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Abstract-In this paper we introduce a model-based Bayesian denoising framework for 

Phonocardiogram (PCG) signals. The denoising framework is founded on a new 

dynamical model for PCG which is capable of generating realistic synthetic PCG signals. 

The introduced dynamical model is based on PCG morphology and is inspired by 

Electrocardiogram (ECG) dynamical model proposed by McSharry et al. and can 

represent various morphologies of normal PCG signals. The Extended Kalman Smoother 

(EKS) is the Bayesian filter that is used in this study. In order to facilitate the adaptation 

of the denoising framework to each input PCG signal, the parameters are selected 

automatically from the input signal itself. This approach is evaluated on several PCGs 

recorded on healthy subjects, while artificial white Gaussian noise is added to each signal, 

and the SNR and morphology of the outputs of the proposed denoising approach are 

compared with the outputs of the Wavelet Denoising (WD) method. The results of the 

EKS demonstrate better performance than WD over a wide range of PCG SNRs. The new 

PCG dynamical model can also be employed to develop other model-based processing 

frameworks such as heart sound segmentation and compression. 

 

Phonocardiogram (PCG), dynamical model, denoising, extended Kalman 

smoother (EKS) 
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1. Introduction 

The Phonocardiogram (PCG) signal contains valuable information about the human heart 

as it provides a quantitative and graphical representation of the acoustic waves produced 

by the mechanical activity of the heart. Generally, heart sounds and murmurs are two 

kinds of the acoustic vibrations of the heart. Heart sounds consist of two audible 

consecutive components known as S1 and S2, and occasionally two more components S3 

and S4. These sounds are due to opening and closure of heart valves and also to vibrating 

cardiovascular structures. The murmurs are noise-like signals, a consequence of turbulent 

blood flow, and are usually signs of pathologic changes in the heart. Cardiac auscultation 

is a basic clinical tool to detect heart sounds and has a long history in cardiology. The 

Electrocardiogram (ECG) signal, on the other hand, reveals the electrical activity of the 

heart and has useful information that is used to assess the condition of the heart. The ECG 

is not normally used unless a problem has been previously detected by auscultation, since 

setting up an ECG recording is a time-consuming process and is thus not used as a 

standard test; while PCG is easily obtained by placing the stethoscope against the skin. 

But PCG signals are usually corrupted by some sources of noise, such as breath sounds, 

contact of the recording microphone with the skin, fetal heart sounds if the subject is 

pregnant, and ambient noise. In fact, a much more useful diagnostic tool becomes 

available as soon as the unwanted noise is removed from the PCG. 

In the past decade, great advances in ECG signal processing have been achieved that are 

originated from a novel dynamical model for ECG signal [4]. The ECG dynamical model 

introduced by McSharry et al. [4] was primarily intended for assessing biomedical signal 

processing techniques used to compute clinically relevant statistics from the ECG. 

Afterwards, Sameni et al. [6], and Sayadi et al. [8, 9], by use of this model and nonlinear 

Bayesian filtering framework created a model-based processing framework for ECG. 

Effectiveness of this approach motivates us to create a similar framework for PCG 

processing. 

In a recent work [1], the authors suggested a morphology-based dynamical model capable 

of generating synthetic PCG which was inspired by McSharry's dynamical model for 

ECG. In the current study, the synthetic PCG model is further discussed and then this 

approach is explored to establish a model-based processing framework for PCG 

denoising. 

The paper is organized as follows. In Section 2 the ECG dynamical model proposed by 

McSharry et al. [4] and the model-based ECG processing are briefly reviewed. This 

section also provides the necessary background of the Bayesian filtering that is used in 

the paper. PCG morphology and proposed dynamical model are presented in Section 3. 
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The details of the proposed model-based denoising framework are presented in Section 4. 

Section 5 provides the simulation results of synthetic PCG generator and model-based 

denoising framework. A description of dataset and PCG Wavelet denoising approach 

used as a benchmark for the proposed method are also presented in Section 5, and finally 

concluding remarks and some perspectives are reported in Section 6. 

