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FIRST ORDER THEORY OF CYCLICALLY ORDERED GROUPS.

M. GIRAUDET, G. LELOUP AND F. LUCAS

Abstract. By a result known as Rieger’s theorem (1956), there is a one-to-one correspondence, as-
signing to each cyclically ordered group H a pair (G, z) where G is a totally ordered group and z is an
element in the center of G, generating a cofinal subgroup 〈z〉 of G, and such that the quotient group
G/〈z〉 is isomorphic to H.

We first establish that, in this correspondence, the first order theory of the cyclically ordered group
H is uniquely determined by the first order theory of the pair (G, z).

Then we prove that the class of cyclically ordered groups is an elementary class and give an axiom
system for it.

Finally we show that, in opposition to the fact that all theories of totally Abelian ordered groups have
the same universal part, there are uncountably many universal theories of Abelian cyclically ordered
groups. We give for each of these universal theories an invariant, which is a pair of subgroups of the
group of unimodular complex numbers.

1 Keywords: cyclically ordered groups, first order theory, orderable, universal theory.

1. Introduction and basic facts.

The study of cyclically ordered groups (c.o.g.) was initiated in [13]. Definitions and notations not
given here, about c.o.g. and totally ordered groups (t.o.g.) can be found in [4] (IV, 6, pp. 61-65), [8],
[18] and [17]. The terminology about model theory can be found in [1].
We say that (A,R) is a cyclically ordered set (or R is a cyclic order on A) if A is a set and R is a ternary
relation on A satisfying the following axioms R1 to R4:

R1 : ∀x, y, z (R(x, y, z) ⇒ x 6= y 6= z 6= x), (R is strict);
R2 : ∀x, y, z (x 6= y 6= z 6= x ⇒ (R(x, y, z) or R(x, z, y))), (R is total);
R3 : ∀x, y, z (R(x, y, z) ⇒ R(y, z, x)), (R is cyclic);
R4 : ∀x, y, z, u (R(x, y, z) and R(y, u, z) ⇒ R(x, u, z)), (R is transitive ).

We say that (G,R) is a cyclically ordered group (c.o.g.) if R is a cyclic order on the underlying set of G
which is compatible with the group law of G, i. e. satisfies:

R5 : ∀x, y, z, u, v (R(x, y, z) ⇒ R(uxv, uyv, uzv)).
It is easy to check that in a c.o.g. with unit e, R(e, x, y) implies R(e, y−1, x−1). (Remark that R is
determined by its projection: {(x, y); R(e, x, y)}). We shall often let R(x, y, z, t, . . . ) stand for R(x, y, z)
and R(x, z, t) and . . . .
The language of c.o.g. will be here Lc = {·, R, e,−1 }, where the first predicate stands for the group law,
R for the ternary relation, e for the group identity and −1 for the inverse function. (When considering
Abelian c.o.g. we shall also use the usual symbols +, 0,−). Remark that the theory of cyclically ordered
groups has a finite set of universal axioms in Lc.
If G is a c.o.g., H is a normal subgroup of G, and x ∈ G, we shall let x stand for xH whenever it yields
no ambiguity.

The positive cone of (G,R) is the set P (G) = P = {x; R(e, x, x2)} ∪ {e}. [18].
Clearly P ∩P−1 = {e} and G = P ∪P−1 ∪ {x; x2 = e}. We shall set |x| = x if R(x−1, e, x), |x| = x−1

if R(x, e, x−1), and |x| = x = x−1 if x2 = e. Remark that the positive cone P of a c.o.g. does not always
satify P · P ⊆ P (for example the (additive) c.o.g. Z/3Z where R(0, 1, 2) and Z is the additive group of
integers, we have 1 ∈ P and 1 + 1 /∈ P ).
If G is a group, Z(G) will denote its center. If z ∈ G (or X ⊆ G) we say that z (or X) is central if z (or
X) lies in the center of G: z ∈ Z(G)) (or X ⊆ Z(G)). If (G,≤) is a t.o.g. we say that z (or X) is cofinal
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in G if the subgroup generated by z: 〈z〉 (or X : 〈X〉) is cofinal in (G,≤).
We must now give three fundamental constructions as follows in 1.1, 1.2, 1.3 below.

1.1. Linear cyclically ordered groups. A t.o.g. (G,≤) is cyclically ordered by the relation given by:
R(x, y, z) iff (x < y < z or y < z < x or z < x < y). In this case we say that (G,R) is the cyclically
ordered group associated to (G,≤) and that (G,R) is a linear c.o.g.. (Obviously a c.o.g. (G,R) is linear
if and only if P · P ⊂ P ). We have e ≤ x iff R(e, x, x2) iff |x| = x (in this case |x| has the same meaning
in the linear c.o.g. it usually has in the t.o.g.).

J. Jakub́ık and C. Pringerová proved ([8] Lemma 3) that a c.o.g. (G,R) is a linear c.o.g. iff it satisfies
the following system of axioms: {α} ∪ {βn}n∈N; n>1

α: ∀x 6= e, x2 6= e
βn: ∀x 6= e R(e, x, x2) ⇒ R(e, x, xn).

1.2. The winding construction. ([4])
If (G,≤) is a t.o.g. and z ∈ G, z > e is a central and cofinal element of G then the quotient group

G/〈z〉 can be cyclically ordered by:
R(g, h, k) iff there are g′, h′, k′ such that
g = g′, h = h′, k = k′ and (e ≤ g′ < h′ < k′ < z or e ≤ h′ < k′ < g′ < z or e ≤ k′ < g′ < h′ < z).

(G/〈z〉, R) is the wound-round c.o.g. associated to (G,≤) and z. This construction will be generalized
later. The special cases below are of current use.

1.2.1. Unimodular complex numbers. Let C denote the field of complex numbers and K = {x ∈ C; |x| =
1} = {eiθ; 0 ≤ θ < 2π}, equipped with the usual multiplication. For each x ∈ K we let θ(x) be the
unique θ such that x = eiθ and 0 ≤ θ < 2π and let K be cyclically ordered by the relation:

R(eiθ, eiθ
′

, eiθ
′′

) iff (θ < θ′ < θ′′ or θ′ < θ′′ < θ or θ′′ < θ < θ′) i.e.
R(x, y, z) iff (θ(x) < θ(y) < θ(z) or θ(y) < θ(z) < θ(x) or θ(z) < θ(x) < θ(y)).

The c.o.g K is the wound-round c.o.g. associated to the additive ordered group of real numbers (R,≤)
and 1. It is of crucial importance.

