
HAL Id: hal-00879385
https://hal.science/hal-00879385v1

Submitted on 3 Nov 2013 (v1), last revised 5 Aug 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal time problem for a fed-batch bioreactor with
saturating singular control

Térence Bayen, Francis Mairet, Marc Mazade

To cite this version:
Térence Bayen, Francis Mairet, Marc Mazade. Minimal time problem for a fed-batch bioreactor with
saturating singular control. 2013. �hal-00879385v1�

https://hal.science/hal-00879385v1
https://hal.archives-ouvertes.fr


Minimal time problem for a fed-batch bioreactor with saturating

singular control
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Abstract

This paper is devoted to the study of an optimal control problem under the presence of a saturation

point on the singular locus. We consider the minimal time problem for a system describing a fed-batch

reactor with one species and one substrate. Our aim is to find an optimal feedback control that steers the

system to a given target in minimal time. The growth function is of Haldane type implying the existence

of a singular arc. Unlike other studies on the minimal time problem governed by affine systems w.r.t. the

control, we assume that the singular arc is non-necessary controllable everywhere. This brings interesting

issues in terms of optimal synthesis. Thanks Pontryagin’s Principle and numerical simulations, we provide

an optimal synthesis of the problem.

1 Introduction

Minimal time control problems for affine systems with one input such as:

ẋ = f(x) + ug(x), x ∈ R
n, |u| ≤ 1, (1.1)

have been investigated a lot in the literature, see e.g. [6] for n = 2 and references herein. One often encounters
singular trajectories which appear when the switching function of the system is vanishing on a time interval. In
order to find an issue to a minimal time control problem governed by (1.1), one usually requires a controllability
assumption on the singular control us allowing the trajectory to stay on the singular arc. Hence, one may
suppose that us verifies the following inequality:

|us| ≤ 1. (1.2)

However, one cannot in general show that this assumption holds. In fact, the expression of the singular control
us in terms of the state and adjoint state does not always guarantee that (1.2) is satisfied. One can argue
that it is enough to consider a larger admissible upper bound for the controls, but this seems rather artificial,
and not necessarily feasible from a practical point of view. The objective of this work is to study a minimal
time control problem in the plane where the singular control satisfies (1.2) only on a sub-domain of the state
space. Our goal is to analyze how the optimal synthesis is modified.

The system that we consider in the present work is a fed-batch bioreactor with one species and one
substrate. Our aim is to find an optimal feedback control that steers the system in minimal time to a given
target where the substrate concentration is less than a prescribed value, see [13]. Finding an optimal feeding
strategy can significantly increase the performance of the system and has several advantages from a practical
point of view (see e.g. [1, 2, 7, 8, 10, 13]).

Whenever the growth function is of Monod type, then one can prove that the optimal feeding strategy is
bang-bang [13]. This means that the reactor is filled until its maximum volume with the maximum input flow
rate. Then, micro-organisms consume the substrate until reaching a reference value. In the case where the
growth function is of Haldane type (in case of substrate inhibition), this strategy is not optimal. In fact, one
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can prove (see [13]) that the optimal strategy is singular. It consists in reaching in minimal time a substrate
concentration s̄ corresponding to the maximum of the growth rate function, and which coincides with the
singular set. Then, the substrate concentration is kept constant to this value until reaching the maximal
volume.

In the present work, we are interested in studying the optimal synthesis for Haldane-type growth function
whenever the singular arc is no longer admissible from a certain volume value. This can happen when the
singular control becomes larger than the maximal input flow rate which is allowed in the system. It follows
that there exists a volume value above which singular extremal trajectories are no longer admissible. Such a
point is usually called saturation point [9]. Whereas in [1, 13], the maximal volume is reached by the singular
arc, there exists a volume value above which it is not possible to keep the substrate concentration equal to s̄
in the system. The main issue of the paper is to determine an optimal feedback control in this setting.

First, one cannot apply the clock form as we do not have a natural candidate for optimality in this case.
Thanks to Pontryagin’s Principle, we provide an optimal synthesis of the problem. We introduce solutions
of the system backward in time with the maximum control that allow to determine where the switching time
occurs for optimal trajectories. Our main result is that a singular extremal trajectory ceases to be optimal
before reaching the saturation point (see e.g. [9]). This is rather non-intuitive and slightly different as in the
controllable case [13]. We show that there exists a maximal volume value above which a singular trajectory
is not globally optimal. Using numerical simulations, we determine switching curves when the control is
saturating [5]. This allows to determine an optimal feedback control of the problem.

The paper is organized as follows. The first section states the optimal control problem. We also recall the
optimality result of [13] and we apply Pontryagin’s Principle. The second section is devoted to the optimal
synthesis of the problem without controllability assumption. We first describe the curves that are solution of
the system backward in time and that allow to determine properties of optimal trajectories. Then, we state
our main results in the case where the singular arc is never controllable (Proposition 3.2) and whenever it is
controllable only on a subset of the initial states (Proposition 3.3). The last section is devoted to numerical
simulations. We exhibit a numerical switching curve for optimal controls that allows to provide an optimal
feedback control of the problem under a uniqueness assumption (see Theorems 4.1 and 4.2).

