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ABSTRACT 
This paper describes the modal interaction between a panel and a heavy fluid cavity when the 
panel is excited by a broad band force in a given frequency band. The Dual Modal 
Formulation (DMF) allows describing the fluid-structure coupling using the modes of each 
uncoupled subsystem. After having studied the convergence of the modal series on a test case, 
we estimate the modal energies and the total energy of each subsystem. An analysis of modal 
energy distribution is performed. It allows us to study the validity of SEA assumptions for this 
case. Added mass and added stiffness effects of the fluid are observed. These effects are 
related to the non resonant acoustic modes below and above the frequency band of excitation. 
Moreover, the role of the spatial coupling of the resonant cavity modes with the non resonant 
structure modes is also highlighted. As a result, the energy transmitted between the structure 
and the heavy fluid cavity generally cannot be deduced from the SEA relation established for 
a light fluid cavity.  

 

Keywords: fluid-structure interaction, modal decomposition, heavy fluid, energy analysis, radiated 
noise



1 INTRODUCTION 
 
The fluid-structure interaction between a flexible structure and an air cavity has been studied 
frequently by many authors [1-5], in particular in the framework of Statistical Energy 
Analysis (SEA) models [5-9].  
The Dual Modal Formulation (DMF) [10] of the structure-cavity system consists in 
considering the in-vacuo modes of the structure and the rigid wall modes of the cavity. The 
modal equation of motion shows that each mode of one subsystem is coupled with the modes 
of the other subsystem. There is no direct coupling between the modes of the same subsystem, 
as shown in Fig. 1. 
 

 
Fig. 1. Illustration of the modal coupling for an air cavity-structure excited by a broad band 

force. 
  
As air is a light fluid (i.e. small bulk modulus), there is considerable impedance discontinuity 
between the structure and the cavity. The global modes of the system are similar in shape and 
frequencies to the subsystem modes. The coupling between the structure and the air cavity is 
“weak”, which is an assumption of the classical SEA model [11, 12]. Indeed, under this 
assumption, the SEA assumes that the interaction between the structure and the cavity for a 
broad band excitation can be sufficiently described by the interactions between the resonant 
modes of each subsystem, as illustrated in Fig. 1. Then, the energy sharing between the two 
subsystems in a given frequency band can be estimated from the energy sharing by its 
resonant modes. Moreover, in the classical SEA formulation, the power flow between two 
resonant modes is estimated from a relation established for two coupled oscillators excited by 
uncorrelated white noise.  
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Considering these two assumptions (i.e. resonant mode domination, power flow estimate by 
pairs of modes) and assuming modal energy equi-partition, the SEA model indicates that the 
power flows from the structure to the cavity s cE −> are proportional to the difference of the 

mean of the modal energy of the structure  se  and the cavity ce : 

( )s c c s s c s cE N e eω η−> −= − , (1) 

where cω  is the central angular frequency of the frequency band considered, sN  is the 

number of resonant modes of the structure and s cη −  is the Coupling Loss Factor (CLF) 

between the structure and the cavity.  
 
The Coupling Loss Factor expresses the coupling strength between the two subsystems. 
Different methods exist for estimating this parameter for a structure-cavity system. It can be 
approximated from the radiation efficiency of a baffle plate. In this case, it is independent 
from the damping loss factor of the structure. Another method consists in summing the modal 
coupling factors of pairs of resonant modes [7]. Fahy used this technique to estimate the 
response of a containing structure to broad-band sound in the enclosed air [7, 8]. The response 
was usually found to be the same as that of a diffuse acoustic field in the external fluid above 
a “lower limiting frequency” determined by the geometry and the mechanical properties of the 
system. He also showed that few pairs of modes contribute significantly to the energy sharing 
between the structure and the cavity due to the spatial and frequency coincidence phenomena. 
Comparisons with experimental measurements were performed to validate his developments. 
The cases considered by Fahy were academic: a rigid rectangular box with a simply-supported 
flexible wall and a closed cylindrical shell with the enclosed air. More recently, Torato and 
Guyader [13] have extended this technique to complex systems by extracting the modal 
information with Finite Element models of each subsystem (i.e. structure, cavity).  Culla and 
Sestieri [14] studied the validity of the SEA relation (1) for a structure-cavity system. The 
results of a deterministic model were compared with the SEA results for a rigidly bounded air 
cavity coupled with a simply supported plate excited by mechanical forces. The authors found 
that the results agree well if the modal overlap factors of the plate and the cavity are greater 
than one. This condition is one of the basic assumptions of the SEA method [6]. Indeed, the 
modal energy equipartition assumption is not respected for low modal overlap as highlighted 
in [15]. Recently, Lei et al. [9] proposed an improved SEA model for predicting the structural 
response and noise reduction of acoustical enclosures. The model presented included the 
resonant and the non resonant responses of panels. Good agreement between the prediction 
and measured results was observed even when few modes were resonant.   
 
All the works mentioned above concern a flexible structure coupled with an air cavity. In this 
paper, we are interested in studying the influence of a heavy fluid in the cavity instead of a 
light fluid like air. This case has applications in the nuclear and the submarine industries. For 
example, for the design of the Sonar dome of a submarine, it could be relevant to estimate the 
noise level in the Sonar cavity when the dome is excited by pressure fluctuations in the 
turbulent boundary layer [16]. The dome may be represented by a thin flexible structure, the 
Sonar cavity by an enclosure filled with water and the sea water by a “semi infinite” fluid 
medium. In the present paper, the effect of the sea water on the dome will not be investigated. 
Different studies have already highlighted the added mass effect of a “semi-infinite” fluid 
environment on the vibrating structure for frequencies below the critical frequency [17]. In 
the present paper, we will focus our attention on the modal interaction between a thin 
structure and a closed cavity filled with a heavy fluid. In the SEA formulation, the two 
assumptions described above (i.e. resonant mode domination and power flow estimated by 
pairs of modes) are generally valid for a light fluid. We will study their validity in the case of 



heavy fluid in order to apply an SEA method or to develop an adapted SEA method for this 
case in the future. Liu et al. [18] were interested in modelling liquid-structure interactions 
within the framework of statistical energy analysis. However, in their work, they assume that 
the SEA relation (1) is valid for cavities filled with water, though without providing evidence. 
In another context, David and Menelle [19, 20] highlighted the added mass and added 
stiffness effects of a heavy fluid–filled cavity to a vibrating structure. They used a ( )u,φ  

formulation of the problem including the static displacement potential and the static pressure. 
Comparisons of their results with experimental measurements showed very good agreement. 
The test case considered in [20] cannot be considered in the present study because the plate 
and the cavity have very few modes up to 5 kHz. For the purposes of validation, however, we 
will present a comparison of the DMF results with their results. 
 
Our analysis will be based on a test case composed of a rectangular flat plate coupled with a 
parallelepiped water-filled cavity. This case has been chosen for its simplicity. The modal 
information of each subsystem can be calculated analytically. This enables us to facilitate 
studying the convergence of the modal decomposition for the present case. Finite element 
models could be used to extract the modal information for more complex cases [13], with 
increased computing effort. This is not however the objective of this study. 
 
The present paper is organised as follow: 

- In section II, we will recall the results of the Dual Modal Formulation which enables 
us to represent the fluid-structure interaction of the thin structure – cavity system from the 
interaction of the uncoupled modes of each subsystem (structure and cavity). We will 
establish the relations between the modal amplitudes, the modal energies and the total energy 
of each subsystem. Finally, we describe the calculation process used for evaluating the energy 
for broad band excitation; 

- Section III presents the plate-cavity test case and a study of the convergence of the 
modal series when the cavity is filled with a heavy fluid (water). A reference result is obtained 
by performing Finite Element calculations with a direct resolution. The comparisons highlight 
the influence of the non-resonant modes of the plate and the cavity. The DMF results are also 
compared with the results obtained by David and Menelle [20] in appendix A for the purposes 
of validation; 

- Section IV deals with the analysis of the modal energy distributions between the 
plate and the cavity considering the non-resonant modes. The effects of these non-resonant 
modes are discussed on the basis of the modal equations. The well-known fluid added mass 
effect is expressed in terms of non-resonant contributions and an added stiffness effect and the 
role of the first non-resonant plate modes are highlighted. An approximate model of the modal 
interaction is finally deduced. 

