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Abstract

The goal of this paper is to study the feasibility of making intelligent antenna

selection decision in IEEE 802.15.4 Wireless Sensor Networks (WSNs). This

study provides us the basis to design and implement software defined intelligent

antenna switching capability to wireless sensor nodes based on Received Signal

Strength Indicator (RSSI) link quality metric. First, we discuss the results of

our newly designed radio module (Inverted-F Antenna) for 2.4 GHz bandwidth

(WSNs). Second, we propose an intelligent antenna selection strategy to exploit

antenna diversity. Third, we propose the prototype of our diversity antenna for

the TelosB mote and the intelligent switch design. Finally, we compare the

performance of the built-in TelosB antenna with our proposed external antenna

in both laboratory and realistic environments. Experimental results confirm the

gain of 6 to 10 dB of the proposed radio module over the built-in radio module

of the TelosB motes.
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1. Introduction

In our daily life, Wireless Sensor Networks (WSNs) can be seen everywhere.

The applications of these WSNs ranges from environmental monitoring like

wildlife tracking, habitat monitoring, forest fire detection, mine safety monitor-

ing to military applications like target detection, and tracking [1, 2]. However,

the performance of these WSNs depends upon the quality of the wireless link,

the built-in antenna available on the sensor device, and the antenna diversity. In

WSNs, there are several application scenarios where a clear line-of-sight (LOS)

between the sender and receiver is not present [3, 4, 5, 6]. This results in fad-

ing of the signal and causes multipath propagation. Furthermore, the signal

between transmitter-receiver pair is prone to attenuation and distortion, result-

ing in packet losses. The main reason of attenuation and distortion is due to

path loss, multipath fading, radiation characteristics, antenna orientation, and

Doppler effects and are highly dependent upon the location and surrounding of

the transmitter-receiver pair [8]. Antenna diversity is a way in which two an-

tennas are attached with the sensor node to improve the quality and reliability

of the wireless link [6], [7].

In IEEE 802.15.4, the quality of the link is measured by two metrics: Link

Quality Indicator (LQI) and Received Signal Strength Indicator (RSSI). These

two metrics are offered by the IEEE 802.15.4 physical layer, which can then be

used by the routing layer to select good quality routes. For instance, the im-

pact of LQI-Based routing metrics on the performance of a One-to-One routing

protocol for IEEE 802.15.4 Multihop Networks has been studied by the authors

in [9]. The authors in [10] provided a detailed study on the comparison of LQI

and RSSI metrics. However, aforementioned works [9, 10] did not consider the

antenna diversity. Recently, the authors in [11] showed that significant gain can

be achieved through antenna diversity but their work mainly focuses on direc-

tional antennas for smart-phone like mobile devices. In [12], the authors focus

on target coverage problem using directional sensor and antennas.

Based on link quality metric RSSI, our ultimate goal is to design and imple-
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ment software defined intelligent antenna switching capability to wireless sensor

nodes. More precisely, we want to attach an external antenna with the sensor

nodes besides the built-in antenna to achieve antenna diversity. Then, based on

wireless link condition, the sensor node switch to the appropriate antenna for

communication.

Our Contributions: This paper makes the following contributions:

As a first step, we design a new radio module, an Inverted-F Antenna for

2.4 GHz bandwidth WSNs. In fact, we study the feasibility of making

intelligent antenna selection decision in IEEE 802.15.4 WSNs. This study

will provide us the basis to design and implement software defined intel-

ligent antenna switching capability to wireless sensor nodes based on link

quality metric, such as RSSI.

We perform extensive experiments in outdoor garden environment, in-

door office environment, reverberation chamber and anechoic chamber.

We then compare results of our antenna with the built-in TelosB antenna.

Experimental results confirm the effectiveness of the proposed radio mod-

ule over the built-in radio module of the TelosB motes.

In the second step, we propose an intelligent antenna selection strategy to

exploit antenna diversity. In this strategy, wireless sensor nodes predict

the values of RSSI of built-in and external antenna and make the antenna

selection decision adaptively. In fact, the proposed antenna selection strat-

egy is based on Exponentially Weighted Moving Average (EWMA) and

rely on the historical observations of the RSSI values of built-in and ex-

ternal antenna.