2 General results

In this section, we state the optimal control problem and we recall the optimal synthesis as in [13] that will
allow us to introduce the problem in absence of controllability. We also apply the Pontryagin Maximum
Principle (PMP) [14] that will be used in the next section.

2.1 Statement of the problem

We consider a system describing a fed-batch bioreactor with one species and one substrate:










ẋ = x
(

µ(s)− u
v

)

,

ṡ = −µ(s)x+ u
v
(sin − s),

v̇ = u,

(2.1)

where x represents the concentration of micro-organisms, s the concentration of substrate, and v is the volume
of the tank. The input substrate concentration is denoted by sin > 0, and u is the input flow rate in the
system. For convenience, we have taken yield coefficient equal to one (by rescaling the equation). The function
s 7−→ µ(s) is the growth function of Monod or Haldane type (see [12, 15]). In the following, we consider that
u takes values within the set:

U := {u : [0,+∞) → [0, umax] ; u meas.}.

Here umax denotes the maximum input flow rate in the system. By time scaling, we can take umax = 1. The
target we consider is defined by:

T = R
∗
+ × [0, sref ]× {vm},

where sref is a given substrate concentration. For u ∈ U , let tξ0(u) the time to steer (2.1) from an initial
condition ξ0 := (x0, s0, v0) ∈ R

∗
+ × [0, sin]× [0, vm]. The optimal control problem becomes:

inf
u∈U

tξ0(u), s.t. ξ(t(u)) ∈ T , (2.2)
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where ξ(·) denotes the unique solution of (2.1) for the control u that starts at ξ0. One essential feature in the
system (2.1) is that the quantity

M := v(x+ s− sin), (2.3)

is conserved along any trajectory of (2.1), hence M is constant and equal to v0(x0 + s0 − sin). From (2.3), we
obtain:

x =
M

v
+ sin − s, (2.4)

and system (2.1) can be put into a two-dimensional system:

{

ṡ = −µ(s)(M
v
+ sin − s) + u

v
(sin − s),

v̇ = u.
(2.5)

One can easily show that the set [0, sin] × R
∗
+ is invariant by (2.5). Notice that if we define x by (2.4), the

micro-organisms concentration may not be positive. This can happen when M ≤ 0 which means that initial
conditions of micro-organisms and substrate are low. Therefore, we consider initial conditions for (2.5) in the
domain D defined by:

D :=

{

(s, v) ∈ [0, sin]× (0, vm] ;
M

v
+ sin − s > 0

}

.

We denote by ∂D the boundary of D. In the rest of the paper, we also write u(·) a control in open loop and
u[·] a feedback control depending on the state (s, v).

2.2 Optimal synthesis with controllability assumption

In this part, we review a result of [13] on optimal trajectories for problem (2.2) in the case where the singular
arc is controllable. First, we consider the case where the growth function µ is of Monod type i.e. µ(s) = µ̄s

k+s

with µ̄ > 0 and k > 0 [12].

Theorem 2.1. Assume that µ is of Monod type. Then, the optimal feedback control uM steering any initial
condition in D to the target T is:

uM [s, v] :=

{

1 if v < vm,

0 if v = vm.

In other words, the optimal strategy is fill and wait, and it consists in filling the tank with maximum input
flow rate until v = vm, and then we let u = 0 until s reaches the value sref (if necessary). In the rest of the
paper, we only consider the case where the growth function µ is of Haldane type i.e.

µ(s) =
µ̄s

gs2 + s+ k
,

with µ̄ > 0, g > 0, and k > 0. In this case, µ has exactly one maximum over R+, that we denote s̄, and we
suppose that s̄ > sref (which means that the reference concentration to achieve is sufficiently small). The
optimal synthesis in this case is rather different as for Monod growth function.

Theorem 2.2. Assume that µ is of Haldane type and that the following controllability assumption holds:

µ(s)

[

M

sin − s
+ vm

]

≤ 1. (2.6)

Then, the optimal feedback control uH to reach the target is given by

uH [s, v] :=











0 if v = vm or s > s,

1 if s < s and v < vm,

us(v) if s = s and v < vm,

where

us(v) := µ(s)

[

M

sin − s
+ v

]

. (2.7)
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This can be proved by using either the Pontryagin Maximum Principle or the clock form [4, 11]. Here we
have emphasized the controllability assumption (2.6) (see e.g. [1, 7]). The control us is singular (see section

2.3). It allows to maintain the substrate concentration equal to s. It can be written us(v) =
µ(s)x

v(sin−s) so that

us ≥ 0. Therefore, assumption (2.6) is essential to ensure that us(v) satisfies the upper bound us(v) ≤ 1 for
all v ≤ vm.