- In section V, we will compare, for different damping and different frequencies, the 
energy responses obtained with the classical SEA with those obtained with the DMF (basic or 
approximate models). The different effects described in section IV are then studied as a 
function of the frequency and the damping of the plate. 
The paper will be concluded by perspectives on the present developments. 
 

2 DUAL MODAL FORMULATION (DMF) 
 
DMF can be used for calculating the force response of two coupled subsystems from the 
knowledge of the uncoupled subsystem modes. This modal formulation has long been known 
for describing the dynamic behaviour of a flexible structure coupled with a close acoustic 



domain. A Green formulation [10, 21] or a variational formulation of the fluid-structure 
problem [22] may be used for obtaining the modal equation of motion. Otherwise, DMF has 
been extended to the general case of the coupling of two elastic continuous mechanical 
systems [23]. The modal interaction diagram obtained with this formulation is similar to the 
diagram assumed in the classical SEA formulation [6] (see Fig. 1). This approach is therefore 
well adapted for investigating the effect of a heavy fluid cavity on the SEA method. 
 

2.1 Calculation of the forced response 
 

 
Fig. 2.  Vibrating structure coupled with a heavy fluid cavity and excited by a mechanical 

force. 
 
Let us consider the internal vibro-acoustic problem presented in Fig 2. The vibrating structure 
is coupled with a rigid-walled acoustic cavity of volume �. S is the fluid-structure coupling 
interface and Sr is the rigid wall surface. The structure is assumed to be thin, elastic and 
homogeneous. h , ρ , 1η  are, respectively, the thickness, the mass density and the damping 

loss factor of the structure. A random point force applied at point eΣ  excites this structure. 

The Auto-Spectrum Density (ASD) of the force,FFS  is assumed to be constant (i.e. white 

spectrum) in the frequency band with a central frequency cω  and a width ω∆ . The internal 

fluid is modelled with the Helmholtz equation. 0c , 0ρ , 2η  are the celerity, the mass density 

and the damping loss factor, respectively, of the fluid.
   

2.1.1 Formulation 
 
Let us consider DMF which is based on modal decompositions with the modes of each 
uncoupled subsystem [10, 23]. The thin structure is described by a displacement field (i.e. 
normal displacement) and its uncoupled-free modes (i.e. in-vacuo structure modes) whereas 
the cavity is described by a stress field (i.e. acoustic pressure) and its uncoupled-blocked 
modes (i.e. rigid wall cavity modes). These uncoupled modes can be easily calculated 
analytically for academic cases ([7, 8]) or numerically with Finite Element models for 
complex cases ([13]). 
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The modal expansions of the normal displacements, W and the acoustic pressure, p may be 
written:  

( ) ( ) ( )
1

, p p
p

W M t t W Mχ
∞

=

=� � , 

 
 

(2) 

( ) ( ) ( )
1

, q q
q

p M t t p Mξ
∞

=

′ ′=� � , 

 
 

(3) 

where: - pW
~

 and pχ , are, respectively, the displacement shape and the amplitude of the pth 

mode of the structure; 
 - qp~  and qξ , are, respectively, the pressure shape and the amplitude of the qth mode of 

the cavity. 
Hereafter, the space and time dependencies of the notation will be deleted but they are still 
considered. DMF consists in introducing these expansions (2-3) in a weak formulation of the 
vibro-acoustic problem considered and using the orthogonality properties of the uncoupled 
modes. For more details on this formulation, the reader can study Ref. [10, 21-23]. 
 
Finally, with the change of variable, 

q qξ ζ ′= , 
 
 

(4) 
the following modal equation system is obtained 

( ) [ [

( ) [ [

2
1

1

2
2

1

,  1,

0,  1,

p p p p p p pq q p
q

q q q q q q pq p
p

M W F p

K W q

χ ω η χ ω χ ζ

ζ ω η ζ ω ζ χ

∞

=

∞

=

� ′′ ′ ′+ + − = ∀ ∈ +∞�
�
�
� ′′ ′ ′+ + + = ∀ ∈ +∞
��

�

�
 

 
(5) 

where:  
- ,  p pM F  are the generalised mass and the generalised force of mode p:  

( )2
0,  and =p p p p e

S

M hW dS F F Wρ= Σ� � � , 
 

(6) 

with 0F , the amplitude of the external force; 

- qK  is the generalised stiffness of mode q:  

 2
2

0 0

1
q qK p dV

cρ Ω

= � �  ; 

 
 

(7) 

- pω  and qω  are the modal angular frequencies of mode p and q, respectively,  

 - pqW  is the work of interaction between mode p and q:  

pq p q

S

W W p dS= � � � . 
 

(8) 

It can be observed that the equation system (5) can be interpreted as the coupling between a 
set of oscillators associated with the thin structure with another set of oscillators associated 
with the cavity. The coupling elements called gyroscopic elements are related to the 
oscillator’s velocities without dissipation of energy (due to the opposite signs in Eq. 5). On 
the other hand, there is no direct coupling between the oscillators of the same subsystem. This 
configuration of mode coupling is exactly what is assumed by SEA ([6]).  
 
In theory, the modal decompositions (2) and (3) need an infinite number of terms. In practice, 
SEA considers only the resonant modes contained in the frequency band of excitation and 
assumes that these modes are sufficient for describing the vibro-acoustic behaviour of the 



system considered. This assumption will be studied in sections 3 and 4 of this paper. In the 
present developments, we consider that the structure may be described by P modes and the 
cavity by Q modes without describing how these modes are selected.  
 

2.1.2 Resolution 
 
The time-averaged energy of each subsystem will be estimated in section 2.3 from frequency 
transfer functions. To evaluate these transfer functions in Fourier domain, assuming that the 
excitation force 0( ) j tF t F e ω= ×  and the solution ( ) j tx t X eω= × , the system of linear equations 

(5) can be expressed in a matrix form as: 

11 12 1 1

12 22 2 0T

Z j W F

j W Z Y

ω
ω
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=	 A 	 A 	 A+ B CB C B C

 
 

(9) 

with the matrices: 

1

1

,p

P

χ

×

� �
	 AΧ = 	 A
	 AB C

�

�

 2

1

,q

Q

Y ζ

×

� �
	 A= 	 A
	 AB C

�

�

1

1

,p

P

F F

×

� �
	 A= 	 A
	 AB C

�
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(10) 

( )2 2
11 1p p p

P P
Z diag M jω ωω η ω

×
� �= − + +B C , 

 

(11) 

( )2 2
22 2q q q

Q Q
Z diag K jω ωω η ω

×
� �= − + +B C , 

 

(12) 

[ ]
QPpqWW

×
=12 . (13) 

The solution of this system is given by:  

( ) 12 1
1 11 12 22 12 1

TZ W Z W Fω
−−Χ = − , and, (14) 

1
2 22 12 1

TY j Z Wω −= − Χ . (15) 

 
Since matrix 22Z  is diagonal, its inverse is easily calculated. Eq. (14) requires inverting a 

square matrix PP×  (i.e. matrix of dimensions equal to the structure mode number). The time 
necessary for this calculation does not depend on the mode number Q considered for the 
cavity. It is then possible to consider a large mode number for the cavity provided that these 
modes can be calculated.  
 

2.2  Relations between modal amplitudes, modal ener gies, and 
subsystem energies  
 
The modal amplitude calculated with relations (14) and (15) can be used to estimate the 
modal energy distribution and the total energy of each subsystem. We establish here the 
different relations for the cavity. Similar ones can be obtained for the panel.  
 
Let us consider the instantaneous strain energy of the cavity given by 

( ) ( )2

2 2
0 0

1
,

2
SE t p M t dV

cρ Ω

= � . 

 
 

(16) 

Introducing the modal expansion of the acoustic pressure (3) and taking the mode’s 
orthogonality into account, we obtain  



( ) ( )2
1

Q
S K

q
q

E t E t
=

=� , 

 
 
 

(17) 

where ( ) ( )21

2
K
q q qE t K tζ ′= represents the kinetic energy of the qth oscillator (of mass qK ). 

The strain energy of the cavity is therefore related to the modal kinetic energy. This result, 
which may appear surprising, is due to the fact that the displacement (i.e. amplitude) of the 
oscillator corresponds to the modal pressure. 
 