2. Review of ECG dynamical model and Model-based 

ECG Processing framework 

2.1. ECG dynamical Model 

In 2003, McSharry et al. [4] proposed a dynamical model for generating realistic 

synthetic ECG signal using a set of state equations that generates a three-dimensional (3-

D) trajectory in a 3-D state space with coordinates (x, y, z). The model consists of a 

circular limit cycle of unit radius in the (x, y) plane around which the trajectory is pushed 

up and down as it approaches the P, Q, R, S and T points in the ECG. Quasi-periodicity 

of the ECG is reflected by the movement of the trajectory around the attracting limit 

cycle. The dynamical equations of motion are given by a set of three ordinary differential 

equations in Cartesian coordinates: 

 
 

2

02

, , , ,

exp
2

i

i i

i P Q R S T i

x x y

y y x
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
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

 

 

 
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
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     (1) 

where 2 2
x y   ,    mod 2

i i
      ,  atan 2 ,y x   is the four quadrant 

arctangent of the elements of x  and y , ranging over  ,  , and   is the angular 

velocity of the trajectory as it moves around the limit cycle, and is related to the beat-to-

beat heart rate as  
2

( )
t

R t


   where  R t  represents the time series generated by the 

RR-intervals. x  and y  in (1) are in fact the (x,y) components of Cartesian coordinates 

system and the first two equations in (1) represent the limit cycle of unit radius which 

moves around the origin with angular velocity  . The baseline wander of the ECG is 

modeled with the parameter 
0

z  that is assumed to be a relatively low amplitude 

sinusoidal component coupled with the respiratory frequency 
2

f  using 

 0 2
sin 2z A f t         (2) 

where 0.15A mV . 
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By neglecting the baseline wander term  0
z z  in (1), and integrating z  equation, it can 

be seen that each component of the ECG waveform is modeled with a Gaussian kernel 

which has three parameters 
i

 , 
i

a , 
i

b . 

Values of the model parameters (
i

 , 
i

a , 
i

b ) for each ECG beat can be obtained by curve 

fitting. Typical values of these parameters for the P, Q, R, S and T points taken from [4] 

are shown in Table 1. The times and angles are relative to the position of the R-peak since 

it is always assumed to have zero phase and the ECG contents lying between two 

consecutive R-peaks are assumed to have a phase between   and  . The dynamic 

state equations proposed by [4] can also be written in polar coordinates as follows [6]: 

 
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 
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, , , ,

1
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2

i i

i
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r r r

z z z
b b

 

  




 



 
      

 
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
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      (3) 

In the above equation, the 
i

a  
terms in (1) are replaced with: 

 
2

            ,              , , , ,
i

i

i

a i P Q R S T
b

 
       (4) 

 where 
i

  are the peak amplitude of Gaussian kernels used for modeling each component 

of the ECG. 

The new set of equations has some benefits compared to [1]. The first equation in (3) 

shows the circular behavior of the generated trajectory by the model, which for any initial 

value of 1r   reaches to a steady state of 1r   representing the limit cycle. The phase 

parameter   has an explicit representation and indicates the angular location of the 

trajectory generated by the dynamical model (Table 1). On the other hand, the second and 

third equations in (3) are independent from r , making the first equation redundant. 

Therefore the first equation may be excluded as it has no effect on the synthetic ECG. 

2.2. Model-based ECG processing 

For the first time, Sameni et al. [6] used the ECG dynamical model to denoise ECG 

signal. They discretized the dynamical model of (3), with the assumption of a small 

sampling period of   as: 

   1

2

1 2 2

mod 2

exp
2

k k

i i

k i k
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z z
b b
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  





 

 
      

 


     (5) 
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where    mod 2
i k i

      , 
 

is a random additive noise that models the 

inaccuracies of the dynamical model (including the baseline wander), and the summation 

over i  is taken over the number of Gaussian functions used for modeling the shape of 

ECG signal. Then, they combined the discrete version of the model with Kalman Filter 

concept and devised a framework for ECG denoising. In this framework, the phase signal 

  and the clean ECG signal z  are considered as state variables, and the parameters of 

Gaussian functions as process noises. The noisy ECG and the approximated phase signal 

calculated from the RR-series are considered as observations. 

Sayadi et al. [8] used this model-based processing framework for ECG compression and 

denoising. For this purpose, a first order Auto-Regressive dynamic was given to each 

parameter of the Gaussian functions and then they were included as state variables (but 

with no explicit observation). This technique facilitates the estimation of these parameters 

by the filter. Thus, the segmentation of ECG is possible by means of this framework [9].  

