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We consider the problem of scheduling independent jobs on a single resource under a special unavailability constraint: a set of forbidden instants is given, where no job is allowed to start or complete. We show that a schedule without idle time always exists if the number of forbidden instants is less than the number of distinct processing times appearing in the instance. We derive a quite fast algorithm to find such a schedule, based on an hybridization between list algorithm and local exchange. As a corollary minimizing the makespan for a fixed number of forbidden instants is polynomial.

Introduction

We consider in this article a scheduling problem on one machine with a special type of unavailability constraints. More precisely we call a forbidden start & end instant a point in time where no job is allowed to start or to complete. Notice that contrary to a classical unavailability constraint, the machine can be processing a job during a forbidden start & end instant (Fse for short, or simply forbidden), as long as it started its execution before the forbidden instant and will complete after it. Such forbidden instants may arise when the jobs need some additional resources at launch and at completion, and these additional resources are not continuously available, for instance if they are shared with other yet planed activities. For example, consider the situation where the jobs are processed by an automated device during a specified amount of time, but a qualified operator is required at setup and at completion. While the device is continuously available, the operators have day-off and holidays. This creates some forbidden days when the jobs can be performed by the device, but none can start or complete. We encountered this problem in chemical industry [START_REF] Lebacque | Planification d'expériences dans l'industrie chimique[END_REF] through an industrial collaboration with the Institut Français du Pétrole (IFP), a large research center in the fields of energy and transportation. The jobs consisted in chemical experiments whose durations typically last between 3 days and 3 weeks. The intervention of a chemist is required at start and completion: at start, the chemist basically fills up the device and launches the process. At completion, he has to stop the chemical reactions for the analysis of the experimental results. Each intervention can be performed within an hour, but requires the presence of the chemist in the laboratory. The objective is then to find a schedule of the experiments on the device such that an experiment neither starts nor completes on a day when the chimist is off.

The additional resource can also be for instance a special handling tool, expansive enough for the company not to own it but to call a subcontractor. For very large products like turbines for hydropower plants, a crane is needed to put in and get out the product from the shop floor. Due to strict deadlines, teams are often organized to work continuously, and thus a finished product must immediately get out in order to start the next one. However an overcost is typically incurred to rent the crane on week-ends. The objective is then to find a schedule of minimal duration for the different products such that ideally no overcost is paid.

These overcost instants are a generalization of the Fse instants, that we can consider as instants of infinite cost. One can imagine other additional resources such as energy (heating or cooling operations), water, etc., with consumption restriction or overcost during some periods. In this article we consider the scheduling problem of a set of jobs to be sequenced on a single resource taking into account Fse instants. The objective is to minimize the completion time of the last job, also called the makespan of the schedule.

The remaining of the paper is organized as follows: in Section 2 we present a literature review on scheduling with forbidden instants, together with some notations and definitions. Section 3 is devoted to establish that a schedule without idle time always exists if the number of Fse instants is smaller than the number of distinct processing times appearing in the instance. We call such an instance a large diversity instance. Based on these results we propose in Section 4 polynomial time algorithms to solve the problem in case of a fixed number of forbidden instants. Finally, in Section 5, we study the extension of the problem to overcost instants.

Notations and preliminary definitions

We consider a set of n independent jobs, with processing times p 1 , p 2 . . . , p n , to be sequenced on a single resource in presence of Fse instants. We denote by N the set {1, 2, . . . , n} of jobs indices. The set F of forbidden instants is constituted of k distinct instants {γ 1 , γ 2 , . . . , γ k }, indexed in increasing order. A schedule is feasible if no job starts or completes its processing during a forbidden instant. Preemption of jobs is not allowed. All data are assumed to be integers. In addition the starting time and completion time of any job are also restricted to take integer values. With the objective of minimizing the duration of the schedule, we designate the problem as 1|Fse|C max . Figure 1 gives an example of a feasible schedule for the instance composed of 4 jobs {a, b, c, d} of duration p a = 5, p b = 3 and p c = p d = 2. Two forbidden instants appear, at time γ 1 = 7 and γ 2 = 10. We consider that the jobs are scheduled according to the sequence (a, b, c, d): due to the forbidden instant 10, the processing of job c has to be delayed up to time 9, resulting in a makespan of 13. Notice that the sequence (c, d, a, b) would give a schedule without idle time. As we have 3 different processing times and only 2 forbidden instants, next section will assert the existence of such an idle-free schedule. In scheduling theory, machine non-availability problems have been largely investigated, see Lee [START_REF] Lee | Machine scheduling with availability constraints[END_REF] for a survey. Machine non-availabilities correspond to periods where the machine can not process any job, typically due to a preventive maintenance. In contrast, a Fse instant only prevents the start or the completion of a job: the machine can go on processing its current job. Brauner et al. [START_REF] Brauner | Operator non-availability periods[END_REF] and Rapine et al. [START_REF] Rapine | Single Machine Scheduling with Small Operator-Non-Availability Periods[END_REF] study a scheduling problem with similar constraints: an operator non-availability (Ona) period is defined as an open time interval in which no job can start nor end. With the makespan as objective criterion, they prove the problem to be NP-hard and not in APX even if the duration of any Ona period is smaller than the processing time of any job. Notice that if processing times are integers and jobs are required to start at integer instants, an Ona period (s, s + t) can be represented by the finite, but exponentially large, set of forbidden instants {s + 1, s + 2, . . . , s + t -1}. However we do not consider in this article any special condition on the distribution of the forbidden instants.