We then propose the prototype of our diversity antenna for the TelosB

mote and the intelligent switch design.

Finally, we discuss issues and challenges related to intelligent antenna

selection and antenna diversity in the context of WSNs, which open new

research directions.
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Organization of the paper: The remainder of this paper is organized

as follows: In section 2, we discuss Inverted-F antenna design. Performance

analysis of built-in and external antenna is done in section 3. We then propose

EWMA based intelligent antenna selection strategy in section 4. Open issues

and challenges are discussed in section 5. Section 6 discusses the related work.

Finally, section 7 concludes the paper with future research directions.

2. Inverted-F Antenna (IFA) Design

We now describe the design and connection procedure of our antenna [13, 14]

with the TelosB mote, which is widely used in WSNs research. According to

the TelosB datasheet [15], we have implemented an SubMiniature version A

(SMA) connector in order to connect our small external antenna. This antenna

is called as Inverted-F Antenna (IFA). Fig. 1 shows Inverted-F antenna attached

with TelosB mote. Compared to the embedded antenna, this one is different in

the sense that it couples to its one ground plane. This particularity makes the

antenna working on Ultra Wide Band (UWB) from 2070 to 3140 MHz for a -10

dB matching bandwidth. The current excited by the IFA on its ground plane

make the radiation pattern to have a null on the Y-axis. The gain is almost

constant in the XZ plane and is around 1 dBi (cf. Fig. 2 for the design and

radiation pattern). This antenna has two advantages :

-Firstly, the matching bandwidth is much more important from the embed-

ded antenna. Making it a little less sensitive to proximity effects.

-Secondly, as the gain is almost constant in the ZY plane and have a null in

the OX direction, thus limiting troubles from the USB connector.

3. Performance Analysis of Built-in and External Antenna

We first describe the methodology in this section and then proceed with the

performance analysis.
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Figure 1: Inverted-F antenna attached with TelosB mote.

Methodology: Since our goal is to consider RSSI in making the antenna

selection decision, we first perform extensive experiments to study the behaviour

of RSSI in four different environments, namely, (1) Indoor Office Environment,

(2) Outdoor Garden Environment, (3) Reverberation chamber, and (4) Anechoic

chamber. Note that the reverberation chamber is used to simulate indoor envi-

ronment with multipath and the anechoic chamber is used to simulate outdoor

environment.

Implementation Setup: In this section, we describe our implementation

setup. We consider TelosB motes [16], which are equipped with Chipcon CC2420

radio module [17]. The radio module CC2420 in its new versions is used in many

radio devices. The transceiver of TelosB motes operate in 2.4 GHz band. We use

RSSI as a link quality metric to study the performance of our newly designed

antenna. The RSSI provides the signal strength at the receiver (in dBm) [10].

The CC2420 calculates the RSSI over 8 symbol periods and stores the result in

its RSSI.RSSI VAL register. Chipcon specifies the following formula to compute

the received signal power (P) in dBm: P = RSSI VAL + RSSI OFFSET, where

RSSI OFFSET is equal to -45. We refer to this power, P (in dBm) as RSSI

throughout this paper.

We consider two types of TelosB motes in our experiment: (1) sink node,

which is connected with the serial port of the Laptop, and (2) the sending mote,
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Figure 2: Realized Gain (dB) and Design of Inverted-F Antenna for 2.4 GHz WSNs.

which sends packet with a time delay of 500 ms. Total 100 packets were sent by

the sending mote. As soon as the sink node receives packet by the sending mote,

it saves the RSSI value of each corresponding packet. The sink node and the

sender node is placed 1 feet and 1 meter apart. We carried out our experiment

at 3 different power levels: 0 dBm, -10 dBm and -25 dBm. To change the

transmission power, we change the default transmission power of CC2420 i.e., 0

dBm (CC2420 DEF RFPOWER = 31), to -10 dBm and -25 dBm, by changing

the register values to 11 and 3, respectively. In order to study the impact of

LOS and multipath on RSSI for both antennas, we place the sender node at five

different locations, while the receiving node’s position was fixed (cf. Fig. 5). We

now describe the results for each environment.

3.1. Indoor Office Environment

We first consider indoor office environment in which we have walls, com-

puters, tables, and other reflecting material. Moreover, we also have human

activity and the experiments were conducted in the presence of a single person.

