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Abstract. We study a minimal time control problem under the presence of

a saturation point on the singular locus. The system describes a fed-batch
reactor with one species and one substrate. Our aim is to find an optimal

feedback control steering the system to a given target in minimal time. The
growth function is of Haldane type implying the existence of a singular arc
which is non-necessary admissible everywhere (i.e. the singular control can take
values outside the admissible control set). Thanks to Pontrygin’s Principle, we
provide an optimal synthesis of the problem that exhibits a frame point at the
intersection of the singular arc and a switching curve. Numerical simulations
allow to compute this curve and the frame point.

1. Introduction. Minimal time control problems for affine systems with one input
such as:

ẋ = f(x) + ug(x), x ∈ R
n, |u| ≤ 1, (1)

have been investigated a lot in the literature, see e.g. [9, 10, 20, 21, 28, 29, 30] and
[8] for n = 2 and references herein. One often encounters singular trajectories which
appear when the switching function of the system is vanishing on a time interval.
In order to find an issue to a minimal time control problem governed by (1), one
usually requires that the singular control us is admissible, which means that

|us| ≤ 1. (2)

This allows the trajectory to stay on the singular arc. However, one cannot in
general show that this assumption holds. In fact, the expression of the singular
control in terms of the state and adjoint state does not always guarantee that (2)
is satisfied. One can argue that it is enough to consider a larger admissible upper
bound for the controls, but this seems rather artificial, and not necessarily feasible
from a practical point of view. The objective of this work is to study a minimal
time control problem in the plane where the singular control satisfies (2) only on a
sub-domain of the state space (the part of the singular arc where (2) does not hold
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2 TERENCE BAYEN AND FRANCIS MAIRET AND MARC MAZADE

is usually called barrier [8, 9, 10, 20, 21]). This may happen in many engineering
problems in particular when the singular control can take arbitrary large values in
the state space.

The system that we consider is a fed-batch bioreactor with one species and one
substrate [19]. Our aim is to find an optimal feedback control that steers the system
in minimal time to a given target where the substrate concentration is less than a
prescribed value, see [19]. Finding an optimal feeding strategy can significantly
increase the performance of the system and has several advantages from a practical
point of view (see e.g. [1, 2, 6, 7, 12, 13, 14, 16, 19]). The design of adequate
feedback control laws is used for instance in wastewater treatment industries [13].

Whenever the growth function is of Monod type [18, 26], then one can prove
that the optimal feeding strategy is bang-bang [19]. This means that the reactor is
filled until its maximum volume with the maximum input flow rate. Then, micro-
organisms consume the substrate until reaching a reference value. In the case where
the growth function is of Haldane type (in case of substrate inhibition [18, 26]), this
strategy is no longer optimal. In fact, one can prove that the optimal strategy is
singular provided that the singular arc is always admissible (see [19]). It consists in
reaching in minimal time a substrate concentration s̄ corresponding to the maximum
of the growth rate function, and which coincides with the singular set. Then, the
substrate concentration is kept constant at this value until reaching the maximal
volume (a more detailed description of singular strategies can be found in [1, 2, 12,
19]).

In the present work, we are interested in studying the optimal synthesis for
Haldane-type growth function whenever the singular arc is no longer admissible
from a certain volume value. This can happen when the singular control becomes
larger than the maximal input flow rate which is allowed in the system. It follows
that there exists a volume value above which singular extremal trajectories are no
longer admissible. Such a point is usually called saturation point [5, 15, 23, 24].
Whereas in [1, 19], the maximal volume can be reached by a singular trajectory,
this is no longer possible as the singular control saturates before reaching this value.

In this setting, the optimal synthesis of the problem is more intricate to obtain as
one cannot apply the clock form (see [4]). Thanks to the Pontryagin’s Principle, we
provide an optimal synthesis of the problem. In particular, we show that singular
optimal trajectories leave the singular arc at a frame point defined as the intersection
between the singular arc and a switching curve (see [8] for a description of frame
points). As a consequence, a singular extremal trajectory ceases to be optimal before
reaching the saturation point. This phenomena is studied in [8, 20, 23, 24] where
local results are given. In [23], a local regular synthesis is given in low dimension
for the minimal time problem with the saturation phenomena. It appears in several
systems such as a model of tumor-cancer therapy [15, 24], in the problem of NMR
[5], and in chemical engineering when optimizing a batch reactor (i.e. without input
substrate) w.r.t. the temperature [7, 6].

The paper is organized as follows. The second section states the optimal control
problem. We also recall the optimality result of [19] and we apply Pontryagin’s
Principle. The third section is devoted to the optimal synthesis of the problem
whenever the singular arc is not admissible. In Proposition 4, we show that optimal
controls are of type BSBB or BBSB with at most three switching points (here B
denotes a bang arc and S a singular arc). Proposition 2 studies the case where the
singular arc is never admissible in the state space. This allows to obtain an optimal
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feedback control of the problem (see Theorems 3.2 and 3.3) in line with [15, 23,
24]. In section 4, we provide numerical simulations of optimal trajectories and
computations of the switching curve and the frame point. Several questions on the
optimal synthesis are discussed in the last section (implicit equation of the switching
curve, regularity of the value function, and uniqueness of optimal trajectories).

2. General results. In this section, we state the optimal control problem and we
recall the optimal synthesis as in [19] that will allow us to introduce the optimal
control problem when the singular arc is partially admissible. We also apply the
Pontryagin Maximum Principle (PMP) [22] that will be used in the next section.

2.1. Statement of the problem. We consider a system describing a fed-batch
bioreactor with one species and one substrate [14, 26]:











ẋ = x
(

µ(s)− u
v

)

,

ṡ = −µ(s)x+ u
v
(sin − s),

v̇ = u.

(3)

Here x represents the concentration of micro-organisms (biomass), s the concentra-
tion of substrate, and v is the volume of the tank. The input substrate concentration
is denoted by sin > 0, and u is the input flow rate in the system. For convenience,
we have taken a yield coefficient equal to one (by rescaling the equation). The
function s 7−→ µ(s) is the growth function of Monod or Haldane type (see [18, 26]).
In the following, we consider that u takes values within the set:

U := {u : [0,+∞) → [0, umax] ; u meas.}.