Similarly, the kinetic energy of the cavity is related to the modal strain energy: 

( ) ( )2
1

Q
K S

q
q

E t E t
=

=� , 

 
 
 

(18) 

with ( ) ( )21
.

2
S
q q qE t M tζ=  

 
By adding Eqs. (17) and (18), we deduce that the total energy of the cavity is equal to the sum 
of its modal energies (defined as the sum of modal kinetic energy and the modal strain 
energy).  
 
Then, if the considered modes are able to represent the vibro-acoustic behaviour of the panel-
cavity system, the total energy of a given subsystem can be obtained by summing its modal 
energies. This relies on the orthogonality of the subsystem modes, with no additional 
assumptions. 

2.3. Calculation process for estimating the time-av eraged energies 
 
To reach agreement with the SEA method, it is necessary to evaluate the time-averaged 
energies of each subsystem considering the white noise force in the frequency bandω∆ . 
 
In what follows, the time averaged energy ( )E t  is noted tE< >  and defined by 

( )1
lim

2

T

t T
T

E E t dt
T

+

→+∞
−

< > = � .
 

 
 
 

(19) 

 
Applying the frequency decomposition adapted to stationary random processes [24], the time-
averaged energies for the mode p of the structure can be estimated by,  

( )21
,

2 p p

K
p t pE M S dχ χ

ω

ω ω ω
∆

< > = �  ( )21

2 p p

S
p t p pE M S dχ χ

ω

ω ω ω
∆

< > = � ,
 

 
 
 

(20) 

and for mode q of the cavity by,
 ( )21

,
2 q q

K
q t qE K S dζ ζ

ω

ω ω ω
∆

< > = �
 

( )21
.

2 q q

S
q t q qE K S dζ ζ

ω

ω ω ω
∆

< > = �  

 
 
 

(21) 

 

( )
p p

Sχ χ ω , ( )
q q

Sζ ζ ω  are the Auto-Spectrum Densities (ASD) of the modal amplitudes, pχ  

and qζ , respectively. These quantities can be calculated using the ASD of the external force, 

( )FFS ω  and the transfer functions ( )
pFH χ ω  and ( )

qFH ζ ω  using 

( ) ( )
2

p p pFF FS S Hχ χ χω ω= , ( ) ( )
2

q q qFF FS S Hζ ζ ζω ω= . 
 
 

(22) 



( )
pFH χ ω  (resp. ( )

pFH χ ω ) corresponds to the ratio of the modal amplitudepχ  (resp. qζ ) over 

the force amplitude for an harmonic excitation at the angular frequency ω . These quantities 
can be calculated using relations (14) and (15) of section 2.1.2. 
The integrals of (20, 21) cannot be solved analytically. In what follows, they will be estimated 
numerically by using the rectangular rule with a frequency step δω  defined in accordance 
with the smallest damping bandwidths of the two subsystems  ( [ ]1 2min , / 6cδω ω η η= ). Thus 

we can estimate the time-averaged energy of each mode and deduce the total energy of each 
subsystem by summation to obtain the quantities used by SEA. 
 
 
 
 

3 NUMERICAL VALIDATION 
 

3.1 Presentation of the test case 
 
As shown in Fig. 3, we consider a system composed of a rectangular simply-supported plate 
coupled with a parallelepiped cavity. The geometric and mechanical parameters are chosen to 
be relevant with a naval application concerning the Sonar dome-cavity system of a submarine. 
The elastic homogeneous plate 2 m long, 1.8 m wide and 8 mm thick is made of steel (mass 
density �=7800 kg/m3, Young modulus E=2.1011Pa, �1=0.01). The cavity is filled with water 
(mass density �0=1000 kg/m3, celerity c0=1500 m/s, damping loss factor �2=0.01) and has a 
depth of 1.4 m. The behaviour of the plate may be described by the Kirchhoff equation 
whereas the Helmholtz equation may be considered for the fluid domain. The excitation and 
receiving points are defined in the coordinate system (O,x,y,z) shown in Fig. 3. The plate is 
assumed excited by a point force on the plate at (0.3 m, 0.5 m, 1.4 m). For the purpose of 
validation, this excitation is assumed here to be harmonic at the angular frequency ω . 
 

3.2 FEM simulation 
 
A reference result is obtained by using the Finite Element (FE) method. The FE meshing 
shown in Fig. 3 was defined to authorise calculations up to 800 Hz. The frequency range [1 
Hz – 800 Hz] is well below the critical frequency of the 8 mm thick plate immerged in water 
(around 28 kHz). For these frequencies, the flexural wavelength of the plate is much smaller 
than the acoustic wavelength of the cavity. The criterion for the element size (i.e. 6 elements 
per wavelength) was based on the flexural wavelength, both for the plate meshing and the 
cavity meshing, in order to deal with coincident meshing. This makes it possible to provide a 
fine description of the radiated pressure field close to the plate (due to evanescent waves). 

 



 
Fig. 3. Finite Element meshing of the plate-cavity system. 

45510 nodes, 40320 3D-elements, 1440 2D-elements. 
 
The FE discretisation of the motion equation of the fluid-structure problem for a harmonic 
excitation on the plate may be written as: 

2 0

0 0
S S

T
F F

K A MU U F

K A MP P
ω

−� � � �� D � D � D
− =� E � E � E	 A 	 A

� F � F � FB C B C
, 

 

(23) 

where: - U and P represent the nodal displacements of the structure and the nodal pressure in 
the cavity, respectively;  

- F are the nodal forces applied on the structure; 
- SM  and SK  are the mass and stiffness matrices, respectively, of the structure;  

- FM  and FK  are the mass and stiffness matrices, respectively, of the cavity; 
- A  is the fluid-structure interaction matrix, and subscript T refers to the transposed 

matrix.  
 
The damping effect is introduced by considering a complex Young modulus for the structure 
and a complex celerity in the fluid. SK  and FK  are therefore complex matrices. Two Finite 

Element codes were used to generate the matrix system (23): MSC/NASTRAN was used for 
calculating SK , FM , FK  and A, whereas SDtools [25] gave the “consistent mass” matrix  of 

the structure, SM . The use of SDtools was necessary because the “diagonally lumped mass” 

matrix calculated by MSC/NASTRAN did not give satisfactory results. Indeed, in this case, 
the mass matrix was approximated by distributing the element mass in the nodal translational 
directions. No inertial terms were considered for the nodal rotational direction. The results 
converged slowly as a function of mesh fineness (as observed in [26]). On the contrary, the 
“consistent mass” matrix was defined consistent with the shape functions and the variational 
formulation of the problem. It preserved angular momentum (see Chap. 32 of [27] for details 
on consistent mass matrices). We observed that these rotational terms played a significant role 
in the interaction of the structure with the heavy fluid and cannot be neglected. 
The different matrices were imported in MATLAB and the system (23) was solved for each 
frequency with the inverse matrix method. These calculations were performed in the band [1 
Hz – 800 Hz] with a frequency resolution of 1 Hz. We underline that these FEM calculations 
did not use modal expansions and are quite appropriate for studying the convergence of the 
modal series of the DMF calculation. 

F 

O 



3.3 Comparison between DMF and FEM results 
 
 
DMF calculations were performed by considering the subsystem modes contained in the 
enlarged frequency band [0 Hz – 1200 Hz]. 156 plate modes and 22 cavity modes were 
therefore considered. The modal information and the modal interaction work of the present 
case are given in appendix B.  
To ensure consistency with the hysteretic damping model of the FE simulation, it was 
necessary to consider a modal hysteretic damping instead of a modal viscous damping in the 
DMF equation (9). Then, for these validation calculations, we considered the following 
impedance matrices (instead of (11, 12)): 

( )( )2 2
11 21p p

P P
Z diag M jω ω η

×
� �= − + +B C , ( )( )2 2

22 21q q
Q Q

Z diag K jω ω η
×

� �= − + +B C . 
 

 

(24) 

 
 

 

 

 

(a) 

 

 

 

 

 

(b) 

 
 

Fig. 4. Comparison between 3 calculations: FEM results (full line); DMF results taking  the 
modes below 1200 Hz (dotted line), DMF results taking into account the acoustic modes 

spatially coincident with the plate modes (dashed line). (a), velocity response on the plate at 
point (1.55 m, 0.2 m, 1.4 m); (b), pressure response in the cavity at point (0.5 m, 1.4 m, 0.3 

m). 
 