Fig. 3 shows the plan for the indoor office environment of Universite Paris Est,

Copernice Building, 4th floor, where we conducted our experiments.

Fig. 4 compares the RSSI values of built-in antenna and external IFA antenna

for each received packet with 0 dbm, -10 dBm and -25 dBm power levels. Results
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Figure 3: Indoor offices plan of Universite Paris Est, Copernic Building, 4th floor.

in Fig. 4(a), 4(b) and 4(c) were taken when the distance between the sender node

and the receiving node was 1 feet. While Fig. 4(d) and 4(e) shows the results

when the sender node and the receiving node were 1 meter apart. Note that

in Fig. 4(d) and 4(e), the sender node is placed at five different locations (cf.

Fig. 5).

The IFA antenna provides higher power levels i.e., RSSI values at the re-

ceiver. More precisely, when power level is 0 dBm, the external IFA antenna

provides -33.81 dBm power compared to -58.4 dBm power for the built-in an-

tenna, i.e., the gain of 25 dB. When power level is -10 dBm, the external IFA

antenna provides -44.41 dBm power compared to -74.0 dBm power for the built-

in antenna, i.e., the gain of 30 dB. And when the power level is -25 dBm, the

external IFA antenna provides -58.95 dBm power compared to -76.67 dBm power

for the built-in antenna, i.e., the gain of around 17.75 dB. As mentioned earlier,

to study the affect of LOS and multipath, we consider five different positions for

the sender node. In addition, we also increase the distance between the sender

node and receiving node to 1 meter. We now observe the RSSI values for the

external and built-in antenna in Fig. 4(d) and 4(e). As can be seen in the figure,

the RSSI value is different for every position (cf. Fig. 5). This is due to the

multipath affect and due to the absence of clear line of sight between the sender

and the receiver nodes. In summary, results in Fig. 4(a), 4(b) and 4(c) confirm
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Figure 4: Number of Packets and RSSI in Indoor office environment. (a) 0 dBm Power. (b)
-10 dBm Power. (c) -25 dBm Power. (d) External antenna placed at five different locations
with 0 dBm Power. (e) Built-in antenna placed at five different locations with 0 dBm Power.
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Figure 5: Sender and Receiving nodes positions.

that the newly designed IFA antenna can provide good link reliability, suitable

for wireless radio communication in IEEE 802.15.4 based WSNs.

We also conclude that when the sender and receiver nodes are at short dis-

tance, we observe the different RSSI values for the two antennas (cf. Fig. 4(a), 4(b)

and 4(c)). On the other hand, when the sender and receiver nodes are at long

distance, the RSSI values received at both the antennas fluctuates (cf. Fig. 4(d)

and 4(e)). This is because of multipath fading and scattering effects, which

ultimately changes the polarization of waves.

3.2. Reverberation Chamber

Reverberation chambers are used to study the effects of multi-path propa-

gation environments [26]. Fig. 6 and Fig. 7 shows the outside and inside view of

Reverberation chamber that we considered in our experiments. We use Model

2005 Azimuth Stirrer Command Set with the speed of 2 rpm to create highly

dynamic environment in the reverberation chamber by rotating it.

We compare the RSSI values of built-in antenna and external IFA antenna

in Reverberation Chamber, for each received packet with -25 dBm power level

(cf. Fig. 8). More precisely, results in Fig. 8 were taken when the nodes were 1

meter apart and the sender node is placed at two different locations (cf. Fig. 5).

It can be clearly seen in Fig. 8 that RSSI values in Reverberation chamber

highly fluctuates. This is due to the highly dynamic environment (Azimuth
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Figure 6: Outside view of the Reverberation Chamber in Université Paris-Est Marne-la-Vallée,
LIGM, PasNet, France.

Stirrer rotation at 2 rpm). This results in multi-path and thus we have vary-

ing RSSI values for both antennas. Due to this multi-path phenomenon, we

calculate the delivery ratio of the packet for both antennas at 5 distinct posi-

tions. Another important point that need to be noted over here is that the RSSI

value for both antennas is time varying, means, for any time instant t, external

antenna is performing good, while for time instant t+1, built-in antenna gives

good performance. Thus, we plan to use this spatio-temporal variation in RSSI

to select appropriate antenna (cf. Section 4 for more details).

