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Abstract

Many recent (including adaptive) MCMC methods are associated in practice to unknown rates

of convergence. We propose a simulation-based methodology to estimate MCMC efficiency,

grounded on a Kullback divergence criterion requiring an estimate of the entropy of the algorithm

successive densities, computed from iid simulated chains. We recently proved in Chauveau and

Vandekerkhove (2013) some consistency results in MCMC setup for an entropy estimate based on

Monte-Carlo integration of a kernel density estimate based on Györfi and Van Der Meulen (1989).

Since this estimate requires some tuning parameters and deteriorates as dimension increases, we

investigate here an alternative estimation technique based on Nearest Neighbor (NN) estimates.

This approach has been initiated by Kozachenko and Leonenko (1987) but used mostly in uni-

variate situations until recently when entropy estimation has been considered in other fields like

neuroscience. We show that in MCMC setup where moderate to large dimensions are common,

this estimate seems appealing for both computational and operational considerations, and that the

problem inherent to a non neglictible bias arising in high dimension can be overcome. All our al-

gorithms for MCMC simulation and entropy estimation are implemented in an R package taking

advantage of recent advances in high performance (parallel) computing.

keywords Adaptive MCMC algorithms, Bayesian model, entropy, Kullback divergence, Metro-

polis-Hastings algorithm, nearest neighbor estimation, nonparametric statistic.

1 Introduction

A Markov Chain Monte Carlo (MCMC) method generates an ergodic Markov chain for which the sta-

tionary distribution is a given probability density function (pdf) f . For common Bayesian inference, f
is a posterior distribution of the model parameter θ over a state space Θ ⊆ R

d. This posterior is typi-

cally known only up to a multiplicative normalizing constant, and simulation or integration w.r.t. f are

approximated by ergodic averages from the chain. The Metropolis-Hastings (MH) algorithm (Hast-

ings, 1970; Metropolis et al., 1953) is one of the most popular algorithm used in MCMC methods.

Another commonly used method is the Gibbs sampler introduced by Geman and Geman (1984).

Each step of a MH algorithm at a current position θt is based on the generation of the proposed

next move from a general proposal density q(·|θt). Historically, two popular MH strategies used

to be (i) the Independence Sampler (MHIS), which uses a proposal distribution independent of the
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current position, and (ii) the Random Walk MH algorithm (RWMH), for which the proposal is a

random perturbation of the current position, most often drawn from a Gaussian distribution with a

fixed variance matrix that has to be tuned.

To actually implement a MCMC algorithm, many choices for the proposal density are possible,

with the goal of improving mixing and convergence properties of the resulting Markov chain. For

instance running a RWMH strategy requires the determination of a “good” scaling constant, since

the mixing depends dramatically on the variance matrix of the perturbation (Roberts and Rosenthal,

2001). As a consequence, a growing interest in new methods appeared this last decade, which purpose

is to optimize in sequence the proposal strategy in MCMC algorithms on the basis of the chain(s)

history; see, e.g., Andrieu and Thoms (2008) for a recent survey. These approaches called adaptive

Monte Carlo Markov Chains (AMCMC) can be described (not in an entirely general way) as follows:

let f be the pdf of interest and suppose that we aim to simulate efficiently from f given a family

of Markov kernels {Pϑ, ϑ ∈ E}. This can be done adaptively using a joint process (θt, ϑt)t≥0 such

that the conditional distribution of θt+1 given the information available up to time t is a kernel Pϑt

where ϑt is an Euclidean parameter tuned over time to fit a supposed relevant strategy. Some general

sufficient conditions insuring convergence (essentially ergodicity and the strong law of large numbers)

of such algorithms have been established by various authors, see Andrieu and Thoms (2008). These

conditions are informally based on the two following ideas.

Containment: for any (θ0, ϑ0), and any ε > 0, the stochastic process (Mε(θ
t, ϑt))t≥0 is bounded in

probability, where

Mε(θ, ϑ) = inf
{

t ≥ 1 : ‖P t
ϑ(θ, ·) − f(·)‖TV ≤ ε

}

is the “ε-time to convergence”.

