. A mapping ϕ : S → T from
one partially ordered monoid S in a partially ordered monoid T is a premorphism
(or ∨-premorphism in [13]) when ϕ(x · y) ≤ ϕ(x) · ϕ(y) for every x and y ∈ S
with ϕ(1) = 1.

Then, as with morphisms, it is tempting to define recognizability by partially
ordered monoid via premorphism ϕ : S → T . However, premorphism condition
alone is too weak. It can be shown that there are premorphisms from finitely
generated inverse monoids into finite monoids that are even not computable [15].
The difficulty thus lies in defining an adequate restriction of both premorphisms
and partially ordered monoids that induces a notion of recognizability that is
both sufficiently expressive and still computable.

Our proposal is based on the fact that, in a finitely generated inverse monoid
such as monoids of birooted words [19] or monoids of birooted trees [16], every
element can be defined out from the finite generators, a notion of disjoint product
and left and right projections. In other words, neither arbitrary product nor
inverses themselves are needed to generate these monoids.
Remark. Though premorphisms have been known and used for quite some time
in inverse semigroup theory [28], it seems that their use for language recogniz-
ability has been first proposed by the author himself in [15].
Adequate monoids and premorphism.

The recognizers we use instead of semigroups (or monoids) are adequately or-
dered monoids. Following the research track initiated by Fountain, our proposal
is based on ordered monoids that are quasi-inverse in the sense that, though
without inverses themselves, these monoids are still equipped with left and right
projection that behaves like xx−1 and x−1x.

Definition 2. A partially ordered monoid is a monoid S equipped with a stable
partial order relation ≤, that is, for every x, y and z ∈ S, if x ≤ y then xz ≤ yz
and zx ≤ zy. Then, an adequately ordered monoid is a partially ordered monoid
so that, for every element x ∈ S:

– if x ≤ 1 then xx = x, i.e. subunits are idempotent,
– both xL = min{z ≤ 1 : xz = x} and xR = min{z ≤ 1 : zx = x} exist.

It is an easy exercice to check that, by stability, subunits also commute and, or-
dered by the order relation, form a meet semi-lattice with product as meet. When
S is finite, subunits even form a complete lattice which suffices to guarantee the
existence of left and the right projections.

12



Examples. Every monoid S, trivially ordered with a new leaset element zero, is
an adequately ordered monoid with projections xL = 1 = xR for every x ∈ S.
Also, as already observed, every inverse semigroup S is adequately ordered by
the natural order with xL = x−1x and xR = xx−1 for every x ∈ S. The monoid
P(Q × Q) of relations over a set Q and ordered by relation inclusion is also
adequately ordered.

The notion of observation disjoint product, though defined in a quite adhoc
way in each concrete settings, essentially amounts to saying that the product A·B
of two observations A and B is disjoint when it is non zero and the intersection
of (the embedding of) their domains in the resulting product is limited to the
output root of A that has been sewn with the input root of B. An example of a
disjoint product of this type is depicted in Figure 8.

•
•

•in A •
••

out
B

Fig. 8. Disjoint product of two observations

Definition 3. A adequate premorphism is a premorphism ϕ : S → T from a
given concrete monoid S of observations into an adequately ordered monoid T
such that:
– if A ≤ B then ϕ(A) ≤ ϕ(B),
– ϕ(AL) = (ϕ(A))L and ϕ(AR) = (ϕ(A))R,
– if the product A ·B is disjoint then ϕ(A ·B) = ϕ(A) · ϕ(B).

for every observations A and B ∈ S.

Remark. An immediate consequence of such a definition is that in the case ob-
servations can be generated from a finite set of elementary observations, disjoint
products and left and right projections, i.e. every observations admits a good
representations, then the image ϕ(A) by any adequate premorphism ϕ into a
finite adequately ordered monoid is computable in linear time in the size of the
good representations. This happens with birooted words or trees [15, 16].
Quasi-recognizability.

We are now ready to define quasi-recognizability, that is, recognizability by
adequate premorphisms and ordered monoids.

Definition 4. A language L ⊆ S − 0 is quasi-recognizable when there is an
adequate premorphism ϕ : S → T from S to a finite adequately ordered monoid
T such that L = ϕ−1(ϕ(L)).