Some previous works have also considered additional resources for task setup or ending operations. Cheng et al. [START_REF] Cheng | One-operator-two-machine flowshop scheduling with setup and dismounting times[END_REF] study a 2-machine flowshop scheduling problem where the same operator performs setup and dismounting operations on both machines following a cyclic movement pattern. This problem is connected with the server model (see for instance Hall et al. [START_REF] Hall | Parallel machine scheduling with a common server[END_REF] and Abdekhodaee et al. [START_REF] Abdekhodaee | Scheduling two parallel machines with a single server: the general case[END_REF]), where a server has to do some setup operations before the processing of a job starts on a machine, or is required to unload the machine; see Ou et al. [START_REF] Ou | Parallel machine scheduling with multiple unloading servers[END_REF] where an example is given from logistics. Notice that a server model deals with the problem of sharing an additional resource among several machines, creating machine interferences as in Koulamas [START_REF] Koulamas | Scheduling two parallel semiautomatic machines to minimize machine interference[END_REF], while we consider in this paper unavailability constraints on the additional resource. In this context, our problem would correspond to the situation where a schedule has yet been fixed for the server, and we have to incorporate a new machine with allotted jobs in the planning. If setup time is one unit, the fixed schedule of the server is seen by this machine precisely as forbidden instants. Problem P2, S 1|s j = 1|C max with a single server shared by two parallel machines has been proved NP-hard by Hall et al. [START_REF] Hall | Parallel machine scheduling with a common server[END_REF], while Kravchenko and Werner [START_REF] Kravchenko | Parallel machine scheduling problems with a single server[END_REF] propose a pseudo-polynomial time algorithm. More precisely they show that an optimal schedule for P2||C max can be converted into an optimal schedule for P2, S 1|s j = 1|C max . This procedure runs in time O(n log n) and is based on local job exchanges. We use quite similar technics in this paper, except that the forbidden instants are fixed.

The most relevant work to our problem is certainly Billaut & Sourd [START_REF] Billaut | Single machine scheduling with forbidden start times[END_REF]. They consider the scheduling of independent jobs on a single machine where a set of time slots is forbidden for starting the processing of a job. We call in this paper such an instant a Fs instant (for forbidden start). They prove that minimizing the makespan is polynomially solvable if the number of forbidden start times is fixed, and NP-hard in the strong sense if this number is part of the input. Their algorithm runs in time complexity O(n 2k 2 +2k-1 ), where k denotes the number of Fs instants. They also establish that an idle-free schedule exists if at least 2k(k + 1) distinct processing times appear in the instance. For the special case of 2 forbidden start instants, they prove that having 3 distinct processing times is a sufficient condition to assert the existence of a schedule without idle time. This article generalizes and improves their results for Fse instants: we prove that having k + 1 distinct processing times is a sufficient condition to ensure the existence of an idle-free schedule in presence of k Fse instants. In this case we derive a fast algorithm to compute such an optimal schedule: the algorithm is an original hybridization between list scheduling and local search. The overall complexity to solve the problem for a fixed number of forbidden instants is reduced, as a consequence of our result, to O(n k ). In addition the proofs used new ideas and are far shorter.

Before presenting the concept of valid partition and exchangeable jobs, which are the main ingredients of our approach, we extend to Fse instants the theorem from Billaut & Sourd [START_REF] Billaut | Single machine scheduling with forbidden start times[END_REF]:

Theorem 1 The scheduling problem 1|Fse|C max is NP-hard in the strong sense Proof. The reduction from 3-Partition is the same as in Billaut & Sourd [START_REF] Billaut | Single machine scheduling with forbidden start times[END_REF]. As they noticed the many to one reduction used in the proof can easily be transformed into a gap reduction by appending a large (but polynomial) number of consecutive forbidden instants at the end of the schedule. This proves that 1|Fse|C max is not in APX if P NP.

The number of distinct processing times will play a central role in our analysis. We say that two jobs are of the same type if and only if they have the same processing time. We denote by S the set of (distinct) types appearing in a subset S of jobs. The processing time of a type is defined as the processing time of a job of this type. For the sake of simplicity, we denote by p t the processing time of a type t. We also extend p to any subset S of jobs (or of types) by letting p(S ) = i∈S p i . For short, for a given subset S , we define p min (S ) and p max (S ) as the minimal and maximal values of p i over S , respectively.

We will prove in next section that if the number | N | of types is greater than the number k of forbidden instants, then there exists a schedule without idle time. One originality of the proof is to focus on partitions of the jobs rather than on partial sequences. Basically, though we are interested in establishing the existence of an idle-free schedule, we will forget about the order of the jobs: Definition 1 We call a partition S ∪ U of the jobs a valid partition if and only if there exists a schedule for S starting at time 0 and without idle time, that is, there exists a feasible schedule for the jobs of S ending at time p(S ).

A valid partition has to be thought of as the set S of the scheduled jobs and the set U of the unscheduled jobs at some step of a constructive algorithm. Notice that each idle-free partial sequence defines a unique valid partition, while a valid partition may correspond to several sequences. Figure 2 shows an example of a partial schedule, defining the valid partition S = {1, 2, 3} and U = {4, 5}. We say that a valid partition S is blocked if none of the unscheduled jobs can be appended to S without violating the forbidden instants, that is p(S ) + p i ∈ F for all i ∈ U. In Figure 2, the remaining jobs to schedule are represented above the Gantt chart to stress the fact that the partition is blocked. Observe that a blocked partition S is maximal in the sense that there cannot exist a valid partition S ′ ⊇ S of cardinality |S | + 1. Exchanges between jobs of S and U will be needed to "unblock" the partial schedule. Basically an exchange consists in swapping a job s ∈ S with a job u ∈ U, such that the cardinality of the partition is unchanged. In this paper we consider only exchanges with a job u ∈ U of minimal processing time. For short we denote by u a job of minimum duration over U, that is of processing time p min (U). We introduce the following definition: Definition 2 We call a job s ∈ S exchangeable if S ∪ {u}\{s} defines a valid partition.