The objective of this paper is to provide an optimal synthesis of the problem whenever (2.6) is non-
necessarily satisfied. Note that in practice, one should start the fed-batch with a high biomass concentration
(i.e. high M) in order to speed up the process, so that condition (2.6) can no longer be satisfied.

2.3 Pontryagin maximum principle

In this part we apply the Pontryagin Maximum Principle on (2.2). Let H := H(s, v, λs, λv, λ0, u) the Hamil-
tonian of the system defined by:

H := −λsµ(s)

[

M

v
− (s− sin)

]

+ u

[

λs(sin − s)

v
+ λv

]

+ λ0.

If u is an optimal control and (s, v) the corresponding solution of (2.5), there exists tf > 0, λ0 ≤ 0, and an

absolutely continuous map λ = (λs, λv) : [0, tf ] → R
2 such that (λ0, λ) 6= 0, λ̇s = −∂H

∂s
, λ̇v = −∂H

∂v
, that is:

{

λ̇s = λs

(

µ′(s)x− µ(s) + u
v

)

,

λ̇v = λs

(

−µ(s)M+u(sin−s)
v2

)

,
(2.8)

and we have the maximality condition:

u(t) ∈ arg maxω∈[0,1]H(s(t), v(t), λs(t), λv(t), λ0, ω), (2.9)

for almost every t ∈ [0, tf ]. We call extremal trajectory a sextuplet (s(·), v(·), λs(·), λv(·), λ0, u(·)) satisfying
(2.5)-(2.8)-(2.9), and extremal control the control u associated to this extremal trajectory. As tf is free, the
Hamiltonian is zero along an extremal trajectory. Following [1], one can prove that λs is always non-zero
(it is therefore of constant sign from the adjoint equation), and that λ0 < 0 (hence we take λ0 = −1 in the
following). Next, let us define the switching function φ associated to the control u by:

φ :=
λs(sin − s)

v
+ λv. (2.10)

We obtain from (2.9) that any extremal control satisfies the following control law: for a.e. t ∈ [0, tf ], we have











φ(t) < 0 =⇒ u(t) = 0 (No feeding),

φ(t) > 0 =⇒ u(t) = 1 (Maximal feeding),

φ(t) = 0 =⇒ u(t) ∈ [0, 1].

We say that t0 is a switching point if the control u is non-constant in any neighborhood of t0 which implies
that φ(t0) = 0. Whenever the control u switches either from 0 to 1 or from 1 to 0 at time t0, we say that the
control is bang-bang around t0. We will write B0 an arc bang u = 0 and B1 an arc bang u = 1. Whenever φ is
zero on a non-trivial interval I ⊂ [0, tf ], we say that u is a singular control, and that the trajectory contains a

singular arc. We will write SA a time interval where the trajectory is singular. The sign of φ̇ is fundamental
in order to obtain the optimal synthesis. By taking the derivative of φ, we get:

φ̇ =
λsx(sin − s)µ′(s)

v
.

Moreover, we can show that λs < 0 (see e.g. [1, 7]). This implies that any extremal trajectory satisfies the
property:

s(t) > s =⇒ φ̇(t) > 0 ; s(t) < s =⇒ φ̇(t) < 0. (2.11)

Now, if an extremal trajectory contains a singular arc on some time interval I := [t1, t2], then we have
φ = φ̇ = 0 on I, hence we have µ′(s) = 0 and s = s on I, hence the singular locus is the line segment
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S := {s̄} × [0, vm]. By solving ṡ = 0, we obtain the expression of the singular control given by (2.7), see e.g.
[2]. Moreover, we can estimate the time of a singular trajectory as follows (see e.g. [1]):

t2 − t1 =
1

µ(s)
ln

(

M + v(t2)[sin − s]

M + v(t1)[sin − s]

)

. (2.12)

3 Optimal synthesis without controllability assumption

In this part, we provide a description of optimal trajectories for problem (2.2) when (2.6) is not satisfied. We
first introduce a partition of D that will allow us to describe where optimal trajectories have a switching point.

3.1 Partition of the domain D

In view of (2.6) that can be also written vm ≤ 1
µ(s̄) −

M
sin−s̄

, we introduce a mapping η : (0, sin) → R by

η(s) :=
1

µ(s)
−

M

sin − s
.

By definition of η, we have:
us(v) = 1 ⇐⇒ v = η(s).

Now, if define a point v∗ by v∗ := η(s), the singular arc is controllable provided that v∗ ≤ vm. In the following,
we make the following assumption of v∗:

(H1) We suppose that v∗ < vm.

The point (s̄, v∗) is called saturation point, see e.g. [5, 9]. It follows that the singular arc is controllable only
if the volume is less than v∗ i.e. the admissible part of the singular arc is {s̄} × [0, v∗]. Indeed, for v > v∗

equality (2.7) no longer defines a control in [0, 1]. Next, we will consider the two following cases:

• Case 1: v∗ ≤ 0,

• Case 2: 0 < v∗ < vm.