2.3. Review of the Extended Kalman Filter and Kalman Smoother 

2.3.1 Extended Kalman Filter 

Filtering and estimation are two of the most pervasive tools of engineering. Estimation of 

the hidden states of a system with an underlying dynamic model is a typical problem in 

estimation theory. The Kalman Filter (KF) is one of the most widely used methods for 

such purposes when the system dynamics and observation equations are linear. However, 

most systems are in practice nonlinear and so suitable extensions to the KF have been 

sought. The Extended Kalman Filter (EKF) is the most common approach for nonlinear 

systems which simply linearizes all nonlinear equations of the model. 

The dynamic model of a nonlinear system, with state vector 
k

X
 
and observation vector 

k
Y  

at time instant k , can be represented as follows: 

 

 

1
,

,

k k k k

k k k k

F

G






X X W

Y X V
        (6) 

where 
k

W
 
and 

k
V

 
are the process and observation noise vectors respectively, with 

associated covariance matrices  
T

T
k kk k k

Q E W W W W  and  
T

T
k kk k k

R E V V V V , 

where  k k
EW W

 
and  k k

EV V . The  .k
F

 
represents the dynamic model of the 

state vector and  .k
G

 
characterizes the relationship between state variables and the 

observations. To use the KF relations for this system, a linearized version of the all 

nonlinear system equations must be derived. The linearization of (6) leads to: 
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With these notations, the EKF algorithm may be summarized as follows [3]: 
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where  0 1
ˆ , ,

k k k
E




X X Y Y

 
is the a priori estimation of 

k
X

 
which uses all the 

observations till time instant 1k   to estimate the 
k

X . 
k

I  is the innovation vector, 

  ( )( )
T

k kk k k
P E

 

  X X X X

 
 and   ( )( )

T
k kk k k

P E  X X X X  are respectively the 

a priori and the a posteriori estimation of the state vector covariance matrix, and 

  0
, ,k k k

E X X Y Y  is the a posteriori estimation of 
kX . By knowing the initial 

estimate of the state vector 
0X  and state covariance matrix 

0
P , estimation of the state 

variables through the recursive procedure would be possible. 

2.3.2 Extended Kalman Smoother 

The Kalman Smoother (KS) estimates the state of a system at time instant k using the 

observations before and after k . As with the EKF, the Extended Kalman Smoother (EKS) 

is the extension of KS to nonlinear systems. The performance of the EKS is generally 

superior to the EKF, since it uses additional observations for its estimate. The EKS 

algorithm essentially consists of a forward EKF algorithm up to each time instant k , 
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combined with a backward recursive smoothing algorithm using the observations beyond 

time instant k . Smoothing algorithms are usually divided into three types: fixed-interval, 

fixed-lag, and fixed-point [3]. Fixed-interval smoothers use all the observations over a 

fixed interval to estimate the state of a system at all times in the same interval and are 

most common used for off-line processing. In this paper, the fixed-interval EKS is used, 

since the filtering procedure is performed off-line on the whole length of each PCG 

signal. 

3. Proposed PCG model 

The cardiovascular system has a quasi-periodic nature which arises from quasi-periodic 

activity of cardiac electrical system. In other words, the cardiac electrical system sends 

electrical pulses alternatively which stimulate the heart and cause it to contract. The 

quasi-periodic nature of the heart makes its output signals quasi-periodic too. However, 

this quasi-periodicity means that cardiac signals follow a semi-deterministic pattern in 

each heartbeat, while some elements (or parameters) of this pattern may vary from beat to 

beat, which reflect the stochastic characteristics of heart signals. As an illustration, in 

McSharry’s model for ECG signal, the semi-deterministic pattern is the sum of five 

Gaussian kernels as 

 

2

2

, , , ,

exp
2

i

i

i P Q R S T i

z
b






 
  

 
      

where the kernels’ parameters model the stochastic characteristics of the ECG in each 

beat and are assumed to be random variables whose mean values are shown in Table 1. 

In the recent years, some attempts have been made to model the two dominant 

components of the PCG, namely S1 and S2. Auto-Regressive Moving-Average (ARMA) 

models and higher order spectra analyses were then explored [10, 11]. The main 

drawback of such statistical models is that they ignore the quasi-periodic morphology of 

the signal. Mathematical models based on signal morphology for representing the time 

and frequency characteristics of the PCG were also investigated [2, 14, 15]. But they on 

the other hand ignore the stochastic characteristics of the signal. Furthermore, in some 

other works, Matching Pursuit (MP) algorithm was used for analysis and synthesis of the 

phonocardiogram, but no explicit models were proposed [7, 12, 13, 16]. Therefore, lack 

of a dynamical model for generating artificial PCG signals is easily felt. 