In Figure 2 we have represented job 2 under the time axis to visualize that it is not exchangeable with job u = 4: an idle-free schedule of set {1, 3, 4} would complete on the first forbidden instant. By definition, if a job s ∈ S is exchangeable, then any job s ′ ∈ S of the same type is also exchangeable. For this reason, we extend below the notion of exchangeable job s to exchangeable type t, imposing the additional condition that set U contains no job of type t : Definition 3 We say that a type e is exchangeable if all the jobs of type e belong to S and are exchangeable. We denote by E(S ) ⊆ S the subset of exchangeable types.

Clearly a necessary condition for a type e to belong to E(S ) is that p(S )p e + p u does not coincide with a forbidden instant. In next section Property 1 proves that it is in fact a sufficient condition in some circumstances. In Figure 2, as job 3 is of the same type as job 4, set E(S ) is reduced to singleton {1} . For t a type of S , we denote by S t = S \{s} ∪ {u} the partition obtained by exchanging a job s ∈ S of type t with the job u. By definition, for any type e in E(S ), the set S e defines a valid partition that differs from S only by a job of type e and u. Of course their respective idle-free schedules may be totally different.
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Existence of an idle free schedule

We now state the main result of this paper. It describes a necessary condition for the existence of an idle-free schedule. A trivial necessary condition is of course that the sum of the processing times does not coincide with a forbidden instant. For the same reason, we require that instant 0 is not a forbidden instant. For a subset S of jobs, let The benefit of exchanging jobs is to modify the set of types of unscheduled jobs. We may hope that after a series of exchanges we will be able to append a new job to the current schedule. Lemma 1 gives a sufficient condition for this situation to happen, namely that the largest exchangeable type should be smaller than the smallest unscheduled type.

F (S ) = {γ ∈ F |γ ≤ p(S )
Lemma 1 Consider a valid partition S ∪ U. If S is blocked, then set E(S ) is not empty. In addition if p max (E(S )) < p min (U), then there exists e ∈ E(S ) such that S e is not blocked.

Proof. We use a simple counting argument. First, we define T (S ) as N \( U ∪ E(S )). This set contains the types that neither belongs to U nor are exchangeable. By construction we get a partition U ∪ T (S ) ∪ E(S ) of N . We then define the following function ϕ : N → R, where u is a job of maximum duration in U and u is a job of minimum duration in U:

ϕ(i) =          p(S ) + p i if i ∈ U p(S i ) if i ∈ T (S ) p(S i ) + p u if i ∈ E(S )
Clearly ϕ is injective on each part of the partition, as p is injective on N . In addition, denoting γ and γ the instant p(S )+ p u and p(S )+ p u , respectively, we have ϕ(T (S )) ⊆ [0, γ) and ϕ( U ) ⊆ [γ, γ]. Thus ϕ is injective on U ∪T (S ). The fact that S is blocked along with Property 1 shows that the image of the set U ∪ T (S ) under ϕ is included in F (N). As a consequence we have

| U ∪ T (S )| ≤ |F (N)|. Thus condition | N | > |F (N)| necessarily implies that U ∪ T (S ) ⊂ N .
In other words the set E(S ) can not be empty, which proves the first assertion of Lemma 1. Now consider that the condition p max (E(S )) < p min (U) holds. Let us denote by e a job of maximal duration among the jobs of exchangeable type, E(S ). Recall that u denotes a job of U of minimal duration. Due to the condition, it results that for any type e ∈ E(S ) we have p(S e ) ≥ p(S )p e + p u > p(S ). As a consequence ϕ(E(S )) ⊆ (γ, p(N)] and thus ϕ is an injection on N . Since | N | > |F (N)|, there necessarily exists a type e such that ϕ(e) F (N). As already observed, we have the inclusions ϕ( U ) ⊆ F (N) and ϕ(T (S )) ⊆ F (N). Thus type e must be an exchangeable type. We claim that the valid partition S e is not blocked. First, observe that set U can not be reduced to a singleton {u}: Otherwise we have p(S ) + p u = p(N), and thus the fact that S is blocked contradicts our assumption that p(N) does not coincide with a forbidden instant. It can be readily check that if U contains at least 2 jobs, then the set U e = N\S e obtained after the exchange still contains a job of type u. Writing the definition of ϕ(e) and using the fact that ϕ(e) F (N), we get p(S e ) + p u F (N). It implies that a job u ∈ U e can be appended to S e without violating a forbidden instants, which shows that S e is not blocked. Now to conclude the proof of Theorem 2, assume for the sake of contradiction that N ∪ ∅ is not a valid partition. Among all the valid partitions (at least ∅ ∪ N is one), we choose S ∪ U maximizing |S |, and of minimal length p(S ) among all partitions of maximal cardinality. The maximality of |S | implies that S is blocked. We claim that necessarily p max (E(S )) < p min (U): indeed for any type e ∈ E(S ), set S e defines a valid partition of cardinality |S | and of length p(S e ) = p(S ) + p up e ; the minimality of p(S ) among the partitions of the same cardinality imposes that p e ≤ p u . However, by definition of an exchangeable type, e U , and in particular p e p u , which leads to the inequality p e < p u . Thus we are in the conditions stated by Lemma 1. It implies that there exists e such that S e ∪ {u} defines a valid partition, with u a job of maximal duration in U (see the proof of Lemma 1). This contradicts the maximality of |S |, and achieves the proof of Theorem 2.