Remark 3.1. Case 1 means that the singular arc is never controllable over (0, vm]. As the function η can
take negative values, v∗ can be negative.

We now introduce curves that are solutions of (2.5) with u = 1 that will provide a partition of initial states.

Definition 3.1. We define Ĉ, resp. Č as the restriction to the set D of the orbit of system (2.5) with u = 1
that passes though the point (s̄, vm), resp. (s, v∗).

Hence, Ĉ is the graph of a mapping v 7−→ γ̂(v) that is the unique solution of the equation:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, (3.1)

over (0, vm] (recall that the point (s̄, vm) ∈ ∂D) with initial condition γ̂(vm) = s̄. Similarly, Č is the graph of
a mapping v 7−→ γ̌(v) that is the unique solution of (3.1) over (0, vm] such that γ̌(v∗) = s̄.

The curves Ĉ and Č will play a major role in the optimal synthesis contrary to the case where the singular
arc is controllable (see Fig. 2 and Table 1 for parameter values). In fact, they will indicate sub-domains where
optimal trajectories have a switching point. As D is not backward invariant by (2.5), we call v̂, resp. v̌ the
first volume value such that γ̂(v̂) /∈ (0, sin), resp. γ̌(v̌) /∈ (0, sin). The next proposition is concerned with
monotonicity properties of γ̂ and γ̌ (see Fig. 1 and 2).

Proposition 3.1. (i) The curve γ̂ is either decreasing on [v̂, vm], either there exists a unique v1 ∈ (v̂, vm) such
that γ̂(v1) ∈ (0, sin) and dγ̂

dv
(v1) = 0. Moreover, in the latter case, γ̂ is increasing on [v̂, v1] and is decreasing

on [v1, vm].
(ii) The mapping γ̌ is increasing on (v̌, v∗] and decreasing on [v∗, vm] and dγ̌

dv
(v∗) = 0.
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Proof. Let us first prove (i). For v ∈ (v̂, vm], we can rewrite (3.1) as follows:

ds

dv
=

µ(s)(sin − s)

v
[η(s)− v].

When v = vm, we have η(γ̂(vm)) = η(s) = v∗ < vm, therefore, we have dγ̂
dv

< 0 in a neighborhood of vm. Now,

if γ̂ is non-monotone on (v̂, vm), then necessarily v 7−→ dγ̂
dv

is vanishing on (v̂, vm]. Assume that there exist

0 < v2 < v1 < vm such that γ̂(v1) ∈ (0, sin), γ̂(v2) ∈ (0, sin) and dγ̂
dv
(v1) =

dγ̂
dv
(v2) = 0. Without any loss of

generality, we can assume that dγ̂
dv
(v) > 0 for v ∈ (v2, v1). This gives using η(γ̂(v2)) = v2:

η(γ̂(v))− η(γ̂(v2)) > v − v2, v ∈ (v2, v1),

and by dividing by v − v2 (with v > v2), we obtain that d
dv
η(γ̂(v))|v=v2

≥ 1. On the other hand, we find

η′(γ̂(v2))
dγ̂
dv
(v2) = 0, which gives a contradiction. Therefore, there exists at most one value v1 for which

dγ̂
dv
(v1) = 0, and γ̂(v1) ∈ (0, sin). Also, by derivating (3.1) and using the fact that dγ̂

dv
(v1) = 0 we get:

d2γ̂

dv2
(v1) = −

µ(γ̂(v1))(sin − γ̂(v1))

v1
,

which is non-zero. In fact, we have seen that γ̂(v1) > 0. Moreover we have γ̂(v1) 6= sin from (3.1) (if M 6= 0,
then dγ̂

dv
(v1) 6= 0 whenever γ̂(v1) = sin; if M = 0, then, γ̂(v) < sin for all v by Cauchy-Lipschitz Theorem).

We deduce that at point v1, the monotonicity of γ̂ is changing. The conclusion of (i) follows.
Let us prove (ii). By definition of v∗, we have dγ̌

dv
(v∗) = 0. By a similar argument as for (i), one can prove

that v∗ is the unique zero of v 7−→ dγ̌
dv
(v) on (v̌, vm]. Thus v 7−→ ζ(v) := η(γ̌(v))− v has exactly one zero on

(v̂, vm]. Moreover, we find dζ
dv
(v∗) = −1, therefore ζ is decreasing in a neighborhood of v∗. It follows that γ̌ is

increasing on [v̂, v∗] and decreasing on [v∗, vm], and the result follows.

