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High-Dimensional p-Norms

Gérard Biau and David M. Mason

Abstract Let X = (X1, . . . ,Xd) be a R
d-valued random vector with i.i.d. compo-

nents, and let ‖X‖p = (∑d
j=1 |X j|p)1/p be its p-norm, for p> 0. The impact of letting

d go to infinity on ‖X‖p has surprising consequences, which may dramatically affect

high-dimensional data processing. This effect is usually referred to as the distance

concentration phenomenon in the computational learning literature. Despite a grow-

ing interest in this important question, previous work has essentially characterized

the problem in terms of numerical experiments and incomplete mathematical state-

ments. In the present paper, we solidify some of the arguments which previously

appeared in the literature and offer new insights into the phenomenon.

1 Introduction

In what follows, for x = (x1, . . . ,xd) a vector of Rd and 0 < p < ∞, we set

‖x‖p =

(
d

∑
j=1

|x j|p
)1/p

. (1)

It is recalled that for p ≥ 1, ‖.‖p is a norm on R
d (the Lp-norm) but for 0 < p < 1,

the triangle inequality does not hold and ‖.‖p is sometimes called a prenorm. In the

sequel, we take the liberty to call p-norm a norm or prenorm of the form (1), with

p > 0.
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Now, let X = (X1, . . . ,Xd) be a R
d-valued random vector with i.i.d. components.

The study of the probabilistic properties of ‖X‖p as the dimension d tends to infin-

ity has recently witnessed an important research effort in the computational learning

community (see, e.g., François et al., 2007, for a review). This activity is easily ex-

plained by the central role played by the quantity ‖X‖p in the analysis of nearest

neighbor search algorithms, which are currently widely used in data management

and database mining. Indeed, finding the closest matching object in an Lp-sense is

of significant importance for numerous applications, including pattern recognition,

multimedia content retrieving (images, videos, etc.), data mining, fraud detection

and DNA sequence analysis, just to name a few. Most of these real applications in-

volve very high-dimensional data (for example, pictures taken by a standard camera

consist of several million pixels) and the curse of dimensionality (when d → ∞)

tends to be a major obstacle in the development of nearest neighbor-based tech-

niques.

The effect on ‖X‖p of letting d go large is usually referred to as the distance con-

centration phenomenon in the computational learning literature. It is in fact a quite

vague term that encompasses several interpretations. For example, it has been ob-

served by several authors (e.g., François et al., 2007) that, under appropriate moment

assumptions, the so-called relative standard deviation
√

Var‖X‖p/E‖X‖p tends to

zero as d tends to infinity. Consequently, by Chebyshev’s inequality (this will be

rigorously established in Section 2), for all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p

− 1

∣∣∣∣≥ ε

}
→ 0, as d → ∞.

This simple result reveals that the relative error made as considering E‖X‖p in-

stead of the random value ‖X‖p becomes asymptotically negligible. Therefore,

high-dimensional vectors X appear to be distributed on a sphere of radius E‖X‖p.

The distance concentration phenomenon is also often expressed by considering

an i.i.d. X sample X1, . . . ,Xn and observing that, under certain conditions, the rela-

tive contrast
max1≤i≤n‖Xi‖p −min1≤i≤n‖Xi‖p

min1≤i≤n‖Xi‖p

vanishes in probability as d tends to infinity, whereas the contrast

max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

behaves in expectation as d1/p−1/2 (Beyer et al., 1999; Hinneburg et al., 2000; Ag-

garwal et al., 2001; Kabán, 2012). Thus, assuming that the query point is located at

the origin, the ratio between the largest and smallest p-distances from the sample to

the query point becomes negligible as the dimension increases, and all points seem

to be located at approximately the same distance from the origin. This phenomenon

may dramatically affect high-dimensional data processing, analysis, retrieval and in-

dexing, insofar these procedures rely on some notion of p-norm. Accordingly, seri-

ous questions are raised as to the validity of many nearest neighbor search heuristics
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in high dimension, a problem that can be further exacerbated by techniques that find

approximate neighbors in order to improve algorithmic performance (Beyer et al.,

1999).

Even if people have now a better understanding of the distance concentration

phenomenon and its practical implications, it is however our belief that there is still

a serious need to solidify its mathematical background. Indeed, previous work has

essentially characterized the problem in terms of numerical experiments and (often)

incomplete probabilistic statements, with missing assumptions and (sometimes) de-

fective proofs. Thus, our objective in the present paper is to solidify some of the

statements which previously appeared in the computational learning literature. We

start in Section 2 by offering a thorough analysis of the behavior of the p-norm

‖X‖p (as a function of p and the properties of the distribution of X) as d → ∞.

