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PERFECT SIMULATION OF DETERMINANTAL POINT

PROCESSES

L. DECREUSEFOND, I. FLINT, AND K.C. LOW

Abstract. Determinantal point processes (DPP) serve as a practicable mod-
eling for many applications of repulsive point processes. A known approach for

simulation was proposed in [5], which generate the desired distribution point
wise through rejection sampling. Unfortunately, the size of rejection could be
very large. In this paper, we investigate the application of perfect simulation
via coupling from the past (CFTP) on DPP. We give a general framework for
perfect simulation on DPP model. It is shown that the limiting sequence of
the time-to-coalescence of the coupling is bounded by

O

(
∫

E

J(x, x)dν(x) log

∫

E

J(x, x)dν(x)

)

.

An application is given to the stationary models in DPP.

1. Introduction

Determinantal point process stems back from 1975 when O. Maachi introduce it
as the ‘fermion’ process with repulsive feature on its points. It is only in the last
two decades that Soshnikov(2000) [15] and Shirai and Takahashi(2003)[14] studied
further on the mathematical properties of the process structure. Classical modeling
of repulsive point processes are in essence through Gibbs point processes. Since
their introduction, DPP have found many applications in random matrix theory
and quantum physics.

Simulations of determinantal point processes are mostly based on the idea of
Hough et al. in [5] and further discussed in details in [10]. The main drawback
of the idea is due to its large rejections in the sampling. On the other hand,
in a Markov chain Monte Carlo method, many of the simulation algorithms are
based on the long-running constructions of Markov chain that converges to an
equilibrium distribution. The difficulties was in determining the number of steps
needed to have such a convergence. Thanks to Propp andWilson [12], which suggest
with the application of coupling theory, we are able to ‘exactly’ simulate a finite
state Markov chain with the desired equilibrium distribution. Although perfect
simulation is obviously appealing but we share a common drawback with [5] idea:
given a DPP kernel with no explicitly known spectral representation, the statistics
(Papangelou conditional intensity) involve in the configurations, it is not simple to
extract them from. In general numerical techniques such as Fourier expansion are
required because of the limitation of analytical results.

This paper serves as the continuation of work on [5] and [10] in simulating DPP;
in [8] uses the CFTP perfect simulation approach on spatial point processes, while
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2 L. DECREUSEFOND, I. FLINT, AND K.C. LOW

here we analyze the application of CFTP simulation on determinantal point pro-
cesses and we provide a lower and a upper bound for the coalescence time in general
case.

This paper is organized as follows. We start in Section 2 by summarizing the
basic notation and recall the definition of a point process, including determinantal
point process and its Papangelou conditional intensity. Section 3 is devoted to
details of perfect simulation of DPP via dominated coupling of Markov chains, i.e.
CFTP. In Section 4, we discuss the limiting behavior of the running time of CFTP
simulation and provide a bound for the limiting sequence. Lastly in Section 5, we
apply CFTP algorithm to three stationary DPP models defined by the commonly
used covariance functions in multivariate statistical analysis, i.e. Gaussian model,
Matérn model and the Cauchy model.

The statistical analysis conducted in this paper are with R (spatstat library by
Braddeley and Turner).

2. Preliminaries

For (E,B, ν) a measure space endowed with a Polish space E and a Radon
measure ν on E. We denote by X the set of locally finite point configurations in
E:

X := {ξ ⊂ E : |ξ ∩ Λ| <∞, ∀ compact Λ ⊆ E}

equipped with the σ-field

F := σ({ξ ∈ X : |ξ ∩ Λ| = i}, i ≥ 0, ∀ compact Λ ⊆ E)

where |X | denotes the cardinality of a set X .
A point process X on E is then a random point configuration, i.e. a random

integer-valued Radon measure on E and X(Λ) represents the number of points that
fall in Λ. If X({x}) ∈ {0, 1} a.s. for all x ∈ E, then X is called simple.

The joint intensities ρk of a simple point process X is the intensity measure of
the set of ordered k-tuples of distinct points of X , X∧k. More precisely, for any
family of mutually disjoint subsets Λi ⊆ E, a simple point process X w.r.t. the
measure ν, denote ρk : Ek → [0,∞) for k ≥ 1:

E

[

k
∏

i=1

X(Λi)

]

=

∫

∏
i
Λi

ρk(x1, . . . , xk)dν(x1) . . . dν(xk).