Let U denote the torsion part of K (the group of roots of 1 in C). It is the wound-round associated to
the additive ordered group Q of rational numbers and 1.

1.2.2. Finite cyclic groups. For each n the finite cyclic group Z/nZ is cyclically ordered by R(ı, , k) iff
(∃i′, j′, k′ ∈ {0, 1, . . . , n− 1}, ı = ı′,  = ′, k = k′ and (i < j < k or j < k < i or k < i < j)).

It is the wound-round c.o.g. associated to (Z,≤) and n. Clearly U embeds a copy of each such Z/nZ.
In particular Z/2Z is cyclically ordered by the empty relation. A cyclically ordered group cannot have

more than one element of order 2. (Suppose x 6= e, y 6= e, x 6= y, x2 = y2 = e and R(e, x, y). Then
R(x, e, xy) and R(y, xy, e) so R(x, e, y), a contradiction). Hence if (G,R) has an element of order 2, then
the c.o.g. Z/2Z is canonically embedded in (G,R).

1.3. Lexicographic product. ([17], [8])
If (C,R) is a c.o.g. and (L,≤) is a t.o.g., we can define a lexicographic cyclic order on C × L by

R′((c, r), (c′, r′), (c′′, r′′)) iff
(R(c, c′, c′′) or (c = c′ 6= c′′ and r < r′) or (c 6= c′ = c′′ and r′ < r′′) or (c = c′′ 6= c′ and r′′ < r) or
(c = c′ = c′′ and (r < r′ < r′′ or r′ < r′′ < r or r′′ < r < r′))).

We let C
−→
×L denote this c.o.g. and call it the lexicographic product of (C, r) and (L,≤). The following

classical results on c.o.g. are related to the above constructions.
Rieger’s theorem states that every cyclically ordered group (G,R) can be obtained by the winding

construction: there is a canonical t.o.g. (uw(g),≤) and a central and cofinal element zG in it, such that
(G, r) ∼= ((uw(G),≤)/〈zG〉).

Swirczkowski’s theorem states that every c.o.g. can be embedded in a lexicographic product K
−→
×L for

some t.o.g. L.
The present model theoretic study of c.o.g. is based on those two theorems. In Section 2 we recall

Rieger’s theorem and we generalize the crucial construction. Section 3 deals with c-convex subgroups
(an analogue of the convex subgroups of t.o.g.’s), normal c-convex subgroups, and problems about their
characterization as kernels of c-homomorphisms, and finally we give a correspondence between proper
c-convex subgroups of (G,R) and proper convex subgroups of (uw(G,R),≤) in the nonlinear cases. In
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Section 4 we give a model theoretic version of Rieger’s theorem: we prove (Theorem 4.1) that two c.o.g.
(G,R) and (G′, R′) have the same first order theory in Lc iff so have (uw(G),≤, zG) and (uw(G′),≤, zG′),
in the language of o.g. with parameter. In Section 5 we recall Swirczkowski’s theorem, and Zheleva’s
result which characterizes cyclically orderable groups in terms of their torsion parts. We prove (Theorem
5.6) that a group G is cyclically orderable iff its center Z(G) is cyclically orderable and the factor group
G/Z(G) is orderable (an analogue of the result of Kokorin and Kopitov characterizing totally orderable
groups as those for which Z(G) and G/Z(G) are orderable). We derive from it (Theorem 5.8) an axiom
system for the class of orderable c.o.g.. In Section 6 we study the universal theory of Abelian c.o.g.’s.
Gurevich and Kokorin ([7], [5]) proved that two totally ordered Abelian groups satisfy the same universal
formulas. For Abelian c.o.g., having or not an element of a given order, obviously gives different universal
theories. We give (Theorem 6.2) a full classification of universal theories of Abelian c.o.g.’s.

2. Rieger’s type constructions.

Theorem 2.1. (Rieger, [13], [4]). If (G,R) is a cyclically ordered group, there exists a linearly ordered
group (F,≤) and a positive element z ∈ F which is central and cofinal such that (G,R) is the c.o.g.
(F,≤)/〈z〉.

The proof relies on the following theorem:

Theorem 2.2. ([4]). If (G,R) is a cyclically ordered group, then the structure (uw(G), ·,≤R) is a linearly
ordered group.

Here:
1) (uw(G), ·) is the set Z×G,
2) the order relation ≤R is defined by: (m, g) ≤ (m′, g′) iff (m, g) = (m′, g′) or m < m′ or m = m′ and
(R(e, g, g′) or g = e)),
3) the group law is given by: (k, e) · (m,h) = (k+m,h), (k, g) · (m,h) is either (k+m, gh) if R(e, g, gh),
or (k +m+ 1, gh) if R(e, gh, g), or (k +m+ 1, e) if gh = e 6= g.

Remark 2.3. One can also easily verify that:

(1) If g 6= e then (k, g)−1 = (−k − 1, g−1).
(2) (k, g) · (k′, h) = (k′, h) · (k, g) iff gh = hg.
(3) G is Abelian iff uw(G) is Abelian.
(4) The element (1, e) which will be denoted by zG, is central and cofinal in uw(G).
(5) (uw(G),≤R)/〈zG〉 ∼= (G,R).
(6) If (F,≤) is a linearly orderd group and z is central and cofinal in F and R is the cyclic order

defined on uw(F/〈z〉) in the winding construction, then (uw(F/〈z〉),≤R) is isomorphic to (F,≤).

(7) If (H,≤) is a linearly ordered group, and (G,R) is a c.o.g., we have uw(G
−→
×H) = uw(G)

−→
×H

where uw(G
−→
×H) is the lexicographical product of linearly ordered groups and G

−→
×H is the lexi-

cographical product introduced in Section 1.3.

Definition 2.4. The linearly ordered group (uw(G),≤R) will be named the Rieger unwound of G.

Lemma 2.5 (winding, unwinding and substructures.). (1) If (G,R) and (G′, R′) are c.o.g., and (G,R)
is a substructure of (G′, R′) then the unwound
(uw(G,R),≤R) can be embedded in (uw(G,R),≤R) with zG = zG′ .

(2) If (L,≤) and (L′,≤) are linearly ordered groups and (L,≤) is a substructure of (L′,≤) and for
some z ∈ L which is central and cofinal in (L′,≤), (L,≤, z) is a substructure of (L′,≤, z) then z
is also central and cofinal in (L,≤) and (L/〈z〉, R) is a substructure of (L′/〈z〉, R).