Note that the assumptions of Theorem 2 cannot be further relaxed to ensure the existence of an idle-free schedule. Indeed if | N | = |F (N)|, for some instances, idle times will be forced in any schedule: consider for example the set F = {p i |i ∈ N }. We have | N | = |F (N)| and necessarily an idle time appears in any feasible schedule at time 0, although it is not a forbidden instant.

We stated Theorem 2 with the general condition

| N | > |F (N)|.
Of course if the number of types is greater than the number of forbidden instants, this condition is always fulfilled. This motivates the following definition:

Definition 4 An instance is said to be of large diversity if | N | > |F |, of small diversity otherwise.

Polynomial time algorithm

Theorem 2 proves the existence of a schedule without idle time for large diversity instances. However the proof, based on valid partitions, is not constructive. In this part, we derive an algorithm to construct such a schedule. The algorithm is a simple hybridization between list scheduling algorithm and local search. Basically the algorithm is constructive and tries at each step to schedule a new job in a greedy manner. If at some step no job can be scheduled without creating some idleness, we then perform some job exchanges until the current partial schedule is no more blocked. The priority given to the jobs in the greedy allocation does not matter. Thus we consider an arbitrary list L. Nevertheless, for efficiency reasons, we assume that jobs of the same type have the same priority.

We have to show how a small number of exchanges always permit to obtain a partial schedule that is no more blocked. The basic idea is to exchange at each step the smallest unscheduled job u with a (scheduled) job of the largest exchangeable type e. We call such an exchange a min-max exchange. Using the vocabulary of previous section, if (S , U) is a blocked partition, a min-max exchange consists then in exchanging a job u of processing time p min (U) with a job of type e of processing time p max (E(S )). These exchanges are performed as long as S remains blocked and that p max (E(S )) ≥ p min (U). If S is blocked but p max (E(S )) < p min (U), we then select a job of type e ∈ E(S ) such that S e is not blocked. We call this later exchange an unblocking exchange. Notice that Lemma 1 ensures that, if S is blocked, there does exist exchangeable jobs. It also ensures that if p max (E(S )) < p min (U), an unblocking exchange is always possible. Next lemma bounds the number of successive exchanges. Recall that k is the number of forbidden instants.

Lemma 2 At most k + 1 exchanges are needed to obtain a non-blocked partition from any blocked partition.

Proof. Let (S 1 , U 1 ), . . . , (S l , U l ), (S l+1 , U l+1 ) be the sequence of valid partitions constructed by iterating min-max exchanges from an initial blocked partition (S 0 , U 0 ). By construction for each index i ≤ l -1, partition (S i , U i ) is blocked and verifies p min (U i ) < p max (E(S i )). The last partition (S l+1 , U l+1 ) is no more blocked. Notice that the (l+1)th exchange may be an unblocking exchange, while the l first ones are min-max exchanges. For short let α i = | U i | be the number of types in U i . We also denote by β i the number of types in N of processing time smaller or equal to p min (U i ), that is β i is the rank of the type of processing time p min (U i ) following the non-decreasing order. Notice that α i and β i are non-decreasing sequences. More precisely for all index i = 0, . . . , l -1:

(1) either

β i+1 = β i and α i+1 = α i + 1, (2) 
or α i+1 = α i and β i+1 > β i . To see this, recall that the exchange performed to transform the partition (S i , U i ) into (S i+1 , U i+1 ) is a min-max exchange. Let e i be the type of the job, of duration p max (E(S i )), selected to exchange with u i of duration p min (U i ). By definition of E(S i ), type e i does not belong to U i . In addition e i has a larger processing time than u i . If U i contains more than one job of type u i , after the exchange U i+1 contains the same types as U i plus the new type e i , i.e. we are in situation [START_REF] Abdekhodaee | Scheduling two parallel machines with a single server: the general case[END_REF]. Otherwise u i is the only job of duration p min (U i ) in U i . Then clearly we have p min (U i+1 ) > p max (U i ), which corresponds to situation (2).

Now let µ

i = α i + β i .
From what precedes µ i is an increasing series on [0, . . . , l], which implies that µ l ≥ µ 0 + l. Observe that for any subset S of N , the rank of its smallest type can be at most | N | -| S | + 1. Hence the function that associates to S the index of its smallest type plus its cardinality lies between 2 and

| N | + 1. It results that l ≤ µ l -µ 0 ≤ | N | -1, which establishes that at most l + 1 ≤ | N | exchanges are performed.
To decrease the number of exchanges from | N | to k+1, we can restrict our attention to the set M of the first (k+1) types. More precisely in each min-max exchange, we select a job e of greatest processing time in the set E(S ) ∩ M. If a partition is blocked, this set can not be empty. Indeed, one can readilly follow the proof of Lemma 1, subtituying the set N by any subset of cardinality greater than k. If the partition is blocked, the function ϕ restricted to the set M clearly remains injective, and the condition |M| > k permits to conclude in the same way that E(S ) ∩ M ∅. In addition, if M does not contain a type of processing time p min (U), an unblocking exchange is then performed by the algorithm. Otherwise min-max exchanges will swap only jobs of type in M. By the previous argument the number of exchanges is then bounded by |M| = k + 1.