Section 3 is devoted to the investigation of some new asymptotic properties of the

contrast max1≤i≤n ‖Xi‖p−min1≤i≤n ‖Xi‖p, both as d → ∞ and n → ∞. For the sake

of clarity, most technical proofs are gathered in Section 4.

2 Asymptotic behavior of p-norms

2.1 Consistency

Throughout the document, the notation
P→ and

D→ stand for convergence in probabil-

ity and in distribution, respectively. The notation un = o(vn) and un = O(vn) mean,

respectively, that un/vn → 0 and un ≤ Cvn for some constant C, as n → ∞. The

symbols oP(vn) and OP(vn) denote, respectively, a sequence of random variables

{Yn}n≥1 such that Yn/vn
P→ 0 and Yn/vn is bounded in probability, as n → ∞.

We start this section with a general proposition that plays a key role in the anal-

ysis.

Proposition 1. Let {Ud}d≥1 be a sequence of random variables such that Ud
P→ a,

and let ϕ be a real-valued measurable function which is continuous at a. Assume

that:

(i) ϕ is bounded on [−M,M] for some M > |a|;
(ii) E|ϕ(Ud)|< ∞ for all d ≥ 1.

Then, as d → ∞,

Eϕ(Ud)→ ϕ(a)

if and only if

E(ϕ (Ud)1{|Ud |> M})→ 0. (2)

Proof. The proof is easy. Condition (i) and continuity of ϕ at a allow us to apply

the bounded convergence theorem to get

E(ϕ(Ud)1{|Ud | ≤ M})→ ϕ(a).
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Since

Eϕ(Ud) = E(ϕ(Ud)1{|Ud| ≤ M})+E(ϕ(Ud)1{|Ud |> M}) ,

the rest of the proof is obvious. ⊓⊔

We shall now specialize the result of Proposition 1 to the case when

Ud = d−1
d

∑
j=1

Yj := Y d ,

where {Yj} j≥1 is a sequence of i.i.d. Y random variables with finite mean µ . In

this case, by the strong law of large numbers, Ud → µ almost surely. The following

lemma gives two sufficient conditions for (2) to hold when Ud = Y d .

Lemma 1. let ϕ be a real-valued measurable function. Assume that one of the fol-

lowing two conditions is satisfied:

Condition 1 The function |ϕ | is convex on R and E|ϕ(Y )|< ∞.

Condition 2 For some s > 1,

limsup
d→∞

E
∣∣ϕ(Y d)

∣∣s < ∞.

Then (2) is satisfied for the sequence {Y d}d≥1 with a = µ and M > |µ |.

Proof. Suppose that Condition 1 is satisfied. Then note that by the convexity as-

sumption

E
(∣∣ϕ(Y d)

∣∣1
{
|Y d |> M

})
≤ d−1

d

∑
j=1

E
(∣∣ϕ(Yj)

∣∣1
{
|Y d |> M

})

= E
(
|ϕ(Y )|1

{
|Y d |> M

})
.

Since M > |µ |, we conclude that with probability one, |ϕ(Y )|1{|Y d | > M} → 0.

Also |ϕ(Y )|1{|Y d |> M} ≤ |ϕ(Y )|. Therefore, by the dominated convergence theo-

rem, (2) holds.

Next, notice by Hölder’s inequality with 1/r = 1− 1/s that

E
(∣∣ϕ(Y d)

∣∣1
{
|Y d |> M

})
≤
(
E
∣∣ϕ(Y d)

∣∣s)1/s (
P
{
|Y d |> M

})1/r
.

Since P{|Y d |> M}→ 0, (2) immediately follows from Condition 2. ⊓⊔

Let us now return to the distance concentration problem, which has been dis-

cussed in the introduction. Recall that we denote by X = (X1, . . . ,Xd) a R
d-valued

random vector with i.i.d. X components. Whenever for p > 0 E|X |p < ∞, we set

µp = E|X |p. Also when Var|X |p < ∞, we shall write σ2
p = Var|X |p. Proposition 1

and Lemma 1 yield the following corollary:
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Corollary 1. Fix p > 0 and r > 0.

(i) Whenever r/p < 1 and E|X |p < ∞,

E‖X‖r
p

dr/p
→ µ

r/p
p , as d → ∞,

whereas if E|X |p = ∞, then

lim
d→∞

E‖X‖r
p

dr/p
= ∞.

(ii) Whenever r/p ≥ 1 and E|X |r < ∞,

E‖X‖r
p

dr/p
→ µ

r/p
p , as d → ∞,

whereas if E|X |r = ∞, then, for all d ≥ 1,

E‖X‖r
p

dr/p
= ∞.