 



In Fig. 4 we compare the DMF (dotted line) and FE results (full line) for two receiving points: 
one on the plate and the other one inside the cavity. Large discrepancies can be seen, 
indicating that the modes considered and the DMF equations cannot describe the behaviour of 
the present system correctly. Contrary to a light fluid, the resonant modes of each subsystem 
are not accurate here for describing the behaviour of the coupled subsystem. This is due to 
significant contributions of the non-resonant acoustic modes which coincide spatially with the 
resonant structure modes. As we will see later, spatially coincident acoustic modes create an 
added mass effect to the structure which is not taken into account in the DMF calculation. 
These spatial coincidences intervene in the DMF equations through the intermodal work 

pqW (see Eq. (B.7)). In order to highlight the strongest spatial couplings, in Fig. 5 we show the 

couples of modes which present significant values for pqW . The intermodal work is defined 

here as significant in comparison with the highest value, max pq
p P
q Q

W W
∈
∈

= . If  pqW  is greater 

than half of W , the  intermodal work is significant. For the sake of clarity, only the cavity 
modes with a null modal order in the direction perpendicular to the plate (i.e. 0zq = ) are 

considered in this figure.   
 

 
Fig. 5.  Positions of the significant intermodal works pqW  as a function of the frequencies of 

plate and cavity modes ( ),q pω ω . Only cavity modes with a null modal order in the z direction 

are considered (i.e. 0zq = ). Dashed line, frequencies given by Eq. (26). 
 
 
We observe that the plate modes with a frequency higher than 100 Hz exhibit significant 
intermodal work with non resonant cavity modes (i.e. modes with a frequency higher than 800 
Hz). These plate modes coincide spatially with non-resonant cavity modes. Equation (B.7) of 

the intermodal work pqW  for a given couple of plate modal orders ( ),x yp p , with a variation of 

the cavity modal orders ( ),x yq q , shows that pqW  is maximum for 

1,  and 1x x y yq p q p= ± = ± , simultaneously. On the other hand, the magnitude of pqW  is 

independent of the modal order in the direction perpendicular to the plate, zq . It is not 

possible to establish a relation between the frequencies of the spatially coincident modes. 



However, if we consider the modal conditions ,  x x y yq p q p= = , we obtain a relation between 

the modal frequencies of the plate pf�  and the cavity qf
�  : 
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This relation gives us a first approximation of the frequency of the cavity modes which 
coincide spatially with a given plate mode. This is illustrated in Fig. 5 where a dashed curve 
corresponding to (25) with 0zq =  is plotted. The significant intermodal works can be seen on 

either side of this curve. For 800 Hzpf =� , we obtain (0) 4775 Hzqf =� . This indicates that for 

the validation case, the “last” resonant plate mode is spatially coincident with cavity modes 
0zq =  of frequency around 4700 Hz. Moreover, this plate mode is also spatially coincident 

with cavity modes 0zq >  of frequency greater than 4700 Hz. These cavity modes are highly 

non-resonant, but due to their spatial coincidences with the resonant plate modes, they play a 
significant role in the response of the present test case.  
A second DMF calculation including non resonant modes of the cavity was performed. The 

modes of the cavity were chosen such that the modal orders ( ), ,x y zq q q verify: 

[ ]
[ ]

[ ]

[ ]

1,

1,

max

0,  with  int max 1,

0,  with  int max 1,

0, . 

x x x x
p P

y y y y
p P

z z

q q q p

q q q p

q q

∈

∈

� � �∈ = +� 	 AB C
�
� � �� � � �∈ = +� B C B C	 AB C�
� � �∈ B C�
�

 

 
 

(26) 

Taking max 39zq = , 8400 cavity modes were then considered and the highest frequency of 

these modes was 22213 Hz. The results of this second DMF calculation are plotted by a 
dashed line in Fig. 4.  
 
Contrary to the first DMF calculation including only the modes below 1200 Hz, we observed 
good agreement between this second DMF calculation and the FE one for the receiving point 
on the plate as well as for the receiving point inside the cavity. The two curves (i.e. dashed 
and full) appear to be almost superimposed.  This validates the convergence of the DMF for 
the present case. Moreover, these results point out that it is necessary to take into account the 
acoustic modes which coincide spatially with the structure modes, even if these acoustic 
modes are non resonant and are in a high frequency range. These modes are associated with 
the quasi-incompressibility of the fluid in [20] and are called the uncompressible acoustic 
modes. It is needed to take them into account in order to simulate the added mass effect of the 
heavy fluid. This point contrasts with the classical SEA assumption which only considers the 
resonant modes of the frequency band of excitation. In the next section, we will analyse the 
effect of these non resonant modes on the modal energy distribution of each subsystem. For 
the final validation of the DMF calculation for heavy fluid cases, a comparison with results 
published in the literature [20] is proposed in appendix A. 
 
 



 

4 ANALYSIS OF THE MODAL INTERACTION FOR A BROAD 
BAND EXCITATION 
 

4.1 Modal energy distribution 
 
Here we consider the test case defined in section 3.1. The excitation is a mechanical point 
force at (0.3 m, 0.5 m, 1.4 m) having a white noise spectrum in a given one third octave band 
( ( )21/ 2  N / rad/sFFS π= ). For the sake of clarity, numerical results are presented for a single 

one third octave band. Global energy results as a function of the third octave band will be 
presented in section 5.  
The one-third octave band considered is centred on 2500 Hz. In this band, the plate has 86 
resonant modes and the cavity has 175 resonant modes. Here, the modes are said to be 
“resonant” if their frequencies are contained in the one-third octave band. DMF calculations 
are performed by considering non-resonant modes as in section 3. The plate and cavity modes 
contained in the enlarged frequency band [ ]max0,  1.5f  are taken into account where maxf  is 

the upper bound of the one-third octave band (i.e.max 2825 Hzf = ). Moreover, the cavity 

modes conforming to the spatial coincidence conditions (26) are also taken into account. 
Overall, 500 plate modes and 30159 cavity modes are considered. Modal energies are 
calculated using Eqs. (20) and (21). 
Modal Energy Distributions (MEDs) for the plate and the cavity are plotted as a function of 
the modal frequency in Fig. 6. The cut frequencies of the third octave are symbolised by 
vertical dashed lines.  
 
It can be seen that the highest energy modes on the MED of the plate do not necessarily fall 
inside the frequency band of excitation. There is a frequency shift which could be attributed to 
an added mass effect of the fluid, as will be seen in section 4.2. Moreover, it can be observed 
that the first plate modes have a slightly higher energy level than modes closer to the 
frequency band of excitation. It will be seen later on that this is due to spatial coincidences of 
the first plate modes with the resonant cavity modes.  
For the MED of the cavity, the highest energy modes are contained in the frequency band of 
excitation. However, we also observe that the energy of certain high frequency modes may be 

significant. If we consider equation (25) with 2500 Hzpf =� , we obtain ( )0 8442 Hzqf =�  

which is approximately the frequency above which the high frequency modes have significant 
energy. This seems to indicate that these modes are spatially coincident with the resonant 
plate modes.   
 
 



 
(a) 

 
(b) 

 
Fig. 6. Modal Energy Distribution: (a), for the plate; (b), for the cavity.  

White noise excitation in the third octave band of central frequency 2500 Hz (cut-off 
frequencies symbolised by vertical dashed line). 

 
 
 
At this stage, we can underline that the total energy of the plate (resp. cavity) is not 
necessarily twice the kinetic energy (resp. strain energy) as assumed in SEA. For example, for 
the plate, is can be seen that for a first class of frequency modes well below the excitation 
frequencies, their strain energies are negligible compared to their kinetic energies while for a 
second class composed of frequency modes inside or close to the frequency band of 
excitation, their strain and kinetic energies have almost the same magnitudes. This difference 
can be easily explained by Eq. (20) and the difference between the modal frequency and the 
excitation frequencies. The result is that for the first class, the total energy (of a given mode) 
can be approximated by its kinetic energy while for the second class, the total energy can be 
approximated by twice its kinetic energy. This latter approximation is classically used in SEA. 
As pointed out here, it is valid only if the resonant modes contribute mainly to the subsystem 
responses. As observed in Fig. 6, the non resonant modes of the cavity can make a significant 



contribution, in which case conformity with the classical SEA approximation may not 
achieved for a heavy fluid cavity. For the present case, we obtain a kinetic energy of -44.2 dB 
(ref. 1 J) while the strain energy is -39.7 dB. An error of almost 2 dB can be introduced if we 
consider that the total energy is twice the strain energy (-36.7 dB against -38.7 dB for the true 
value). This emphasises the fact that particular attention should be paid to the relations 
between the different energies when the contribution of non resonant modes is significant. 
 