Remark 3.2. (i) Proposition 3.1 (ii) implies that the curve Č leaves the domain D through the line-segment
{0} × [0, vm], see Fig 2.
(ii) Proposition 3.1 (i) implies that the curve Ĉ leaves the domain D either through the line-segment {0} ×
[0, vm], the line segment [0, sin]× {0} or through the line-segment {sin} × [0, vm], see Fig. 1.
(iii) We can show that there exist values of M for which the two cases mentioned in Proposition 3.1 (ii) occur.
In fact, by changing v into w := − ln v, (3.1) can be gathered into a planar dynamical system. The stable
manifold Theorem (see e.g. [15]) shows that limv→0 γ̂(v) is either finite or ±∞ When this limit is ±∞, γ̂
leaves D through {0} × [0, vm] or {sin} × [0, vm]. We have not detailed this point for brevity.
(iv) For instance, if M = 0, Cauchy-Lipschitz Theorem implies that limv→0 γ̂(v) = −∞.

0 2 4 6 8 10
0

1

2

3

4

5

6
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 Substrate

 V
o
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m
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s̄

vm

M = 1

M = 25

Figure 1: The curve Ĉ leaves the domain D through {0} × [0, vm] when M = 1, and through {sin} × [0, vm]
when M = 25, see Proposition 3.1 (i).
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When M is such that limv→0 γ̂(v) = −∞, the trajectory leaves the domain D through the line-segment
{0}× [0, vm]. Hence, there exists a volume value v∗ such that γ̂(v∗) = s, see Fig. 1. From the definition of v∗,
the volume v∗ necessarily satisfies 0 < v∗ < v∗. In fact, for any volume value v such that v∗ < v ≤ vm, one
has ds

dt |u=1

(s̄) < 0, thus Ĉ necessarily intersects the singular arc below v∗.

3.2 Optimal synthesis without controllability of the singular arc

In the case where v∗ ≤ 0 (case 1), we have the following optimality result (see also Fig. 2).

Proposition 3.2. Suppose (H1) and that v∗ ≤ 0 (case 1). Then, given initial states (s0, v0) ∈ D, optimal
controls satisfy the following:

(1) If s0 ≤ s, then, there exists t0 > 0 such that u = 1 on [0, t0], u = 0 on [t0, tf ] where t0 is such that
v(t0) = vm and s(tf ) = sref .

(2) If s < s0 < γ̂(v0), then, there exists t0 > 0 such that u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ]
where t0 ≥ 0, s < s(t0) < s0, v(t1) = vm, and s(tf ) = sref .

(3) If s0 ≥ γ̂(v0), then, there exists t0 > 0 such that u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ] with
t0 > 0, s < s(t0) < γ̂(v0), v(t1) = vm, and s(tf ) = sref .

Proof. Consider an optimal trajectory (s(·), v(·), u(·)) starting at some point (s0, v0) ∈ D. In the present case,
the control u can only take the value 0 or 1 from the PMP (the singular arc is not admissible in D).

First, assume s0 ≤ s. Given the non-controllability assumption v∗ ≤ 0, we can show that s(t) ≤ s for all
t. We thus have u = 1 in a neighborhood of t = 0. Otherwise, we would have u = 0 together with φ(0) ≤ 0,
and from (2.11) we would have for all t, φ(t) < 0 which is not possible (as the trajectory would not reach
the target). It follows that we have u = 1 in a neighborhood of t = 0. The same argument shows that the
trajectory cannot switch to u = 0 before reaching vm. This proves the first item.

Assume now that s < s0 < γ̂(v0). If φ(0) < 0, then we have u = 0, and the trajectory necessarily switches
to u = 1 before reaching s (otherwise we would have a contradiction by the previous case). Now, we have
u = 1 on some time interval [t0, t1]. Again, the previous case shows that the trajectory cannot switch to u = 0
at some time t′ such that s(t′) ≤ s with v(t′) < vm. As φ(t0) ≥ 0 and φ̇(t) > 0 whenever s(t) > s (recall
(2.11)), we obtain that the trajectory cannot switch to u = 0 at some time t′′ such that s(t′′) > s. Therefore,
we have u = 1 until vm, and the conclusion follows.

Now, take s0 > γ̂(v0). Then, we must have u = 0 in a neighborhood of t = 0. Ootherwise we would have
φ(0) > 0 which implies that φ(t) > 0 for all t and a contradiction from (2.11). The same argument shows
that the trajectory cannot switch to u = 1 at some substrate concentration s(t0) ≥ γ̂(v0). Using the first
item, we obtain that the trajectory necessarily switches at some time t0 such that s < s(t0) < γ̂(v0). By the
second case, we obtain directly that u = 1 on some time interval [t0, t1] with v(t1) = vm. This concludes the
proof.

Remark 3.3. In the second case of proposition 3.2, the switching time t0 from u = 0 to u = 1 may be zero
and it can be found numerically, see section 4.

Next, we consider case 2 where 0 < v∗ < vm. We make the following assumption on M :

(H2) The constant M is such that there exists a unique 0 < v∗ < v∗ such that γ̂(v∗) = s̄.