Here umax denotes the maximum input flow rate in the system. By time scaling,
we can take umax = 1. The target we consider is defined by:

T := R
∗
+ × [0, sref ]× {vm},

where sref is a given substrate concentration (typically sref is such that sref ≪ sin
in wastewater treatment). For u ∈ U , let tξ0(u) the time to steer (3) from an initial
condition ξ0 := (x0, s0, v0) ∈ R

∗
+ × [0, sin] × [0, vm]. The optimal control problem

becomes:

inf
u∈U

tξ0(u), s.t. ξ(t(u)) ∈ T , (4)

where ξ(·) denotes the unique solution of (3) for the control u that starts at ξ0.
One essential feature in the system (3) is that the quantity

M := v(x+ s− sin), (5)

is conserved along any trajectory of (3), hence M is constant and equal to v0(x0 +
s0 − sin). From (5), we obtain:

x =
M

v
+ sin − s, (6)

and system (3) can be put into a two-dimensional system:
{

ṡ = −µ(s)(M
v
+ sin − s) + sin−s

v
u,

v̇ = u.
(7)

One can easily show that the set [0, sin]×R
∗
+ is invariant by (7). Notice that if we

define x by (6), the micro-organisms concentration may not be positive. This can
happen when M ≤ 0 which means that initial conditions of micro-organisms and
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substrate are low. Therefore, we consider initial conditions for (7) in the domain D
defined by:

D :=

{

(s, v) ∈ [0, sin]× (0, vm] ;
M

v
+ sin − s > 0

}

.

We denote by ∂D the boundary of D. In the rest of the paper, we also write u(·) a
control in open loop and u[·] a feedback control depending on the state (s, v). Also,
we define two vector fields f, g : D → R

2 associated to (7) by:

f(s, v) :=

[

−µ(s)(M
v
+ sin − s)
0

]

, g(s, v) :=

[

sin−s
v

1

]

.

2.2. Optimal synthesis in presence of an admissible singular arc. In this
part, we review a result of [19] on optimal trajectories for problem (4) in the case
where the singular arc is always admissible. First, we consider the case where the
growth function µ is of Monod type i.e. µ(s) = µ̄s

k+s
with µ̄ > 0 and k > 0 [18].

Theorem 2.1. Assume that µ is of Monod type. Then, the optimal feedback control
uM steering any initial condition in D to the target T is:

uM [s, v] :=

{

1 if v < vm,

0 if v = vm.

In other words, the optimal strategy is fill and wait, and it consists in filling the
tank with maximum input flow rate until v = vm, and then we let u = 0 until s
reaches the value sref (if necessary). In the rest of the paper, we only consider the
case where the growth function µ is of Haldane type i.e.

µ(s) =
µ̄s

gs2 + s+ k
,

with µ̄ > 0, g > 0, and k > 0. In this case, µ has exactly one maximum over R+,
that we denote s̄, and we suppose that s̄ > sref (which means that the reference
concentration to achieve is sufficiently small). The optimal synthesis in this case is
rather different than for Monod growth function (see an illustration Fig. 4).

Theorem 2.2. Assume that µ is of Haldane type and that the following assumption
holds:

µ(s)

[

M

sin − s
+ vm

]

≤ 1. (8)

Then, the optimal feedback control uH to reach the target is given by

uH [s, v] :=











0 if v = vm or s > s,

1 if s < s and v < vm,

us[v] if s = s and v < vm,

where

us[v] := µ(s)

[

M

sin − s
+ v

]

. (9)

This can be proved by using either the PMP or the clock form [4, 17]. Here we
have emphasized that (8) is necessary in order to state the optimality result (see
e.g. [1, 12]). The control us is singular (see section 2.3). It allows to maintain

the substrate concentration equal to s. It can be written us[v] =
µ(s)x

v(sin−s) so that
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us ≥ 0. Therefore, (8) is essential to ensure that us[v] satisfies the upper bound
us[v] ≤ 1 for all v ≤ vm.

The objective of this paper is to provide an optimal synthesis of the problem
whenever (8) is not satisfied. From (9), one can see that the singular control can
take arbitrary large values. Note that in practice, one should start the fed-batch
with a high biomass concentration (i.e. high M) in order to speed up the process,
so that condition (8) can no longer be satisfied.

2.3. Pontryagin maximum principle. In this part we apply the PMP on (4).
The existence of an optimal control is straightforward from standard arguments.
First, notice that any trajectory of the system takes values within the compact set
[0, sin] × [0, vm]. Moreover, a trajectory corresponding to the feedback uM steers
any initial condition to the target. As the system is affine w.r.t. the control which
takes values within a compact set, the result follows. Let H := H(s, v, λs, λv, λ0, u)
the Hamiltonian of the system defined by:

H := −λsµ(s)

[

M

v
− (s− sin)

]

+ u

[

λs(sin − s)

v
+ λv

]

+ λ0.

If u is an optimal control and z := (s, v) the corresponding solution of (7), there
exists tf > 0, λ0 ≤ 0, and an absolutely continuous map λ = (λs, λv) : [0, tf ] → R

2

such that (λ0, λ) 6= 0, λ̇s = −∂H
∂s

, λ̇v = −∂H
∂v

, that is:
{

λ̇s = λs

(

µ′(s)x− µ(s) + u
v

)

,

λ̇v = λs

(

−µ(s)M+u(sin−s)
v2

)

,
(10)

and we have the maximality condition:

u(t) ∈ arg maxω∈[0,1]H(s(t), v(t), λs(t), λv(t), λ0, ω), (11)

for almost every t ∈ [0, tf ]. We call extremal trajectory a sextuplet (s(·), v(·), λs(·),
λv(·), λ0, u(·)) satisfying (7)-(10)-(11), and extremal control the control u associated
to this extremal trajectory. As tf is free, the Hamiltonian is zero along an extremal
trajectory. Following [1], one can prove that λs is always non-zero (it is therefore of
constant sign from the adjoint equation), and that λ0 < 0 (hence we take λ0 = −1
in the following). Next, let us define the switching function φ associated to the
control u by:

φ :=
λs(sin − s)

v
+ λv. (12)

We obtain from (11) that any extremal control satisfies the following control law:
for a.e. t ∈ [0, tf ], we have











φ(t) < 0 =⇒ u(t) = 0 (No feeding),

φ(t) > 0 =⇒ u(t) = 1 (Maximal feeding),

φ(t) = 0 =⇒ u(t) ∈ [0, 1].