If we design an algorithm on this simple principle, alternating greedy allocation and min-max exchanges, one difficulty arises when an exchange occurs at some step between a job, say of type e, and u. Indeed if Theorem 2 ensures that S e can be scheduled without idle time, it gives no clue on how to find such a schedule. To avoid (expensive) recursive calls, we introduce the following notion to decompose the problem: Definition 5 Given a list L, a subset N ′ ⊂ N defines a L-partition if:

(1) set N ′ defines a valid partition,

(2) if N ′ is not empty, then we have |F (N ′ )| < |F (N)| and |F (N ′ )| < | N ′ |.
That is, set N ′ together with the forbidden instants F (N ′ ) define a large diversity instance.

(3) the remaining jobs of N\N ′ can be scheduled in time interval [p(N ′ ), p(N)] by the list scheduling algorithm of list L, without idle time.

We represent such a L-partition by the couple (N ′ , π), where π is the sequence of jobs given by the list scheduling algorithm. The L-partition problem consists, given N and L, in finding a L-partition (N ′ , π). Considering the conditions of Defintion 5, the existence of a L-partition is not guaranteed. We will prove in Lemma 3 that for any large diversity instance, a L-partiton exists and can be found quite efficiently. First, we want to make apparent here why the Lpartition problem constitutes an helpfull way to find an idle-free schedule for large diversity instances. Assume that we have an algorithm A to solve the L-partition problem on large diversity instances. If we call A on the set N of jobs with the set F of forbidden instants, we obtain a first L-partition (N 1 , π 1 ). By definition, the sequence π 1 describes an idle-free schedule for the jobs of N\N 1 , starting at time p(N 1 ). Thus the problem reduces to find an idle-free schedule for the instance composed of the set N 1 of jobs, and restricted to the set F (N 1 ) of forbidden instants. If the set N 1 is empty, we can directly return π 1 as an idle-free schedule for N. Otherwise, as the restricted instance is still of large diversity due to condition (2), we call the L-partition algorithm A on the set N 1 to obtain a L-partition (N 2 , π 2 ). This way, we iteratively call A on the current subset N l of jobs till N l is empty. At this point we can return the concatenation π l π l-1 . . . π 1 of the sequences as an idle-free schedule for N. Basically this procedure constructs an idle-free schedule from the end, ensuring that at least one more forbidden instant is covered by the scheduled tasks at each call of the algorithm A. Formally, due to condition (2) in Definition 5 of a L-partition, we can assert that after at most (k + 1) iterations we terminate on an empty set N l . Indeed, as the number of forbidden instants |F (N j )| decreases by at least one at each iteration, if the set N k is not empty we necessarilly have |F (N k )| = 0. That is, there is no forbidden instant on the time interval [0, p(N k )]. At the next iteration the algorithm A must return an empty set N k+1 to fullfill condition (2) of Defintion 5. By the way, any list scheduling algorithm can easily schedule the set N k without idle time since no instant is forbidden in the restricted instance.

As a consequence, if one can design an algorithm for the L-partition problem, he can find an idle-free schedule for large diversity instances. This is summarized in the following remark: Remark 1. For large diversity instances, given an algorithm for the L-partition problem running in time t(k, n), a schedule without idle time for N can be found in time O(kt(k, n)).

Thus we can restrict our attention to develop an algorithm for the L-partition problem. This algorithm, formally described by Algorithm 1, mixes greedy allocation with local exchanges of jobs. That is, each time a partial schedule can not be extended without creating an idle time, min-max exchanges are performed untill an unblocking exchange takes place. To deliver a L-partition, it simply memorizes the valid partition obtained after the last exchange. Before establishing the correctness and the time complexity of the algorithm, we demonstrate it on the instance of Figure 1, which is an instance of large diversity. Using list L = (a, b, c, d), jobs a and b are successively scheduled. We are then in situation of Figure 3 The set of exchangeable jobs E(S ) is reduced to singleton {a} since exchanging b and c would result in a non valid partition completing on forbidden instant 7. We then perform a min-max exchange between job a and c. We are in situation of Figure 4 Note that, by definition of min-max exchanges, the length p(S ) of the current valid partition decreases between 2 exchanges. Hence we can not assert that if S is a blocked partition, after a series of exchanges the resulting nonblocked partition S ′ will obey |F (S ′ )| > |F (S )|. Such a property would have bounded the total number of exchanges to obtain a L-partition by O(k 2 ). However we can assert that this number is at most O(kn), as a new job is scheduled after each series of exchange. We have the following lemma: Lemma 3 For any large diversity instance verifying conditions of Theorem 2, a L-partition exists and can be found in time O(k 2 n).

Proof. We first show that, if Algorithm 1 terminates, it returns a L-partition. If no exchange occurred, by definition N ′ = ∅ defines a L-partition, i.e. the greedy list scheduling directly finds a schedule without idleness. Otherwise the algorithm returns the set obtained after the last exchange. At this step set S is blocked, and a job of some type e ∈ E(S ) is exchanged with u. Notice that after the exchange, by construction, S e is a valid partition, and the remaining jobs can be scheduled according to list L without idle time since no other partition is blocked afterwards. Thus set S e fullfills conditions (1) and (3) of Definition 5 of a L-partition. Finally, in Property 1 characterizing the exchangeable types, we have established that for any type e ′ ∈ E(S ), | S e ′ | > |F (S e ′ )| and |F (S e ′ )| < |F (N)|. In particular this is true for the type e: as a consequence S e also fullfills the second condition, and thus is a L-partition.