 

3.1. Phonocardiogram morphology 

A PCG beat mainly consists of two distinct sounds, S1 and S2, sample waveforms of 

which are depicted in Figure 1. Waveforms of heart sounds vary from subject to subject 

and from beat to beat in amplitude, number of peaks and troughs, and spread in time. 
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With all these differences, still there are some analogies among all waveforms. A closer 

look at the waveforms suggests the idea of damped sinusoids, since the frequency of 

vibration is almost constant along their waveforms. On the other hand, several Gaussian 

functions can model their envelope shapes. Hence, based on PCG morphology, it seems 

that Gabor kernels may be an appropriate choice for modeling heart sounds waveform. 

The idea of using Gabor kernels for modeling heart sounds is quite consistent with the 

previous works done on analysis and synthesis of the heart sounds using Matching 

Pursuit algorithm over a dictionary consisting of Gabor atoms [7, 12, 13, 16]. As a result, 

one heartbeat of PCG signal, including S1 and S2, can be modeled as follows: 

     1 2z S S           (10) 

and 

 
 

 

 
 

 
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 
 
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    (11) 

where 
i

 ,
i

 , and 
i

  are the amplitude, center and width parameters of the Gaussian 

terms, and 
i

f  ,
i

  are frequency and phase shift of the sinusoid terms, respectively, and 

m  and n  indicate the number of Gabor kernels used for modeling each heart sound ( m  

kernels for S1 and n  kernels for S2). The model parameters are random variables with 

specific probability density function. In other words, these random variables model the 

stochastic characteristics of each PCG beat.   is the phase parameter in radians which 

indicates the relative time-difference of the events in a PCG beat with respect to a fixed 

reference point. Such a reference point must be easily detectable in each heartbeat. Since 

finding such a point in the PCG needs very complicated processing techniques, an 

external reference point may be used. As it can be seen from Figure 1, there is a close 

relationship between events in ECG and PCG. For example, the S1 occurs slightly after 

the ECG R-peak. Hence, the R-peak in the simultaneously recorded ECG signal can be 

considered as an external reference point. On the other hand, to extract heartbeats from 

the PCG, we set down the criterion that the middle point of each R-to-R distances is 

considered as the ending point of the previous beat and starting point of next beat (as 

illustrated in Figure 4); so PCG beats become distinguishable. Therefore, the phase signal

 for each PCG beat would be as the same as the phase signal defined in [4]. Thus,   

ranges in [ , ]   and as it is a function of time (since heartbeat duration may vary in 

time),  z  can also be seen as a time-dependent function. This issue is employed in the 

introduced dynamical model for the PCG in next section. The 
i

 , 
i

  and 
i

  parameters 

are in radians, while the 
i

f  is without dimension. In fact, 
i

f  is the frequency coefficient 
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of each Gabor kernel; by multiplying 
i

f  by 
m

f , the actual frequency of each kernel (in 

Hertz) is obtainable where 
m

f  is the heart rate in Hertz.  

3.2. Phonocardiogram dynamical model 

Like McSharry’s model for ECG, the proposed dynamical model for PCG generates a 3-

D trajectory Whose projection on the (x,y) plane moves around a limit cycle of unit 

radius. Each revolution on this circle corresponds to one heartbeat. Waveform of 

phonocardiogram signal is produced using the motion of the trajectory in the z direction. 

The dynamical equations of the trajectory of the model are given by a set of three 

ordinary differential equations, 

 

 
 

 
 

 

2 2

2 2 2

1

1

1 2

 exp cos exp sin
2 2

m n

i ii

i i i i i i i

i i i i

r r r

S S
z

t t

f f f

 

   
       
  





 



 
 

 

     
           

    
    









          

(12) 

where  atan2 ,y x 
 
is the four quadrant arctangent of the real parts of the elements of 

x and y, with      , and can be interpreted as the phase signal defined in previous 

section.   is the angular velocity of the trajectory as it moves around the limit cycle and 

is related to beat-to-beat heart rate by 
2

( )
( )

t
R t


 

 
where ( )R t  represents the time series 

generated by the RR-intervals using the synchronous ECG signal. Considering   

constant, and integrating the third equation in (12), we reach to equation (10).  However, 

in the condition of   being variable in time, the equations of motion given by (12) are 

integrated numerically using a fourth-order Runge-Kutta method with a fixed time step 

1 /
s

t f   where 
s

f  is the sampling frequency of the synthetic PCG signal. Thus, both 

beat-to-beat heart rate (HR) and sampling frequency of the synthetic PCG signal can be 

adjusted.  