We say that t0 is a switching point if the control u is non-constant in any neighbor-
hood of t0 which implies that φ(t0) = 0. Whenever the control u switches either
from 0 to 1 or from 1 to 0 at time t0, we say that the control is bang-bang around
t0. We will write B0 a bang arc u = 0 and B1 a bang arc u = 1. Whenever φ is zero
on a non-trivial interval I ⊂ [0, tf ], we say that u is a singular control, and that the
trajectory contains a singular arc. We will write S a singular arc defined on a time
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interval. The sign of φ̇ is fundamental in order to obtain the optimal synthesis. By
taking the derivative of φ, we get:

φ̇ =
λsx(sin − s)µ′(s)

v
. (13)

Moreover, we can show that λs < 0 (see e.g. [1, 12]). This implies that any extremal
trajectory satisfies the property:

s(t) > s =⇒ φ̇(t) > 0 ; s(t) < s =⇒ φ̇(t) < 0. (14)

Now, if an extremal trajectory contains a singular arc on some time interval I :=
[t1, t2], then we have φ = φ̇ = 0 on I, hence we have µ′(s) = 0 and s = s on I,
hence the singular locus is the line segment S := {s̄}× [0, vm]. By solving ṡ = 0, we
obtain the expression of the singular control given by (9), see e.g. [2]. Now, along
a singular arc, one has easily:

φ̈ =
λsx(sin − s)µ′′(s̄)

v
ṡ. (15)

As λs < 0 and µ′′(s̄) < 0, one obtains from (15) that 〈λ(t), [g, [f, g]](z(t))〉 > 0

where [f, g] denotes the Lie bracket of f and g (recall that [f, g](z) := ∂g
∂z

(z)f(z)−
∂f
∂z

f(z)g(z)). This shows that Legendre-Clebsch necessary condition

∂

∂u

d2

dt2
∂H

∂u
(z(t), λ(t),−1, u(t)) > 0,

is satisfied along a singular trajectory (see e.g. [15] or [11]). Again using that
µ′′(s̄) < 0, one obtains immediately that det(g(z(t)), [g, [f, g]](z(t))) > 0 and that
det(f(z(t)), g(z(t))) < 0 which shows that the singular arc is hyperbolic or time
minimizing [4, 3].

Remark 1. In other words, the singular arc is a turnpike [8] (this can be also
verified using the clock form argument).

Finally, one obtains the time of a singular trajectory by integrating the ODE
v̇ = us (see e.g. [1]). Let ts(v0, v1) be the time of a singular extremal steering
(s̄, v0) to (s̄, v1), v0 < v1. One obtains:

ts(v0, v1) =
1

µ(s)
ln

(

M + v1[sin − s]

M + v0[sin − s]

)

. (16)

3. Optimal synthesis in the general case. In this part, we provide a description
of optimal trajectories for problem (4) when (8) is not satisfied. We first introduce
a partition of D that will allow us to describe where optimal trajectories have a
switching point.

3.1. Partition of the domain D. In view of (8) that can be equivalently written
vm ≤ 1

µ(s̄) −
M

sin−s̄
, we introduce a mapping η : (0, sin) → R by

η(s) :=
1

µ(s)
−

M

sin − s
.

By definition of η, we have:

us[v] = 1 ⇐⇒ v = η(s).

Now, if we define a point v∗ by v∗ := η(s), the singular arc is admissible provided
that v∗ ≥ vm. In the following, we make the following assumption on v∗:

(H1) We suppose that v∗ < vm.
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Following [5, 8, 15], the point (s̄, v∗) is usually called saturation point. It follows that
the singular arc is admissible only if the volume is less than v∗ i.e. the admissible
part of the singular arc is {s̄} × [0, v∗]. Indeed, for v > v∗ equality (9) no longer
defines a control in [0, 1]. Next, we will consider the two following cases:

• Case 1: v∗ ≤ 0,
• Case 2: 0 < v∗ < vm.

Remark 2. Case 1 means that the singular arc is never admissible over (0, vm]. As
the function η can take negative values, v∗ can be negative.

We now introduce curves that are solutions of (7) with u = 1 that will provide a
partition of initial states.

Definition 3.1. We define Ĉ, resp. Č as the restriction to the set D of the orbit of
system (7) with u = 1 that passes through the point (s̄, vm), resp. (s, v∗).

Hence, Ĉ is the graph of a C1-mapping v 7−→ γ̂(v) that is the unique solution of
the equation:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, (17)

over (0, vm] (recall that the point (s̄, vm) ∈ ∂D) with initial condition γ̂(vm) = s̄.
Similarly, Č is the graph of a C1-mapping v 7−→ γ̌(v) that is the unique solution of
(17) over (0, vm] such that γ̌(v∗) = s̄.

The curves Ĉ and Č will play a major role in the optimal synthesis contrary to
the case where the singular arc is admissible (see Fig. 3 and Table 1 for parameter
values). In fact, they will indicate sub-domains where optimal trajectories have a
switching point, and the existence of a frame point [8] depending on the value of
M (see Hypothesis (H2) in section 3.3).

As D is not backward invariant by (7), we call v̂, resp. v̌ the first volume value
such that γ̂(v̂) /∈ (0, sin), resp. γ̌(v̌) /∈ (0, sin). We now investigate monotonicity
properties of γ̂ and γ̌ (see Fig. 1 and 3).

Proposition 1. (i) The curve γ̂ is either decreasing on [v̂, vm], either there exists

a unique v1 ∈ (v̂, vm) such that γ̂(v1) ∈ (0, sin) and dγ̂
dv
(v1) = 0. Moreover, in the

latter case, γ̂ is increasing on [v̂, v1] and is decreasing on [v1, vm].

(ii) The mapping γ̌ is increasing on (v̌, v∗] and decreasing on [v∗, vm], and dγ̌
dv
(v∗) =

0.

Proof. Let us first prove (i). For v ∈ (v̂, vm], we can rewrite (17) as follows:

ds

dv
=

µ(s)(sin − s)

v
[η(s)− v].