Fig. 9 shows the delivery ratio of both antennas at five different positions.

The results attest the obtained low and varying delivery ratios are mainly due

to the highly dynamic environment in the reverberation chamber. However, we

are unable to make any conclusion that which antenna is performing better in

reverberation chamber.

Thus, in order to well understand the gain in reverberation chamber, we

perform an statistical analysis of the received power for both the built-in and

external antenna. The graphical representation in Fig. 10 permits to know the

probability of the received power level during the measurement campaign. For

the same probability, the received signal can be higher or lower according to

the antenna and this is much more useful to compare the antennas than by
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Figure 7: Inside view of the Reverberation Chamber in Université Paris-Est Marne-la-Vallée,
LIGM, PasNet, France.
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Figure 8: Number of Packets and RSSI in Reverberation chamber environment.

just looking at the time domain received power. We plot Empirical Cumulative

Distribution Function (ECDF) on the log scale [42] that we obtained in the

reverberation chamber. Fig. 10 shows the empirical cumulative distribution

function for the two antennas. At 10% of reliability, Fig. 10 shows the gain of

6 to 8 dB improvement with external antenna in all the cases. Note that in

Fig. 10(c), we have very less gain i.e., 3.5 dB gain and this is because we did

not receive enough packets to calculate the gain.
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3.3. RF Anechoic Chamber

RF Anechoic chambers are designed to resemble a near free space environ-

ment in such a way that no outside interference can enter inside the chambers.

Moreover, there is no reflection of electromagnetic waves inside the chamber.

In Fig. 11, we compare the RSSI values of built-in antenna and external IFA

antenna in Anechoic Chamber, for each received packet with 0 dbm, -10 dBm

and -25 dBm power levels. Results in Fig. 11(a), 11(b) and 11(c) were taken

when the nodes were placed 1 meter apart, while Fig. 11(d) and 11(e) shows

the results when the nodes were 1 meter apart and the sender node is placed at

five different locations (cf. Fig. 5).

Figure 11 witness that the external antenna outperforms the built-in antenna

of TelosB mote. More precisely, with 0 dBm power (cf. Fig. 11(a)), the RSSI of

external antenna is -45.51 dBm and the RSSI of built-in antenna is -53.94 dBm

i.e., the gain of 8.5 dB. Similarly, with -10 dBm power (Fig. 11(b)), the RSSI of

external antenna is -54.96 dBm and the RSSI of built-in antenna is -64.3 dBm

i.e., the gain of 9.3 dB. The same behaviour can be observed in Fig. 11(c), when

the power is -25 dBm.
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dBm Power.

14



3.4. Outdoor Garden Environment

In outdoor garden environment, we conduct experiments in the absence of

any reflecting material except the ground of the garden.

We compare the RSSI values of built-in antenna and external IFA antenna

in Outdoor Garden Environment, for each received packet, with 0 dbm, -10

dBm and -25 dBm power levels, as can be seen in Fig. 12(a), 12(b) and 12(c).

More precisely, results in Fig. 12(a), 12(b) and 12(c) were taken when the nodes

were place 1 meter apart. While Fig. 12(d) and 12(e) shows the results when

the nodes were 1 meter apart and the sender node is placed at five different

locations (cf. Fig. 5).

In the outdoor garden environment, the IFA antenna provides higher power

levels i.e., RSSI values at the receiver. More precisely, when power level is 0

dBm, the external IFA antenna provides -47 dBm power compared to -62 dBm

power for the built-in antenna, i.e., the gain of 15 dB. When power level is -10

dBm, the external IFA antenna provides -57 dBm power compared to -73.0 dBm

power for the built-in antenna, i.e., the gain of 16 dB. And when the power level

is -25 dBm, the external IFA antenna provides -76 dBm power compared to -83

dBm power for the built-in antenna, i.e., the gain of around 7 dB.