We assume that ρk(x1, . . . , xk) vanish if xi = xj for some i 6= j, see [6]. Let
K(x, y) : E2 → C be a measurable function, locally square integrable on E2.

Definition 2.1. Determinantal (fermion) point process with kernel K is defined to
be a simple point process X on E which satisfies:

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

∀k ≥ 1 and x1, . . . , xk ∈ E, ρk w.r.t the measure µ

Definition 2.2. For a function f ∈ L2 defined on a compact support Λ, an integral
operator K : L2(E, ν)→ L2(E, ν) corresponding to K is defined such that:

Kf(x) =

∫

E

K(x, y)f(y)dν(y), for a.e. x ∈ E
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and the associated bounded linear operator KΛ on L2(Λ, ν) as:

KΛf(x) =

∫

Λ

K(x, y)f(y)dν(y), for a.e. x ∈ Λ.

By spectral theorem, for a compact and self-adjoint operator KΛ, there is an
orthonormal basis {ϕΛ

i }i≥1 of eigenfunctions for KΛ on L2(Λ, ν). Consequently,
the kernel K has a spectral representation:

(2.1) KΛ(x, y) =
∑

i≥1

λΛi ϕ
Λ
i (x)ϕ

Λ
i (y) for x, y ∈ Λ

Definition 2.3. A bounded linear operator KΛ is said to be of trace class whenever
for a complete orthonormal basis {ϕΛ

i }i≥1 of L2(Λ, ν),

KΛ(x, y) =
∑

i≥1

λΛi ϕ
Λ
i (x)ϕ

Λ
i (y) for x, y ∈ Λ

and
∑

i≥1

|λΛi | < ∞.

Further we define:

Tr KΛ :=
∑

i≥1

λΛi

Throughout this paper, we assume that the integral operator of a determinantal
point process satisfies the following hypothesis:

Hypothesis (H1): K is self-adjoint and locally of trace class, and its spectrum
is contained in [0, 1[ , i.e. 0 ≤ K ≤ Id in the operator ordering, and ‖K‖ < 1, where
Id denotes the identity operator on L2(E, ν).

Suppose that a DPPX defined onE with its kernelK(x, y) =
∑

i≥1 λiϕi(x)ϕi(y),
then it has a pleasant property that the size of its configuration is an infinite sum of
independent Bernoulli random variables with parameters equal to the eigenvalues,
see [5]. Consequently we have:

(2.2) E[|X |] =
∞
∑

i=1

λi Var[|X |] =
∞
∑

i=1

λi(1− λi)

Definition 2.4. For a trace-class operator K, the Fredholm determinant is defined
by:

det(I −K) = exp

(

∞
∑

n=1

(−1)n−1

n
Tr(Kn)

)

.

From [15], given an arbitrary compact set Λ ⊆ E, the Janossy density jΛ(·) of a
DPP configuration ξ in Λ is given by:

(2.3) jΛ(ξ) = det(I −KΛ)detJΛ(ξ),

where we define JΛ : Λ2 → C by

(2.4) JΛ(x, y) =
∑

i≥1

λΛi
1− λΛi

ϕΛ
i (x)ϕ

Λ
i (y) for x, y ∈ Λ,

and given a configuration ξ = {x1, x2, . . . , xn}, JΛ(ξ) is a n× n matrix with

JΛ(ξ)(i,j) = JΛ(xi, xj), ∀ 0 < i, j ≤ n.

We define detJΛ(∅, ∅) = 1. For details on Janossy density, see [1].
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In the following, we summarize some facts concerning DPP Papangelou (condi-
tional) intensity which characterize the local dependence of particles. See [2][11]
for details on Papangelou intensity.

Definition 2.5. Given a compact set Λ ⊆ E and a simple finite point process
X defined on E with its Janossy density jΛ, the Papangelou intensity of X in Λ
defined as:

cΛ(ξ, x) =
jΛ(ξ ∪ x)

jΛ(ξ)
, where ξ ∈ X , x ∈ Λ\ξ.