When v = vm, we have η(γ̂(vm)) = η(s) = v∗ < vm, therefore, we have dγ̂
dv

< 0
in a neighborhood of vm. Now, if γ̂ is non-monotone on (v̂, vm), then necessarily

v 7−→ dγ̂
dv

is vanishing on (v̂, vm]. Assume that there exist 0 < v2 < v1 < vm such

that γ̂(v1) ∈ (0, sin), γ̂(v2) ∈ (0, sin) and dγ̂
dv
(v1) =

dγ̂
dv
(v2) = 0. Without any loss

of generality, we can assume that vi, i = 1, 2 are the two first zeros of v 7−→ dγ̂
dv
.

Hence, we have η(s(v)) > v for v ∈ (v2, v1) so that dγ̂
dv
(v) > 0. This gives using

η(γ̂(v2)) = v2:
η(γ̂(v))− η(γ̂(v2)) > v − v2, v ∈ (v2, v1),

and by dividing by v− v2 (with v > v2), we obtain that d
dv
η(γ̂(v))|v=v2

≥ 1. On the

other hand, we find η′(γ̂(v2))
dγ̂
dv
(v2) = 0, which gives a contradiction. Therefore,
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there exists at most one value v1 for which dγ̂
dv
(v1) = 0, and γ̂(v1) ∈ (0, sin). Also,

by derivating (17) and using the fact that dγ̂
dv
(v1) = 0 we get:

d2γ̂

dv2
(v1) = −

µ(γ̂(v1))(sin − γ̂(v1))

v1
,

which is non-zero. In fact, we have seen that γ̂(v1) > 0. Moreover we have γ̂(v1) 6=

sin from (17) (if M 6= 0, then dγ̂
dv
(v1) 6= 0 whenever γ̂(v1) = sin; if M = 0, then,

γ̂(v) < sin for all v by Cauchy-Lipschitz Theorem). We deduce that at point v1,
the monotonicity of γ̂ is changing. The conclusion of (i) follows.

Let us prove (ii). By definition of v∗, we have dγ̌
dv
(v∗) = 0. By a similar argument

as for (i), one can prove that v∗ is the unique zero of v 7−→ dγ̌
dv
(v) on (v̌, vm].

Thus v 7−→ ζ(v) := η(γ̌(v))− v has exactly one zero on (v̂, vm]. Moreover, we find
dζ
dv
(v∗) = −1, therefore ζ is decreasing in a neighborhood of v∗. It follows that γ̌ is

increasing on [v̌, v∗] and decreasing on [v∗, vm], and the result follows.

Remark 3. (i) Proposition 1 (ii) implies that the curve Č leaves the domain D
through the line-segment {0} × [0, vm], see Fig 3.

(ii) Proposition 1 (i) implies that the curve Ĉ leaves the domain D either through
the line-segment {0} × [0, vm], the line segment [0, sin] × {0} or through the line-
segment {sin} × [0, vm], see Fig. 1.
(iii) We can show that there exist values of M for which the cases mentioned in the
previous item occur. In fact, by changing v into w := − ln v, (17) can be gathered
into a planar dynamical system. The stable manifold Theorem (see e.g. [26]) shows
that limv→0 γ̂(v) is either finite or ±∞. When this limit is ±∞, γ̂ leaves D through
{0} × [0, vm] or {sin} × [0, vm]. We have not detailed this point for brevity.
(iv) For instance, if M = 0, Cauchy-Lipschitz Theorem implies limv→0 γ̂(v) = −∞.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Substrate

V
o
lu
m
e

s̄

vm

M = 1

M = 25

Figure 1. The curve Ĉ leaves the domain D through {0}× [0, vm]
whenM = 1. In this case, γ̂ is increasing over [v̂, v1] and decreasing

over [v1, vm]. The curve Ĉ leaves the domain D through {sin} ×
[0, vm] when M = 25. In this case, γ̂ is decreasing over [v̂, vm] (see
Proposition 1).

When M is such that limv→0 γ̂(v) = −∞, the trajectory leaves the domain D
through the line-segment {0} × [0, vm]. Hence, there exists a volume value v∗ such
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that γ̂(v∗) = s, see Fig. 1. From the definition of v∗, the volume v∗ necessarily
satisfies 0 < v∗ < v∗. In fact, for any volume value v such that v∗ < v ≤ vm, one
has ds

dt |u=1

(s̄) < 0, thus Ĉ necessarily intersects the singular arc below v∗.

3.2. Optimal synthesis in the case v∗ ≤ 0. When the singular arc is never
admissible, we have the following optimality result (see also Fig. 3).

Proposition 2. Suppose that v∗ ≤ 0 (case 1). Then, given initial states (s0, v0) ∈
D, optimal controls satisfy the following:

(1) If s0 ≤ s, then, there exists t0 > 0 such that u = 1 on [0, t0], u = 0 on [t0, tf ]
where t0 is such that v(t0) = vm and s(tf ) = sref .

(2) If s0 > s̄, then, there exists t0 > 0 such that u = 0 on [0, t0], u = 1 on [t0, t1],
u = 0 on [t1, tf ] where t0 ≥ 0, s < s(t0) < s0, v(t1) = vm, and s(tf ) = sref .

Proof. Consider an optimal trajectory (s(·), v(·), u(·)) starting at an initial point
(s0, v0) ∈ D. In the present case, the control u can only take the value 0 or 1 from
the PMP (the singular arc is not admissible in D).

First, assume s0 ≤ s. Given the assumption v∗ ≤ 0, we can show that s(t) ≤ s
for all t. We thus have u = 1 in a neighborhood of t = 0. Otherwise, we would
have u = 0 together with φ(0) ≤ 0, and from (14) we would have for all t, φ(t) < 0
which is not possible (as the trajectory would not reach the target). It follows that
we have u = 1 in a neighborhood of t = 0. The same argument shows that the
trajectory cannot switch to u = 0 before reaching vm. This proves the first item.

Assume now that s0 > s̄. If φ(0) < 0, then we have u = 0, and the trajectory
necessarily switches to u = 1 before reaching s (otherwise we would have a contra-
diction by the previous case). Now, we have u = 1 on some time interval [t0, t1].
Again, the previous case shows that the trajectory cannot switch to u = 0 at some
time t′ such that s(t′) ≤ s with v(t′) < vm. As φ(t0) ≥ 0 and φ̇(t) > 0 whenever
s(t) > s (recall (14)), we obtain that the trajectory cannot switch to u = 0 at some
time t′′ such that s(t′′) > s. Therefore, we have u = 1 until vm, and the conclusion
follows.