Diminishing Adaptation: for any (θ0, ϑ0), limt→∞ Dt = 0 in Pθ0,ϑ0-probability, where

Dt = sup
θ∈Θ

‖Pϑt+1(θ, ·) − Pϑt(θ, ·)‖TV ,

represents the amount of adaptation performed between iterations t and t + 1.

Note that in Bai et al. (2008) two examples are provided to show that either Diminishing Adap-

tation or Containment is not necessary for ergodicity of AMCMC, and diminishing Adaptation alone

cannot guarantee ergodicity. See also the very simple four-state Markov Chain Example 1 in Rosen-

thal and Roberts (2007), which illustrates the fact that ergodicity is not an automatic heritage when

adapting a Markov Chain from its past.

These various and sometimes experimental algorithmic choices are associated in general to un-

known rates of convergence because of the complexity of the kernel, and the difficulty in computing,

when available, the theoretical bounds of convergence. For instance, Bai et al. (2010) compare two

AMCMC strategies in dimension d ≤ 5, and Vrugt et al. (2009) compare two AMCMC’s against some

benchmark in dimension d = 10. More recently Fort et al. (2013) define the best interacting ratio for

a simple equi-energy type sampler, by minimizing the corresponding limiting variance involved in the

Central Limit Theorem (see Fig. 1 in Fort et al. (2013)). There are also recent works proposing tools

or methods for MCMC comparisons, showing that these questions are crucial in nowaday MCMC

application and research. Thompson (2010) proposes the R package SamplerCompare for comparing

several MCMC’s differing by a single tuning parameter, using standard evaluation criterion.

In this paper, we propose a methodological approach, and corresponding software tool, only based

on Monte Carlo simulation (i.e. not requiring a theoretical study typically MCMC and/or target-

specific) with two goals: (i) For MCMC users to easily select a good sampler among possible can-

didates; (ii) For researchers to better understand which (A)MCMC methods perform best in which

circumstances. Let

H(p) :=

∫

p log p = Ep(log p) (1)
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be the differential entropy of a probability density p over Θ, and pt be the marginal density of the

(A)MCMC algorithm at “time” (iteration) t. Our approach is grounded on a criterion which is the

evolution of the Kullback-Leibler divergence between pt and f ,

t 7→ K(pt, f) :=

∫

pt log

(

pt

f

)

= H(pt) −

∫

pt log f.

This Kullback “distance” is indeed a natural measure of the algorithm’s quality and has strong con-

nections with ergodicity of Markov chains and rates of convergence, see Harremoes and Holst (2007)

for recent results. In MCMC setup, Chauveau and Vandekerkhove (2013) showed that if the pro-

posal density of a Metropolis-Hastings algorithm satifies a uniform minoration condition implying its

geometric convergence as in Holden (1998), then K(pt, f) also decreases geometrically.

In Section 2, we detail our approach which is methodological but relies on estimation techniques

that have been proved to be theoretically consistent in simple cases like Gaussian unidimensional

RWMH or independent samplers (Chauveau and Vandekerkhove, 2013). Our estimation of H(pt) is

grounded on the simulation of N parallel (iid) chains. Section 3 illustrates the good behavior of our

criterion on a synthetic multi-dimensional example. This example also allows us to show the difficulty

coming from the curse of dimension in nonparametric statistical estimation. In Section 4 we detail our

solution for handling that difficulty, in such a way that our approach being still usable even in large

dimension, e.g. for Bayesian models with dozens of parameters.

2 Entropy and Kullback estimation in MCMC context

Recent motivations for entropy estimation in other fields like molecular science appeared recently in

the literature (see, e.g. Singh et al., 2003), and are concerned by estimation of H(p) for multivari-

ate densities p. Most of the estimation techniques proved to be consistent under various conditions

are based on iid samples from p. There exists some results about entropy estimation for dependent

sequences, but these heavily rely on the mixing properties of these sequences themselves, that are pre-

cisely what we want to capture by our simulation-based approach without theoretical investigations

concerning mixing properties of the Markov kernel. More importantly, these approaches could be

used to estimate H(f) but cannot estimate H(pt) for each t.