Proof. . Easy to verify. �

We can generalize the winding construction:

Lemma 2.6. If (G,≤) is a linearly ordered group and M a subgroup of G which is discrete, central and
cofinal, with first positive element z, and such that for each g ∈ G there is h in M such that h ≤ g < hz,(
g lies between h and his successor is in M), then G/M can be cyclically ordered following the winding
construction. Moreover if D is the convex hull of 〈z〉 in G, then G/M = D/〈z〉.
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Proof. . For each g there is a unique g′ such that g = g′ and e < g′ < z, so we can define R(g, h, k) iff

there are g′, h′, k′ such that g = g′, h = h′, k = k′, and (e ≤ g′ < h′ < k′ < z or e ≤ h′ < k′ < g′ < z or
e ≤ k′ < g′ < h′ < z) and it is easy to verify that this is a cyclic ordering of G/M . �

Looking at the behavior of the center in the winding construction we have:

Lemma 2.7. Let (G,R) be a c.o.g. and Z(G) the center of G. Then Z(uw(G)) = uw(Z(G)) and
Z(uw(G))/〈zG〉 ∼= Z(G).

Proof. . Easy to verify (zG was introduced in 2.1). �

3. c-convex subgroups.

It will be usefull to have precise settings for the notion of c-convex subgroup of a c.o.g.:

Definition 3.1. ([8]) Each c.o.g. is a c-convex subgroup in itself. If (G,R) is a c.o.g. and H a proper
subgroup of G , it is a c-convex subgroup if it does not contain a non-unit element of order 2 and it is a
c-convex set (∀h ∈ H, ∀g ∈ G, (R(h−1, e, h) and R(e, g, h)) ⇒ g ∈ H).

It is clear that if a c.o.g. is linear, then a subgroup is c-convex iff it is convex in the associated t.o.g..
One can verify that a c-convex subgroup K of a c-convex subgroup H of a c.o.g. (G,R) is a c-convex
subgroup of (G,R).

Lemma 3.2. If H is a c-convex subgroup of (G,R) and x, x′, y, y′, z, z′ ∈ G satisfy R(x, y, z) and x 6=
y 6= z 6= x and x = x′, y = y′, z = z′ then R(x′, y′, z′) (where t denotes the class of t in G/H).

Proof. . Since R is cyclic, it suffices to prove that R(x, y′, z). Suppose not, then R(y′, x, z), hence
R(x, y, z, y′), R(e, zy−1, y′y−1). From R(y′, x, y) we have also R(e, xy′−1, yy′−1). If R(yy′−1, e, y′y−1)
since H is c-convex zy−1 ∈ H contradicting z 6= y. The case when R(y′y−1, e, yy′−1) is similar. �

Remark 3.3. Let (G,R) be a c.o.g., H be a proper normal subgroup of G, S be the large cyclic or-
der associated to R (S(x, y, z) iff R(x, y, z) or y = x or y = z), S the quotient relation (∃x′, y′, z′ ∈
G, xx′−1, yy′−1, zz′−1 ∈ H and S(x′, y′, z′)). Let f be the associated surjective group homomorphism
from G onto G/H, and R the relation defined by R(x, y, z) iff (x 6= y 6= z 6= x and S(x, y, z)). Consider
the three following conditions:

(1) H is a c-convex-subgroup of G
(2) R is a cyclic order on G/H
(3) f is a c-homomorphism.

The conditions 2 and 3 are equivalent and they are consequences of 1. One can prove that if G/H 6⊆ Z/2Z,
then those three conditions are equivalent, but when G = Z/4Z, H = 2Z and f is defined by f(x) = x
and H = f−1(e), then f is a c-homomorphism but H is not c-convex.

Theorem 3.4. ([8]) Let G be a nonlinear c.o.g., there is a largest c-convex subgroup of (G,R), it will
be denoted by G0 and is called the subgroup of infinitely small elements of G. G0 is linear and it is a
normal subgroup of G.

Each proper c-convex subgroup of (G,R) is linear and the set of c-convex subgroups of (G,R) is linearly
ordered by inclusion. It is closed by finite or infinite unions or intersections. For each g ∈ G there is a
smallest c-convex subgroup of G containing g.

One can prove that the map from G into uw(G) defined by f(x) = (0, x) if x ∈ P and f(x) = (−1, x)
if not, when restricted to G0 is a group homomorphism and an order isomorphism between (G0,≤R) and
G0uw = {(0, x), x ∈ (P

⋂
G0)}

⋃
{(−1, x), x 6= e, x ∈ P−1

⋂
G0)}.

So, when (G,R) is nonlinear we have an order isomorphism between the inclusion-ordered set of
c-convex subgroups of (G,R) and the inclusion-ordered set of convex subgroups of (G,R).

Definition 3.5. [17] A c.o.g. (G,R) is said to be c-Archimedean if for all g and h there is an integer n
such that R(e, gn, h) is not satisfied.

Examples.

(1) (G,R) is c-Archimedean iff it can be embedded in K, iff it is nonlinear and has no proper c-convex
subgroup.
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(2) If (G,R) is nonlinear and c-Archimedean then its unwound (uw(G),≤) is Archimedean.

(3) Z can be equipped with a non-Archimedean c.o.: consider (G,R) = (Z/3Z)
−→
×Z, the subgroup H

generated in G by (1, 1) equiped with the inherited cyclic order, and C the c-convex subgroup
of (G,R) and (H,R) generated by (0, 3). The group H is isomorphic to Z and the c.o.g. (H,R)
admits C as a proper c-convex subgroup, so it is not c-Archimedean.

Definition 3.6. Let (G,R) and (G′, R′) be two c.o.g., (G,R) being a substructure of (G′, R′), (G,R) is
said to be dense in (G′, R′) if
∀x′, y′ ∈ G′((∃z′ ∈ G′ R(x′, z′, y′)) =⇒ (∃z ∈ G R(x′, z, y′)).

Remark 3.7. .

(1) If (G,R) and (G′, R′) are linear then (G,R) is dense in (G′, R′) and (G,≤) is dense in (G′,≤′)
for the associated linear orders.

(2) Each infinite subgroup of K (equipped with the inherited cyclic order) is dense in K.

As usual we say that a subgroup H of G is pure in G if for each h ∈ H and each integer n, if there exists
g ∈ G such that gn = h then there exists h′ ∈ H such that h′n = h.

Remark 3.8. .

(1) A c.o.g. can have torsion and the equation xn = y can have several solutions.

(2) A c-convex subgroup is not always a pure subgroup: let (G,R) = (Z/3Z)
−→
×Z and H the subgroup

generated in G by (1, 1) then (0, 3) = 3(0, 1), the subgroup C generated by (0, 3) is a c-convex
subgroup of H, (0, 3) is not divisible by 3 in C, but it is divisible by 3 in H. We shall see in 5.2
that if a c.o.g. contains a substructure isomorphic to U then each of its c-convex subgroups is
pure.