Such an extension of language recognizability has been proposed in [17] and
studied further in [19] and [16]. It happens that it is quite robust in the sense
that, in the studied case of birooted words and birooted trees where definability
in MSO is available, we prove that:

13



Theorem 5 (see [19, 16]). When S is the concrete monoid of birooted words
or (labeled) birooted trees, a language L ⊆ S is quasi-recognizable if and only if
it is a finite boolean combination of upward closed MSO definable languages.

Proving these results is achieved via a fairly simple extension of the notion of
finite state non deterministic automata to birooted structures. These finite state
automata are shown to characterize MSO definable upward closed languages or,
equivalently, upward closed quasi-recognizable languages.

Generalized to languages, finding a set X of possible behaviors from a set
of initial state S0 to a set of possible final state S1 amounts still to solving an
inequality of the form 0 ⊂ (S1 ·X)L ≤ S1 with product and projections extended
in a point wise manner.
Remark. It must be mentioned that walking automata on trees also induce
premorphisms that must satisfy certain kinds of (greatest fixpoint) equations
that, in turn, make the premorphism (simply) computable [18].

Quite interestingly, these premorphisms do not preserve disjoint products
but, instead, some extension of the well known notion of restricted products in
inverse semigroup theory. Since the theory of recognizability by premorphisms
is still in its infancy, it may be the case that this fixpoint approach could well
be much more fruitful than the one presented here.

4 Conclusion

It shall be clear that the higher-dimensional string theory proposed here is still in
its early stages of development. Further studies are currently conducted towards
deeper modeling experiments, extension to infinite structures [7] and towards
developing the underlying algebraic tools [8].

For instance, our logical characterization stated above ensures that the quasi-
recognizable languages of positive birooted words or trees are closed under prod-
uct or iterated product. Yet, providing direct algebraic or automata theoretic
proof of these facts has been surprisingly difficult [8]. This means that the al-
gebraic setting that is proposed here needs to be understood in a much greater
depth.

More generally, every mathematical framework that can be used in computer
science can be seen as a spotlight that helps us understanding the nature of the
objects computer science and engineering may handle. The various experiments
and theoretical developments that have been sketched in this paper tend to prove
that inverse semigroup theory may provide, in the long term, an especially bright
light for such a purpose.

Acknowledgment

Developing a trans-disciplinary research program that also aims at achieving
advances in each of the specific research fields that are covered would probably
be simply impossible without the support, encouragement and knowledge of true

14



experts in the covered fields. The author wishes to express his deepest gratitude
to all those he has had the pleasure of meeting and discussing questions with
during the last two years.

More specifically, to name but a few, grateful thanks to Myriam DeSainte-
Catherine, Florent Berthaut, Jean-Louis Giavitto and Yann Orlarey in the field
of Computational Music, Marc Zeitoun, Victoria Gould, Mark Lawson and Syl-
vain Lombardy in the field of Semigroup Theory, Anne Dicky and Dominique
Méry in the field of Formal methods, Sylvain Salvati and Paul Hudak in the field
of Typed Functional Programming, and, last, Lucy Edwards for her invaluable
knowledge of the English language itself.

The pleasure and honor the author felt when being kindly invited by Professor
Viliam Geffert to give a lecture at SOFSEM 2014 in the beautiful landscape of
the High Tatras in Winter is to be shared with all of them.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Berthaut, F., Janin, D., Martin, B.: Advanced synchronization of audio or sym-
bolic musical patterns: an algebraic approach. International Journal of Semantic
Computing 6(4) (2012) 409–427

3. Cansell, D., Méry, D.: Foundations of the B method. Computers and Informatics
22 (2003)

4. Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based
on mazurkiewicz’s algorithm. Fundam. Inform. 80(1-3) (2007) 221–246

5. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial ac-
tions. Journal of Pure and Applied Algebra 216 (2012) 935–949

6. Dicky, A., Janin, D.: Modélisation algébrique du diner des philosophes. In: Modéli-
sation des Systèmes Réactifs (MSR), in Journal Européen des Systèmes Automa-
tisés (JESA Volume 47 - no 1-2-3/2013). (november 2013)

7. Dicky, A., Janin, D.: Embedding finite and infinite words into overlapping tiles.
Technical report, LaBRI, Université de Bordeaux (October 2013)

8. Dubourg, E., Janin, D.: Algebraic tools for the overlapping tile product. Technical
report, LaBRI, Université de Bordeaux (October 2013)