If jΛ(ξ) = 0 then c(ξ, x) = 0.

For a Poisson point process with intensity function ρ, c(ξ, x) is independent of
ξ, i.e. c(ξ, x) = ρ(x). In general, X is characterized as:

attractive if : c(ξ, x) ≤ c(η, x) whenever x /∈ ξ ⊆ η

repulsive if : c(ξ, x) ≥ c(η, x) whenever x /∈ ξ ⊆ η

Definition 2.6 ([2]). For any simple point process X defined on E, where ψ ∈ B,
ζ ∈ F and µ is the distribution of X on X , its modified Campbell measure Cµ on
the product space (X × E,F ⊗ B):

Cµ(ζ × ψ) =

∫

ψ

∑

x∈X

δ{(X\x,x)∈(ζ×ψ)} µ(dX),

where δ is the Dirac measure.

Now, we make an additional assumption that Cµ ≪ ν ⊗ µ. From the Defini-
tion 2.5 and (2.3), the Papangelou intensity of DPP then follow from the following
proposition which we borrow from [4].

Proposition 2.1. Given Cµ ≪ ν ⊗ µ, ∀ compact Λ ⊆ E, DPP Papangelou inten-
stity is given by:

cΛ(ξ, x) =
detJΛ(ξ ∪ x)

detJΛ(ξ)
, where ξ ∈ X and x ∈ Λ\ξ.

If detJΛ(ξ) = 0, define cΛ(ξ, x) = 0.

Since JΛ(·, ·) is a positive semi-definite matrix, which can be written in the form
of:

JΛ(ξx, ξx) =

(

Aξ,ξ Aξ,x
Ax,ξ Ax,x

)

, where Ax,ξ = A†
ξ,x.

Suppose that detAξ,ξ 6= 0, then
(

Aξ,ξ Aξ,x
Ax,ξ Ax,x

)

=

(

Aξ,ξ 0
Ax,ξ I

)(

I (Aξ,ξ)
−1Aξ,x

0 Ax,x −Ax,ξ(Aξ,ξ)−1Aξ,x

)

and

det(JΛ(ξx, ξx)) = det(Aξ,ξ)det(Ax,x −Ax,ξ(Aξ,ξ)
−1Aξ,x).

From Hypothesis (H1), we know:

det(A†
ξ,x(Aξ,ξ)

−1Aξ,x) ≥ 0

and the following Lemma 2.1 follows.
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Lemma 2.1. Papangelou intensity of a DPP is upper bounded:

(2.5) max
ξ∈X ,x∈Λ

cΛ(ξ, x) = max
ξ∈X ,x∈Λ

det(JΛ(ξ ∪ x))

det(Aξ,ξ)
≤ max

x∈Λ
JΛ(x, x),

and for a stationary model DPP:

max
ξ∈X ,x∈Λ

c(ξ, x) ≤ H.

where a stationary model DPP is a DPP with kernel of the form: K(x, y) = K0(x−
y). Thus, its JΛ(x, x) is equal to a constant H, for all x ∈ Λ.

Remark 2.1. From the above lemma, we have also shown that a DPP is a repulsive
point process where its Papangelou intensity: c(ξ, x) ≤ c(η, x) for x /∈ η ⊆ ξ.

3. Simulation

3.1. Perfect Simulation via Dominating CFTP. In this section, we describe
the idea of using birth and death process to couple from the past of a continuous
time Markov chain X = {Xt : t ≥ 0} with values in X . From here, we restrict all
the following point processes to be define on a Polish space E.

A birth and death process (Xt)t≥0 with birth rate b and death rate d is a ho-
mogenous Markovian process defined on {N∪ 0}. Birth rate b and death rate d are
non-negative functions defined on X × E. The process Xt is right-continuous and
piecewise constant except at jump times T1 < T2 < . . . , where we define:

B(ξ) =

∫

E

b(ξ, x)dν(x), δ(ξ) =
∑

x∈ξ

d(ξ\x, x) for ξ 6= ∅, else δ(∅) = 0

and

Tm+1 − Tm ∼ Exponential(B(ξ) + δ(ξ))

By conditioning on Tm+1, a birth occurs with probability:

B(ξ)

B(ξ) + δ(ξ)

and a death with probability:

δ(ξ)

B(ξ) + δ(ξ)
.