4. Elementary equivalence and substructure.

Now we prove a transfer principle between the elementary equivalence of two c.o.g. and the elementary
equivalence of their Rieger-unwound totally ordered groups.

Theorem 4.1. Let (G,R) and (G′, R′) be two c.o.g. then:
(G,R) ≡ (G′, R′) iff (uw(G), zG,≤R) ≡ (uw(G′), zG′ ,≤R′),
and the same property holds for elementary inclusion.

The proof goes through Lemmas 4.2, 4.3 and 4.4. In those lemmas (G,R) and (G′, R′) will be two
c.o.g.. Let (uw(G),≤R) be the unwound (linearly ordered group) of (G,R) and zG ∈ uw(G) such that
(G,R) is canonically isomorphic to uw(G)/〈zG〉. We consider the four different structures:

(1) (G,R) in the language Lc of c.o.g.
(2) (uw(G), 〈zG〉) in the language LM of pairs of ordered groups, containing the group law, the order

relation and a predicate M for a subgroup.
(3) (uw(G), zG) in the language Lz of ordered groups with a specified element.
(4) Z × G in the language LZG with two unary predicates Z and G interpreted by Z × {0} and

{0} × G, predicates for the group law and the order relation on Z and the cyclic order relation
on G.

Lemma 4.2. .

(1) (G,R) can be interpreted in (uw(G), 〈zG〉) in the language LM .
(2) (uw(G), 〈zG〉) can be interpreted in Z×G.

Proof. .

(1) In (uw(G), 〈zG〉) with the language LM define
Γ = {g ∈ uw(G); ∃g′(g′ = g or g′ = g−1) and g′ ≥ e and ∀t > e (M(t) =⇒ e ≤ g′ < t)}.
For g, h, k ∈ Γ define:

R(g, h, k) iff (g < h < k or h < k < g or k < g < h) and g · h = k iff M(ghk−1).
Then (Γ, R) is isomorphic to (G,R).
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(2) In Z × G interpret uw(G) by the whole set and 〈zG〉 (which is defined by the predicate M) by
Z × {e}. The order relation ≤ will be defined from the order of Z and the cyclic order of G:
v ≤ v′ iff
(∃c, c′, r, r′)(Z(r), Z(r′), G(c), G(c′) and
v = r · c and v′ = r′ · c′ and ((c = c′ and r = r′) or r < r′ or (r = r′ and R(e, c, c′))));
and the group law is given by: v · v′ = v′′ iff

(∃c, c′, c′′, r, r′, r′′)(Z(r), Z(r′), Z(r′′), G(c), G(c′), G(c′′) and v = c · r and v′ = c′ · r′ and
v′′ = r′′ · c′′ and c′′ = c · c′ and ((c = e or c′ = e or R(e, c, c · c′) =⇒ r′′ = r + r′) and
((c 6= e and c′ 6= e and R(e, c · c′, c)) or
(c 6= e and c′ 6= e and c · c′ = e)) =⇒ r′′ = r + r′ + 1)).

�

Lemma 4.3. (G,R) and (G′, R′) are elementary equivalent in Lc iff (uw(G), 〈zG〉) and (uw(G′), 〈zG′〉)
are elementary equivalent in LM , and the same property holds for elementary inclusion.

Proof. . We know that (G,R) ≡ (G′, R′) implies (by model theoretic arguments [3] ) Z × G ≡ Z × G′

which implies (uw(G), 〈zG〉,≤) ≡LM
(uw(G′), 〈zG′〉,≤′) by Lemma 4.2,2. The converse follows from

Lemma 4.2,1, we obtain the result for elementary inclusion in the same way. �

Lemma 4.4. (uw(G), 〈zG〉,≤) ≡LM
(uw(G′), 〈zG′〉,≤′) iff (uw(G), zG) ≡Lz

(uw(G′), zG′), and the same
property holds for elementary inclusion.

Proof. .

(1) zG is definable in 〈zG〉, it is the least positive element, hence:

(uw(G), 〈zG〉,≤) ≡LM
(uw(G′), 〈zG′〉,≤′) implies (uw(G), zG) ≡Lz

(uw(G′), zG′),

(we do the same thing for elementary inclusion).
(2) We prove now the other part of the equivalence by proving that (uw(G), zG) ≡Lz

(uw(G′), zG′)
implies (G,R) ≡ (G′, R′) which is equivalent to the needed property.

Suppose that (uw(G), zG) ≡Lz
(uw(G′), zG′). There exist two Lz-isomorphic ultrapowers

(H, z) = (uw(G), zG)
U (respectively (H ′, z′) = (uw(G′), zG′)U

′

) of (uw(G), zG) (resp. (uw(G
′), zG′

). If f is the isomorphism between these two structures, we have f(z) = z′, but the predicate M
is not in Lz and may not be preserved by f .

Define D = 〈zG〉
U ⊆ H (resp. D′ = 〈zG′〉U

′

⊆ H ′), because of the definitions and properties
of ultraproducts, D (resp. D′) is a discrete subgroup of H (resp. H ′) with first element z (resp.
z′), and D (resp. D′) is cofinal and central in H (resp. H ′).

Let B(z) (resp B(z′)) be the minimal convex subgroup of (H,≤) containing z (resp. of (H ′,≤′)
containing z′). The isomorphism f between (H, z,≤) and (H ′, z′,≤), when restricted to B(z)
is an isomorphism between (B(z), z,≤) and (B(z′), z′,≤). Now z (resp. z′) is central and
cofinal in B(z) (resp. B(z′)), and the corresponding c.o.g. are isomorphic: (B(z)/〈z〉, R) ≈
(B(z′)/〈z′〉, R′).

Furthermore, D and D′ are discrete and for each g ∈ H (resp. g′ ∈ H ′) there is h ∈ D (resp.
h′ ∈ D′) such that g is between h and its successor in D (g′ is between h′ and its successor in
D′). Hence by the generalized winding construction (2.6) we can define a cyclic order on H/D
(resp. H ′/D′) and we have (H/D,R) ≈ (B(z)/〈z〉, R) and (H ′/D′, R′) ≈ (B(z′)/〈z′〉, R′).

Hence we can conclude (G,R) ≡ (G′, R′) because by (4.3) (G,R) ≡ (H/D,R) and (G′, R′) ≡
(H ′/D′, R′).