Remark 4. If s0 is such that s0 > γ̂(v0), then we have u = 0 on some time interval
[0, t0] with t0 > 0. Otherwise we would have φ(0) > 0 implying φ(t) > 0 for all
t (recall (14)). As the trajectory necessarily has a switching point when reaching
v = vm, we have a contradiction.

The previous proposition allows to define a switching curve C ⊂ D where the
control is switching from 0 to 1. Such a curve is the locus of conjugate points
where the extremal trajectory ceases to be optimal [3]. Hence, for each v ∈ (0, vm]
there exists at most one point sc(v) such that C is parameterized by the mapping
v 7−→ sc(v).

Proposition 3. The switching curve C originates from the point (s̄, vm).

Proof. Let (s0, v0) ∈ D and consider an extremal trajectory with u = 1 from (s0, v0)
until reaching vm. Recall that γ̂ is a solution of (7) backward in time with u = 1
starting from (s̄, vm). From Proposition 2, we must have s0 ≤ γ̂(v0).

Suppose now that the switching curve crosses v = vm at some point (s′, vm) with
s′ > s̄. Consider an extremal trajectory with u = 1 until v = vm originating from
C. If the initial condition of this extremal is sufficiently close to (s′, vm), then it
reaches vm at a substrate value which is greater than s̄. This is a contradiction with
(14). Hence, s′ ≤ s̄.
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Now, suppose that s′ < s̄. Take an initial condition (s0, v0) above C in the plane
(s, v) and such that s0 < s̄, v0 > va. From Proposition 2, one has u = 0 until
reaching C. But, any extremal trajectory starting with u = 0 at an initial condition
s0 < s̄ and v0 < vm is not optimal. Hence, we obtain a contradiction with (14)
which proves the result.

The curve C is depicted on Fig. 3. Propositions 2 and 3 allow to obtain an
optimal feedback control of the problem in this case.

Theorem 3.2. Suppose that v∗ ≤ 0 (case 1). Then the optimal feedback steering
any initial state in D to the target is given by:

u1[s, v] :=

{

0 if s ≥ sc(v) or v = vm,

1 if s < sc(v) and v < vm.

Proof. The result follows from Proposition 2 and the presence of the switching curve
C.

The optimal synthesis in this case is depicted on Fig. 4.

Remark 5. When the singular arc is never admissible, optimal controls are of type
B0B1B0 or B1B0 depending on the initial points. Optimal trajectories contain at
most two switching points.

3.3. Optimal synthesis in the case v∗ ∈ (0, vm). Throughout the paper, we
only consider case 2, that is v∗ is such that 0 < v∗ < vm. We make the following
assumption on M :

(H2) The constant M is such that there exists a unique v∗ satisfying 0 < v∗ < v∗

and γ̂(v∗) = s̄.

One can see that for initial conditions (s0, v0) such that v0 > v∗, optimal controls
are given by proposition 2. Indeed, the admissible part of the singular arc is only
defined for v0 ≤ v∗. Therefore, we consider initial states such that v0 < v∗. The
next Proposition is illustrated on Fig. 3.

Proposition 4. Suppose v∗ ∈ (0, vm) (case 2) and that (H2) is satisfied. Then,
given initial states (s0, v0) ∈ D such that v0 < v∗, optimal controls satisfy the
following:

(1) If s0 ≤ γ̌(v0), then, there exists t0 > 0 such that we have u = 1 on [0, t0],
u = 0 on [t0, tf ] where t0 is such that v(t0) = vm.

(2) If γ̌(v0) < s0 < γ̂(v0) and s0 ≤ s, then, there exists t0 > 0 such that we have
u = 1 on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ], where
s(t0) = s, t1 − t0 ≥ 0, v(t1) < v∗, and v(t2) = vm.

(3) If γ̂(v0) ≤ s0 < s, then, there exists 0 < t0 < t1 < t2 such that we have u = 1
on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where s(t0) = s,
v(t1) ∈ (v∗, v

∗), v(t2) = vm.
(4) If s0 ≥ s and v0 ≤ v∗, then, there exists 0 < t0 < t1 < t2 such that we have

u = 0 on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where
s(t0) = s, v(t1) ∈ (v∗, v

∗), and v(t2) = vm.
(5) If s0 ≥ s, and v0 > v∗, then, the optimal control is one of the following types:

- either u = 0 on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ]
where s(t0) = s and 0 < t0 < t1, v(t2) = vm,

- either u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ] where t0 ≥ 0,
s < s(t0) < γ̂(v0), v(t1) = vm.
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Proof. The proof of the first item is the same as the first one of the previous Propo-
sition.

Now, when γ̌(v0) < s0 < γ̂(v0) and s0 ≤ s, the trajectory cannot switch from
u = 1 to u = 0 before reaching s = s. Therefore, we have two cases when the
trajectory reaches s = s: the trajectory either crosses the singular arc, or the
control becomes singular. In the latter, the trajectory switches to u = 1 before
reaching v∗ and we have u = 1 until v = vm (otherwise we would have u = 0 at
the point (s, v∗) and the trajectory would not reach the target from (14)). Notice
that t1 = t0 is possible. This means that the time interval where the trajectory is
singular can be zero.

If γ̂(v0) < s0 < s, the proof is the same as for the second item except that
the trajectory cannot leave the singular arc with u = 1 before v∗ (otherwise the
trajectory reaches v = vm with u = 1 and φ > 0, and the trajectory cannot switch
to u = 0 at v = vm from (14)).

The proof of the fourth item is the same as the third one except that the trajec-
tory starts with u = 0 until reaching the singular arc. Similarly as in the previous
item, the trajectory cannot switch to u = 1 before reaching s = s.