2.1 Simulation of iid copies of the (A)MCMC algorithm

Our approach is consequently based on the simulation of N parallel (iid) copies of (A)Markov chains

started from a diffuse initial distribution p0 and using the transition kernel defined by the MCMC

strategy under investigation. The N chains started from θ0
1, . . . , θ

0
N iid∼ p0 are denoted

chain # 1 : θ0
1 → θ1

1 → · · · → θt
1 ∼ pt → · · ·

...
...

chain # N : θ0
N → θ1

N → · · · → θt
N ∼ pt → · · ·

where “→” indicates the (eventually non-homogeneous) Markov dependence. At “time” (iteration) t,
the locations of the N simulated chains θ

t = (θt
1, . . . , θ

t
N ) forms a N -sample iid∼ pt.

In an experimental framework where when one wants to evaluate a new (A)MCMC algorithm the

target f often corresponds to a benchmark example, hence is completely known (as e.g., in Vrugt et al.,

2009). In this case a strongly consistent estimate of
∫

pt log f is given by Monte Carlo integration
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and the Strong Law of Large Numbers,

p̂t
N (log f) =

1

N

N
∑

i=1

log f(θt
i), (2)

so that estimation of K(pt, f) is in turn accessible provided H(pt) is. However, if the objective is

to evaluate an experimental MCMC method for an actual Bayesian model for which f is a posterior

density proportional to the likelihood, say f(·) ∝ φ(·) where the normalization constant is not known,

only p̂t
N (log φ) is accessible. We will see that this is not really a flaw since φ itself retains all the

specificity (shape, modes, tails, . . . ) of f , and since we are mostly interested in the stabilization in t
of K(pt, f), not necessarily in knowing its limiting value, as will be detailed in Section 4. In addition,

the normalization problem can be eliminated by comparing the MCMC under study to a benchmark

MCMC algorithm (e.g., a gaussian RWMH) for the same target f . Indeed, considering two MCMC

strategies leading to two sequences of marginal densities, say (pt
1)t≥0 and (pt

2)t≥0 allows the difference

of the divergences to be accessible to estimation since

D(pt
1, p

t
2, f) = K(pt

1, f) −K(pt
2, f) = H(pt

1) −H(pt
2) + Ept

2
[log φ] − Ept

1
[log φ]. (3)

The Kullback criterion is the only usual divergence insuring this property and, in addition to its con-

nection with ergodicity, it motivates our choice. Note also that the Kullback divergence is currently

used as a criterion in other simulation approaches, see Douc et al. (2007). The choice of this esti-

mate also has the advantage of avoiding numerical integration in moderate or high dimensional spaces

(replaced by Monte Carlo integration), in contrary to other criterion such as the L1-distance.

For estimating the entropy H(pt) a classical, plug-in approach, is to build a nonparametric ker-

nel density estimate of pt, and to compute the Monte Carlo integration of this estimate. Techniques

based on this approach have been suggested by Ahmad and Lin (1989), and studied by many authors

under different assumptions (see, e.g., the survey paper Beirlant et al., 1997). Several consistency

and asymptotic normality results pertaining to this approach have been proved (see references in Eg-

germont and LaRiccia, 1999). However, most of these are not suitable to estimate H(pt) even in the

simplest MH cases, either because they do not apply to multivariate densities, or because they require

smoothness conditions that are far too restrictive to be proved for the sequences of densities pt we have

to consider here. Up to our best knowledge, the unique consistency result applicable in this MCMC

simulation context is the one proved in Györfi and Van Der Meulen (1989), since it essentially requires

a smoothness condition which is in turn implied by a Lipschitz condition. Indeed, for that approach,

Chauveau and Vandekerkhove (2013) have proved that adequate smoothness and tail conditions on

the “input ingredients” of the MH algorithm (namely p0, q and f ) propagate a Lipschitz condition to

the successive marginals pt, t = 1, . . . , n, so that the sequence of (H(pt))t=1,...,n can be consistently

estimated. These technical conditions have been proved to hold in simple univariate IS and RWMH

cases, but are not meant to be verified in general, since it would require tedious (and often unfeasible)

calculations.