It is easy to see that for initial conditions such that v0 > v∗, optimal controls are given by proposition 3.2.
Indeed, the admissible part of the singular arc is defined only for v0 ≤ v∗). Therefore, we only consider initial
states such that v0 < v∗. The next Proposition is illustrated on Fig. 2.

Proposition 3.3. Suppose (H1) and that 0 < v∗ < vm (case 2). In addition, suppose that (H2) is satisfied.
Then, given initial states (s0, v0) ∈ D such that v0 < v∗, optimal controls satisfy the following:

(1) If s0 ≤ γ̌(v0), then, there exists t0 > 0 such that we have u = 1 on [0, t0], u = 0 on [t0, tf ] where t0 is
such that v(t0) = vm.

(2) If γ̌(v0) < s0 < γ̂(v0) and s0 ≤ s, then, there exists t0 > 0 such that we have u = 1 on [0, t0], u = us on
[t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ], where s(t0) = s, t1 − t0 ≥ 0, v(t1) < v∗, and v(t2) = vm.
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(3) If γ̂(v0) ≤ s0 < s, then, there exists 0 < t0 < t1 < t2 such that we have u = 1 on [0, t0], u = us on
[t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where s(t0) = s, v(t1) ∈ (v∗, v

∗), v(t2) = vm.

(4) If s0 ≥ s and v0 ≤ v∗, then, there exists 0 < t0 < t1 < t2 such that we have u = 0 on [0, t0], u = us on
[t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where s(t0) = s, v(t1) ∈ (v∗, v

∗), and v(t2) = vm.

(5) If s0 ≥ s, and v0 > v∗, then, the optimal control is one of the following types:

- either u = 0 on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ] where s(t0) = s and
0 < t0 < t1, v(t2) = vm,

- either u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ] where t0 ≥ 0, s < s(t0) < γ̂(v0), v(t1) = vm.

Proof. The proof of the first item is the same as the first one of the previous Proposition.
Now, when γ̌(v0) < s0 < γ̂(v0) and s0 ≤ s, the trajectory cannot switch from u = 1 to u = 0 before

reaching s = s. Therefore, we have two cases when the trajectory reaches s = s: the trajectory either crosses
the singular arc, or the control becomes singular. In the latter, the trajectory switches to u = 1 before reaching
v∗ and we have u = 1 until v = vm (otherwise we would have u = 0 at the point (s, v∗) and the trajectory
would not reach the target from (2.11)). Notice that t1 = t0 is possible. This means that the time interval
where the trajectory is singular can be zero.

If γ̂(v0) < s0 < s, the proof is the same as for the second item except that the trajectory cannot leave the
singular arc with u = 1 before v∗ (otherwise the trajectory reaches v = vm with u = 1 and φ > 0, and the
trajectory cannot switch to u = 0 at v = vm from (2.11)).

The proof of the fourth item is the same as the third one except that the trajectory starts with u = 0
until reaching the singular arc. Similarly as in the previous item, the trajectory cannot switch to u = 1 before
reaching s = s.

The last region is given by initial conditions such that s0 ≥ s, and v0 > v∗. The same arguments as before
can be used except that Pontryagin’s Principle is not sufficient to exclude two type of trajectories. First
observe that we have u = 0 on some time interval [0, t0] as before (with s(t0) < γ̂(t0), otherwise the trajectory
would not reach the target from (2.11)). When the trajectory crosses the curve γ̂, we have two sub-cases.
Either the trajectory switches to u = 1 before reaching s = s (as in Proposition 3.2), either the trajectory
switches to the singular arc for s = s. After the first switching times, the behavior of the trajectory is exactly
as for the second item, and we can conclude from the other cases.
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Figure 2: Optimal trajectories (in solid red lines) for various initial conditions without controllability as-
sumption. Left: case 1 (v∗ ≤ 0), see Proposition 3.2 for the description of optimal controls; right: case 2
(0 < v∗ < vm), see Proposition 3.3. In blue dashed lines, trajectories Ĉ and Č which pass through (s̄, v∗) and
(s̄, vm). In green, the mapping v0 7−→ sb(v0) (see Section 4).
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Table 1: Parameter values (arbitrary units) of simulations for the optimal synthesis without the controllability
assumption of the singular arc (see Fig. 2 and 3)

vm sin sref M µ̄ k g

7 10 0.1 25 (case 1) 0.5 1 0.11
1 (case 2)

Remark 3.4. (i) Propositions 3.2 and 3.3 do not explicitly provide a switching curve for the optimal control.
Nevertheless, in case 1, Proposition 3.2 shows that the control has no more than two switching points and that
optimal controls are of type of type B0B1B0 or B1B0. In case 2, Proposition 3.3, shows that optimal controls
can also be of type B0SAB1B0 with three switching points.
(ii) For the last item of Proposition 3.3, the optimal trajectory is either B0SAB1B0 or B0B1B0. The next
section will clarify this point and will provide an estimation of the switching time t0 for items 2, 3, and 4.