We then perform an statistical analysis of the received power for both the

built-in and external antenna in the outdoor garden environment. The graph-

ical representation in Fig. 13 permits to know the probability of the received

power level during the measurement campaign. As mentioned earlier, for the

same probability the received signal can be higher or lower according to the

antenna and this is much more useful to compare the antennas than by just

looking at the time domain received power. Thus, we plot Empirical Cumula-

tive Distribution Function (ECDF) on the log scale [42] that we obtained in the

outdoor garden environment. Fig. 13 shows the empirical cumulative distribu-

tion function for the two antennas. At 10% of reliability, Fig. 13 shows the gain

of 7 dB improvement with external antenna in all the cases. This validates the

effectiveness of the external antenna.
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Figure 12: Number of Packets and RSSI in Outdoor Garden environment. (a) 0 dBm Power.
(b) -10 dBm Power. (c) -25 dBm Power. (d) External antenna placed at five different locations
with -25 dBm Power. (e) Built-in antenna placed at five different locations with -25 dBm
Power.
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Figure 13: Emperical Cumulative Distributed Function for External and Built-in Antenna in
the Outside Garden Environment (a) position 0 (b) position 1 (c) position 2 (d) position 3
(e) position 4
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3.5. Concluding Remarks

In this section, we present our concluding remarks for the extensive perfor-

mance analysis results. Results in section 3.1, 3.2, 3.3 and 3.4 shows that when

dealing with different environments (office environment, outdoor garden envi-

ronment, reverberation chamber, and anechoic chamber), we observed fluctua-

tion on RSSI values for both antennas. This provide us the basis and motivate

us to exploit antenna diversity. Results also confirm that if external antenna is

used, the gain of RSSI is significant.

In this paper, we argued that antenna diversity can be used to achieve gain

in RSSI. We also noticed that spatio-temporal fluctuations or interference may

lead to the degradation of signal power (RSSI). We showed that this happens

very frequently and if a proper strategy is designed to change the intelligent

antenna selection decision adaptively, we can achieve higher gain.

In the next section, we discuss our proposed EWMA based adaptive intelli-

gent antenna selection decision strategy.

4. EWMA based Intelligent Antenna Selection Strategy

EWMA is a one-step prediction technique developed by [27], which has been

widely used in different applications, such as anomaly detection [28], bandwidth

prediction etc. In EWMA, higher importance is given to the more recent ob-

servations. Thus, EWMA is very suitable for predicting the RSSI value on a

particular antenna. In fact, our goal is to detect any small variation in the

RSSI value through EWMA prediction technique and then use the appropriate

antenna.

In order to achieve this goal, we enable the wireless sensor nodes to keep the

record of the RSSI values and this record will be served as an input to predict

the RSSI value. Initially, no prediction will be done and each wireless sensor

node just collect the historical data of RSSI values on different antennas. Once

the nodes have some historical data, the receiving node will start predicting the

RSSI values for both antennas. The antenna which provides strong predicted
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Figure 14: Flow chart shows the decision making by the sensor nodes to select the antenna.

RSSI value at time instant t will then be selected for the next reception period,

thus achieving the goal of antenna diversity. Fig. 14 shows the decision making

by the sensor nodes to select the appropriate antenna according to the varying

RSSI value. As can be seen in Fig. 14, first sensor nodes predict the values

of RSSI for both built-in and external antenna. If the RSSI value of external

antenna is greater than the built-in antenna, sensor node will switch to the

external antenna, else vice versa. Then, sensor nodes keep these observed values

of RSSI in the memory. Finally, these stored RSSI values will be then feedback

to predict for the next time.

Let △RSSI (t)E be the mean of historical values of RSSI, △RSSI (t) be

the observation at time t and γ is a smoothing factor (0 ≤ γ ≤ 1). The RSSI

value at time (t+1) i.e., △RSSI(t+ 1) can be calculated as:

△RSSI(t+ 1)E = (1− γ)△RSSI(t)E + γ △RSSI(t) (1)

In this manner, the wireless sensor node can predict the value of RSSI at

time instant t and make an intelligent antenna selection decision. This decision

is achieved by implementing an adaptive electronic switch which reacts on the

predicted value of RSSI.
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Figure 15: Observed and predicted values of RSSI for the external antenna, when nodes are
1 feet apart at -25 dBm.