2.2 Estimates based on nearest neighbor distances

The plug-in estimate presented above requires the tuning of several parameters: a certain threshold for

truncating the data over the tails of pt, the choice of the kernel and the difficult issue of the appropriate

bandwidth matrix, particularly in high dimensions. All these issues motivated us to find an alternative,

and study the behavior of the somehow simpler Nearest Neighbor (NN) estimate from Kozachenko
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and Leonenko (1987). Based on the sample θ
t, their NN entropy estimate is defined by

ĤN (pt) =
1

N

N
∑

i=1

log(ρd
i ) + log(N − 1) + log(C1(d)) + CE , (4)

where CE = −
∫ ∞

0 e−t log t dt ≈ 0.5772 . . . is the Euler constant, C1(d) = πd/2

Γ(d/2+1) and where

ρi = min{d(θt
i , θ

t
j), j ∈ {1, 2, . . . , N}, j 6= i} is the (Euclidean) distance from the ith point to its

nearest neighbor in the sample θ
t.

Kozachenko and Leonenko (1987) proved the mean square consistency of (4) for any dimension d
under mild peak and tail conditions (see also Beirlant et al., 1997). This NN estimate seems more

appealing than kernel density estimates in our situation, both from an operational point of view (no

tuning parameters like the threshold and bandwidth), and from a computational point of view (the

nearest distance can be computed faster than a multivariate kernel density estimate in high dimen-

sion). Until recently, this nearest neighbor approach has been used and studied mostly in univariate

or bivariate (d = 2) situations, like in image processing. One interest of this study is to investigate its

behavior in higher dimensions and for MCMC sequences of marginals.

3 Experiments and simulations

All the estimation techniques and MCMC evaluation criterion presented in the previous Sections are

based on intensive simulations and computations for which we provide a software tool implemented in

the “EntropyMCMC” package for the R statistical software (R Core Team, 2013), taking advantage of

recent advances in High Performance Computing, that will be publicly available in a near futur. This

package includes some predefined target distributions and standard MCMC samplers, easy definition

of additional ones, functions for running simulations, estimating entropy and Kullback divergences,

results visualization and sampler comparison. For instance Figs 1 and 2 have been done using simply

a default plot() command from this package. The parallel simulations can be done from inside the

package, or imported from external files. We first tried our approach on a simple multidimensional,

centered Gaussian target density f with unit spherical covariance matrix. These experiments allows

us to numerically check the consistency of ĤN (f) (and K̂N (pt, f)) since the true entropy is known

for the Gaussian distribution. These results are not presented here for brevity.

We illustrate our approach on a synthetic but more complex target density: a 3-components mix-

ture of multivariate, d-dimensional Gaussian distributions,

f(x) =
3

∑

j=1

λj Nd(µj ,Σj)(x),

where Nd(µj ,Σj)(·) informally denotes the multivariate Gaussian density. The three weights are set

to λj = 1/3, the mean vectors and (spherical ) covariance matrices are set to

µ1 = 01d, µ2 = 41d, µ3 = −41d, Σj = jId, j = 1, 2, 3,

where 1d is the d-column vector of ones and Id is the d × d identity matrix. The advantage of such a

synthetic model is that it is defined for any dimension, but the complexity of the target increases with d
(the distance between modes increases and the modes get more and more separated and spiked). Note

that here the normalizing constant of f is known, so that theoretically the sequence of marginals pt

from a proper (converging) MCMC satisfies K(pt, f) → 0 as t → ∞. We compare several standard,

well known MCMC algorithms for recovering this target:
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• Two RWMH with Gaussian proposals Nd(θ
t;σ2

Id) resulting in slow or fast MCMC’s depending

on the magnitude σ2 of their (spherical) variance matrix that we set to σ2 = 1 (algorithm called

RW1 in the sequel) and 4 (called RW4).