4.2 Added mass and added stiffness 
 
Certain observations were made in the previous section. We now investigate the DMF 
equations in order to analyze the modal interaction and find explanations for the previous 
observations. 

4.2.1 Theoretical developments 
 
Since a significant effect of the non resonant cavity modes is observed, we organise these 
modes into three groups   ,  ,  nr r nrQ Q Q− +  depending on their angular frequencies: 
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(27) 

where min max and ω ω  are, respectively, the lower and upper cut-off angular frequencies of the 

frequency band considered and α  is a margin coefficient. In what follows, we set 0.05α = . 
  
rQ is the set of resonant modes while ,  nr nrQ Q− +  are the lower and upper sets of non resonant 

modes, respectively. 
We introduce approximations in (14). To do this, we break down the matrices 22Z  and  12W  

accordingly with the different sets of modes:  
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With this decomposition, Eq. (14) can be written in the form 

( )1 1 1
1

2
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(29) 

 
Then, we introduce approximations of the modal impedance matrices 22 22 and nr nrZ Z− +  (with 

regard to the modal frequencies and the excitation frequencies) 
2
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(30) 

while 22
rZ  is unchanged (i.e. ( )2 2

22 2
r

r
q q q

q Q
Z diag K jω ωω η ω

∈
� �= − + +B C ). 

These approximations are based on the fact that the behaviour of a non-resonant mode of nrQ−  

is mainly controlled by its mass while a non-resonant mode of nrQ+  is controlled by its 

stiffness. 
  



Using (30) and neglecting the off diagonal terms of 12 12.
Tnr nrW W− −  and 12 12.

Tnr nrW W+ + , (29) can be 

rewritten as 
1 1

2
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with  ( ) ( )2
11 1p p p p p p

P P
Z diag M M j M K Kω ω ω η

×
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(33) 

 

pM  and pK  represent an added mass and an added stiffness on the pth plate mode. The added 

mass is induced by the stiffness response of the non resonant modesnrQ+ , and conversely, the 

added stiffness is due to the mass response of the non-resonant modes nrQ− .  

 
We underline that added mass and added stiffness effects have already been highlighted in 
Ref. [20] for a plate coupled with a water filled cavity. These effects are related to 
incompressible acoustic modes for heavy fluids. In this reference, a ( )u,φ  formulation (where 

φ  is a fluid displacement potential) is considered and the static displacement potential is 
taken into account. This last term is evaluated by two techniques: a modal expansion on the 
acoustic modes and an analytical calculation available for a rectangular plate coupled to a 
parallelepipedic cavity. The first technique gives an approximate expression of the added 
mass matrix as a function of the acoustic mode shapes. The diagonal terms are similar to the 
added mass given by Eq. (33). A difference occurs on the modes retained in the summation. 
This can be explained by the fact that the added mass of the present paper represents only the 
effect of the non-resonant modes of frequency above the frequency band of excitation (i.e. 
modes of nrQ+ ) whereas the added mass defined in [20] represents the effect of “all” the 

acoustic modes (of the truncated set defined in [20]). It is more difficult to achieve a 
comparison of the added stiffness as the quantity defined in the present paper is directly 
related to the mode set nrQ−  which depends strongly on the frequency band of excitation. Due 

to a difference of definition, this dependency of the added stiffness does not appear in [20].  
 
From these added mass and added stiffness terms, a modified modal frequency can then be 
defined by  

p p
p

p p
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(34) 

 
The response of the resonant cavity modes can be deduced with  

1

2 22 12 1

Tr rY j Z Wω
−

≈ − Χ . 
 

(35) 

 
Equations (31) and (35) can be interpreted as the results of the coupling of modified plate 
modes (taking the added mass and stiffness into account) with the resonant modes rQ  of the 

cavity. In what follows, the model related to these two equations is called the “approximate 
DMF” whereas the model related to equations (14) and (15) is called the “basic DMF”. With 
this approximate model, the energies of the non resonant modes of the cavity are not obtained 
directly because their amplitudes are not explicitly calculated. Their energies are, however, 



related to the kinetic energy associated with the added masses and the strain energy associated 
with the added stiffness. For example, the kinetic energy of the added masses is expressed by 
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(36) 

On the other hand, the part of the cavity’s kinetic energy represented by the cavity modes 
nrQ+  

is obtained by summing the strain energy of these modes (in accordance with (18)) 
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The ASD of the amplitude of mode q, 

q q
Sζ ζ can be related to the ASD of the modal amplitude 

of the plate
p p

Sχ χ by considering the approximations (30) and neglecting the off diagonal terms 

of 12 12.
Tnr nrW W+ +  : 
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Introducing (38) in (37), we show that 

2 1
K KE E< >≈< >. (39) 

The part of the cavity’s kinetic energy represented by the cavity modes nrQ+  is therefore equal 

to the kinetic energy of the added masses. As (30) is assumed, the part of strain energy of the 
cavity represented by the same modes nrQ+  is assumed negligible. Then, the part of the total 

energy of the cavity represented by the modes nrQ+  is given by the kinetic energy of the added 

masses. Similar reasoning can be used for evaluating the part of the total energy of the cavity 
represented by the modes nrQ−  from the strain energy associated with the added stiffness. 

4.2.2 Numerical application 
 
A numerical application of the previous developments is proposed in this section. 
We consider the same case as in section 4.1. To illustrate the added mass effect, in Fig. 7a the 
normalised added mass /p pM M  (see Eq. (33)) is plotted as a function of the plate modal 

order, p. These values can be compared to the normalised added mass calculated for an 
infinite thin plate loaded by a heavy fluid on one side, M∞  (see [17]):  
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ρω
ρ ω ω

∞ =
−

, 

 
 

(40) 

where 0  and fk k  are, respectively, the acoustic wavenumber of the heavy fluid and the 

flexural wavenumber of the plate at the angular frequency ω .  
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Fig. 7. Different results as a function of the plate modal order, p: (a), full line, normalised 
modal added mass (i.e. /p pM M ); dashed line, added mass estimated from the infinite fluid 

loaded plate. (b), normalised modal added stiffness (i.e. /p pK K ) ; (c), plate natural 

frequency, with (circle) and without (cross) taking into account the mass and stiffness effects 
of the non-resonant cavity modes. Results for an excitation in the third octave band 2500 Hz. 

 
 
 
 
 



The added mass ( )pM ω∞  is plotted with a dashed line in Fig. 7a. We observe that for the 

modes above 400 Hz, their normalised added masses can be approximated by those of the 
infinite plate at frequencies corresponding to the modal frequencies. For modes below 400 
Hz, the infinite plate model overestimates the added mass. This is certainly due to the fact 
that, contrary to the infinite plate, the cavity has a finite dimension in the direction 
perpendicular to the plate. The volume of the fluid moved by the wave motions of the plate 
(of large wavelengths) is limited by the sizes of the cavity. In other word, the added mass 
must normally be limited to the total mass of the fluid contained in the cavity, which is not 
infinite. 
For the normalised added stiffness /p pK K  plotted in Fig. 7b, the values decrease when the 

modal frequencies increase and they are significant (i.e. greater than 0.1) for frequencies 
below 1000 Hz. Only the low-frequency non-resonant plate modes are then concerned by this 
effect for the present case. As already mentioned above, we remember that this added 
stiffness is directly related to the frequency band of excitation. It represents the effect of the 
non resonant acoustic modes below the frequency band of excitation. If the latter changes, the 
added stiffness may change.  
 