However, it may be possible that due to some abrupt fluctuation in the

environment, the RSSI value vary a lot from the mean value of RSSI. This

feature is exploited for intrusion detection [18] and for monitoring the human

activity. In this paper, we focus on the consistent values of RSSI, instead of

identifying the anomaly. In case, any anomaly is detected, the wireless sensor

nodes will not take into account those anomalies. In order to identify any

anomaly in △RSSI (t), we propose to use two control limits, Upper Control

Limit (UCL) and Lower Control Limit (LCL), which can be calculated as:

UCL△RSSI = △RSSI(t) + ks△RSSI (2)

LCL△RSSI = △RSSI(t)− ks△RSSI (3)

s
2
△RSSI =

γ

2− γ
s
2 (4)

where s2 is the variance of the generated and updated database, which is

used to calculate UCL and LCL, and k is set equal to 3 [29].

Fig. 15 shows the observed and predicted values of RSSI for the external

antenna, when sensor nodes are 1 feet apart with -25 dBm transmission power.

It can be clearly seen in the figure that EWMA technique predicts very well in

accordance with the observed RSSI values, thus showing the effectiveness of the
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Figure 16: Intelligent Switch Design

prediction technique. In the next seciton, we describe our diversity antenna and

intelligent switch design.

4.1. Diversity Antenna and Intelligent Switch Design

Fig. 16 shows our diversity antenna design. This diversity antenna is at-

tached with the TelosB mote with the port through an electronic switch. Fig. 17

shows the design of our electronic switch.

Switching between antennas is made by two diodes specially used for this

purpose. DC power is applied to the DC1 or DC2 ports to swith ON/OFF one

of the diodes. RF/DC power decoupling is achieved with special techniques used

in microwave engineering and consists in using printed capacitors and quarter

wavelength lines.

The antennas and the switching system is shown on this drawing. By trans-

parency the bottom ground plane is also visible. This one contains a quarter

wavelength slot which permits to isolate one antenna from the another at 2.4

GHz. This technique effectively chokes the currents on the ground plane. In

this way one antenna is not affected by the other close one.
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Figure 17: Circuit diagram for intelligent switch design

5. Open Issues and Challenges

We now highlight some open issues and challenges related with intelligent

antenna selection and antenna diversity in the context of WSNs.

Antenna switching tradeoff: Antenna switching also incurs with delay but

if intelligently done, brings increase in throughput and helps to select

reliable channels. Thus, there is need to explore this tradeoff.

Antenna efficiency and switch energy consumption: Very less work has

been done so far in the context of antenna efficiency and switch energy con-

sumption of different antennas. More precisely, antenna efficiency means

the energy consumption pattern of wireless sensor nodes antenna, which

vary with the design of antenna used. Thus, it is important to study in

detail the antenna efficiency.

Cross-layer information for antenna selection: From the cross-layer per-

spective, several architectures have been proposed to optimize the PHY

layer information to make better decisions on the upper layers [30, 31].

Thus, there is also a need to consider the cross-layer information for the

design of antenna selection metric.
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Local versus Global knowledge of channels: Data dissemination is one of

the major applications in WSNs [32]. In these types of applications, there

may not exist a centralized entity and the wireless sensor nodes communi-

cate in multi-hop fashion. In addition, wireless sensor nodes are required

to rely on locally inferred information for the antenna selection decision.

The local and global information regarding the channel conditions and the

absence of centralized entity, may have an impact on the overall perfor-

mance of WSNs, which is also need to be investigated in more detail.

Communication improvement in Vehicular Sensor Networks: In Vehicular

Sensor Networks, antenna diversity can improve the communication in the

urban environment where channel state change quickly but there is a need

to investigate this issue in detail.

Use of Antenna diversity for node localization: Antenna diversity in con-

junction with RSSI can be helpful to locate the nodes position. As dis-

cussed in [33], there is a need to further investigate the affect of antenna

diversity along with RSSI, to accurately locate wireless sensor nodes po-

sition.

Direction of arrival estimation in reverberation chamber and real environ-

ment: The direction of arrival estimation in reverberation chamber and

real environment is really important to understand the behaviour of the

deployed wireless sensor network. This will certainly help us to improve

the performance of the antennas, as well as the WSN system.

Impact of packet sending delay: During our experiments, we observed

that due to the multipath effect and direction of arrival estimation, some

packets were lost in the reverberation chamber. As per our initial un-

derstanding, this is due to the very short sending delay between the two

consecutive packets. There we need to properly analyze this affect of short

and long delay between packet sending and their impact of the delivery

ratio, in the reverberation chamber.
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6. Related Work

In this section, we start with the applications of RSSI. We then discuss the

impact of antenna orientation and antenna diversity, and finally, we discuss the

related work on multi-radio wireless sensor networks.