• Three Independence Samplers (IS) with Gaussian proposals Nd(01d;σ
2
Id) and the choices

σ2 = 2 (called IS2 in the sequel), σ2 = 9 (IS9) and 16 (IS16).

The idea driving the choices above for the tuning parameters of the candidate MCMC’s is that we

want to compare fast, slow and even non converging MCMC’s. For the 2-dimension Gaussian mixture,

it is easy to figure out how to obtain a converging RW, like RW1. For the IS’s, the practical support of

the proposal density, within which each proposed next move lies, is suppose to include the region of

interest of the target. This is definitely not the case for σ2 = 2 (obviously for d ≤ 2 where we can plot

the target and proposal density), hence IS2 is a non converging algorithm. Larger variances should

lead to better algorithms, but it is not easy to tell which value of σ2 is the best choice. Also, the IS is

known to be geometrically fast if the proposal have heavier tails than the target, which is not the case

here. Then we just check how these strategies behave in higher dimension, where the 3 components

get more and more separated and spiked.

Fig.1: In small dimensions like d = 2 (top panel), our criterion delivers the right answer straight-

forwardly, since there is no noticeable bias in the estimates, even with N = 500 chains. All the

convergent MCMC’s stabilized well before n = 1000 iterations. IS2 is not converging and is almost

stabilized to a non-zero value in these n = 1000 iterations. Similar runs for more iterations show

clearly its non convergence, and increasing N up to say 1000 reduces the variance, resulting in easier-

to-read diagostics. The bottom panel displays a similar experiment, but now in dimension d = 10,

and for N = 5000 chains to illustrate the variance reduction resulting is smooth curves (so many

chains are not needed to get a readable diagnostic). The two RW’s converge, but note that RW4 is

less performant than RW1 in this higher dimension. IS2 is stabilized away from zero, indicating non

convergence. It is hard to tell in 1000 iterations wether IS9 and IS16 will converge at some point, but

1000 iterations are sufficient to tell that these are slow, comparing with the RW’s fast stabilizations.

Actually running the experiment up to n = 10, 000 show that IS16 is slow but converging, whereas

IS9 convergence is not clear. This is because the proposal “almost covers” the region of interest of the

mixture.

Fig.2: As expected, the scale of the number of iterations required to detect stabilization increases

with the difficulty associated to the dimension, hence in this figure two simulations in the d = 20
dimensional case have been ran up to n = 10, 000 iterations. The difference between top and bottom

panels is just the number of iid chains, N = 500 (top) and N = 10, 000 (bottom). This last number

has been chosen intentionnally huge to illustrate the variance reduction, bias difficulty, and the fact

that running so many chains is feasible but not needed to obtain a meaningful criterion. Note that

this example with d = 20, n = 10, 000 and N = 500 requires about about 25mn of CPU time per

algorithm on a 12-cores single workstation.

One purpose of Fig.2 is precisely to illustrate the bias problem. Indeed, if we look at the top panel

and the three IS’s only, we conclude that IS16 and IS9 are non or very slowly converging, and that IS2

quickly stabilizes near (and above) 0. Hence if we were only comparing algorithms for stabilization

near 0, we would falsely conclude that IS2 is the preferable algorithm. But we already know that

IS2 is not a convergent MCMC in this synthetic example. This bizarre results is due to a bias in

H(pt) estimation. Looking now at the curves for the RW’s, we see that these stabilize on a common

negative value, which is theoretically impossible since K(pt, f) ≥ 0. Hence there is a negative bias,
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more prominent in the top panel with just N = 500 chains. Looking at the bottom panel, we see that

estimating the entropy from samples of size N = 10, 000 has the effect of reducing the variance giving

more accurate curves, but only slighlty reducing the bias: all the curves are just shifted from a small

amount (enough to tell that IS2 is actually not convergent). The difference between these two plots

illustrate the fact that the bias reduces dramatically slowly with N , and that since all the stabilization

values are biased, we cannot rely on stabilization near 0 to assess convergence or lack of convergence.