All what we did can be done even when adding new symbols for all the elements in uw(G)
and we can prove that the elementary equivalence in this language:

(uw(G), zG,≤) ≡Lz
(uw(G′), zG′ ,≤′) implies (G,R) ≡L(G) (G′, R′) i.e. if (uw(G), zG) is an

elementary substructure of (uw(G′), zG′) then (G,R) is an elementary substructure of (G′, R′).

�

This achieves the proof of Theorem 4.1.
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5. Embedding theorem of Swirczkowski and cyclic orderability.

Theorem 5.1. [17] Let (G,R) be a c.o.g., there are a linearly ordered group (L,≤) and an embedding f

of (G,R) in the lexicographic product K
−→
×L. Such an embedding is called a representation of (G,R).

Let πi (i = 1 or i = 2) be the ith projection associated with f , then:

(1) π1 ◦ f does not depend on the representation [8]. Therefore we write π1(x) instead of π1(f(x))
and π1 instead of π1 ◦f . (When usefull we shall mention the domain: π1,G). The image π1(f(G))
will be called the winding part of G and denoted by K(G). We have K(G0) = 1.

(2) π2(f(G0)) = L
⋂
π2(f(G)).

As a consequence, if a c.o.g. (G,R) is a substructure of K and f is a one-to-one c-isomorphism from G
to K, then for each x we have f(x) = x.

One can prove that if g is a nontrivial c-homomorphism from (G,R) into (G′, R′) then ker(g) is c-
convex iff π1,G = (π1,G′) ◦ g.

As usual for a group G its torsion part is T (G) =
⋃

n∈N
{g ∈ G/gn = e}. Remark that for each prime

p, (G : pG) is 1 or p, and that T (G) ⊆ T (K(G)).

Lemma 5.2. If a c.o.g. (G,R) contains U then each of its c-convex subgroups is pure.

Proof. . Let f be an embedding of (G,R) into K(G)
−→
×L and C be a proper c-convex subgroup of (G,R),

we have f(C) ⊆ f(G0) = L
⋂
f(G). Suppose x ∈ C, y ∈ G and yn = x. Let f(x) = (1, t) and

f(y) = (α, s). Then f(yn) = (αn, sn) so αn = 1. We know that G contains U so there is u ∈ G such that
f(u) = (α, e). Therefore f(yu−1) = (1, s) ∈ L

⋂
f(G). We have yn = x so sn = t, (1, s)n = (1, sn) ∈ f(C)

which is linear and convex so (1, s) ∈ f(C), i.e. yu−1 ∈ C and (yu−1)n = x. �

Recall that a group is said to be locally cyclic if each finitely generated subgroup is cyclic. This is
equivalent to being embedded in (Q,+) or U (see for instance [15]).

Theorem 5.3. (Zheleva [19]) A group G is cyclically orderable iff its periodic part T (G) is central and
locally cyclic and G/T (G) is orderable.

Proof. . We give a detailed proof.

(1) If G is cyclically ordered then G can be embedded in K×L where L is a linearly ordered group.
Hence T (G) is central. It is locally cyclic because it is a subgroup of T (K) = U. Now G/(U∩G)
embeds in (K×L)/(U×{e}) = (K/U)×L which is linearly orderable because it is abelian without
nonzero periodic element.

(2) If T (G) is locally cyclic it can be embedded in U, so it is cyclically orderable. If T (G) is cen-
tral, then G is a central extension of T (G) by G/T (G) and G can be cyclically ordered by the
lexicographic order defined in the following lemma.

�

(Remark that, when applied to the Abelian case, this result is related to the result of G. Sabbagh [14]
giving the same characterization for the Abelian groups which can be embedded in the multiplicative
group of a field).

Lemma 5.4. If C is an Abelian c.o.g., L is a linearly ordered group and G is a central extension of C
by L, then G can be cyclically ordered by the following cyclic order R:

Let {gr, r ∈ L} be a family of representatives of L in G. Each element of G is represented by a pair
(c, gr) with c ∈ C and r ∈ L. We define:

R((c, gr), (c
′, gr′), (c

′′, gr′′)) iff R(c, c′, c′′) or (c = c′ 6= c′′ and gr < gr′) or (c 6= c′ = c′′ and gr′ < gr′′)
or (c = c′′ 6= c′ and gr > gr′′) or (c = c′ = c′′ and (gr < gr′ < gr′′ or gr′ < gr′′ < gr or gr′′ < gr < gr′).

Proof. . We have to verify that this cyclic order is compatible with the group law in G. Let (mr,s, r, s ∈ L)
be the factor system associated to the family of representatives (gr, r ∈ L) and ifR((c, gr), (c

′, gr′), (c
′′, gr′′))

and (c′′′, gs) ∈ G:
(c′′′, gs) · (c, gr) = (c′′′ · c, gs·r ·ms,r)
(c′′′, gs) · (c, gr′) = (c′′′ · c, gs·r′ ·ms,r′)
(c′′′, gs) · (c, gr′′) = (c′′′ · c, gs·r′′ ·ms,r′′).
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Remark that the factors mu,v are in C and that in G/C = L we have gu · gv = gu·v.
If (c = c′ 6= c′′ and R(c, c′, c′′)) then (c′′′ · c = c′′′ · c′ 6= c′′′ · c′′ and R(c′′′ · c, c′′′ · c′, c′′′ · c′′)).
If (c = c′ 6= c′′ and gr < gr′) then (c′′′ · c = c′′′ · c′ 6= c′′′ · c′′ and gs·r < gs·r′).
If (c = c′′ 6= c′ and gr′ < gr′′) then c′′′ · c′ = c′′′ · c′′ 6= c′′′ · c′ and gs·r′ < gs·r′′).
If (c = c′′ 6= c′ and gr > gr′′) then (c′′′ · c = c′′′ · c′′ 6= c′′′ · c′ and gs·r > gs·r′′).
If (c = c′ = c′′ and gr < gr′ < gr′′) then gs·r < gs·r′ < gs·r′′ .
Hence R((c′′′, gs) · (c, gr), (c

′′′gs) · (c
′, gr′), (c

′′′, gs) · (c
′′, gr′′)).

In the same way we could obtain
R((c, gr) · (c

′′′, gs), (c
′, gr′) · (c

′′′gs), (c
′′, gr′′) · (c

′′′, gs)). �

Recall the following.

Theorem 5.5. (Kokorim and Kopitov [9]). A group G is orderable iff its center Z(G) and the factor
group G/Z(G) are orderable.

We can obtain a similar result for cyclically ordered groups.

Theorem 5.6. A group G is cyclically orderable iff its center Z(G) is cyclically orderable and the factor
group G/Z(G) is orderable.

Proof. .