The fact that the algorithm always terminates is ensured by Lemma 2: let us call a step either an exchange between two jobs or the allocation of a job. Clearly we have exactly n allocation steps. Since at least one allocation is done after each sequence of exchanges, Lemma 2 bounds the number of steps by O(kn). To obtain the time complexity of the algorithm, we show that both allocation and exchange step can be done in time O(k). Note that L can be described as a vector of integers of dimension | N |. More generally each subset can be represented by a vector of types. For an allocation steps it is clearly sufficient to scan the first k + 1 non null types in L. With a proper list data structure, this can be done in time O(k). For an exchange step, we scan only the k + 1 smallest types of set S as explained in Lemma 2 to determine the set E(S ) ∩ M. Checking if a type is exchangeable can be done in constant time due to Property 1. Thus an exchange step can also be achieved in time O(k).

Algorithm 1 L-partition Algorithm

Require: a set N of jobs and a set F of forbidden instants verifying conditions of Theorem 2 Ensure: a L-partition (N ′ ,π) mark all jobs unscheduled // U = N set S = ∅ ; N ′ = ∅ ; π = ∅ // initialization while an unscheduled job remains do // U ∅ // perform local exchanges while S is blocked while S is blocked do if p max (E(S )) > p min (U) then // min-max exchange select x ∈ E(S ) of largest processing time else // unblocking exchange select x ∈ E(S ) such that S x is not blocked end if mark x unscheduled and u scheduled. set S := S x ; N ′ := S x ; π := ∅ ; U := N\S end while // greedy list allocation select the first unscheduled job u in L such that p(S ) + p u F mark u scheduled set S := S ∪ {u}; π := π{u}; U := U\{u} end while return (N ′ , π) Theorem 3 Any instance of 1|Fse|C max of large diversity can be solved optimally in time O(k 3 n).

Proof. If neither instant 0 nor p(N) belongs to F , Theorem 2 proves that an idle free schedule exists. This schedule can be found in time O(k 3 n) by Algorithm L-partition due to Lemma 3 and Remark 1. Notice that conditions (1)&(2) in Definition 5 ensures that the set N ′ obtained from the L-partition of N verifyies in its turn the conditions of Theorem 2, and thus each iterative call to Algorithm 1 can be achieved in time O(k 2 n).

Otherwise, either instant 0 or p(N) belongs to F , and some idle times necessarily occur in any schedule. Let t 1 be the first integer instant which is not forbidden, and let t 2 be the first integer instant greater than p(N) + t 1 which is also not forbidden. Obviously no feasible schedule can complete before time t 2 . Let τ = t 2t 1p(N). We start the schedule at time t 1 adding to N a dummy job of duration τ. Thus we are in conditions of Theorem 2: we can find an idle free schedule completing at time t 2 . Replacing each dummy job processing by an idle slot, we obtain a feasible (and optimal) schedule for N.

The general case needs to consider what happens for small diversity instances. As problem 1|Fse|C max is NP-hard, we can not hope to obtain a polynomial time algorithm, not even a constant approximation algorithm, if one believes that P NP. However next lemma involves that any list scheduling algorithm has an absolute error of at most 2k: Lemma 4 Any list scheduling algorithm delivers a schedule of length at most p(N) + 2k.

Proof. Consider the last job, say l, of the schedule. Let t be an idle slot. Due to the greedy allocation of the algorithm, necessarily either t or t + p l belongs to F , otherwise l should have been scheduled at time t. Hence the set of idle slots is included in {γ j , γ jp l | j ∈ 1, . . . , k}, which is of cardinality at most 2k.

The bound of Lemma 4 is tight: consider an instance constituted of a single job of duration 1 and with forbidden instants occurring at each odd instant till time 2k + 1. This example of course does not prove that 2k is a tight bound for the absolute error. It could be investigated if a better bound can be found, at least for particular lists. In this paper we use this result to bound the value of the optimal makespan and derive a polynomial time algorithm in the case where the number of forbidden instants is a constant. We denote by 1|k -Fse|C max this problem, when k is not part of the input.

Theorem 4 Problem 1|k-Fse|C max is polynomial, i.e. if the number of forbidden instants is fixed, an optimal schedule can be found in polynomial time.

Proof. Consider an instance (N, F ) of problem 1|k -Fse|C max . If | N | > |F |, Theorem 3 proves that we can find an optimal schedule in linear time O(n). Otherwise, in case of a small diversity instance, we have only a constant number of types. For short, let us denote by q ≤ k the number | N | of distinct processing times appearing in the instance. We represent any subset S ⊆ N by its multiplicity vector (s 1 , . . . , s q ), where s i is the number of jobs of type i present in S . As in Billaut & Sourd [START_REF] Billaut | Single machine scheduling with forbidden start times[END_REF], we use dynamic programming to compute predicate P(S , K) which is true if and only if there exists a partial schedule for S completing at time p(S ) + K. At the end we output the smallest value of K such that predicate P(N, K) is verified. Due to Lemma 4 we can restrict our attention to values of K ∈ {0, . . . , 2k -1} (a schedule of length at most p(N) + 2k can be obtained by any list scheduling algorithm in linear time). Thus the number of states of the dynamic program to compute all predicates P(S , K) for S ⊆ N and K ≤ 2k -1 is 2kΠ q i=1 (n i + 1), where (n 1 , . . . , n q ) is the multiplicity vector of N. Each state P(S , K) can be computed in time O(q) by considering which type (or idle slot) can be scheduled in last position. Hence the running time of the dynamic program is in O(2kq(n/q + 1) q ). For k a constant, this time complexity is bounded by O(n k ), which is a polynomial in n.