A M/M/∞ queue is a birth and death process used to describe a multi-server
queuing model, where its arrival rate is defined: λ :=

∫

E
b(ξ, x)dν(x) and service

rate is defined: µ := d. As the total service rate of aM/M/∞ queue is proportional
to its size, the process is always stable.

A Markov Chain Monte Carlo method is to let the birth rate b equals to the
Papangelou intensity of the desired point process X and the death rate d = 1, then
the Markov chain X̂ = {X̂t : t ∈ R} constructed converges to the distribution of X .
To obtain a perfect simulation, Kendall and Møller [9] introduce the dominating
process {Dt : t ∈ R} as a spatial birth and death process with death rate d = 1 and
birth rate b = H , where H is the upper bound of the Papangelou intensity of the
desired point process X . The intuition is to introduce a coupling (pairs of Markov
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chains, LTi
and UTi

) from the past, deriving from D that respect a partial ordering

on the state space X corresponding to X̂t under time-evolution, i.e.:

Lt ⊆ X̂t ⊆ Ut ⊆ Dt ∀s ≤ t ≤ 0,(3.1)

Lt = Ut if Ls = Us ∀s ≤ t ≤ 0,(3.2)

Next, we define a marking process {Mt : t ∈ R} which is independent from D

and such that we can adaptively contruct X̂ , L and U as functionals of (D,M)

. We denote the process X̂n as as the constructed Markov chain that begun at
time −n < 0. Suppose that we have coalescence between Ln and Un during the
progression from time −n to 0, then the exact equilibrium is attained by X̂n at
time 0, where we have Ln0 = X̂n

0 = Un0 .

Remark 3.1. Technically, we have to progressively increase n if coalescence failed
at time 0, however, in [12] suggested that it is efficient to iteratively doubling n, and
we let n ∈ { 12 , 1, 2, 4, · · · }. In later section Section 4, we will show that the running
time is bounded in limiting sense. Note that, D is extended for each doubling of n,
i.e. D[−2n,0] is computed from extension of D[−n,0].

Following are the configuration of a perfect simulation. For each jump times
{T1 < T2 < . . . } in the dominating process D:
if there is a birth of point x ∈ Λ\DTi−1

at time Ti, we set:

(3.3)

UTi
:= UTi−1

∪ {x} if MTi
≤

c(LTi−1
,x)

H ,
UTi

:= UTi−1
otherwise.

LTi
:= LTi−1

∪ {x} if MTi
≤

c(UTi−1
,x)

H ,
LTi

:= LTi−1
otherwise.

From Remark 2.1, we know that c(LTi−1
, x) ≥ c(UTi−1

, x).
On the other hand, if there is a death of point x ∈ DTi−1

at time Ti, we configure:
UTi

:= UTi−1
\{x} and LTi

:= LTi−1
\{x} respectively.

Suppose that the process (D,M) is stationary in time and X̂n, Ln and Un

for {n = 1, 2, 4, . . .} are derived adaptively from (D,M) satisfying (3.1) and (3.2),
then the following proposition follows immediately from the dominated convergence
theorem, see [9].

Proposition 3.1. Let N = inf{n ∈ { 12 , 1, 2, · · · } : Ln0 = Un0 }, and set Ln−n = ∅

and Un−n = D−n. If as t tends to infinity, X̂t converges weakly to an equilibrium
distribution π and the probability of D visiting ∅ in the time interval [0, t] converges
to 1, then almost surely N <∞ and LN0 = UN0 follows the equilibrium distribution
π.

3.2. Simulation of determinantal point processes. In this subsection, we gen-
eralize the idea of Kendall and Møller [9] by relaxing the condition of compactness.