(1) If Z(G) is cyclically orderable and G/Z(G) is orderable, then G is a central extension of G/Z(G)
by Z(G) and then can be cyclically ordered using Lemma 5.4.

(2) Let G be cyclically ordered, uw(G) is totally ordered and by Theorem 5.5 uw(G)/Z(uw(G))
is orderable. The subgroup 〈zG〉 is normal in uw(G) (and contained in Z(uw(G))), hence
uw(G)/Z(uw(G)) ≈ (uw(G)/〈zG〉)/(Z(uw(G))/〈zG〉). We have by Lemma 2.7 Z(uw(G))/〈zG〉 ≈
Z(G) hence uw(G)/Z(uw(G)) ≈ G/Z(G) and G/Z(G) is orderable.

�

Finally we give, in the language of groups, a system of axioms for cyclic orderability. First recall the
characterization of orderable groups given by Onishi and Los.

Theorem 5.7. (Onishi, Los [12], [11], see also [9] ch. 2 th. 3) A group G is orderable iff for any finite
set of non identity elements x1, . . . , xn there is an ǫ = (ǫ1, . . . , ǫn) ∈ {1,−1}n such that e does not belong
to the semigroup generated by the conjugates of xǫ1

1 , . . . , xǫn
n . Furthermore the class of orderable groups is

axiomatizable by the following family (On n ∈ N) of formulas where On is: ∀x1, . . . , xn((
∧∧

i∈n xi 6= e)

⇒
∨∨

(ǫ1,...,ǫn)∈{1,−1}n

∧∧
k∈n,i1,...,ik∈n ∀yi1 , . . . , yin e 6= Πj=1,...,k(yij )

1 · x
ǫij
ij

yij ).

Theorem 5.8. Let G be a group, the following are equivalent:

(1) G is cyclically orderable
(2) T (G) is locally cyclic and G/Z(G)is orderable
(3) G satisfies the following system of axioms an, bn, n ∈ N

(a) an : ∀x0, . . . , xn((
∧∧

0<i<n x
n
i = e ⇒

∨∨
0<i<j<n xi = xj)

(i.e. the n-torsion part of G has dimension at most one).
(b) bn : ∀x1, . . . , xn(

∧∧
i∈n xi /∈ Z(G)) ⇒

∨∨
(ǫ1,...,ǫn)∈{1,−1}n

∧∧
k∈n,i1,...,ik∈n ∀yi1 , . . . , yin(Πj=1,...,k(yij )

−1 · x
ǫij
ij

· yij ) /∈ Z(G).

Proof. . Using Theorem 5.5 G is cyclically orderable iff G/Z(G) is orderable and Z(G) is cyclically
orderable. Now by Theorem 5.3 Z(G) is cyclically orderable iff T (Z(G)) is is central in Z(G) and locally
cyclic and Z(G)/T (Z(G)) is orderable. Remark that:

(1) If G/Z(G) is orderable then T (G) ⊆ Z(G) so T (G) = T (Z(G)).
(2) Z(G)/T (G) is orderable because it is Abelian without torsion part.

Therefore G is cyclically orderable iff T (G) is locally cyclic and G/Z(G) is orderable. �
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6. Remarks on the universal theory of Abelian cyclically ordered groups.

(Looking at Abelian c.o.g., the group law will be denoted additively).
Remark first that, without the Abelian hypothesis, one can prove that two c.o.g. have the same uni-

versal theory iff their unwound linearly ordered groups have the same universal theory in the language
with a constant realised by zG: (G,R) ≡∀ (G′, R′) iff (uw(G), zG) ≡∀ (uw(G′), zG′). The proof uses the
same argument that the one given for Theorem 4.1.

Gurevich and Kokorin ([7] in Russian, see also [5]) proved that two linearly ordered Abelian groups
satisfy the same universal formulas. For Abelian c.o.g. the existence, or not, of an element of a given
torsion type gives different universal theories. C.o.g. without torsion part can also have different uni-
versal theories, for example the formula ∃xR(x, 2x, 3x, 4x, 0) ∧ ¬R(x, 2x, 3x, 4x, 5x, 0) is satisfied in the
c.o.subgroup of K generated by e2iπϑ with ϑ an irrational number, but it is not satisfied in the c.o.g. H
of Example 3 in Section 3.

Recall that if G is an Abelian linearly ordered group and C is a convex subgroup of G then G is
elementary equivalent to the lexicographical product G/C

−→
×C. Here we have an analogue:

Theorem 6.1. If (G,R) is an Abelian c.o.g. and C a c-convex subgroup of G which is pure in G, then

(G,R) ≡ (G/C)
−→
×C.

Proof. . Let L2 be the language obtained by adding to the language of c.o.g. a predicate P which we
interpret by C. Let (G1, C1) be an ω1-saturated model of the theory of (G,C), then by a result of Eklof
and Fisher [2], when considering the group structure we have G1 ≃ H ×C1, for some subgroup H of G1.
C is linear and c-convex in G so C1 is linear and c-convex in G1. Now we verify that the cyclic order of

G1 coincides with the lexicographic cyclic order R× on H
−→
×C1 defined by: for a, a′ in H and b, b′ in C1,

R×(0, a+ b, a′ + b′) iff (R(0, a, a′) or (a = 0 6= a′ and 0 < b) or (0 6= a = a′ and b < b′) or (a 6= 0 = a′ and
b′ < 0) or (a = a′ = 0 and R(0, b, b′))). It is clear that R× and R coincide on H and on C1. Moreover,
because C1 is c-convex, we have when a 6= 0 and a′ 6= 0: R(0, b, a′ + b′) iff b > 0, R(0, a + b, b′) iff
b < 0, and R(0, a+ b, a+ b′) iff R(0, b′ − b,−a− b) iff b′ − b > 0. We have G1/C1 ≡ G/C, C1 ≡ C. We

saw (Remark 2.3) that for each G and H uw(G
−→
×H) = uw(G)

−→
×H . We also have ([3]) that for t.o.g.

the lexicographical product preserves the elementary equivalence, so passing through the unwounds we
obtain: (uw(G), zG) ≡ (uw(G1), zG1

) ≡ (uw(G1/C1)
−→
×C1, (zG1

+C1, 0)) ≡ (uw(G/C)
−→
×C, (zG+C, 0)) ≡

(uw(G/C
−→
×C), (zG + C, 0)), Hence G ≡ G/C

−→
×C. �

Theorem 6.2. Let G and G′ be two Abelian c.o.g.. Then G and G′ satisfy the same universal formulas if
and only if their torsion subgroups are isomorphic and, either K(G) and K(G′) are finite and isomorphic,
or K(G) and K(G′) are infinite.