We now investigate the loss of optimality of the singular arc.

Proposition 3.4. Suppose (H1) and that 0 < v∗ < vm (case 2). In addition, suppose that (H2) is satisfied.
Then, there exists va ∈ (v∗, v

∗) such that any optimal trajectory starting at the point (s̄, v0) with v0 ≤ v∗ leaves
the singular arc for v = va.

Proof. If, the trajectory leaves the singular arc for a volume value less than v∗, then, we have u = 1 until
reaching v = vm. From Proposition 3.3, we have φ > 0 at v = vm in contradiction with the fact that the
trajectory switches to u = 0. Hence, it leaves the singular arc for a volume value v > v∗. Notice that if a
singular trajectory reaches v = v∗ at a time t′, then we have φ(t′) = φ̇(t′) = 0. For t > t′, we have s(t) < s̄ for
any control u (this follows from the definition of v∗). Hence, we have φ̇(t) < 0, and we deduce that φ(t) < 0
for t > t′. Hence we have u = 0 using (2.9). As the trajectory necessarily has a switching point in order to
reach the target, we obtain a contradiction.

Unlike in the controllable case [1, 13] where singular trajectories are optimal until v = vm, the previous
proposition shows that singular extremal trajectories are not optimal until the saturation point (see also [5, 9]).
If an initial state (s0, v0) is such that s0 = s̄ and v0 ∈ (va, v

∗), then the associated optimal control necessarily
satisfies u = 1.

Remark 3.5. If the point on the singular arc where singular extremal cease to be optimal is non-unique, we
take for va the one that is maximal.

4 Numerical simulations

In this section, we provide an optimal feedback control of the problem based on numerical simulations. We
will focus only on case 2 assuming (H1) and (H2).

4.1 Determination of the maximal optimal volume

Our aim in this part is to determine the optimal volume va, above which a singular arc is not optimal. For
v0 ∈ [v∗, v

∗], consider the strategy u = us from v∗ to v0, u = 1 until vm and then u = 0 until sref . The time
ta(v0) of this strategy is (recall (2.12), see also [1]):

ta(v0) =
ln

(

M+v0(sin−s)
M+v∗(sin−s)

)

µ(s)
+ vm − v0 +

∫ s†(v0)

sref

dσ

µ(σ)
(

M
vm

+ sin − σ
) , (4.1)

where s†(v0) is the substrate concentration when this trajectory reaches v = vm: it is defined as the value for
v = vm of the solution of (3.1) that starts at s = s̄ with v = v0. Hence, s†(v0) can be computed after solving
the Cauchy problem:

ds

dv
= −µ(s)

[

M

v
+ sin − s

]

+
sin − s

v
, s(v0) = s. (4.2)
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We now show that v0 7−→ ta(v0) admits a minimum va ∈ [v∗, v
∗] that we will characterize hereafter. First,

(4.2) can be equivalently written as ds
dv

= g(v, s) where g is the right hand-side of (4.2). By the classical
dependence of the solution of an ODE on parameters, we denote by s(v, s, v0) the unique solution of (4.2). It
is standard that v0 ∈ R

∗
+ 7−→ s(v, s, v0) is of class C

1 for all v > 0. It follows by composition that v0 7−→ ta(v0)
is of class C1 on [v∗, v

∗]. Consequently, it admits a minimum on this interval. By differentiating s(v, s, v0)
w.r.t. v0, we get:

∂s

∂v0
(v, s, v0) = −g(v0, s)e

∫
v

v0

∂g
∂s

(s(w,v0,s),w)dw
,

using a classical result on the dependance w.r.t. initial conditions of a solution of an ordinary differential

equation. Hence ds†

dv0
(v0) =

∂s
∂v0

(vm, s, v0).
Now, we know from the PMP that v0 = v∗ and v0 = v∗ are not admissible (see also Proposition 3.3), hence

va necessarily satisfies dta
dv0

(va) = 0. So, if we put θ(v0) :=
∫ vm

v0

∂g
∂s
(w, s(w, s, v0))dw, we obtain by taking the

derivative of (4.1) w.r.t. v0:

dta
dv0

(v0) =
v∗ − v0
M

sin−s
+ v0

[

1−
µ(s)(M

v0

+ sin − s)

µ(s†)( M
vm

+ sin − s)
eθ(v0)

]

This equation allows to obtain numerically the volume va ∈ (v∗, v
∗) above which extremal trajectories stop to

be singular. As an example, we find va ≃ 1.67 (see Fig. 3 and Table 1 for the values of the parameters).