The last region is given by initial conditions such that s0 ≥ s, and v0 > v∗.
The same arguments as before can be used except that Pontryagin’s Principle is
not sufficient to exclude two type of trajectories. First observe that we have u = 0
on some time interval [0, t0] as before (with s(t0) < γ̂(v0), otherwise the trajectory
would not reach the target from (14)). When the trajectory crosses the curve γ̂, we
have two sub-cases. Either the trajectory switches to u = 1 before reaching s = s
(as in Proposition 2), either the trajectory switches to the singular arc for s = s.
After the first switching times, the behavior of the trajectory is exactly as for the
second item, and we can conclude from the other cases.

Remark 6. Proposition 4 shows that optimal controls are of type B1B0, B0B1B0

or B0SB1B0 with at most three switching points depending on the initial point.

We now investigate the loss of optimality of the singular arc. More precisely, we
show that when the singular arc saturates at v∗, it is no longer optimal until v∗

(see e.g. [8, 9, 20, 23, 24] and [5, 7, 15] for a study of the saturation phenomena).
To be self contained, we provide a proof of this result in our setting.

Proposition 5. Suppose v∗ ∈ (0, vm) (case 2) and that (H2) is satisfied. Then,
any optimal trajectory containing a singular arc leaves this singular arc between v∗
and v∗ (bounds not included).

Proof. If the trajectory leaves the singular arc for a volume value less than v∗,
then, we have u = 1 until reaching v = vm. From Proposition 4, we have φ > 0
at v = vm in contradiction with the fact that the trajectory switches to u = 0.
Hence, it leaves the singular arc for a volume value v > v∗. Notice that if a singular
trajectory reaches v = v∗ at a time t′, then we have φ(t′) = φ̇(t′) = 0. For t > t′,
we have s(t) < s̄ for any control u (this follows from the definition of v∗). Hence,

we have φ̇(t) < 0, and we deduce that φ(t) < 0 for t > t′. Hence we have u = 0
using (11). As the trajectory necessarily has a switching point in order to reach the
target, we obtain a contradiction.

We denote by va the maximal volume value above which a singular arc is not
optimal. From the synthesis of singularities in [8], the point (s̄, va) is a frame point
of type (CS)2 which means that it is at the intersection between a singular arc and
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a switching curve denoted by C. The index 2 means that the switching curve C is
originating from the singular arc. Hence, for each v ∈ (va, vm] there exists at most
one point sc(v) such that C is parameterized by the mapping v 7−→ sc(v).

Proposition 6. The switching curve C connects (s̄, va) and (s̄, vm).

Proof. Let (s0, v0) ∈ D and consider an extremal trajectory with u = 1 from (s0, v0)
until reaching vm. Recall that γ̂ is a solution of (7) backward in time with u = 1
starting from (s̄, vm). From Proposition 2, we must have s0 ≤ γ̂(v0).

Suppose now that the switching curve crosses v = vm at some point (s′, vm) with
s′ > s̄. Consider an extremal trajectory with u = 1 until v = vm originating from
C. If the initial condition of this extremal is sufficiently close to (sc, vm), then it
reaches vm at a substrate value which is greater than s̄. This is a contradiction with
(14). Hence, s′ ≤ s̄.

Now, suppose that s′ < s̄. Take an initial condition (s0, v0) above C in the plane
(s, v) and such that s0 < s̄, v0 > va. From Proposition 2, one has u = 0 until
reaching C. But, any extremal trajectory starting with u = 0 at an initial condition
s0 < s̄ and v0 < vm is not optimal. Hence, we obtain a contradiction with (14)
which proves the result.

The switching curve C is depicted on Fig. 3. Propositions 4, 5 and 6 imply the
following.

Theorem 3.3. Suppose v∗ ∈ (0, vm) (case 2) and that (H2) is satisfied. Then, the
optimal feedback steering any initial state in D to the target is given by:

u2[s, v] :=







































0 if v = vm

0 if s > sc(v) and vm > v ≥ va,

1 if s ≤ sc(v) and vm > v ≥ va,

0 if s > s̄ and v < va,

1 if s < s̄ and v < va,

us[v] if s = s̄ and v < va.

Proof. From Proposition 6, we know that an optimal trajectory does not contain
a singular arc for v ≥ va. It follows from Proposition 4 that the optimal feedback
control is 0 or 1 depending on the position of the initial point w.r.t. the switching
curve. Moreover, when v = vm, the only possibility for u is zero. For v < va, the
result follows from Proposition 4.

The optimal synthesis in this case is depicted on Fig. 4. We see that for initial
conditions such that v < va, the optimal feedback is as in Theorem 2.2 whereas
for v > va, the feedback control is either 0 or 1 depending where the point (s, v) is
located w.r.t. the switching curve v 7−→ sc(v).

4. Numerical simulations.

4.1. Determination of the frame point. We start by computing the optimal
volume value va ∈ (v∗, v

∗) above which the singular arc is no longer optimal. As we
know the structure of optimal controls from Proposition 4, we proceed as follows.
For v0 ∈ [v∗, v

∗], consider the strategy u = us from v∗ to v0, u = 1 until vm and
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then u = 0 until sref . The time ta(v0) of this strategy is (recall (16), see also [1]):

ta(v0) =
ln

(

M+v0(sin−s)
M+v∗(sin−s)

)

µ(s)
+ vm − v0 +

∫ s†(v0)

sref

dσ

µ(σ)
(

M
vm

+ sin − σ
) , (18)

where s†(v0) is the substrate concentration when this trajectory reaches v = vm: it
is defined as the value for v = vm of the solution of (17) that starts at s = s̄ with
v = v0. Hence, s†(v0) can be computed after solving the Cauchy problem:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, s(v0) = s. (19)

We now show that v0 7−→ ta(v0) admits a minimum va ∈ [v∗, v
∗] that we will

characterize hereafter. First, (19) can be equivalently written as ds
dv

= g(v, s) where
g is the right hand-side of (19). By the classical dependence of the solution of
an ODE on parameters, we denote by s(v, s, v0) the unique solution of (19). It is
standard that v0 ∈ R

∗
+ 7−→ s(v, s, v0) is of class C1 for all v > 0. It follows by

composition that v0 7−→ ta(v0) is of class C
1 on [v∗, v

∗]. Consequently, it admits a
minimum on this interval. By differentiating s(v, s, v0) w.r.t. v0, we get:

∂s

∂v0
(v, s, v0) = −g(v0, s)e

∫
v

v0

∂g
∂s

(s(w,v0,s),w)dw
,

using a classical result on the dependance w.r.t. initial conditions of a solution of

an ordinary differential equation. Hence ds†

dv0

(v0) =
∂s
∂v0

(vm, s, v0).
Now, we know from the PMP that v0 = v∗ and v0 = v∗ are not admissible

(see also Proposition 4), hence va necessarily satisfies dta
dv0

(va) = 0. So, if we put

θ(v0) :=
∫ vm

v0

∂g
∂s
(w, s(w, s, v0))dw, we obtain by taking the derivative of (18) w.r.t.

v0:

dta
dv0

(v0) =
v∗ − v0
M

sin−s
+ v0

[

1−
µ(s)(M

v0
+ sin − s)

µ(s†)( M
vm

+ sin − s)
eθ(v0)

]

By solving dta
dv0

(v0) = 0 using the previous equation, we obtain numerically the

volume va ∈ (v∗, v
∗) above which extremal trajectories stop to be optimal. We find

that ta(v) has a unique minimum for va ≃ 1.67 (see Fig. 2 and Table 1 for the
values of the parameters)

4.2. Determination of the switching curve. To determine the optimal switch-
ing time for the trajectories B0B1B0 starting with s0 > s̄, we proceed as follows.
For each v0 ∈ (v∗, vm), we search numerically sc(v0) ∈ [s̄, γ̂(v0)] which minimizes
the time tb(ξ) to reach the target starting from (γ̂(v0), v0) with the strategy: u = 0
until ξ, u = 1 until vm, u = 0 until sref . The application ξ 7−→ tb(ξ) can we written:

tb(ξ) =

∫ γ̂(v0)

ξ

dσ

µ(σ)
(

M
v0

+ sin − σ
) + vm − v0 +

∫ ξ†

sref

dσ

µ(σ)
(

M
vm

+ sin − σ
) ,

where ξ ∈ [s̄, γ̂(v0)] and ξ† is the solution of (17) that starts at point (ξ, v0) evaluated
at v = vm. Numerical simulations indicate that for each value of v0, the point sc(v0)
where tb is minimal is unique. This allows us to define a curve C whose graph is the
mapping v0 7−→ sc(v0), represented in green on Fig. 3. Moreover, we find that for
v0 < va, we have sc(v0) = s̄, while sc(v0) > s̄ for v0 ∈ (va, vm). To conclude, based
on the optimal synthesis (Proposition 4) and the computations of the mapping
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Figure 2. Time ta(v) to reach the target from (s̄, v∗) with the
strategy: singular arc until the switching volume v, u = 1 until vm,
u = 0 until sref . We find that ta(v) has a unique minimum for
v = va (see Section 4)

v0 7−→ sc(v0) and va, optimal trajectories for various initial conditions (s0, v0) are
represented on Fig. 3.

Table 1. Parameter values (arbitrary units) of simulations for the
optimal synthesis when the singular arc is partially admissible (see
Fig. 3 and 2)

vm sin sref M µ̄ k g

7 10 0.1 25 (case 1) 0.5 1 0.11
1 (case 2)

Figure 4 depicts the optimal synthesis in the three cases v∗ ≥ vm (as in Theorem
2.2), v∗ ≤ 0 (as in Theorem 3.2), and v∗ > 0 (as in Theorem 3.3).

5. Discussion on the optimal synthesis.

5.1. Implicit equation of the switching curve. We present a convenient way
to obtain the switching curve C as a solution of an implicit equation using the
ODE satisfied by the switching function φ. From (13) and the conservation of the
Hamiltonian along an extremal trajectory, we get:

φ̇ = ρ(s, v)(uφ− 1), (20)

where ρ(s, v) := (sin−s)µ′(s)
µ(s)v and (s, v) is a solution of (7) with a control u ∈ U .

Define the mapping (w, s0, v0) ∈ (0, vm]×D 7−→ s(w, s0, v0) as the unique solution
of (17) such that s(v0, s0, v0) = s0. From Theorem 3.3, an optimal trajectory of type
B0B1B0 starting at some point (s0, v0) with v0 < vm satisfies u = 0 until reaching C,
and then u = 1 until reaching the volume vm. These conditions together with (20)
will imply conditions on the point (s0, v0). More precisely, we have the following
result.
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Figure 3. Optimal trajectories (in solid red lines) for various ini-
tial conditions. Above: case 1 (v∗ ≤ 0), see Proposition 2 ; Below:
case 2 (0 < v∗ < vm), see Proposition 4. In blue dashed lines, tra-

jectories Ĉ and Č which pass through (s̄, v∗) and (s̄, vm). In green,
the switching curve C which passes through (s̄, vm) in both cases
and though the frame point (s̄, va) in case 2.

Proposition 7. Consider an extremal trajectory of type B1 defined on a time inter-
val [0, t0] where 0 and t0 are two consecutive switching points i.e. φ(0) = φ(t0) = 0.
Then, the point (s0, v0) belongs to the switching curve if and only if F (s0, v0) = 0,
where F : D → R is defined by:

F (s0, v0) :=

∫ vm

v0

ρ(s(w, s0, v0), v0)dw.

Proof. By considering φ as a function of v (recall that dv
dt

= 1 on [0, t0]), one obtains:

dφ

dv
= ρ(s(v, s0, v0), v)(φ− 1).
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Figure 4. Optimal trajectories. Above: case v∗ ≥ vm (optimal
synthesis provided by Theorem 2.2) ; Middle: case v∗ ≤ 0 (optimal
synthesis provided by Theorem 3.2) ; Below: v∗ ∈ (0, vm) (optimal
synthesis provided by Theorem 3.3).
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By integrating this equation over [v0, vm], the initial point (s0, v0) must satisfy
∫ vm

v0

ρ(s(v, s0, v0), v0)dv = 0,

which gives the desired result.

As a consequence, determining the switching curve amounts to solve the implicit
equation F (s0, v0) = 0 in D for a given volume value v0.

Remark 7. (i) One can verify that ∂F
∂s0

(s̄, vm) 6= 0 implying that the curve C is

locally the graph of a C1-mapping v0 7−→ sc(v0) in a neighborhood of (s̄, vm) in D.
(ii) Solving numerically the equation F (s0, v0) = 0 for v0 ∈ [va, vm] provides the
same switching curve as the one computed in section 4.2.