The model parameters of (12) for a PCG signal can be easily achieved by fitting (11) to 

signal heartbeats. All parameters except 
i

  are independent from the synchronous ECG 

signal. The 
i

  parameters indicate the location of Gabor kernels with respect to the R-

peak in the synchronous ECG.  

The PCG, in contrast to ECG, is less quasi-periodic and variation of PCG model 

parameters from beat to beat is significant. However, to give a visual perception of the 

model parameters, Table 2 shows their mean values which are achieved by the analysis of 
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normalized PCG of a healthy subject, where each heart sound is modeled with two Gabor 

kernels.  

A trajectory generated by (12) in three dimensions is depicted in Figure 2. The z variable 

of this trajectory, when plotted versus time, represents the synthetic PCG signal with 

realistic morphology. 

 

 

4. Model-based PCG denoising framework 

In the conventional denoising approaches, we usually look for a technique that removes 

(or reduces) the effect of the noise contaminating the desired signal. But from a statistical 

signal processing viewpoint, denoising may be considered as an estimation approach of 

the desired signal from its noisy version. As described before, the KF is one such method 

and may be used if the underlying dynamic model of the system is known. In order to do 

so, we intend to use the PCG dynamical model introduced in Section 3.2 within a KF 

framework. 

The main concept of the proposed Bayesian denoising framework for PCG is illustrated 

in Figure 3. In this framework, the PCG and the phase signal are considered as the states 

of a system whose underlying dynamic model is provided by the PCG dynamical model. 

This section concerns the details of the proposed denoising framework.  

4.1. Combining the proposed dynamical model with the Kalman filter structure 

Assuming a small sampling period of  , we can discretize the equations of (12) as 

1

1

k k

k k
z z

z

 




















         (13) 

Therefore, the discrete version of introduced dynamical model in (12) is as follows: 

 
 

 

 
 

1

2

1 2 2

2

2

exp cos
2

                            exp sin
2

k k k

k ii

k k k k i i k i

i i i

k i

i i i k i k

i

z z f

f f

  

 
    

 

 
   







 

  
       

 
 

 
   

  
  

   (14) 

where 
k


 
is a random additive noise that models the uncertainty of the dynamic model. 

The 
i

 ,
i

 ,
i

 ,
i

f ,
i


 
and   are random variables in each beat, which can be assumed as 

i.i.d. Gaussian random variables, and as Gaussian random processes in time. Henceforth, 
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to make the model fit into Kalman filter framework, we assume 
k

  
and 

k
z  

as state 

variables, and the 
i

 ,
i

 ,
i

 ,
i

f ,
i

 ,
k

  and 
k

  as process noises. Thus, the state 

variables and process noise vector are defined as follows: 

 

1 1 1 1 1
          

T

k k k

T

k l l l l l k k

z

f f



         



   

X

W     
 (15) 

where l m n   is the total number of Gabor kernels used to model the heart sounds, and 

the process noise covariance matrix is  
T

T
k kk k k

Q E W W W W . The process noises are 

considered to be uncorrelated and as a result the covariance matrix of the process noise is 

diagonal.  

4.2. Linearization of the PCG dynamical model 

Since the state equations are nonlinear, Extended Kalman Filter should be used. In order 

to set up an EKF, it is necessary to linearize the nonlinear state equations. So by defining

1k
F and

2 k
F as: 

1 1

1 2

( , )

( , , , , , , , , )

k

k

k k k

k k k i i i i i k k

F

z F z f

  

      








      (16) 

the following equations represent the linearized model with respect to the state variables

k
 and

k
z : 

1 1 2
0             ,             1

k k k

k k k

F F F

z z

  
  

  
 

   
 

 
 

 

 

2 2

2

2 2 2

2

2 2

2

2

2

1 exp cos
2

                         exp sin
2

                          exp co
2

k k i k ii

k i k i

k i i i i

k ii i

k i i k i

i i

k i

i i

i

F
f

f
f

f

   
  