There are two reasons allowing us to evaluate the competing algorithms in view of Fig.2 top: (i)

the property of the Kullback divergence says that K(pt, f) decreases when pt → f , so that if the bias

is of the same order in all the algorithms, the faster decay and smaller stabilization value is associated

to the best algorithm; (ii) we have a prior knowledge that the RW’s are convergent MCMC’s, without

knowing their rates of convergence. The two RW’s can be viewed here as convergent benchmarks, and

since they stabilize at the same value, it means that their biases are quite identical. To summarize, we

can conclude that RW1 is preferable, RW4 is convergent but slower (probably as a consequence of the

more spiked component modes so that its proposal variance is comparatively getting too large), IS2

is non convergent since it stabilizes above the benchmark RW1, and IS9 and IS16 may be convergent

but even much slower. This diagnostic comes from the analysis of the top panel only, i.e. N = 500 is

enough to get a conclusion. The next section details all these methodological questions.

4 How to handle the bias in large dimension

The experiments from Section 3 show that some care shoud be taken in the analysis of the plots of the

estimates of t 7→ K(pt, f) delivered by our techniques, particularly in high dimension (say d > 10)

where the bias becomes visible. This effect of the dimension on the bias has actually been already

noticed in recent literature since nowadays applications of entropy estimation in other fields require

moderate to high dimensions. Our results are in accordance with, for instance, Stowell and Plumbley

(2009) and Sricharan et al. (2013). These studies show that in H(p) estimation, one can expect the

variance to decreases as O(N−1) whereas the bias only decreases as O(N−1/(d+1)), which these

authors called a “glacially slow” rate, and this phenomenon occurs both for Kernel density and NN-

based estimates. These behaviors has been confirmed in our case using an iid sampler for a known

(Gaussian) H(f). Hence, trying to achieve in practice the asymptotic unbiasedness guaranteed by the

theory by “simply” increasing N is hopeless.

In addition to the bias difficulty, there is also the unknown normalizing constant. In our experi-

ment the target f in the Monte-Carlo estimate (2) was entirely known, but in practical situations like

Bayesian inference for a parameter θ, f is a posterior distribution only known up to a multiplicative

constant, f(θ) = Cφ(θ) where C = (
∫

φ(θ) dθ)−1 is the (unknown) normalizing constant. Hence

what can be actually estimated is

K(pt, φ) = H(pt) − Ept(log φ) = K(pt, f) + log C,

and K(pt, φ) → log C for a converging MCMC. Actually, this relation holds also for the estimates

K̂N (pt, φ) = K̂N (pt, f) + log C. This is why in (3) we noticed that in the (estimate of the) difference

between the Kullback divergences issued from two MCMC strategies with marginal densities pt
1 and

pt
2, the unknown log C cancels out and D(pt

1, p
t
2, f) → 0 as t → ∞ if both strategies are converging.

In practice for large d, each Kullback estimate is biased. As seen previously this bias, which comes

from the estimation of the entropy H(p) of any d-dimensional pdf p, depends on p and d and will

be denoted biasN (p, d). To summarize the behavior of the estimates we can sketch their convergence

in t, for fixed but large enough N so that the variance becomes neglictible but the bias still remains,
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which is what is achievable in practice for d large. Informally, for fixed t,

K̂N (pt, φ) ≈ K(pt, f) + log C + biasN (pt, d).

We assume that biasN (pt, d) → biasN (f, d) when pt → f , which seems fairly reasonnable and

implies that biasN (pt, d) and biasN (f, d) are of the same magnitude for pt and f “close enough”.

This is needed in order to compare decays of t 7→ K̂(pt, f) before convergence, and is supported by

numerical evidence from other experiments we did (not provided here for brevity), and the fact that

even a slow MCMC, if converging, should never be too far from its target, leading to similar biases.