Applications of RSSI: RSSI is very sensitive to the environment and vary

even with a very small flucutation of the RF signal. Due to this sensitive nature

of RSSI, it has been widely used in the literature for different applications. For

instance, RSSI has been used for intrusion detection [18]. In [18], the authors

observed the RSSI values of the TelosB motes to detect the human activity.

Localization of objects through RSSI is another application area, where lot of

work has been done. The effects of fast moving objects, such as cars, on RSSI

in wireless sensor networks is studied in [19]. The effect of RSSI on fast moving

rotating structures is done in [20]. In [20], the authors mounted the wireless

sensor nodes inside the computer numerical control lathe machine and studied

the effects of rotating wireless sensor nodes on signal performance.

In [34], the authors developed a tool for wireless sensor networks for node

localization through RSSI. A ZigBee based wireless sensor network localization

for cattle monitoring in grazing fields is done in [35]. An experimental compar-

ison of RSSI-based localization algorithms for indoor wireless sensor networks

is done in [36].

Impact of Antenna Orientation and Antenna Diversity: The impact

of antenna orientation on the performance of wireless sensor networks is done

in [21]. They showed that antenna orientation has a significant impact on RSSI.

The authors then proposed a routing protocol, which is based on antenna ori-

entation. A modified model of external antenna is discussed in [22] for WSNs

but the authors concentrate on range improvement with the help of improved

antenna impedance matching. The application of antenna diversity in wireless

sensor networks for animal monitoring is presented in [6].

In [37], the authors presented MoteFinder and discuss the use of two simple

objects to increase the directivity of antennas in wireless sensor networks. The
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authors considered simpler tinfoil cylinder and a cantenna and studied the im-

pact of them on the radio propagation of a mote.The direction of arrival estima-

tion in reverberation chamber with the help of wireless sensor networks is done

in [38]. The authors in [39] proposed a directional-antenna-assisted reactive

routing protocol, Interest Dissemination with Directional Antennas (IDDA).

The authors in [41] addressed the problem of medium access control in ad-

hoc networks with fully adaptive array antennas but the authors focused on

CSMA/CA. A very nice discussion on directional antennas is done in [40] but

they didn’t focus on wireless sensor networks.

Multi-radio Wireless Sensor Networks: The authors in [23, 24, 25]

concentrate on multi-radio wireless sensor networks, where two separate radio

modules were attached with the sensor nodes, thus increasing the deployment

cost of WSNs and requires bigger and more complex wireless sensor devices.

While, in this paper, we focus on single CC2420 built-in radio chip, with one

external antenna (compatible with CC2420 built-in chip, thus omitting the need

to add any additional radio chip) to exploit antenna diversity for making intel-

ligent antenna selection decision.

7. Conclusion and Future Work

In this paper, we discussed our results of the newly deigned radio module

(Inverted F Antenna) for 2.4 GHz wireless sensor networks. We first performed

extensive experiments to understand the behaviour of RSSI values for the built-

in and external antenna, in both lab and outdoor environments. We then pro-

posed an EWMA based intelligent antenna selection strategy for wireless sensor

nodes. We also provided the prototype of diversity antenna as well as the circuit

diagram of intelligent antenna switch. Experimental results confirmed the ef-

fectiveness of our proposed radio module over the built-in TelosB radio module.

There are a number of open problems related to the design of intelligent

antenna selection for WSNs. First, we plan to study different routing metrics

with antenna diversity under multi-hop network configuration. Second, we want
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to study the efficiency of IFA antenna. We also want to exploit the issues and

challenges discussed in section 5. Third, we want to perform detail studies on

how the antenna selection improves a WSN’s performance in terms of packet

delivery rate, throughput, latency, energy efficiency, etc. Fourth, we also intend

to study how multi-channel communication can also help to improve the WSN

performance and to study the cases where multi-channel communication is ad-

vantageous and cases where multiple antennas are better. Finally, our goal is to

integrate software defined switching capability to TelosB motes to change the

antenna decision adaptively. This antenna switching decision will be based on

link quality metrics, i.e., RSSI.
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