Remark 4.1. Other methods could be investigated to determine va, for instance using the theory of conjugate
points [3].
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1.0 1.5 2.0 2.5 3.0 3.5

Switching volum e

Figure 3: Time ta(v) to reach the target from (s̄, v∗) with the strategy: singular arc until the switching volume
v, u = 1 until vm, u = 0 until sref . We find that ta(v) has a unique minimum for v = va (see Section 4)

4.2 Determination of the switching curve and the feedback control

To determine the optimal switching time for the trajectories B0B1B0 starting with s0 > s̄, we proceed as
follows. For each v0 ∈ (v∗, vm), we search numerically sb(v0) ∈ [s̄, γ̂(v0)] which minimizes the time tb(sb) to
reach the target starting from (γ̂(v0), v0) with the strategy: u = 0 until sb, u = 1 until vm, u = 0 until sref .
The application sb 7−→ tb(sb) can we written:

tb(sb) =

∫ γ̂(v0)

sb

dσ

µ(σ)
(

M
v0

+ sin − σ
) +

∫ s
†

b

sref

dσ

µ(σ)
(

M
vm

+ sin − σ
) , sb ∈ [s̄, γ̂(v0)],

where s†b is the solution of (3.1) that starts at point (sb, v0) evaluated at v = vm. Numerical simulations
indicate that for each value of v0, the point sb(v0) where tb is minimal is unique. This allows us to define a
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curve Cb whose graph is the mapping v0 7−→ sb(v0), represented in green on Fig. 2. Moreover, we find that
for v0 < va, we have sb(v0) = s̄, while sb(v0) > s̄ for v0 ∈ (va, vm). This result allows to conclude numerically
which structure is optimal whenever s0 > s and v0 > v∗ (see the last case of Proposition 3.3):

• if v0 ≤ va, the optimal strategy is u = 0 on [0, t0], u = us on [t0, t1], u = 1 on [t1, t2], u = 0 on [t2, tf ]
where s(t0) = s, v(t1) = va, v(t2) = vm.

• if v0 > va, the optimal strategy is u = 0 on [0, t0], u = 1 on [t0, t1], u = 0 on [t1, tf ] where t0 ≥ 0,
s(t0) = min(s(0), sb(v0)), v(t1) = vm.

In case 2, numerical simulations together with Proposition 3.3 provide the following result.

Theorem 4.1. Suppose (H1) and that 0 < v∗ < vm (case 2). In addition, suppose that (H2) is satisfied. If
for each v0 ∈ [v∗, vm], there exists a unique minimum sb(v0) of tb(v0) with sb(v) = s̄ for v ∈ [v∗, va], then the
optimal feedback steering any initial state in D to the target is given by:

u2[s, v] :=































0 if s > sb(v), v ≥ va,

1 if s ≤ sb(v), vm > v ≥ va,

0 if s > s̄, v < va,

1 if s < s̄, v < va,

us(v) if s = s̄, v < va.

The switching curve is depicted on Fig. 2 (right). We see that for v < va, the optimal feedback is as in
Theorem 2.2 whereas for v > va, the feedback control is either 0 or 1 depending where the state is w.r.t. the
curve v 7−→ sb(v).

In case 1, we have a similar result based on numerical simulations (conducted in case 2) together with
Proposition 3.2.

Theorem 4.2. Suppose (H1) and that v∗ ≤ 0 (case 2). If for each v0 ∈ [va, vm], there exists a unique
minimum sb(v0) of tb(v0), then the optimal feedback steering any initial state in D to the target is given by:

u1[s, v] :=

{

0 if s ≥ sb(v) or v = vm,

1 if s < sb(v) and v < vm.

The switching curve is depicted on Fig. 2 (left). To conclude, based on the optimal synthesis (Proposition
3.3) and the computations of the mapping v0 7−→ sb(v0) and va, optimal trajectories for various initial
conditions (s0, v0) are represented on Fig. 2. Moreover, the curve v0 7−→ sb(v0) is the switching curve for
optimal trajectories and it allows to give an optimal feedback control. We have shown that, without the
controllability assumption, the optimal synthesis is quite different as the one of Theorem 2.2. In particular,
we have pointed out that it is not optimal for a trajectory to stay on the singular arc until the saturating
point.

5 Conclusion

We have studied an optimal control problem for a fed-batch bioprocess that exhibits a singular arc with a
saturating point. This situation can arise for example when the initial biomass concentration is high. Thanks
to the Pontryagin Maximum Principle and numerical simulations, we have obtained an optimal synthesis of
the problem. We have pointed out that there exists a volume value above which any singular trajectory is
not globally optimal. Moreover, it appears that there exist switching curves that provide an optimal feedback
control of the problem. A more detailed insight into the determination of the switching curves (for instance
using the theory of conjugate points [3]) could be the basis of future works. The analysis of the problem reveals
that the determination of the optimal synthesis without controllability assumption is more intricate as in the
case where the singular arc is always controllable. We believe that this kind of study can be the starting point
to study optimal control problems in a more general setting in presence of non-controllable singular arcs.
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