For a MCMC strategy with marginals pt → g, we then have informally (i.e. forgetting as above

the randomness and variance associated to the N chains) when t → ∞,

K̂N (pt, φ) → K(g, f) + log C + biasN (g, d). (5)

For comparing two converging strategies pt
j → f , j = 1, 2, a possibility is to plot the difference

D̂N (pt
1, p

t
2, f) which delivers the correct answer since the sign and slope of its decay towards 0 indi-

cates the best strategy. But if one (or both) strategies are not converging, DN (pt
1, p

t
2, f) can stabilizes

at any value including 0 leading to wrong conclusion.

To be guarded against such situations we suggest a simpler method only using plots of K̂N (pt, φ)’s:

add to the competing strategies a “benchmark MCMC” with marginals pt
B known to converge, i.e. for

which K̂N (pt
B, φ) → log C + biasN (f, d). Comparing decays and stabilization of the other challeng-

ing strategies against this benchmark stabilization value taking account for the bias delivers the correct

answer (as we did in Section 3): any converging strategy stabilizes to the benchmark level, and any

non converging MCMC stabilizes above that since K(g, f) > 0. Hence this criterion provides both

performance comparisons and MCMC convergence assessment. The only exception to that could be

a very special situation where K(g, f) + biasN (g, d) = biasN (f, d).

5 Discussion

We have proposed a methodological approach to evaluate MCMC efficiency and control of conver-

gence on the basis of intensive simulation only. The diagnostic is based on a practical, easy-to-

understand graphical criterion. To evacuate the difficulty induced by the bias in high dimensions

we have introduced a benchmark convergent MCMC which indicates when stabilization means con-

vergence.

Since our method requires intensive simulations that may be computationally demanding, all our

algorithms have been implemented in a package called EntropyMCMC for the R statistical software

(R Core Team, 2013) that will be publicly available in a near futur. This package takes advantage of

recent advances in parallel, High Performance Computing (HPC) using the Rmpi package (Yu, 2012).

All the examples shown in this paper have been ran with this package on multicore workstations and

the regional cluster CCSC1. These simulations (or part of it) from the best sampler are recyclable after

comparisons, or can be re-used in the fly for statistical inference.

Recent researchs extend the NN idea to a k-th nearest neighbor distance estimate (Singh et al.,

2003), see also Wang and Kulkarni (2009). There are some hope that these extensions together with

recent computing strategies for computing approximate k-NN estimates reduce the bias in entropy esti-

mation. However, it also brings back a tuning parameter (how to choose k) that plays somehow the role

of the bandwidth in the kernel density estimation approach. Theoretically, NN-estimates consistency

require mild peak and tail conditions as mentionned Section 2.2, like
∫

| log p(θ)|1+εp(θ) dθ < ∞ for

1Centre de Calcul Scientifique en région Centre
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the 1−NN case (see Kozachenko and Leonenko, 1987). We have assumed here that this condition is

reasonable enough to be satisfied for MCMC successive densities. Indeed, as detailed in Chauveau

and Vandekerkhove (2013), the crucial point for MCMC successive densities seems to be smoothness

more than tail conditions, one reason being that a MH kernel is a building block of many MCMC,

including adaptive ones, and this kernel has a point mass at the chain’s current position. Propagation

of some tail conditions are already proved in Chauveau and Vandekerkhove (2013). All our experi-

ments indicate numerical evidence of consistency, nevertheless it would be interesting to determine

which minimal initial conditions on the algorithm imply propagation of the 1−NN tail condition to

the sequence of pt’s. All these considerations are perspectives for futur work.
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Figure 1: Kullback estimates t 7→ K̂N (pt, f) for n = 1000 iterations of the 5 MCMC strategies RW1

(black), RW4 (red), IS2 (green), IS9 (blue), IS16 (light blue). Top: d = 2 and N = 500 chains;

bottom: d = 10 and N = 5000 chains.
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Figure 2: Kullback estimates t 7→ K̂N (pt, f) for d = 20 and n = 10, 000 iterations of the 5 MCMC

strategies RW1 (black), RW4 (red), IS2 (green), IS9 (blue), IS16 (light blue). Top: N = 500 chains;

bottom: N = 10, 000 chains.
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