Theorem 3.1. Given a DPP X defined on a Polish space E w.r.t. a Radon
measure ν. Suppose that the process D started with a Poisson point process (PPP)
with intensity measure:

(3.4)

∫

E

J(x, x)dν(x)
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−0.5 0 0.5
−0.5

0

0.5

(a) at time T0

−0.5 0 0.5
−0.5

0

0.5

(b) at time T25

−0.5 0 0.5
−0.5

0

0.5

(c) at time T50

Figure 1. CFTP simulations for Gaussian model DPP with ρ =
50 and α = 0.04, respectively at time Ti, the i-th jump time from
time t = −n. Notations: “·” := Dt, “∇” := Ut and “∆”(red) := Lt

and with birth rate b = J(x, x)dν(x) and death rate d = 1. Suppose further, the
marking process MTi

∼ Unif(0, 1), i.i.d. for each i and independent of D. Then
the process (D,M) is stationary in time and almost surely N < ∞ and LN0 = UN0
follows the distribution of DPP X.

Proof. Stationarity of the process (D,M) follows immediately as the process D
started with its equilibrium distribution, i.e. a PPP(J(x, x)dν(x)).

Following, the probability of D visiting ∅ in the time interval [0, t] converges to
1 as t tends to infinity. Consequently, from Proposition 3.1 we have LN0 = UN0
follows the distribution of DPP X . �

Algorithm 1 Simulation of determinantal point process

Sample D0 from PPP (
∫

E J(x, x)dν(x))
n← 1/2;
while TRUE do
D ← BackwardExtend(D,n);
[L,U ]← Coupling(D);
if L0 == U0 then
return L0

else
n← n ∗ 2;

end if
end while

In the pseudocode, we begin with setting n = 1/2 (in later Section 4, we will show
that we can replace n = 1/2 with log

∫

E J(x, x)dν(x)) and construct D backwards
in time to −n . Instead of reversing the birth and death rate, the process D
is a Glauber process with equilibrium measure

∫

E J(x, x)dν(x) and hence we can

initiate with state D̃0 = D0 = PPP (
∫

E
J(x, x)dν(x)) and simulate D̃n forwards

in time to time n with b = J(x, x)dν(x) and d = 1. Let D−t = D̃t for all t :
0 ≤ t ≤ n. We initiate the processes L and U from time −n with L−n = ∅
and U−n = D−n respectively, such that (3.1) is satisfied. The implementation of
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Algorithm 2 BackwardExtend(D,n)

j ← 0;
T (0)← n/2; {T (0)← 0 if n = 1/2}
D̃T (0) ← D−n/2; {D̃T (0) ← D0 if n = 1/2}
while T (j) ≤ n do

T (j + 1)← T (j)− log(Uniform(0, 1))/(
∫

E J(x, x)dν(x) + |D̃T (j)|);

if Uniform(0, 1) ≤ (
∫

E
J(x, x)dν(x))/(

∫

E
J(x, x)dν(x) + |D̃T (j)|) then

x← uniform random point in Λ\D̃T (j);

D̃T (j+1) ← D̃T (j) ∪ x;
else
x← uniform random point in D̃T (j);

D̃T (j+1) ← D̃T (j)\x;
end if
j ← j + 1;

end while
D−t ← D̃t for all t : n/2 < t ≤ n
return D

Algorithm 3 [9] Coupling(D)

L−n ← ∅;
U−n ← D−n;
for Ti ← each jump times T1 < T2 < · · · of D in ]− n : 0] do
if DTi

← DTi−1
∪ x then

u←MT ;
[LTi

, UTi
]← AddBirth(LTi−1

, UTi−1
, x, u);

else
x← DTi−1

\DTi
;

LTi
← LTi−1

\x;
UTi
← UTi−1

\x;
end if

end for
return [L,U ]

AddBirth(LTi−1
, UTi−1

, x, u) in Algorithm 3 follows directly from (3.3) which we
replace H as J(x, x)dν(x), hence we omit it here. In the algorithm, the coalescence
of processes Lt and Ut, and their convergence to the target distribution is assured
by Theorem 3.1.

4. Running time

In the previous sections, we have been concerned with the simulation of a DPP
defined on a Polish space E. Following, we will provide a bound for the running
time of the algorithm through the limiting behavior of a M/M/∞ queue.