Theorem 4 appeals to some comments. If the problem is polynomial for any fixed number k of forbidden instants, an algorithm of time complexity in O(n k ) can be used in practice only for small values of n and k. Note that in fact the dynamic programming algorithm runs in time O(n q ), where q is the number of types in the instance. Thus for instances with a small number of types (2, 3, . . . ) the algorithm is efficient in practise. This time complexity grows up to O(n k ) as the number of types increases to k, and then drops to O(n) if we have more than k + 1 types. This gap legitimates in our opinion future researches for a more efficient algorithm for small diversity instances.

Extension to overcost instants

Finally, we consider what we name the subcontractor problem. We still have n independent jobs to schedule on a single resource. All the jobs are due to complete before a common due date D. This may correspond to the situation where the jobs represent the different products of the same order to deliver at time D. If the last job completes after time D, a penalty b is charged for each day the schedule is beyond this due date.

In addition to this tardiness penalty, at each integer instant t an overcost is eventually incurred if a job starts or completes. More precisely we denote by c - t and c + t the overcost paid to complete, respectively to start, a job at time t. Tardiness penalty b and resource overcosts c - t and c + t are assumed to be positive or null. The objective is to find a schedule of minimal cost, accounting for the tardiness penalty and the resource overcosts. We denote by G the set of integer instants with a positive overcost, that is

G = {t ∈ Z + | c - t + c + t > 0}.
The instants in G are said to be the overcost instants. To use more standart scheduling notations, let s i and C i be the starting time and the completion time of job i in a given schedule, and let T max denote the maximum tardiness of a job, that is max{0, C max -D}. The cost of a schedule can then be written as

i c + (s i ) + i c -(C i ) + bT max .
We can alternatively consider a joint overcost c t paid whatever we start, complete or start and complete a job at time t. This joint cost would correspond to the ability to use an additional resource during instant t. Notice that the subcontractor problem captures the different variants of the makespan minimization problems with forbidden instants: for instance by letting D = 0, b = 1 and c + t = +∞ if t ∈ G, the problem is equivalent to 1|Fs |C max as any finite cost solution corresponds to a feasible schedule with forbidden start instants, whose cost is clearly equal to the makespan. It happens that our results for 1|Fse|C max can easily be extended to the subcontractor problem, as stated in Theorem 5 below. Since forbidden instants are a special case of overcost instants, we extend our definition of large diversity instances to the subcontractor problem: An instance is said of large diversity if the number of overcost instants, k = |G|, is smaller than the number of types.

Theorem 5 Results of Theorems 3 and 4 apply to the subcontractor cost minimization problem, i.e. large diversity instances can be solved in time complexity O(k 3 n), and the general problem is polynomial if k is fixed.

Proof. For small diversity instances, we simply compute the function f (S , K) instead of the predicate P(S , K), defined as the minimal cost of a schedule for the subset S of jobs with a makespan of p(S ) + K. Due to Lemma 4, the makespan of an optimal schedule is at most p(N) + 2k. Hence the complexity remains in O(n k ). Note that for joint overcosts, we can add to states (S , K) a flag bit to indicate if the overcost is yet paid for instant p(S ) + K. Now consider a large diversity instance. Clearly, due to Theorem 2, if neither instant 0 nor p(N) are overcost instants, there exists a schedule completing at time p(N) without paying any overcost. This schedule is clearly optimal and is found in time O(k 3 n) by Algorithm 1. More generally, let s be the first instant such that c + s = 0. Notice that s ≤ k + 1. It may be advantageous (if tardiness penalty is high) to pay an overcost to start the schedule earlier than instant s. Let s * and t * be respectively the starting time and completion time of an optimal schedule. Necessarily we have t * ≥ p(N)+ s * and t * ≤ p(N)+ s * +k, since there is no incentative to delay the end of the last job if it can complete at a non-overcost instant. The cost of the schedule is then c + s * + c - t * + b max{t * -D, 0}, that is, no overcost is paid, except possibly at instants s * and t * . Such a schedule is found by Algorithm 1 starting at time s * and using a dummy job of duration t *p(N)s * . Notice that guessing s * and t * can be Note that without modifying the time complexity of our algorithm we could consider any tardiness penalty function l(T max ) for the schedule instead of the linear function l(T ) = bT . We only require that l(T ) is non-negative and can be computed in constant time, possibly through an oracle. This allows to handle practical problems where the penalties grow faster than linearly, for instance in bT 2 .

Conclusion

In this paper we have considered the scheduling of independent jobs on a single resource where k forbidden (or overcost) instants appear. We proved that an idle-free schedule always exists if the number of distinct processing times is at least k + 1, and neither 0 nor p(N) is a forbidden instant.

We proposed an efficient O(k 3 n) algorithm to solve any large diversity instance, and we established, as a consequence of Theorem 2, that problem 1|k -Fse|C max can be solved in time O(n k ). This time complexity is polynomial for any fixed value k. In this case, recall that an instance with (k + 1) types can be solved in linear time, while an instance with k types requires precisely a time complexity of O(n k ). This gap motivates to design more efficient algorithms for small diversity instances, certainly using the strong result on the existence of idle free schedule for large diversity instances to develop a divide & conquer approach.