Proof. We shall apply Proposition 1 and Lemma 1 to Y = |X |p, Yj = |X j|p, j ≥ 1,

and ϕ(u) = |u|r/p.

Proof of (i)

For the first part of (i), notice that with s = p/r > 1

E

∣∣∣∣∣ϕ
(

∑d
j=1 |X j|p

d

)∣∣∣∣∣

s

=
∑d

j=1E|X j|p
d

= E|X |p < ∞.

This shows that sufficient Condition 2 of Lemma 1 holds, which by Proposition 1

gives the result.

For the second part of (i) observe that for any K > 0

E

(
∑d

j=1 |X j|p
d

)r/p

≥ E

(
∑d

j=1 |X j|p1
{
|X j| ≤ K

}

d

)r/p

.

Observing that the right-hand side of the inequality converges to (E|X |p1{|X | ≤
K})r/p as d → ∞, we get for any K > 0

liminf
d→∞

E

(
∑d

j=1 |X j|p
d

)r/p

≥ E(|X |p1{|X | ≤ K})r/p .
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Since K can be chosen arbitrarily large and we assume that E|X |p = ∞, we see that

the conclusion holds.

Proof of (ii)

For the first part of (ii), note that in this case r/p ≥ 1, so ϕ is convex. Moreover,

note that

E

∣∣∣∣∣ϕ
(

∑d
j=1 |X j|p

d

)∣∣∣∣∣= E

(
∑d

j=1 |X j|p
d

)r/p

≤ d−1
E|X |r

(by Jensen’s inequality)

< ∞.

Thus sufficient Condition 1 of Lemma 1 holds, which by Proposition 1 leads to the

result.

For the second part of (ii), observe that if E|X |r = ∞, then, for all d ≥ 1,

E

(
∑d

j=1 |X j|p
d

)r/p

≥ d−r/p
E|X |r = ∞.

⊓⊔

Applying Corollary 1 with p > 0 and r = 2 yields the following important result:

Proposition 2. Fix p > 0 and assume that 0 <E|X |m < ∞ for m = max(2, p). Then,

as d → ∞,
E‖X‖p

d1/p
→ µ

1/p
p

and
E‖X‖2

p

d2/p
→ µ

2/p
p ,

which implies √
Var‖X‖p

E‖X‖p

→ 0, as d → ∞.

This result, when correctly stated, corresponds to Theorem 5 of François et al.

(2007). It expresses the fact that the relative standard deviation converges towards

zero when the dimension grows. It is known in the computational learning literature

as the p-norm concentration in high-dimensional spaces. It is noteworthy that, by

Chebyshev’s inequality, for all ε > 0,
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P

{∣∣∣∣
‖X‖p

E‖X‖p

− 1

∣∣∣∣≥ ε

}
= P

{∣∣‖X‖p −E‖X‖p

∣∣≥ εE‖X‖p

}

≤ Var‖X‖p

ε2E2‖X‖p

→ 0, as d → ∞. (3)

That is, ‖X‖p/E‖X‖p
P→ 1 or, in other words, the sequence {‖X‖p}d≥1 is relatively

stable (Boucheron et al., 2013). This property guarantees that the random fluctua-

tions of ‖X‖p around its expectation are of negligible size when compared to the ex-

pectation, and therefore most information about the size of ‖X‖p is given by E‖X‖p

as d becomes large.

2.2 Rates of convergence

The asymptotic concentration statement of Corollary 1 can be made more precise

by means of rates of convergence, at the price of stronger moment assumptions.

To reach this objective, we first need a general result to control the behavior of a

function of an i.i.d. empirical mean around its true value. Thus, assume that {Yj} j≥1

are i.i.d. Y with mean µ and variance σ2. As before, we define

Y d = d−1
d

∑
j=1

Yj.

Let ϕ be a real-valued function with derivatives ϕ ′ and ϕ ′′. Khan (2004) provides

sufficient conditions for

Eϕ(Y d) = ϕ(µ)+
ϕ ′′(µ)σ2

2d
+ o(d−2)

to hold. The following lemma, whose assumptions are less restrictive, can be used

in place of Khan’s result (2004). For the sake of clarity, its proof is postponed to

Section 4.