As per notations used in Section 3, |Dt| is also called as theM/M/∞ queue with
arrival rate: λ =

∫

E
J(x, x)dν(x) and service rate: µ = 1. We defined the process

Gt := Ut\Lt for all t : R.
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The coalescence time of L and U (equivalently the running time of the algorithm)
is equal to the hitting time of Gt to ∅. From (3.3), a birth occur in Gt if and only
if there is a birth in Ut but not in Lt and a death occur in Gt if and only if a death
occur in Dt and the dead point x is in Ut but not in Lt. We obtain the arrival rate,
λG and service rate, µG of Gt as following:

λG = |E|(c(Lt, x)− c(Ut, x))(4.1)

µGt = |Gt|
|Ut|

(4.2)

Suppose that the process Gt initiated at time t = t0 and we have a sufficiently
large |Gt0 | = z, then after an exponential time, the process goes to size z + 1 with

probability λG

λG+zµG and z − 1 with probability zµG

λG+zµG . Hence, the next jump is

very likely to be a death. We can roughly approximate the order of hitting time by
z
∑

i=1

1

λG + iµG
∼

log z

µG

A rigorous approach is provided in [13], as the following Proposition 4.1.

Proposition 4.1. Given a M/M/∞ queue Gt with arrival rate λ and service rate
µ (initiated at t0, with |Mt0 | = z), the hitting time T∅ of ∅ is of the order log z.
Precisely:

lim
z→∞

Pr

(∣

∣

∣

∣

T∅
log z

−
1

µ

∣

∣

∣

∣

≥ ε

)

= 0.

On the other hand, the hitting time of Gt to ∅ is at least lower bounded by the
time where all the initial points in Gt0 perished, accodingly we have the following
Proposition.

Proposition 4.2. Given a M/M/∞ queue Gt with arrival rate λ and service rate
µt (initiated at t0, with |Gt0 | = z and µt0 = 1), the expected hitting time E[T∅] of ∅
is lower bounded:

(4.3) ln z ≤
z
∑

i=1

1

i
= E[T∅]

Proof. Given µt0 = 1, each of the initial point in the configuration Gt0 have living
period i.i.d. Exponential(1). It is not difficult to show that the expected value of
the maximum of z exponential random variable, xi with parameter 1 is:

E[max(xi)] =

z
∑

i=1

1

i
(harmonic series).

Hence, (4.3) is proved. �

From Propositions 4.1 and 4.2, given N = inf{n ∈ { 12 , 1, 2, · · · } : Ln0 = Un0 }

and the size of the initial configuration of the process GN−N equal to z, we have the
following:

• the expected hitting time is lower bounded by log z.
• the hitting time is upper bounded by z log z where 1

µG
t

≤ z.

Since the size of the configuration for GN−N is defined to be |UN−N\L
N
−N | = |D

N
−N |,

we now look into the limiting behavior of the re-normalized process of Dt. We
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introduce a scaling procedure to the underlying space of the process Dt by a factor
of W ∈ N. The scaled process is defined as:

DW
t :=

Dt

W

and the underlying space of the scaled process is:

(4.4) EW : |EW | =W |E|.

The size of the initial configuration DW
t0 is deterministic, where |DW

t0 | is a non-
negative integer such that:

lim
W→∞

|DW
t0 |

W
=: x ∈ R

+ ∪ {0}.

We have the following theorem from the functional law of large number in [13].

Theorem 4.1. Given a M/M/∞ queue Dt with arrival rate λ and service rate µ
(initiated at t = t0) and T ∈ R, define:

(4.5) f(t) :=
λ

µ
+ (x−

λ

µ
)e−µ(t−t0),

then as W tends to infinity,

sup
t0≤t≤T

|DW
t |

W

d
−→ sup

t0≤t≤T
f(t)

Proposition 4.3. Suppose given a M/M/∞ queue Dt defined on a E with arrival
rate λ =

∫

E J(x, x)dν(x) and service rate µ = 1. Suppose further Dt is initiated at
t = t0, with Dt0 = PPP(J(x, x)dν(x)), then we have

(4.6) sup
−t0≤t≤T

|Dt| = O

(

max

(

x,

∫

E

J(x, x)dν(x)

))

,

Proof. Given λ =
∫

E
J(x, x)dν(x) and µ = 1, the equilibrium distribution of the

process Dt is PPP(J(x, x)dν(x)), i.e.

|Dt| ∼ Poisson

(
∫

E

J(x, x)dν(x)

)

and with the scaling W , the scaled process DW
t :

|DW
t | ∼ Poisson

(
∫

EW

J(x, x)dν(x)

)

Hence, the limiting sequence of (
|DW

t
|

W ) converges in distribution to Dt, i.e.:

DW
t

W

d
−→ Dt.