5.2. Continuity of the value function. In this part, we explicit the value func-
tion T (s, v) over D which is associated to the minimal time problem, and we show
that it is continuous. We suppose that hypotheses (H1)-(H2) are satisfied and we
recall that C is the switching curve connecting (s̄, va) and (s̄, vm). We define a curve
ζ as the union of the singular arc (until va) and C:

ζ := (({s̄} × [0, va]) ∩ D) ∪ C.

For (s, v) ∈ D and 0 < s′ < s, we introduce the following functions:

τ1(v) :=
1

µ(s̄)
ln

(

M + va(sin − s̄)

M + v(sin − s̄)

)

+ T (s̄, va),

τ2(s
′, s, v) :=

∫ s

s′

dσ

µ(σ)(M
v
+ sin − σ)

.

The function τ1 is the time of an optimal trajectory starting on the singular arc at
a volume value v < va (recall (16)). It is clearly continuous over D. The function
τ2 is the time of an extremal trajectory with u = 0 connecting the points (s, v) and
(s′, v) with s′ < s. Clearly, it is continuous w.r.t. (s′, s, v) ∈ [0, sin]×D.

Let us now consider an extremal trajectory with u = 1 starting from a point
(s, v) ∈ D:

• If the trajectory reaches the concentration s̄ before the volume vm, we denote
by v1(s, v) the volume value of this extremal when the concentration equals
s̄.

• If the trajectory reaches the volume vm before the concentration s̄, we denote
by sm(s, v) the substrate concentration of this extremal when the volume
equals vm.

By the regularity of an ODE w.r.t. initial conditions, these two functions are
continuous on D. Finally, consider the restriction to the set D of the mapping
s 7−→ v2(s) which is the unique solution of (7) backward in time starting at (s̄, va).
The value function T (s, v) can be now defined as follows (recall Theorem 3.3):

T (s, v)=



















v1(s, v)− v + τ1(v1(s, v)) if v ≤ v2(s) and s < s̄

τ2(s̄, s, v) + τ1(v) if v ≤ va and s ≥ s̄

vm − v + τ2(sref , sm(s, v), vm) if v > v2(s) and s < sc(v)

τ2(sc(v), s, v) + vm − v + τ2(sref , sm(sc(v), v), vm) if v > va and s ≥ sc(v)

(21)

Proposition 8. The function T is continuous in D.
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Proof. One can easily verify that T is continuous at any point (s, v) outside the
curve ζ. Hence, we only verify its continuity on this curve.
First case. Suppose v0 < va, and let us show that T is continuous at (s̄, v0). If
s < s̄ and v ≤ v2(s), one has v1(s, v) → v0 whenever s goes to s̄ and v goes to v0.
So, we have T (s, v) = v1(s, v) − v + τ1(v1(s, v)) → τ1(v0). On the other hand, if
s > s̄ and v ≤ va, one has τ2(s̄, s, v) → 0 when s goes to s̄. Hence, we also obtain
that T (s, v) → τ1(v0) when s goes to s̄ and v goes to v0, s > s̄.
Second case. Suppose v0 > va, and let us show that T is continuous at the point
(sc(v0), v0). Notice that when s > sc(v) and v ≥ va, one has that τ2(sc(v), s, v) → 0
when s → sc(v) which together with the expression of T (for v > v2(s) and s <
sc(v)) proves the result.
Third case. Suppose that v0 = va. Then, if v > v2(s) and s < sc(v), we have
T (s, v) → T (s̄, va) when s → s̄ and v → va using that T (s̄, va) = vm − va +
τ2(sref , sm(sc(va), va), vm) = τ1(va). When v < v2(s) and s < s̄, one also has
T (s, v) → τ1(va). Finally, we obtain the same limit for T when (s, v) goes to (s̄, va)
with s > s̄. This ends the proof.

Remark 8. (i) The expression (21) allows to show that the value function T is of
class C1 whenever the singular arc is always admissible i.e. v∗ ≥ vm. This result
is in line with the same result in the impulsive setting [1, 14]. The expressions of
∂T
∂s

and ∂T
∂v

are delicate to handle in particular along an arc u = 1, so we have not
detailed this point for brevity.
(ii) When the singular arc is no longer admissible i.e. v∗ < vm, we can show that T
is not differentiable along the switching curve C (but it is right and left differentiable
on C).

5.3. Regularity of the optimal synthesis. Given the feedback controls ui, i =
1, 2 (see Theorem 3.2 and 3.3), we would like to know if trajectories corresponding to
this feedback are unique [21]. In the case where the singular arc is always admissible
[19], then one can use the clock form [4, 8] to conclude directly on the uniqueness
of an optimal trajectory starting at some point (s0, v0) ∈ D. In fact, this argument
shows directly that any other trajectory has a greater cost as the optimal one (with
equality only if both associated controls are equal a.e.). Hence, optimal trajectories
corresponding to the feedback uM and uH are unique (Theorems 2.1 and 2.2).

This method no longer applies in the case where the singular arc is non admissible.
Nevertheless, Pontryagin’s Principle allows to exclude any extremal trajectory that
has a switching point outside the singular arc {s̄}× [0, va] and the switching curve,
before reaching the maximal volume (see Propositions 2 and 4). These trajectories
exactly correspond to the solution of (7) with the feedback control ui.

6. Conclusion. We have studied an optimal control problem for a fed-batch bio-
process that exhibits a singular arc with a saturating point. Thanks to Pontryagin’s
Principle and the exclusion of extremal trajectories that are not optimal, we have
obtained an optimal synthesis of the problem. We have pointed out the existence of
a frame point on the singular arc above which any singular trajectory is not globally
optimal. Moreover, we have provided an explicit way for computing numerically the
switching curves and the frame point. The present situation can arise for example
when the initial biomass concentration in the reactor is high. In this case, one
should take advantage of the feedback control law for the practical implementation.

A more detailed insight into the determination of the switching curves (for in-
stance using the theory of conjugate points [3]) could be the basis of future works.
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Also, it could be interesting to study an optimal synthesis of the problem with mul-
tiple saturating turnpikes [1] (this can happen in practice when there exist more
than two non-limiting substrates in the reactor). This question appears to be quite
challenging.
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