Lemma 2. Let {Yj} j≥1 be a sequence of i.i.d. Y random variables with mean µ and

variance σ2, and ϕ be a real-valued function with continuous derivatives ϕ ′ and ϕ ′′

in a neighborhood of µ . Assume that for some r > 1,

E|Y |r+1 < ∞ (4)

and, with 1/s = 1− 1/r,

limsup
d→∞

E
∣∣ϕ(Y d)

∣∣s < ∞. (5)

Then, as d → ∞,

Eϕ(Y d) = ϕ(µ)+
ϕ ′′(µ)σ2

2d
+ o(d−1).
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The consequences of Lemma 2 in terms of p-norm concentration are summarized

in the following proposition:

Proposition 3. Fix p> 0 and assume that 0<E|X |m <∞ for m=max(4,3p). Then,

as d → ∞,

E‖X‖p = d1/pµ
1/p
p +O(d1/p−1)

and

Var‖X‖p =
µ

2/p−2
p σ2

p

d1−2/pp2
+ o(d−1+2/p),

which implies √
d Var‖X‖p

E‖X‖p

→ σp

pµp

, as d → ∞.

Proposition 3 shows that for a fixed large d, the relative standard deviation

evolves with p as the ratio σp/(pµp). For instance, when the distribution of X is

uniform,

µp =
1

p+ 1
and σp =

p

p+ 1

√
1

2p+ 1
.

In that case, we conclude that

√
d Var‖X‖p

E‖X‖p

→
√

1

2p+ 1
.

Thus, in the uniform setting, the limiting relative standard deviation is a strictly

decreasing function of p. This observation is often interpreted by saying that p-

norms are more concentrated for larger values of p. There are however distributions

for which this is not the case. A counterexample is given by a balanced mixture

of two standard Gaussian random variables with mean 1 and −1, respectively (see

François et al., 2007, page 881). In that case, it can be seen that the asymptotic

relative standard deviation with p ≤ 1 is smaller than for values of p ∈ [8,30],
making fractional norms more concentrated.

Proof (Proposition 3). Fix p > 0 and introduce the functions on R

ϕ1(u) = |u|1/p and ϕ2(u) = |u|2/p.

Assume that E|X |max(4,p) < ∞. Applying Corollary 1 we get that, as d → ∞,

E

(
∑d

j=1 |X j|p
d

)2/p

→ µ
2/p
p

and

E

(
∑d

j=1 |X j|p
d

)4/p

→ µ
4/p
p .
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This says that with r = 2 and s = 2, for i = 1,2,

limsup
d→∞

E

∣∣∣∣∣ϕi

(
∑d

j=1 |X j|p
d

)∣∣∣∣∣

s

< ∞.

Now, let Y = |X |p. If we also assume that E|Y |r+1 = E|Y |3 = E|X |3p < ∞, we get

by applying Lemma 2 to ϕ1 and ϕ2 that for i = 1,2

Eϕi(Y d) = ϕi(µp)+
ϕ ′′

i (µp)σ
2
p

2d
+ o(d−1).

Thus, whenever E|X |m < ∞, where m = max(4,3p),

E|Y d |1/p = µ
1/p
p +

1

p

(
1− p

p

)
µ

1/p−2
p σ2

p

2d
+ o(d−1)

and

E|Y d |2/p = µ
2/p
p +

1

p

(
2− p

p

)
µ

2/p−2
p σ2

p

d
+ o
(
d−1
)
.

Therefore, we see that

Var|Y d |1/p = E|Y d |2/p −E
2|Y d |1/p

=
µ

2/p−2
p σ2

p

d p2
+ o
(
d−1
)
.

The identity Y d = d−1 ∑d
j=1 |X j|p yields the desired results. ⊓⊔

We conclude the section with a corollary, which specifies inequality (3).

Corollary 2. Fix p > 0.

(i) If 0 < E|X |m < ∞ for m = max(4,3p), then, for all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p

− 1

∣∣∣∣≥ ε

}
≤

σ2
p

ε2d p2µ2
p

+ o(d−1).

(ii) If for some positive constant C, 0 < |X | ≤C almost surely, then, for p ≥ 1 and

all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p

− 1

∣∣∣∣≥ ε

}
≤ 2exp

(
−ε2d2/p−1µ

2/p
p

2C2
+ o(d2/p−1)

)
.

Proof. Statement (i) is an immediate consequence of Proposition 3 and Cheby-

shev’s inequality. Now, assume that p≥ 1, and let A= [−C,C]. For x=(x1, . . . ,xd)∈
R

d , let g : Ad → R be defined by
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g(x) = ‖x‖p =

(
d

∑
j=1

|x j|p
)1/p

.

Clearly, for each 1 ≤ j ≤ d,

sup
(x1 ,...,xd )∈Ad

x′j∈A

∣∣g(x1, . . . ,xd)− g(x1, . . . ,x j−1,x
′
j,x j+1, . . . ,xd)

∣∣

= sup
x∈Ad,x′j∈A

∣∣‖x‖p−‖x′‖p

∣∣ ,

where x′ is identical to x, except on the j-th coordinate where it takes the value x′j.
It follows, by Minkowski inequality (which is valid here since p ≥ 1), that

sup
(x1 ,...,xd )∈Ad

x′j∈A

∣∣g(x1, . . . ,xd)− g(x1, . . . ,x j−1,x
′
j,x j+1, . . . ,xd)

∣∣

≤ sup
x∈Ad

x′j∈A

‖x− x′‖p

= sup
(x,x′)∈A2

|x− x′| ≤ 2C.