These two effects lead to a modification of the modal frequencies (34): the added stiffness 
tends to increase the frequency whereas the added mass tends to decrease it. We compare the 
initial modal angular frequency pω with the modified one pω  in Fig. 7c. The added stiffness 

significantly increases the frequencies of the “first” plate modes which remain outside the 
frequency band of excitation. These plate modes remain non-resonant. For these “first” 
modes, the added stiffness effect is greater than the added mass effect, which explains why 

pω  is greater than  pω . 

The other plate modes are more influenced by the added mass than by the added stiffness. 
Their modal frequencies decrease compared to the initial ones. If we plot the plate’s MED as 
a function of the modified modal angular frequency pω  (not shown here), we observe that the 

highest energy modes are contained in the frequency band of excitation (contrary to Fig. 6 for 
which the MED was plotted as a function of the initial modal frequency). The added mass due 
to the non resonant modes of cavity nrQ+  explains the frequency shift observed previously in 

section 4.1 (i.e. Fig. 6a).  
 
In order to validate the approximations used to obtain the approximate DMF model (i.e. Eqs. 
(31) and (35)), we compare in Fig. 8 the MEDs obtained with the basic and the approximate 
models. Globally, the MEDs are correctly described by the approximate model. However, 
some discrepancies can be observed. They vary from one mode to another and are caused by 
the fact that we have ignored the direct coupling between the plate modes introduced by the 

non resonant modes of the cavity (i.e. the diagonal terms of 12 12.
Tnr nrW W− −  and 

12 12.
Tnr nrW W+ + neglected).  
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Fig. 8. Modal Energy Distribution: (a), for the plate; (b), for the cavity. Comparison of two 

results: grey squares, a basic DMF calculation; black squares, an approximate DMF 
calculation describing the non resonant mode of the cavity by their mass and stiffness effect. 

White noise excitation in the 2500 Hz third octave band (cut-off frequencies of this band 
symbolised by vertical dashed line). 

 
 
These discrepancies have little influence however on the estimation of the total energy of the 
plate and the cavity. Indeed, for the plate, we obtain an energy level of -33.7 dB (ref. 1 J) with 
the basic model versus -33.5 dB with the approximate model. For the cavity, the comparison 
can be performed for:   

- (a), the resonant energy of the cavity (which corresponds to the energy of the 
resonance cavity modes). The basic model gives -41.8 dB against -41.1 dB for the 
approximate one; 

- (b), the total energy of the cavity. In this case, the result of the approximate 
model is obtained by adding the resonant energy of the cavity with the energies of the 
added masses and added stiffness (which represent the energies of the non resonant 



cavity modes as developed in section 4.2.1). The “basic” model gives -38.7 dB against 
-38.5 dB for the approximate one.  

 
These energy results given by the “approximate” DMF model are fully satisfactory and 
validate the assumptions made for this case. Moreover, the comparison of the resonant energy 
with the total energy of the cavity (-41.8 dB with -38.7 dB) shows here that the non resonant 
modes of the cavity significantly contribute to its energy response. 
 

4.3 Influence of the coupling of non resonant plate  modes in spatial 
coincidence with the resonant cavity modes 
 
In Fig. 6a we saw that many non resonant plate modes have a low energy level compared to 
the highest energy modes. Thus these modes have a potentially negligible effect on the 
response of the plate-cavity system. In this section, we study the influence of these non 
resonant modes of the plate on the energy response of the plate and the cavity. We define the 
set of resonant modes   rP  and non-resonant modes , nr nrP P− +  accordingly with the modified 

modal frequencies, pω  : 
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(41) 

 
DMF calculations without the non-resonant modes nrP+  show that these modes have a 

negligible effect on the response of the plate and the cavity. This could be expected as these 
modes are excited little by the external force and they are not strongly coupled with the 
resonant cavity modes, since they are not in a space or frequency coincident with these 
modes.  
 
Conversely, DMF calculations without the non-resonant plate modes nrP−  show that these 

modes have a significant effect on the total energy of the cavity (while the energy of the plate 
is not influenced). For the same case as Fig. 6, we compared the MED of the resonant modes 
of the cavity for two DMF calculations: one with and the other without modes nrP−  (results not 

plotted here). We observed that the second calculation almost systematically overestimates 
the energy of the cavity modes. It gives a total energy for the resonant modes of -39.2 dB 
against -41.8 dB for the first calculation. Some modes of the setnrP−  therefore play the role of 

pumping the energy of the cavity modes. By studying the significant intermodal work in Fig. 
5, the “first” plate modes (i.e. modes of frequency below 500 Hz) appear to coincide in space 
with the resonant cavity modes. Although these “first” plate modes and the resonant cavity 
have very different frequencies, they can exchange significant energy due to their spatial 
coincidence. The response of these plate modes results from an equilibrium between the 
power flows from the external excitation and the resonant cavity modes. In the present case, 
this equilibrium leads to significant power exchanged from the resonant cavity modes to the 
“first” plate modes. Part of the energy of the resonant cavity modes is then pumped by the 
first non resonant plate modes. This also explains why we noticed in Fig. 6 that the “first” 
plate modes have more pronounced energy level than “higher” modes which are nevertheless 
closer to the band of excitation. 



4.4 Synthesis of the modal interaction 
 
On the basis of the previous discussions, Fig. 9 represents the modal coupling scheme for an 
excited plate coupled with a heavy fluid cavity. We show that the behaviour of the cavity’s 
non-resonant modes can be represented by added masses and stiffness on the plate modes. 
This results in a modification of the modal frequency of these plate modes. The resonant plate 
modes can then defined in relation to the modified modal frequency and the plate modes 
above the frequency band of excitation can be ignored. Conversely, the non-resonant plate 
modes in space coincident with the resonant cavity modes can participate significantly in the 
power exchanged between the structure and the cavity and they cannot be neglected in 
general. 

 
Fig. 9. Illustration of the modal coupling scheme for an excited structure filled by a heavy 

fluid. 
 
 
 
 

STRUCTURE 
MODES (SM) 

CAVITY           
MODES (CM) 

FREQUENCY-
BAND 

EXCITATION 

f 

Resonant coupling between CM and SM 

Added mass effect of CM on SM 

RESONANT 
MODES 

Added stiffness effect of CM on SM 

Spatial coupling of resonant CM with SM 

nrP−  

nrP+  

rP  

nrQ−  

nrQ+  

rQ  



5 FREQUENCY RESPONSE OF THE PLATE/WATER-FILLED 
CAVITY SYSTEM  
 
In this section, we analyse the energy response given by different calculations for one third 
octave band excitations from 500 Hz to 16 kHz. Three DMF calculations are considered: 

- A “basic” DMF calculation as defined in section 3. It takes into account the non 
resonant cavity modes. It constitutes the reference here; 

- An “approximate” DMF calculation as defined previously in section 4.  
- A “resonant” DMF calculation which takes only the resonant modes of the 

“approximate” DMF model into account. 
 
For each third octave band, Tab. 1 gives the total mode number taken into account by the 
“basic” DMF calculation and the number of resonant modes of each subsystem. 
 
 

 500 Hz 630 Hz 800 Hz 1000 Hz 1250 Hz 1600 Hz 2000 Hz 2500 Hz 
Total
1N  91 118 151 193 244 311 394 500 
Resonant
1N  16 22 29 35 44 56 68 86 
Total
2N  6719 8399 10199 12919 15959 19319 23919 30159 
Resonant
2N  2 5 7 13 26 47 91 175 

 
 3150 Hz 4000 Hz 5000 Hz 6300 Hz 8000 Hz 10kHz 12.5kHz 16kHz 

Total
1N  635 803 1015 1186 1628 2056 2599 3277 
Resonant
1N  111 134 167 217 264 340 420 537 
Total
2N  37119 46079 57599 71999 89999 114239 143639 177484 
Resonant
2N  332   629   1235   2406  4737   9324 18409 36444 

 
Tab. 1. Mode number for each third octave band: Total

1N  and Total
2N  , mode numbers for the 

basic DMF calculation for the plate and the cavity, respectively; Resonant
1N  and Resonant

2N , 

resonant mode numbers for the plate and the cavity, respectively. 
 