For x in the linear part G0 of G, we will denote by H2(x) the convex subgroup of G0 generated by x,
and by H1(x) the greatest convex subgroup of G0 which doesn’t contain x. We know that the quotient
group H2(x)/H1(x) is Archimedean, it will be called the Archimedean component of G0 associated to x.

One easily checks that the cardinal of K(G) is n if and only if G satisfies the formulas
∃x, R(0, x, . . . , nx) ∧ ¬R(0, x, . . . , nx, (n+ 1)x), and, for every m > n,
∀x, ¬R(0, x, . . . ,mx) ∨ R(0, x, . . . ,mx, (m + 1)x), and that the torsion subgroup of G is determined by
the formulas ∃x, x 6= 0 ∧ nx = 0 and ∀x, x 6= 0 ⇒ nx 6= 0. It follows that if two Abelian c.o.g. G
and G′ satisfy the same universal formulas then their torsion subgroups are isomorphic, and K(G) and
K(G′) are either finite and isomorphic or both infinite. For proving the converse, we can assume that
G′ is ω1-saturated, and by a property of universal formulas, it is sufficient to show that for every finite
subset E of G there exists a finite subset E′ of G′ and a one-to-one mapping x 7→ x′ from E onto E′ such
that for every x, y, z in E, we have: R(x, y, z) ⇔ R(x′, y′, z′) and x = y + z ⇔ x′ = y′ + z′. So Theorem
6.2 is a consequence of Proposition 6.3 a) and Corollary 6.6 above.

Proposition 6.3. Let G be an ω1-saturated infinite Abelian c.o.g..
a) If K(G) is infinite, then K(G) ≃ K.
b) The linear part G0 of G has no maximal proper convex subgroup.
c) For every x in the positive cone of G0, there exists y ∈ G0 such that R(0, x, y) and the Archimedean
component of G0 associated to y is isomorphic to R.
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Proof. .
a) If n ≥ 2 and x = eiα, where α ∈ [0, 2π[, then the formulaR(0, x, 2x, . . . , (n−1)x) & ¬R(0, x, 2x, . . . , (n−

1)x, nx) implies 2π
n

≤ α ≤ 2π
n−1 . Let m ∈ N∗, if for every y such that y = eiβ , where 2π

n
≤ β ≤ 2π

n−1 , we

have R(0,my, x), then we have 2πm
n
≤ α. Now, if there exists y such that y = eiβ , where 2π

n
≤ β ≤ 2π

n−1 ,

and R(0, x, (m + 1)y), then: α ≤ 2πm+1
n

. We fix some α ∈ [0, 2π[, and for every n ≥ 2, denote by mn

the integer such that 2πmn

n
≤ α < 2πmn+1

n
. If x is a realization of the type:

{[∀y, (R(0, y, 2y, . . . , (n− 1)y)&¬R(0, y, 2y, . . . , (n− 1)y, ny)) ⇒ R(0,mny, x)]&

[∃y,R(0, y, 2y, . . . , (n− 1)y)&¬R(0, y, 2y, . . . , (n− 1)y, ny)&R(0, x, (mn + 1)y)]; n ≥ 2}.

then x = eiα. Since K(G) is infinite, it is dense in K, and every finite subset of this countable type has
a realization. By ω1-saturation the type has a realization in G, which proves that K(G) = K.

b) First we show that G0 is nontrivial. This is obvious ifK(G) is finite, sinceG is infinite. Otherwise,
K(G) is dense in R, hence for every n ≥ 2 there exists x ∈ G such that R(0, x, nx). So, every finite subset
of the type {R(0, x, nx); n ≥ 2}, which characterizes the elements that belong to the positive cone of
G0, has a realization in G. By ω1-saturation the whole type has a realization in G, which proves that G0

is nontrivial. Let x belong to the positive cone of G0 and consider the type {R(0, x, nx, y, ny); n ≥ 2},
which says, on the one hand that y is an element of G0, and on the other hand that y is greater than Nx
within G0. A finite subset of this type is a consequence of some formula R(0, x, nx, y, ny), and it has a
realization (n+1)x, hence by ω1-saturation the whole type has a realization in G, and x is not cofinal in
G0. It follows that G0 has no greatest proper convex subgroup.

c) Let x belong to the positive cone ofG0, 2 < ξ be an irrational element of R+, and (an/bn) be a strictly
increasing sequence of rational numbers such that for every n ∈ N an/bn < ξ < (an + 1)/bn. Consider
the type {R(0, x, y, ny), R(0, x, z, nz), R(any, bnz, (an + 1)y); n ≥ 2}, which says that there exist y and
z in G0 which are greater than x and such that the class of z in H2(y)/H1(y) is the irrational number ξ
(where the class of y is assumed to be 1); hence, H2(y)/H1(y) is dense in R. A finite subset of this type is
generated by some formula R(0, x, y, n0y)&R(0, x, z, n0z)&R(an1

y, bn1
z, (an1

+1)y)&R(an2
y, bn2

z, (an2
+

1)y), and it has a realization: y = x and z = (3an1
bn2

+2)x. By ω1-saturation, the type has a realization.
Now, let ξ′ in R and let (a′n/b

′
n) be a strictly increasing sequence of rational numbers such that, for every

n ∈ N, (a′n/b
′
n) ≤ ξ′ < ((a′n + 1)/b′n). Consider the type {R(0, a′ny, b

′
nt, (a

′
n + 1)y), R(0, t, nt); n ≥ 2},

which says that the class of t is ξ′. A finite subset of the type that we defined is characterized by some
formula R(0, a′ny, b

′
nt, (a

′
n +1)y)&R(0, t, nt) which has a realization since H2(y)/H1(y) is dense in R. By

ω1-saturation, ξ
′ has an image in R under the canonical embedding which associate 1 to y. This proves

that this embedding is an isomorphism. �

Proposition 6.4. Let G be a finitely generated Abelian c.o.g., T (G) be its torsion subgroup and T (K(G))
be the torsion subgroup of K(G). Then G decomposes as a disjoint union G = C ∪ (x0 +C)∪ · · · ∪ ((n−
1)x0 + C), where n ∈ N∗,
C = T (G) ⊕ Zx1 ⊕ · · · ⊕ Zxm ⊕ G0, where x1, . . . , xm are torsion-free elements of G whose classes
x1, · · · , xm modulo G0 are rationally independent within K(G),
the class x0 of x0 modulo G0 generates T (K(G)), if n > 1 then there exists a generator u of T (G) such
that nx0 − u is a positive and cofinal element of G0, and if p divides nx0 − u within G, then p and n are
coprime.
Furthemore, the t.o.g. G0 is equal to a lexicographically ordered direct sum of finitely generated Archime-
dean subgroups.