Consequently, using the bounded difference inequality (McDiarmid, 1989), we ob-

tain

P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣≥ ε

}
= P

{∣∣‖X‖p −E‖X‖p

∣∣≥ εE‖X‖p

}

≤ 2exp

(
−2(εE‖X‖p)

2

4dC2

)

= 2exp

(
−ε2d2/p−1µ

2/p
p

2C2
+ o(d2/p−1)

)
,

where, in the last inequality, we used Proposition 3. This concludes the proof. ⊓⊔

3 Minima and maxima

Another important question arising in high-dimensional nearest neighbor search

analysis concerns the relative asymptotic behavior of the minimum and maximum

p-distances to the origin within a random sample. To be precise, let X1, . . . ,Xn be an

i.i.d. X sample, where X = (X1, . . . ,Xd) is as usual a Rd-valued random vector with

i.i.d. X components. We will be primarily interested in this section in the asymp-

totic properties of the difference (the contrast) max1≤i≤n ‖Xi‖p −min1≤i≤d ‖Xi‖p.
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In other words, given a data set and a fixed query point located—without loss of

generality—at the origin, we seek to analyze how much the distances to the farthest

and nearest neighbors differ.

Assume, to start with, that n is fixed and only d is allowed to grow. Then an imme-

diate application of the law of large numbers shows that, whenever µp =E|X |p <∞,

almost surely as d → ∞,

d−1/p

(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
P→ 0.

Moreover, if 0 < µp < ∞, then

max1≤i≤n‖Xi‖p

min1≤i≤n‖Xi‖p

P→ 1.

The above ratio is sometimes called the relative contrast in the computational learn-

ing literature. Thus, as d becomes large, all observations seem to be distributed at

approximately the same p-distance from the query point. The concept of nearest

neighbor (measured by p-norms) in high dimension is therefore less clear than in

small dimension, with resulting computational difficulties and algorithmic ineffi-

ciencies.

These consistency results can be specified by means of asymptotic distributions.

Recall that if Z1, . . . ,Zn are i.i.d standard normal random variables, the sample range

is defined to be

Mn = max
1≤i≤n

Zi − min
1≤i≤n

Zi.

The asymptotic distribution of Mn is well known (see, e.g., David, 1981). Namely,

for any x one has

lim
n→∞

P

{√
2logn

(
Mn − 2

√
2logn+

loglogn+ log4π

2
√

2logn

)
≤ x

}

=

∫ ∞

−∞
exp
(
−t − e−t − e−(x−t)

)
dt.

For future reference, we shall sketch the proof of this fact here. It is well known that

with

an =
√

2logn and bn =
√

2logn− 1

2

(log logn+ log4π)√
2logn

(6)

we have (
an(max

1≤i≤n
Zi − bn),an( min

1≤i≤n
Zi + bn)

)
→ (E,−E ′), (7)

where E and E ′ are independent, E = E ′ and P{E ≤ x} = exp(−exp(−x)), −∞ <
x < ∞. (The asymptotic independence of the maximum and minimum part can be

inferred from Theorem 4.2.8 of Reiss, 1989, and the asymptotic distribution part

from Example 2 on page 71 of Resnick, 1987.) From (7) we get
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an( max
1≤i≤n

Zi − min
1≤i≤n

Zi)− 2anbn
D→ E +E ′.

Clearly,

P{E +E ′ ≤ x}=
∫ ∞

−∞
exp
(
−e−(x−t)

)
exp(−e−t)e−tdt

=

∫ ∞

−∞
exp
(
−t − e−t − e−(x−t)

)
dt.

Our first result treats the case when n is fixed and d → ∞.

Proposition 4. Fix p > 0 and assume that 0 < E|X |p < ∞. Then, for fixed n, as

d → ∞,

d1/2−1/p

(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
D→ σpµ

1/p−1
p

p
Mn.

To our knowledge, this is the first statement of this type in the analysis of high-

dimensional nearest neighbor problems. In fact, most of the existing results merely

bound the asymptotic expectation of the (normalized) difference and ratio between

the max and the min, but with bounds which are unfortunately not of the same order

in n as soon as n ≥ 3 (see, e.g., Theorem 3 in Hinneburg et al., 2000).