A SEA calculation is also performed to compare its results to the DMF ones. Details of the 
SEA model are given in appendix C. An added mass effect of the fluid is taken into account in 
the calculation of the coupling loss factor and the plate modal density through an effective 
mass density ([17]). We underline that the SEA method gives us the total energy of each 
subsystem represented by their resonant modes. The energies related to non-resonant modes 
are not evaluated by this model. The SEA results are given here to evaluate its accuracy. They 
do not constitute a reference as we know that some of its assumptions (i.e. weak coupling, 
resonant transmission) are not fully respected. Comparison with the “basic” DMF which can 
be considered as the reference allows us to evaluate the errors induced by the non respect of 
the SEA assumptions. 
Tab. 1 indicates that the number of resonant modes of the two subsystems is higher than 6 
from the third octave band, 800 Hz. This is a condition of validity of the SEA method. 
However, the SEA results are plotted for frequencies below this limit frequency as an 
indication. 
 



The total energy of the plate was evaluated for each third octave band by the four calculations 
described above. They give very similar results (not plotted here): an energy level of around -
34 dB for each third octave. The “resonant” DMF and SEA calculations work. This indicates 
that the resonant modes of the plate are sufficient for describing the energy response of the 
plate. This could be expected as the plate is directly excited by the external force. On the 
contrary, in Fig. 10a, the results for the resonant energy of the cavity depend on the 
calculations. The “approximate” DMF model gives the same tendency as the “basic” DMF. 
Some discrepancies can be observed when the cavity has few resonant modes. This can be 
explained by the fact that cross terms were neglected in Eq. (31). On the other hand, it can be 
observed that the “resonant” DMF model deviates significantly from the “basic” DMF and 
“approximate” DMF ones. The difference between the “resonant” DMF and the 
“approximate” DMF lies in the non resonant plate modes which are not taken into account in  
the first model. Therefore, the discrepancies observed in Fig. 10a may be attributed to the 
contribution of the non resonant plate modes in spatial coincidence with the resonant modes 
of the cavity. For frequencies lower than 8 kHz, these plate modes pump part of the energies 
of the resonant cavity modes, whereas for higher frequencies, they contribute part of their 
energy to the cavity modes. This behaviour cannot be described by classical SEA which gives 
results similar to those of the “resonant” DMF model. Indeed, as SEA is based on a 
fundamental relation established for two oscillators excited by white noise forces [6], it can 
only describe the energy sharing between resonant modes. For the phenomenon of interest 
here, the energy is shared between the resonant acoustic modes and the non resonant structure 
modes. The fundamental SEA relation cannot be used to describe these exchanges.  
 
The total energy of the cavity (taking the non resonant contributions into account) is proposed 
in Fig. 11a. The “basic” DMF and “approximate” DMF give very close results. The 
discrepancies observed in Fig. 10a in the lower part of the frequency domain are not found 
here because the non resonant contributions are dominant at these frequencies and are 
correctly described by the “approximate” DMF model (from the energies of the added masses 
and stiffness). By comparing the results of Figs. 10a and 11a, it can be seen that the non 
resonant modes have a significant contribution up to about 5 kHz. 
 
To complete this discussion, we perform a second set of calculations considering a damped 
plate with an internal loss factor of 10% (i.e. 1 0.10η = ). The different models give similar 

results for the plate (not plotted here). The plate energy decreases between 8.5 dB and 10 dB 
compared to the previous case. At first sight, we can expect a decrease of exactly 10 dB. 
Indeed, if we consider the SEA energy balance (C.1), plate energy 1E  can be approximated to 

1inj cP ω η  by neglecting the power flow between the plate and the cavity compared to the 

input power. Then, if the plate damping loss factor is multiplied by 10, the plate energy 
should theoretically be divided by 10. The approximation made previously is however not 
fully satisfied for this case with a heavy fluid cavity, explaining why a value of exactly 10 dB 
is not obtained. 
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Fig. 10. Resonant energy of the cavity. Third octave band results. 
Damping loss factor of the plate, 1 0.01η = . Four calculations: Solid, basic DMF (reference); 

Dashed-dotted (with cross), approximate DMF; dashed, resonant DMF; dotted (with 
circle), SEA. 
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Fig. 11. Total energy of the cavity. Third octave band results. 
Damping loss factor of the plate: (a), 1% (i.e. 1 0.01η = ); (b), 10% (i.e. 1 0.1η = ). Four 

calculations: Solid, basic DMF (reference); dashed-dotted (with cross), approximate DMF; 
dashed, resonant DMF; 

 
Fig. 10b shows the resonant energy of the cavity. The “approximate” DMF always gives 
satisfactory results. The discrepancies between this model and the “resonant” DMF are larger 
here than for the case of Fig. 10a. The SEA calculation also gives the same tendency as the 
“resonant” DMF. Again, these two calculations cannot describe the energy exchanges 
between the non resonant plate modes and the resonant cavity modes which are in spatial 



coincidence. These exchanges of energy appear greater when the plate damping increases. It 
can be noticed that the non resonant plate modes pump part of the resonant energy of the 
cavity for frequencies lower than 1.6 kHz and they contribute part of their energies for 
frequencies above this transitional frequency. The value of the transitional frequency has 
changed compared to the case of Fig. 10a (i.e. 1.6 kHz against 8 kHz). The equilibrium of the 
non resonant plate modes resulting from the interaction with the resonant cavity modes and 
the external force has changed. Indeed, increased plate damping directly induces a decrease of 
the energy of the resonant plate modes, and then of the resonant cavity modes (in frequency 
coincidence), whereas the energy of the non resonant plate modes is not significantly 
modified. The energy ratio between the non resonant plate modes and the resonant cavity 
modes is then modified when the damping increases, which may explain a change of the 
energy equilibrium.  
 
Fig. 11b gives the total energy of the cavity and shows good agreement between the “basic” 
DMF and “approximate” DMF calculations. Comparison of the results of Fig. 10b and 11b 
indicate that multiplying the plate damping by 10 does not lead to the same decrease of the 
cavity energy as the plate energy (i.e. between 8.5 dB and 10 dB). In the “high” frequencies, 
the decrease of cavity energy is limited to 4 dB. This behaviour results from the significant 
contribution of the non resonant plate modes which are not influenced by the damping. The 
SEA method cannot represent this effect because it describes only the energy sharing between 
the resonant modes. If we consider the SEA energy balance again (i.e. Eq. (C.1)), the energy 
ratio 2 1E E  is given by 12 2 21η η η+  which is independent from the plate damping loss factor. 

The SEA method therefore gives the same decrease of energy for the plate and the cavity 
when the plate damping loss factor increases.  This is in contradiction with the “basic” DMF 
results which can be considered as the reference. Thus, the SEA method fails for the present 
case. 
 
In conclusion, the results presented in this section have shown that: 

(a) the “approximate” DMF gives results in accordance with the “basic” DMF; 
(b) SEA and “resonant” DMF models do not permit accurately describing the energy 

response of the cavity. The energy exchanges between the non resonant plate modes and the 
resonant cavity modes in spatial coincidence play a significant role that is not described by 
these two models; 

(c) The increase of the plate damping for vibration and noise reduction is less efficient 
for the cavity energy than for the plate energy. The non resonant plate modes which are not 
influenced by the damping play an important role on this phenomenon. 

 
 

6 CONCLUSIONS 
 
The modal equations resulting from the dual modal formulation were considered in this paper 
in order to study the interaction of an excited vibrating structure coupled with a heavy fluid 
cavity. This formulation is used classically for a light fluid and the SEA formulation is also 
valid for a heavy fluid if enough modes are taken into account. A numerical study on a test 
case showed that convergence of the modal decompositions is possible if the non resonant 
cavity modes in spatial coincidence with the plate modes are sufficiently taken into account. 
The number of cavity modes necessary in the model can become significant. Analysis of the 
modal equations showed that the non-resonant cavity modes induce added masses and added 
stiffness on the plate modes which can be evaluated from the intermodal work.  