9. Fountain, J.: Right PP monoids with central idempotents. Semigroup Forum 13
(1977) 229–237

10. Fountain, J., Gomes, G., Gould, V.: The free ample monoid. Int. Jour. of Algebra
and Computation 19 (2009) 527–554

11. Hoare, C.: Communicating Sequential Processing. Prentice-Hall International
Series in Computer Science. Prentice-Hall International (1985)

12. Hollings, C.D.: From right PP monoids to restriction semigroups: a survey. Euro-
pean Journal of Pure and Applied Mathematics 2(1) (2009) 21–57

13. Hollings, C.D.: The Ehresmann-Schein-Nambooripad Theorem and its successors.
European Journal of Pure and Applied Mathematics 5(4) (2012) 414–450

14. Hudak, P.: A sound and complete axiomatization of polymorphic temporal me-
dia. Technical Report RR-1259, Department of Computer Science, Yale University
(2008)

15



15. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional
overlapping tiles. In: Mathematical Found. of Comp. Science (MFCS). Volume
7464 of LNCS. (2012) 516–528

16. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees.
In: Int. Col. on Aut., Lang. and Programming (ICALP). Volume 7966 of LNCS.,
Springer (2013) 318–329

17. Janin, D.: On languages of one-dimensional overlapping tiles. In: Int. Conf. on
Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM). Volume 7741
of LNCS. (2013) 244–256

18. Janin, D.: Overlaping tile automata. In: 8th International Computer Science
Symposium in Russia (CSR). Volume 7913 of LNCS., Springer (2013) 431–443

19. Janin, D.: Walking automata in the free inverse monoid. Technical Report RR-
1464-12, LaBRI, Université de Bordeaux (2013)

20. Janin, D., Berthaut, F., DeSainte-Catherine, M., Orlarey, Y., Salvati, S.: The
T-calculus : towards a structured programming of (musical) time and space. In:
Workshop on Functional Art, Music, Modeling and Design (FARM), ACM Press
(2013)

21. Janin, D., Berthaut, F., DeSainteCatherine, M.: Multi-scale design of interactive
music systems : the libTuiles experiment. In: Sound and Music Computing (SMC).
(2013)

22. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants.
Comm. Math. Phys. 187 (1997) 115–157

23. Kellendonk, J., Lawson, M.V.: Tiling semigroups. Journal of Algebra 224(1)
(2000) 140 – 150

24. Lawson, M.V.: Semigroups and ordered categories. I. the reduced case. Journal of
Algebra 141(2) (1991) 422 – 462

25. Lawson, M.V.: Inverse Semigroups : The theory of partial symmetries. World
Scientific (1998)

26. Lawson, M.V.: McAlister semigroups. Journal of Algebra 202(1) (1998) 276 – 294
27. Margolis, S.W., Pin, J.E.: Languages and inverse semigroups. In: Int. Col. on Aut.,

Lang. and Programming (ICALP). Volume 172 of LNCS., Springer (1984) 337–346
28. McAlister, D., Reilly, N.R.: E-unitary covers for inverse semigroups. Pacific Journal

of Mathematics 68 (1977) 178–206
29. Milner, R.: Communication and concurrency. Prentice-Hall (1989)
30. Munn, W.D.: Free inverse semigroups. Proceeedings of the London Mathematical

Society 29(3) (1974) 385–404
31. Nambooripad, K.S.S.: The natural partial order on a regular semigroup. Proc.

Edinburgh Math. Soc. 23 (1980) 249Ű260
32. Scheiblich, H.E.: Free inverse semigroups. Semigroup Forum 4 (1972) 351–359
33. Silva, P.V.: On free inverse monoid languages. ITA 30(4) (1996) 349–378
34. Stephen, J.: Presentations of inverse monoids. Journal of Pure and Applied Algebra

63 (1990) 81–112
35. Thomas, W.: Chap. 7. Languages, automata, and logic. In: Handbook of Formal

Languages, Vol. III. Springer-Verlag, Berlin Heidelberg (1997) 389–455
36. Thomas, W.: Logic for computer science: The engineering challenge. In Wilhelm,

R., ed.: Informatics - 10 Years Back, 10 Years Ahead. Volume 2000 of LNCS.,
Springer (2001) 257–267

16