   

 
   

 

 




     
        
   
   

 
    
 
 

 
 
















 s
i k i

f  






 (17) 

Similarly, the linearized versions of (16) with respect to process noises are as 

   
 

 
 

1 1 1 1 1 1 1

2

2

2 2

2

2

0         ,         

exp cos
2

           exp sin
2

k k k k k k k

k

i i i i i k k

k i k i

k i k i

i i i

k i

i i k i

i

F F F F F F F

f

F
f

f f


     

   
  

  

 
 



      
      

      

    
      

 
 

 
  

  
  
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 
2 1: 1:

1                     ,                       1 , 2
k m n

k

F
i S S




 

     (18) 

4.3. Observation equations 

There are two state variables in the proposed framework: the PCG
k

z , and the phase
k

 . 

The noisy PCG which is recorded and is available may be considered as observation for 

the PCG
k

z  , and can be written as 
2kk k

S z v   where 
2 k

v is the noise of PCG signal. 

However, we look for another observation for the state variable 
k

 . This issue is 

completely studied in [6] and can be extended to our framework where the phase signal 

k


 
can be obtained from the associated ECG signal. As explained in Section 3.1, the R-

peak may be assumed to be an external reference point for the heart sounds and hence is 

located at 0  . Accordingly, the ECG contents lying between two consecutive R-peaks 

are assumed to have a phase between   and  , as illustrated in Figure 4. So by simply 
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detecting the R-peaks in the synchronous ECG, the observation for the phase signal 
k

  
is 

achieved [6]. This linear approximation of phase is considered as phase observation and 

can be written as: 
1kk k

v    where 1k
v  is the noise of the phase signal.   

Hence, the noisy PCG and the phase observation can be related to the state vector as 

follows: 

1 0

0 1
k k k

 
  
 

Y X V         (19) 

where  
T

k k k
S Y ,

1 2k k

T

k
v v 
 

V .  
T

T
k kk k k

R E V V V V  is the covariance 

matrix of the observation noise vector. Although the noises contaminating PCG may be 

generally nonlinear and non-Gaussian, but for simplicity in this study, they all are 

assumed to be an additive white Gaussian noise i.e. 
2 k

v . The 1k
v

 
and 

2 k
v

 
are considered 

to be uncorrelated and therefore the covariance matrix of the observation noise is 

diagonal.  

4.4. Denoising Procedure 

As illustrated in Figure 3, in order to denoise PCG signal, the discrete version of 

dynamical model in (14) is used within a Kalman filter structure. The PCG and phase 

signals are assumed as state variables which are estimated from their observations, 

namely noisy PCG and approximated phase signal calculated from synchronous ECG.  

4.4. Estimation of the KF parameters 

For the implementation of the filter, the values of the measurement and process noise 

covariance matrices should be known. As we use l  Gabor kernels in (12) for modeling a 

PCG beat, consequently the process noise vector defined in (15) has 5 2l   elements, and 

the covariance matrix of the process noise, 
k

Q , has a dimension of (5 2) (5 2)l l   . 

Nevertheless, assumption of uncorrelated noise sources, which here is a reasonable 

assumption, may lead the 
k

Q  matrix to be diagonal, similar to 
k

R . It is more convenient 

to automate the parameter estimation from the signal itself since these parameters should 

be adjusted for each input PCG signal. As described before, each PCG beat can be plotted 

in cylindrical coordinates ( , , )r z , where 1r  ,   and z  equal to phase and PCG 

signals, respectively. A phase-wrapped PCG of several beats obtained by this approach is 

illustrated in Figure 5. The mean and variance of this phase-wrapped PCG may be 

calculated for all phases between   and   (or 0  and 2 ). This gives the average of 

the PCG waveform, including S1 and S2. The mean and standard deviation of the same 

PCG signal depicted in Figure 5 is shown in Figure 6. Now it is possible to estimate the 
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model parameters for the given PCG signal. Here the problem is to find the optimal 

parameters of (12) that can best model the mean PCG. There are many optimization 

methods that can be used for this purpose. In this case, the lsqnonlin function of 

MATLAB
®
 was used to find the model parameters of the Gabor kernels. 

An estimation for the variances of the process noises (except 
k

  and 
k

 ) may be done 

using the standard deviation of the phase-wrapped PCG. In fact, the deviation of the 

parameters of the Gabor kernels in (12) around the estimated mean should be calculated. 