The modal added masses were compared to the added mass induced by a semi-infinite fluid 
domain loading an infinite plate. Due to the finite size of the cavity in the direction 
perpendicular to the plate, we observed differences for the “first” modes (having a large 
modal wavelength). The semi-infinite added mass model is not valid for angular frequency 

0ω =  (it tends towards infinity). Normally, the added mass must be limited by the total mass 
of the fluid contained in the cavity which is not infinite. For higher modes, the infinite plate 
model gave a correct estimation of the modal added masses. Accurate estimations of the 
added mass and added stiffness are proposed in [20] from the knowledge of the static 
displacement potential. The interest of using the explicit expressions given in [20] could be 
investigated in the future for the present approach. 
An “approximate” DMF model describing the non resonant modes of the cavity by their 
added masses and stiffness was proposed. This model was validated by different comparisons 
with the “basic” DMF model. 
In some situations, we observed that the part of the total energy of the cavity represented by 
its resonant modes can be lower than the part due to its non-resonant modes. This second part 
of the cavity energy can be estimated from the kinetic energy of the added masses and the 
strain energy of the added stiffness on the plate modes. The “approximate” DMF model can 
then estimate this part of the energy even if it does not explicitly estimate the response of the 
non resonant cavity modes. 
Moreover, the results highlighted a significant role played by the non resonant plate modes in 
spatial coincidence with the resonant cavity modes. Depending on the energy equilibrium, 
these modes can give energy to, or take it from, the resonant cavity modes. Due to this 
phenomenon and the weak influence of damping on the non resonant modes, increasing plate 
damping is less efficient on the cavity energy than on the plate energy. As classical SEA does 
not take these non-resonant modes into account, it cannot describe this behaviour correctly. 
Attention should be given to this point in the future in order to develop a SEA model 
dedicated to the heavy fluid case. The “approximate” DMF model is a good starting point for 
these developments. For a system with a complex geometry, the evaluation of the added 
masses and stiffness of the “approximate” DMF do not seem to be a problem. Indeed, the 
intermodal work can be estimated using finite element models for the low frequency modes 
[13, 23] while the infinite fluid loaded plate model can be used as an approximation of the 
added mass for the higher frequency modes. The main difficulty will consist in establishing 
the relation of energy exchanged between the non resonant structure modes with the resonant 
cavity modes. Indeed, the classical SEA relation established for two coupled oscillators 
assumes that the oscillators are excited by white noise excitation. Their responses are 
dominated by their resonances which is not the case for the non resonant structure modes. A 
study to elucidate this point should be performed in the future. 
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APPENDIX A. COMPARISON OF DMF RESULTS ON THE 
DAVID AND MENELLE TEST CASE [20] 

 
The plate-water filled cavity system of Ref. [20] constitutes a reference case in the literature. 
The analytical and experimental results proposed in this paper are very close and are used as 
the reference in this appendix to validate the DMF calculations. The test case [20] is 
composed of a clamped rectangular plate coupled with a parallelipedic water-filled cavity. A 
full description of the system and a modal analysis are proposed in [20]. We recall here the 
geometrical and mechanical parameters considered in the DMF calculation, without 
comments. The plate is 170 mm long, 150 mm wide, 4 mm thick, clamped at its four edges 
and it is made of steel   (E=1.62×1011 Pa, ρ =7800 kg/m3, ν =0.3, η =0.008). The cavity has 
five rigid walls and is filled with water (0c =1500 m/s, 0ρ =1000 kg/ m3). The viscosity of the 

internal fluid Fτ  is calculated with Eq. (12) in [20] from the fluid dynamic viscosity which is 

fixed at 0.001. A damping loss factor for the acoustic mode q, qη  is then given by F qτ ω . 

The same coordinate system as that shown in Fig. 3 is considered. The plate is excited by a 
normal mechanical force at point Me of coordinates (0.051, 0.105, 0.31 m). Two receiving 
points are defined: M1 on the plate at coordinates (0.1385, 0.0625, 0.31 m), and M2 at the 
bottom of the cavity at coordinates (0.02, 0.02, 0.0124 m). 
Expressions for the natural frequencies, mode shapes and modal mass of the clamped plate 
can be found in the literature [28-30]. DMF can then be easily applied on this case. 17 plate 
modes below 12.5 kHz are taken into account. Different DMF calculations including non 
resonant acoustic modes defined by (26) with different values of max

zq are performed. Contrary 

to the case treated in Sec. 3, they show that max 39zq =  does not fully ensure the convergence 

of the modal decompositions. After analysis, this can be explained by the fact that the plate is 
thinner than that of Sec. 3 (i.e. 4 mm vs. 8 mm). The added fluid mass compared to the plate 
mass per unit area is therefore larger for the present case than in Sec. 3.  A value of 80 for 

max
zq gives a better result and no improvements are observed for higher values. Finally, 3919 

acoustic modes are considered. 
The DMF results are compared in Fig. A.1 with the analytical results proposed in [20]. We 
recall that perfect agreement of the analytical prediction with measurements was observed in 
[20]. Comparison of Fig. A.1 fully validates the DMF calculations when the non resonant 
acoustic modes spatially coincident with the plate are taken into account.  
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Fig. A.1. Comparison of the DMF results (dashed line) with the analytical results given in 
[20] (full line). (a), Acceleration at the point M1; (b) Pressure at point M2. 

 
  
 
 



 

APPENDIX B. SUBSYSTEM MODES AND INTERMODAL 
WORKS FOR THE PLATE-CAVITY SYSTEM 

  
Let us consider the system described in section 3 composed of a rectangular simply-supported 
plate coupled with a parallelepiped cavity. The modal information used for the DMF 
calculation is given in this appendix for the present case. 
 

B.1 – PLATE DISPLACEMENT MODES 
 
A rectangular plate simply supported at its edges of dimension Lx×Ly is considered. For mode 

p of orders ( ) [ [ [ [1,, 1,x yp p ∈ ∞ × ∞ , we obtain the modal angular frequency 
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and the modal mass pM (defined by 2
p p
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where D is the flexural rigidity of the plate.  
 

B.2 – CAVITY PRESSURE MODES 
 
We consider the rectangular cavity of dimension Lx×Ly×Lz. The blocked modes considered in 
the DMF consist of the normal modes of the cavity with rigid walls. For mode q of orders 

( ) [ [( )3
, , 1,x y zq q q ∈ ∞ , we obtain the modal angular frequency, 
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 the pressure mode shape, 
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and the modal stiffnessqK (defined by 2
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where
1

2qε
Ξ
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 , andΞ , the number of non-zero modal order ( ), ,x y zq q q . 

 



B.3 – MODAL INTERACTION WORK 
Considering the definition of the intermodal work (8) and the modes shapes (B.2, B.5), we 
obtain: 

( ) ( ) ( )
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APPENDIX C. SEA MODELLING 
 
In this appendix we give a description of the SEA model of the test case shown in Fig. 3.  
The plate-cavity system is decomposed into two SEA subsystems: the plate is subsystem 1 
and the cavity subsystem 2. For an excitation of subsystem 1 in the frequency band of central 
angular frequencycω , the SEA equations are given by [6]: 

1 12 21 1
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(C.1) 

where: - 1 2,  E E , are the total energy of subsystem 1 and 2, respectively; 

- 12 21,  η η  are the coupling loss factors defined below; 

- 1 2,  η η  are the damping loss factors of subsystem 1 and 2, respectively; 

-  injP is the power injected by the external force. 

 
The coupling loss factor from the plate to the cavity, 12η , is evaluated from the radiation 

efficiency, rσ  by 
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where eρ  is the effective mass density of the plate  
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with 0  and fk k  being the acoustic wavenumber of the heavy fluid and the flexural 

wavenumber of the plate at the angular frequency cω  respectively. 

The effective mass density (C.3) was obtained by considering an infinite fluid loading plate 
[17]. It allows taking the fluid added mass effect into account. 
 
Below the critical frequency, (i.e. 0 1fk kµ = > ), the radiation efficiency from Leppington’s 

model is given by 
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with 0fk kµ = . 

 
The coupling loss factor from the cavity to the plate, 21η , is obtained from the reciprocity 

relation, 

21 12 1 2n nη η= , (C.5) 

where 1 2,  n n  are the modal densities of the plate and the cavity, respectively. They can be 

estimated from the asymptotic formula, 
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Considering a white noise force excitation of unit ASD  (i.e. 21 N /HzFFS = ) in the frequency 

band of width ω∆ , the power injected by this force in the plate can be estimated by 
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Using Eq. (C.2-C.7) for estimating the coupling loss factors and the injected power, the total 
energy of the plate and the cavity can be obtained by inverting the equation system (C.1). 
 
 
 
 