One of the consequences of Proposition 4 is that, for fixed n, the difference be-

tween the farthest and nearest neighbors does not necessarily go to zero in probabil-

ity as d tends to infinity. Indeed, we see that the size of

max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

grows as d1/p−1/2. For example, this difference increases with dimensionality as√
d for the L1 (Manhattan) metric and remains stable in distribution for the L2 (Eu-

clidean) metric. It tends to infinity in probability for p < 2 and to zero for p > 2.

This observation is in line with the conclusions of Hinneburg et al. (2000), who ar-

gue that nearest neighbor search in a high-dimensional space tends to be meaning-

less for norms with larger exponents, since the maximum observed distance tends

towards the minimum one. It should be noted, however, that the variance of the

limiting distribution depends on the value of p.

Remark 1. Let Z1, . . . ,Zn be i.i.d standard normal random variables, and let

Rn =
max1≤i≤n Zi

min1≤i≤n Zi

.

Assuming µp > 0, one can prove, using the same technique, that

max1≤i≤n‖Xi‖p − d1/pµp

min1≤i≤n‖Xi‖p − d1/pµp

D→ Rn.
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Proof (Proposition 4). Denote by Zn a centered Gaussian random vector in R
n, with

identity covariance matrix. By the central limit theorem, as d → ∞,

√
d

[(‖X1‖p
p

d
, . . . ,

‖Xn‖p
p

d

)
− (µp, . . . ,µp)

]
D→ σpZn.

Applying the delta method with the mapping f (x1, . . . ,xn) = (x
1/p

1 , . . . ,x
1/p
n ) (which

is differentiable at (µp, . . . ,µp) since µp > 0), we obtain

√
d

[(‖X1‖p

d1/p
, . . . ,

‖Xn‖p

d1/p

)
− (µ

1/p
p , . . . ,µ

1/p
p )

]
D→ σpµ

1/p−1
p

p
Zn.

Thus, by continuity of the maximum and minimum functions,

d1/2−1/p

(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
D→ σpµ

1/p−1
p

p
Mn.

⊓⊔

In the previous analysis, n (the sample size) was fixed whereas d (the dimension)

was allowed to grow to infinity. A natural question that arises concerns the impact of

letting n be a function of d such that n tends to infinity as d → ∞ (Mallows, 1972).

Proposition 5 below offers a first answer.

Proposition 5. Fix p ≥ 1, and assume that 0 < E|X |3p < ∞ and σp > 0. For any

sequence of positive integers {n(d)}d≥1 converging to infinity and satisfying

n(d) = o

(
d1/5

log6/5 d

)
, as d → ∞, (8)

we have

pan(d)d
1/2−1/p

µ
1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p − min

1≤i≤n(d)
‖Xi‖p

)
−2an(d)bn(d)

D→E +E ′,

where an and bn are as in (6), and E and E ′ are as in (7).

Proof. In the following, we let δ (d) = 1/ logd. For future use note that

δ 2(d) logn(d)→ 0 and
n5(d)

dδ 6(d)
→ 0, as d → ∞. (9)

In the proof we shall often suppress the dependence of n and δ on d. For 1 ≤ i ≤ n,

we set

Xi = (X1,i, . . . ,Xd,i) and ‖Xi‖p
p =

d

∑
j=1

|X j,i|p.



14 Gérard Biau and David M. Mason

We see that for n ≥ 1,

(
‖X1‖p

p − dµp√
dσp

, . . . ,
‖Xn‖p

p − dµp√
dσp

)

=

(
∑d

j=1 |X j,1|p − dµp√
dσp

, . . . ,
∑d

j=1 |X j,n|p − dµp√
dσp

)

:= (Y1, . . . ,Yn) = Yn ∈ R
n.

As above, let Zn = (Z1, . . . ,Zn) be a centered Gaussian random vector in R
n, with

identity covariance matrix. Write, for 1 ≤ j ≤ d,

ξξξ j =

(
|X j,1|p − µp√

dσp

, . . . ,
|X j,n|p − µp√

dσp

)

and note that ∑d
j=1 ξξξ j = Yn. Set β = ∑d

j=1‖ξξξ j‖3
2. Then, by Jensen’s inequality,

E‖ξξξ j‖3
2 = E

(
∑n

i=1 (|X j,i|p − µp)
2

dσ2
p

)3/2

≤
(

n

dσ2
p

)3/2

E
∣∣ |X |p − µp

∣∣3 .

This gives that for any δ > 0, possibly depending upon n,

B := β nδ−3 ≤ n5/2

√
dσ3

p

E
∣∣ |X |p − µp

∣∣3 δ−3.