From Theorem 4.1, as W tends to infinity, we have:

sup
t0≤t≤T

|DW
t |

W

d
−→ sup

t0≤t≤T

∫

E

J(x, x)dν(x) +

(

x−

∫

E

J(x, x)dν(x)

)

e−µ(t−t0)

= sup
t0≤t≤T

xe−µ(t−t0) +

∫

E

J(x, x)dν(x)(1− e−µ(t−t0))

= O

(

max

(

x,

∫

E

J(x, x)dν(x)

))
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Therefore (4.6) is proved �

If we fixed x =
∫

E J(x, x)dν(x), applying Proposition 4.3 to Proposition 4.1, we
have the stopping time of the algorithm upper bounded by:

(4.7) O

(
∫

E

J(x, x)dν(x) log

∫

E

J(x, x)dν(x)

)

,

and if for all x ∈ E, J(x, x) = H a constant, i.e. a stationary model DPP, then the
upper bound is:

O(H |E| logH |E|).

Heuristically, we shall see that the running time of the algorithm is much lower
than the bound (4.7) in Section 5.

5. Application to examples in stationary models

−0.5 0 0.5
−0.5

0

0.5

(a) Gaussian Model

−0.5 0 0.5
−0.5

0

0.5

(b) Matérn Model (ν = 5)

−0.5 0 0.5
−0.5

0

0.5

(c) Cauchy model (ν = 5)

Figure 2. Configurations of stationary DPPs simulated from
CFTP algorithm. ρ = 50 and α = αmax/2 for all the 3 models.

Point processes and random measures that are invariant under shifts in a d-
dimensional Euclidean space Rd play a vital role in applications and development
of the general theories. Accordingly in this section, we will be focusing on stationary
DPP models defined on a compact set Λ = [−1/2, 1/2]2 in R2, where we denote
l ∈ ∆ := {x− y : x, y ∈ Λ} and

K0(l) := K(x, y).

Suppose we are given a DPP kernel, it would be ideal if we could explicitly compute
the Papangelou intensity (upper bound) in Lemma 2.1, however (see [4] and [10])
there are only known in a few simple models where the Papangelou intensity can be
computed from the spectral representation. In the sequel, we will approximate the
kernel in (2.1) by applying Fourier expansion to obtain the Papangelou intensity.

Consider the following orthonormal Fourier basis in L2(∆):

(5.1) ϕ∆
k (l) = e2πik·(l), k ∈ Z

2, l ∈ ∆

where k · l is the dot product of the vectors. We have the Fourier expansion of K0(l)
as:

K0(l) =
∑

k∈Z2

λ∆k ϕ
∆
k (l).
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equivalently:

K(x, y) =
∑

k∈Z2

λ∆k ϕ
∆
k (x)ϕ

∆
k (y),

where the Fourier coefficients:

λ∆k =

∫

∆

K0(l)e
−2πik·rdl

≈

∫

R2

K0(r)e
−2πik·rdr =: λk

As K0(l) ≈ 0 when |l| > 1, we have Fourier transform as an approximation for the
Fourier coefficient.