Proof. . By [16] Lemma 1.2 p. 2, G0 is equal to a lexicographically ordered direct sum of finitely
generated Archimedean subgroups. Since G is finitely generated, K(G) = G/G0 is finitely generated,
and by [10] Theorem 4.8 p. 49, there exist x1, . . . , xm in G such that K(G) = T (K(G))⊕Zx1⊕· · ·⊕Zxm

and x1, · · · , xm are rationally independent within K(G). Furthermore, T (K(G)) is a finitely generated
subgroup of K, hence it is cyclic and finite, let x0 ∈ G be such that T (K(G)) is generated by x0. In the
same way, T (G) is cyclic and finite, we let u be a generator of T (G). Denote by l the cardinal of T (G)
and by n the lowest element of N∗ such that nx0 = u. If n = 1, we can assume that x0 = u. If n > 1,
if necessary, we can take x0 + y in place of x0, where y is a positive and cofinal element of G0, and we
assume that nx0 − u is positive and cofinal within G0.

Set y = nx0 − u, and let d be a divisor of n such that d divides nx0 − u within G, say y = dy′, and
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n = dn′. Then u = d(n′x0 − y′), and since T (G) is pure in G we have: u′ = n′x0 − y′ ∈ T (G). It follows
that the cardinal of the quotient set T (K(G))/T (G) is at most equal to n′. Now, we know that this
cardinal is equal to n, hence n′ = n and d = 1.

Set H = Zx1 ⊕ · · · ⊕ Zxm; we have: H ∩ G0 = {0}, and since H ⊕ G0 is torsion-free we also have:
T (G)∩ (H⊕G0) = {0}, consequently, G contains the subgroup T (G)⊕H⊕G0. Let x ∈ G, x decomposes
in an unique way as x = kx0+a1x1+ · · ·+amxm, where the ai’s belong to Z and 0 ≤ k < ln (the cardinal
of T (K(G))). Let k = nq + r, where q ≥ 0 and 0 ≤ r < n, then x = rx0 + qu+ a1x1 + · · ·+ amxm, and
x decomposes as x = rx0 + qu+ a1x1 + · · ·+ amxm + y, where y ∈ G0, this concludes the proof. �

Proposition 6.5. Let G be an Abelian c.o.g. and G′ be another Abelian c.o.g. such that T (G) embeds
in T (G′), K(G) embeds K(G′) (in both cases as c.o.g.), and if G0 is nontrivial then G′

0 has no greatest
proper convex subgroup and for every x′ in the positive cone of G′

0, there exists y′ ∈ G′
0 such that x′ < y′

and the Archimedean component of G′
0 associated to y is isomorphic to R. Then G embeds in G′.

Proof. . Denote by ϕ the embedding ofK(G) in K(G′), and let x0, x1, . . . xm and u be defined in the same

way as in Proposition 6.4. Let x′
1, . . . , x

′
m in G′ be such that ϕ(x1) = x′

1, . . . , ϕ(xm) = x′
m; x′

1, . . . , x
′
m are

rationally independent because x1, . . . , xm are rationally independent. Set H ′ = Zx′
1 ⊕ · · · ⊕ Zx′

m. Since
T (G′) embeds in T (K(G′)), and K contains one and only one subgroup of every cardinal, T (G′) contains
an element u′ which has the same torsion as u and such that u′ = ϕ(u). Then T (G) ⊕ H = 〈u〉 ⊕ H
is isomorphic to 〈u′〉 ⊕ H ′. If G0 = {0}, then G = T (G) ⊕ H embeds in G′. Assume that G0 6= {0},
and decompose it as a lexicographically ordered direct sum of finitely generated Archimedean subgroups
G0 = As ⊕ As−1 ⊕ · · · ⊕ A1. Let x′ ∈ G′ be such that x′ = ϕ(x0) and nx′ − u′ > 0. According to the
hypothesis, G′

0 contains elements 0 < y′1 < · · · < y′s−1 < y′s such that H2(y
′
1) < · · · < H2(y

′
s), and for

1 ≤ j ≤ s, H2(y
′
j)/H1(y

′
j) ≃ R, and we can assume that y′s ≥ nx′ − u′. If H2(nx

′ − u′) < H2(y
′
s), we

take x′ + y′s in place of x′. Since G0 is finitely generated, there exists a greatest integer p which divides y
within G0. According to Proposition 6.4, p and n are coprime. If p divides y′ within G′

0, we set x′
0 = x′.

Otherwise, we let α and β in Z be such that αp + βn = 1, and we set x′
0 = (1 − βn)x′ + βu′. We let

1
p
(nx′

0 − u′) be the image of 1
p
(nx0 − u). If G0 6≃ Z, there exists an unique embedding f from As into R

such that f( 1
p
(nx0 −u)) = 1, and an unique isomorphism g from H2(nx

′
0 −u′)/H1(nx

′
0 −u′) onto R such

that g( 1
p
x0

′) = 1. We set B′
s = g−1 ◦ f(As), since B′

s is finitely generated, there exists a subgroup A′
s of

G′
0 which contains 1

p
(nx′

0 − u′) and such that B′
s = A′

s/H1(nx
′
0 − u′). We define subgroups A′

s−1, . . . , A
′
1

in such a way that we get an ordered groups isomorphism between G0 = As⊕· · ·⊕A1 and A′
s⊕· · ·⊕A′

1,
which extends to an isomorphism of c.o.g. from 〈u〉 ⊕H ⊕G0 onto 〈u′〉 ⊕H ′ ⊕ A′

s ⊕ · · · ⊕ A′
1. Finally,

since the image of nx0 − u is nx′
0 − u′, this isomorphsim extends to an isomorphism from G onto the

subgroup of G′ which is generated by x′
0 and 〈u′〉 ⊕H ′ ⊕A′

s ⊕ · · · ⊕A′
1. �

Corollary 6.6. Let G and G′ be two Abelian c.o.g. having isomorphic torsion subgroups, where G′ is
infinite and ω1-saturated, and such that either K(G′) is infinite, or K(G′) is isomorphic to K(G). Then
every finitely generated subgroup of G embeds into G′.

Corollary 6.7. There are 2ℵ0 distinct universal theories of Abelian c.o.g., each one determined by a
couple of invariants which are subgroups of U: T (G) and K(G) if K(G) is finite, T (G) and U if K(G)
is infinite.
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Département de Mathématiques
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