Applying a result of Yurinskiı̆ (1977) as formulated in Section 4 of Chapter 10 of

Pollard (2001) we get, on a suitable probability space depending on δ > 0, there

exist random vectors Yn and Zn satisfying

P

{
‖Yn −Zn‖2 > 3δ

}
≤CB

(
1+

|log(B)|
n

)
, (10)

where C is a universal constant. Using the fact that

∣∣∣∣max
1≤i≤n

xi − max
1≤i≤n

yi

∣∣∣∣≤
√

n

∑
i=1

(xi − yi)
2,

we get, for all ε > 0,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi|> ε

}
≤ P

{√
2logn‖Yn −Zn‖2 > ε

}
.

Thus, for all d large enough,



High-Dimensional p-Norms 15

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi|> ε

}
≤ P

{√
2logn‖Yn −Zn‖2 > 3δ

√
2logn

}

(since δ
√

logn → 0 as d → ∞)

= P

{
‖Yn −Zn‖2 > 3δ

}
.

From (10), we deduce that for all ε > 0 and all d large enough,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi|> ε

}
≤CB

(
1+

|log(B)|
n

)
.

But, by our choice of δ (d) and (9),

B

(
1+

|log(B)|
n

)
→ 0,

so that

an| max
1≤i≤n

Yi − max
1≤i≤n

Zi|= oP(1).

Similarly, one proves that

an| min
1≤i≤n

Yi − min
1≤i≤n

Zi|= oP(1).

Thus, by (7), we conclude that

(
an( max

1≤i≤n
Yi − bn),an( min

1≤i≤n
Yi + bn)

)
D→ (E,−E ′). (11)

Next, we have

(
an(max

1≤i≤n
Yi − bn),an( min

1≤i≤n
Yi + bn)

)

=

(
an

(
max1≤i≤n ‖Xi‖p

p√
dσp

−
√

dµp

σp

− bn

)
, an

(
min1≤i≤n ‖Xi‖p

p√
dσp

−
√

dµp

σp

+ bn

))

=

(
an

(
max1≤i≤n ‖Xi‖p

p√
dσp

−βn

)
, an

(
min1≤i≤n‖Xi‖p

p√
dσp

−β ′
n

))
,

where βn =
√

dµp

σp
+ bn and β ′

n =
√

dµp

σp
− bn. Note that an → ∞ and (11) imply that

both
max1≤i≤n‖Xi‖p

p√
dσp

−βn
P→ 0 and

min1≤i≤n ‖Xi‖p
p√

dσp

−β ′
n

P→ 0. (12)

Observe also that by a two term Taylor expansion, for a suitable β̃n between βn and

(max1≤i≤n ‖Xi‖p
p)/(

√
dσp),
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pan

β
1/p−1
n




(

max1≤i≤n‖Xi‖p
p√

dσp

)1/p

−β
1/p
n





= an

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)

+
an

β
1/p−1
n

1− p

2p
β̃

1/p−2
n

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)2

.

We obtain by (11) and (12) that

a2
n

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)2
β̃

1/p−2
n

anβ
1/p−1
n

= OP

(
1

anβn

)
= oP(1).

Similarly,

pan

(β ′
n)

1/p−1



(

min1≤i≤n‖Xi‖p
p√

dσp

)1/p

−
(
β ′

n

)1/p




= an

(
min1≤i≤n‖Xi‖p

p√
dσp

−β ′
n

)
+ oP(1).

Keeping in mind that βn /β ′
n → 1, we get

pan

β
1/p−1
n




(

max1≤i≤n‖Xi‖p
p√

dσp

)1/p

−β
1/p
n ,

(
min1≤i≤n‖Xi‖p

p√
dσp

)1/p

−
(
β ′

n

)1/p





D→ (E,−E ′)

and hence

pan

β
1/p−1
n

(
max1≤i≤n‖Xi‖p

(
√

dσp)1/p
− min1≤i≤n‖Xi‖p

(
√

dσp)1/p
−β

1/p
n +(β ′

n)
1/p

)
D→ E +E ′.

Next notice that (8) implies that bn/
√

d → 0, as d → ∞. Thus, recalling

βn√
dup/σp

= 1+
bn√

dµp/σp

and
β ′

n√
dup/σp

= 1− bn√
dµp/σp

,

we are led to

pan

β
1/p−1
n

(
β

1/p
n −

(
β ′

n

)1/p
)
= 2anbn +O(anb2

nβ−1
n ) = 2anbn + o(1).
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Therefore we get

pan(d)d
1/2−1/p

µ
1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p − min

1≤i≤n(d)
‖Xi‖p

)
−2an(d)bn(d)

D→E +E ′.