Corresponding to [10], let ρ defined the intensity of the DPP and we apply
the CFTP simulations on the following three stationary models and their Fourier
transform respectively:

(1) Gaussian model: for ρ ≥ 0 and 0 < α ≤
√

1
πρ

K(x, y) = ρ exp

(

−
1

α2
‖x− y‖2

)

(5.2)

λk = πα2ρe−π
2α2‖k‖2

(5.3)

(2) Matérn model: for ρ ≥ 0, ν > 0 and 0 < α ≤
√

1
4πνρ

K(x, y) = ρ
21−ν

Γ(ν)αν
‖x− y‖νKν(

1

α
‖x− y‖)(5.4)

λk = 4πα2ρ
ν

(1 + 4π2α2‖k‖2)1+ν
(5.5)

(3) Cauchy model (generalized): for ρ ≥ 0, ν > 0 and 0 < α ≤
√

ν
πρ

K(x, y) =
ρ

(1 + 1
α2 ‖x− y‖2)1+ν

(5.6)

λk =
21−νπα2ρ

Γ(1 + ν)
‖2παk‖νKν(‖2παk‖)(5.7)

where Kν is the modified Bessel function of the second kind. The integral repre-
sentation of the function is:

Kν(z) =

(

z
2

)ν
Γ(12 )

Γ(ν + 1
2 )

∫ ∞

1

e−zt(t2 − 1)ν−
1
2 dt

As z tends to 0, we have Kν(z) tends to infinity and limz→0 z
νKν(z) =

Γ(ν)
21−ν . In

Matérn model, we have K(x, x) = ρ, and in Cauchy model, we have λ0 = πα2ρ
ν . See

other representations of Kν(z) in [7].
From Lemma 2.1 and (2.4), we set the upper bound of the Papangelou intensity:

(5.8) H = JΛ(x, x) =
∑

k∈Z2

λk
1− λk

In practice we are unable to compute the infinite sum of the Fourier expansions.
From (2.2), a rule of thumb will be choosing a constant N large enough such that
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that:

(5.9)
∑

−N≤i,j≤N

λ∆i,j ≈ ρ

For the given models, we compute their pair correlation function g(r) to inves-
tigate the reliability of the simulations, where r := ‖x− y‖2. Given any 2 points x
and y in a configuration, their pair correlation function is given as:

g(r) :=
ρ2(x, y)

ρ1(x)ρ1(y)
= 1−

K(x, y)K(y, x)

K(x, x)K(y, y)

and respectively for:

(1) Gaussian model:

g(r) = 1− e−2(r/α)2 ,(5.10)

(2) Matérn model:

g(r) = 1− [21−ν(
r

α
)νKν

( r

α

)

/Γ(ν)]2,(5.11)

(3) Cauchy model:

g(r) = 1− (1 + (r/α)2)−2ν−2.(5.12)

In this paper, we fixed N such that the sum is at least 99.9% of ρ. In Figure 3,
we compare the distribution of the size of DPP simulated with its actual distri-
bution given by a Poisson-binomial distribution, see [5]. Here, we use the term
actual for the truncated Fourier expansion to approximate the kernel. From [3],
the probability mass function (PMF) of the Poisson-binomial distribution can be
written in the form of discrete Fourier transform as:

Pr(|X | = n) =
1

N + 1

N
∑

k=0

e
−2πikn

N+1

N
∏

m=1

(

pme
2πik

N+1 + (1− pm)
)

25 30 35 40 45 50 55 60 65 70 75
0
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0.04

0.05

0.06

0.07

0.08

0.09

 

 
Actual
Simulation

Figure 3. PMF of 500 Gaussian models with ρ = 50 and α = 0.04.

Figure 4 is a comparison of the theoretical pair correlation function g(r) with
the simulated DPP results for ρ = 50 and α is fixed to be αmax/2. For both Matérn
Model and Cauchy Model, ν = 5. With regards to the the error in g(r) when r
tends to 0, we lost some ‘harmonic’ in the Fourier approximations when computing
the Papangelou intensity.
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(a) Gaussian Model
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(b) Matérn Model

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

 

 

Theoretical
Simulation

(c) Cauchy model

Figure 4. Pair Correlation Function.

Figure 5(a) and Figure 5(b) show the distributions of the coalescence time of
Lt and Ut and the stopping time of the algorithm for 500 Gaussian model DPP
simulations with ρ = 50. The stopping time refer to the time −n required to
simulate backwards such that coalescence of Lt and Ut occur at time t = 0. Heuris-
tically, we have shown that the stopping time is much lower than the upper bound
H |Λ| logH |Λ|, (H ≈ 57.5).
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