Another related question would be to determine if the problem remains polynomial if we are less restrictive on the number of forbidden instants, say for instance if k is logarithmically bounded by n. This would capture practical situations when the number of forbidden instances to consider grows (slowly) with the number of jobs to schedule. However, since the problem on small diversity instances is NP-hard for arbitrary values of k, it would be also of interest to develop fast algorithms to solve the problem with a small absolute error. We note that the absolute error of any list schedule is at most 2k. We can wonder if a polynomial time algorithm can have an absolute error of 1 if for instance we have k different types.

In this paper, the types of the jobs play a central part in the design of the algorithms. We may consider a different encoding of the instances, describing for each type the processing time and the number of jobs of this type -the multiplicity. One then falls in the field of high-multiplicity scheduling problems, see e.g. [START_REF] Hochbaum | Strongly polynomial algorithms for the high multiplicity scheduling problem[END_REF] for a seminal paper and [START_REF] Brauner | A framework for the complexity of high-multiplicity scheduling problems[END_REF] for more recent references. A High Multiplicity encoding has a size linear in the number of types, but only logarithmic in the number of jobs. Thus the algorithm presented in this paper, and any algorithm allocating jobs one by one, is exponential in the size of this encoding. It would be of particular interest to study the complexity status of 1|k -Fse|C max under a High Multiplicity encoding. The question is let open whether the problem remains polynomial under such a compact encoding.
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 1 Figure 1: The Gantt chart of a feasible schedule for 1|Fse|C max following the sequence (a, b, c, d). Forbidden instants F = {7, 10} are represented on the time axis by dashed rectangles. The schedule completes at time 13.
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 2 Figure 2: An example of a blocked valid partition with S = {1, 2, 3}. Set U = {4, 5} has been represented above the Gantt chart to visualize the corresponding forbidden instants. Under the time axis job 2 is represented to visualize that it is not exchangeable with job 4.

  } be the set of forbidden instants appearing before time p(S ). Clearly we have |F (N)| ≤ k. The remaining of this section is devoted to prove Theorem 2: Theorem 2 If | N | > |F (N)| and 0, p(N) F , then there exists a feasible schedule for N without idle time. Theorem 2 can be rephrased as N ∪ ∅ is a valid partition if | N | > |F (N)| and neither instants 0 nor p(N) are forbidden. We prove this result by induction on |F (N)|. If |F (N)| = 0, certainly Theorem 2 holds. Now consider that |F (N)| > 0 and assume that the result is true for any set S of jobs such that |F (S )| < |F (N)|. That is, if | S | > |F (S )| and 0, p(S ) F , then S ∪ (N\S ) is a valid partition. First, we use the induction hypothesis to prove the following property. It shows that the set of exchangeable types can be simply characterized as the types e such that the length of the set S e does not coincide with a forbidden instant. Property 1 (Characterization of E(S )) Consider a valid partition S ∪ U such that S is blocked. Then we have E(S ) = {e U | p(S e ) F }. Proof. Recall that S e = S \{s} ∪ {u}, where s is a job of type e and u is a job of U with the smallest execution time. If e ∈ E(S ), then p(S e ) can not coincide with an instant of F by definition of a valid partition. Hence we clearly have E(S ) ⊆ {e U | p(S e ) F }. To establish the reverse inclusion, consider a type e U such that p(S e ) F . Let γ be the instant p(S ) + p u . Notice that p(S e ) is equal to p(S ) + p up e , and thus is lower than γ. Since S is blocked, there exists at least | U | forbidden instants in interval [γ, p(N)], as p(S ) + p u ∈ F for all u ∈ U . Thus we have |F (S e )| ≤ |F (N) ∩ [0, γ)| ≤ |F (N)| -| U |. In particular we have |F (S e )| < |F (N)|. To use the induction hypothesis on S e , it remains to establish that | S e | > |F (S e )|. Clearly we have S e ∪ U ⊇ N\{s} and S e ∩ U ⊇ {u}. As for any sets A and B, we can write that | A ∪ B | = | A | + | B | -| A ∩ B |, it results that | S e ∪ U | = | S e | + | U | -| S e ∩ U |. Hence we have | S e | ≥ | N\{s} | -| U | + 1 ≥ | N | -| U |. It results that | S e | > |F (S e )|. Since |F (S e )| < |F (N)| and p(S e ) F by our choice of e, the induction hypothesis shows that S e is a valid partition. Which concludes the proof.

  with a blocked partition S = {a, b}, U = {c, d}.
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 3 Figure 3: The partial schedule obtained for list L = (a,b, c, d) on the instance of Figure1
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 4 Figure 4: The partial schedule obtained after exchanging a and c
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 5 Figure 5: The final schedule. The corresponding L-partition is ({c, d}, ab)
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  done in time O(k 2 ) by inspection, considering all possible couples (s, t) in [0, s] × [p(N), p(N) + 2k]. However this time complexity can be easily reduced to O(k) in the following way. Let us denote by OPT (s) the minimal cost among all the schedules starting at time s. Let us also introduce ξ(u) = min{c - t +b max{t-D, 0} | u ≤ t ≤ p(N)+2k}. From what precedes we have OPT (s) = c + s +ξ(s+ p(N)). Since all values of ξ(u) for u = p(N), . . . , p(N) + 2k can be computed by accumulation in time O(k), determining s * minimizing OPT (s) can be achieve in time O(k).