⊓⊔

4 Proof of Lemma 2

In the sequel, to lighten notation a bit, we set Y = Y d . Choose any ε > 0 and δ >
0 such that ϕ has continuous derivatives ϕ ′ and ϕ ′′ on Iδ = [µ − δ ,µ + δ ] and

|ϕ ′′(µ)−ϕ ′′(x)| ≤ ε for all x ∈ Iδ . We see that by Taylor’s theorem that for Y ∈ Iδ

ϕ(Y ) = ϕ(µ)+ϕ ′(µ)(Y − µ)+ 2−1ϕ ′′(µ̃)(Y − µ)2, (13)

where µ̃ lies between Y and µ . Clearly,

∣∣∣∣Eϕ(Y )−ϕ(µ)− σ2ϕ ′′(µ)
2d

∣∣∣∣

=
∣∣E
(
ϕ(Y )−

(
ϕ(µ)+ϕ ′(µ)(Y − µ)+ 2−1ϕ ′′(µ)(Y − µ)2

))∣∣

≤
∣∣E
({

ϕ(Y )−
(
ϕ(µ)+ϕ ′(µ)(Y − µ)+ 2−1ϕ ′′(µ)(Y − µ)2

)}
1{Y ∈ Iδ}

)∣∣

+E
(∣∣ϕ(Y )

∣∣1{Y /∈ Iδ}
)
+E

(∣∣P(Y )
∣∣1{Y /∈ Iδ}

)
,

where

P(y) = ϕ(µ)+ϕ ′(µ)(y− µ)+ 2−1ϕ ′′(µ)(y− µ)2.

Now using (13) and |ϕ ′′(µ)−ϕ ′′(x)| ≤ ε for all x ∈ Iδ , we may write

∣∣E
({

ϕ(Y )−
(
ϕ(µ)+ϕ ′(µ)(Y − µ)+ 2−1ϕ ′′(µ)(Y − µ)2

)}
1{Y ∈ Iδ}

)∣∣

≤ ε

2
E(Y − µ)2 =

εσ2

2d
.

Next, we shall bound

E
(∣∣ϕ(Y )

∣∣1{Y /∈ Iδ}
)
+E

(∣∣P(Y )
∣∣1{Y /∈ Iδ}

)
:= ∆

(1)
d +∆

(2)
d .

Recall that we assume that for some r > 1, condition (4) holds. In this case, by

Theorem 28 on page 286 of Petrov (1975) applied with “r” replaced by “r+ 1”, for

all δ > 0,

P
{
|Y − µ | ≥ δ

}
= o(d−r). (14)

Then, by using Hölder’s inequality and (5), we get

∆
(1)
d ≤

(
E
∣∣ϕ(Y )

∣∣s)1/s (
P{Y /∈ Iδ}

)1/r
= o(d−1).
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We shall next bound ∆
(2)
d . Obviously from (14)

|ϕ(µ)|P{Y /∈ Iδ}= o(d−1).

Furthermore, by Cauchy-Schwarz inequality and (14),

E
∣∣ϕ ′(µ)(Y − µ)1{Y /∈ Iδ}

∣∣≤
∣∣ϕ ′(µ)

∣∣σd−1/2o(d−r/2) = o(d−1),

and by Hölder’s inequality with p = (r+ 1)/2 and

q−1 = 1− p−1 = 1− 2/(r+ 1) = (r− 1)/(r+ 1),

we have

2−1
∣∣ϕ ′′(µ)

∣∣E
(
(Y − µ)21{Y /∈ Iδ}

)

≤ 2−1
∣∣ϕ ′′(µ)

∣∣ (E|Y − µ |r+1
)2/(r+1) (

P{Y /∈ Iδ}
)1/q

.

Applying Rosenthal’s inequality (see equation (2.3) in Giné et al., 2003) we obtain

E|Y − µ |r+1 = E

∣∣∣∣∣d
−1

d

∑
i=1

(Yi − µ)

∣∣∣∣∣

r+1

≤
(

15(r+ 1)

log(r+ 1)

)r+1

max
(

d−(r+1)/2
(
EY 2

)(r+1)/2
,d−r

E|Y |r+1
)
.

Thus (
E|Y − µ |r+1

)2/(r+1)
= O(d−1),

which when combined with (14) gives

2−1
∣∣ϕ ′′(µ)

∣∣(E|Y − µ |r+1
)2/(r+1) (

P{Y /∈ Iδ}
)(r−1)/(r+1)

= o(d−1).

Thus

∆
(2)
d = o(d−1).

Putting everything together, we conclude that for any ε > 0

limsup
d→∞

d

∣∣∣∣Eϕ(Y d)−ϕ(µ)− σ2ϕ ′′(µ)
2d

∣∣∣∣≤
εσ2

2
.

Since ε > 0 can be chosen arbitrarily small, this completes the proof.
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