Again, a nonlinear least-square optimization method should be used to find the optimal 

parameters that generate the best model of the mean PCG within the upper and lower 

ranges of ( ) ( )
PCG

PCG     and ( ) ( )
PCG

PCG    .  

As discussed in section 3.2, the angular frequency   may be related to beat-to-beat heart 

rate as 
2

( )R t


  , where ( )R t  is the RR-series in ECG signal. Therefore, mean and 

standard deviation of   can be easily calculated using the RR-intervals of the whole 

ECG signal (in on-line processing estimation of the mean and SD of the parameter   

may be obtained from the first portions of ECG signal). As said before, 
k

  
models the 

uncertainty of the dynamical model which is assumed as a white Gaussian noise with 

appropriate variance.  

The measurement noise of the phase signal 1k
v

 
arises from sampling error whose 

interpretation is quite studied in [6]. According to it, 1k
v  would be uniformly distributed 

in the range of [ / 2, / 2]   , where   is the sampling period, and as a result 

2 2

1
{ } ( ) / 12

k
E v  . 

There are some methods to estimate the variance of the measurement noise, 
2 k

v . One way 

is to calculate the noise power from the deviation of the whole signal around the mean 

PCG, or from the portions of PCG signal where there are no events, namely S1 and S2. 

5. Simulation results and discussions 

The proposed PCG dynamical model and model-based PCG Bayesian denoising 

framework were finally implemented in MATLAB
®
. All the PCG and ECG signals used 

in this study were normalized and the results presented next are based on this issue. 

5.1. Dataset   

PCG signals are provided by Prof. Louis-Gilles Durand of the IRCM (Institut de 

Recherche Clinique de Montréal), Quebec, Canada. The data were recorded on healthy 

subjects at the pulmonary area (2nd and 4th left intercostal space along the sternal border) 
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and at the apex on the chest wall, using 2 types of microphones (BSM, Andromed). Four 

series of recordings were performed: 1) BSM1 at 2nd LICS and BSM2 at the apex; 2) 

BSM1 at 2nd LICS and BSM2 at 4th  LICS; 3) Microphone 1 at 2nd LICS and 

Microphone 2 at the apex; 4) Microphone 1 at 2nd LICS and Microphone 2 at 4th  LICS. 

Heart sounds and electrocardiogram were recorded simultaneously. The sampling rates of 

ECG and PCG are 200Hz and 2000Hz, respectively; in this study both signals are 

resampled to 1000Hz. 

5.2. Synthetic PCG generator 

As mentioned in section 3.2, PCG model parameters may vary from beat to beat, and also 

person to person. To have an understanding of the valid model parameters for PCG, a 

comprehensive investigation should be done. In this study, the synthetic heart sounds are 

generated using the model parameters obtained from analysis of PCGs of some healthy 

people. Figure 7 illustrates four different morphologies of synthetic heart sound 

waveforms for one heartbeat. Each heart sound is generated by using two Gabor kernels 

whose parameters are listed in Table 3. Observational uncertainty is also considered in 

Figure 8 by adding white Gaussian noise to the synthetic signal, yielding a similar signal 

to a section of real PCG from a normal human. 

5.3. Denoising 

In order to evaluate the performance of the proposed denoising method, we should 

compare its results with those of conventional PCG denoising schemes, like Wavelet 

Denoising (WD), Ensemble Averaging (EA), and Frequency Filtering. In the context of 

PCG denoising, WD has shown the best results [5], so we employ this method for 

comparison. 

In conventional WD schemes, the type of the mother wavelet, shrinkage rule, hard- 

versus soft thresholding, noise level rescaling approach, and number of decomposition 

levels must be selected. There are of course, some general rules concerning the selection 

of these parameters. For example, the mother wavelet is usually selected based on the 

resemblance to desired signal, or rescaling approach and shrinkage rules are selected 

according to the nature (white or colored) and variance of the noise. Messer et al. [5] 

have investigated the combinations of these parameters for PCG denoising. According to 

this study, among the different tested wavelets, Coiflet4 and 5, Daubechies11, 14, 20, and 

Symlet9, 11 ,14, and among the different combinations, the Stein's Unbiased Risk 

Estimate (SURE) shrinkage rule and a soft thresholding strategy and single level 

rescaling approach gave the superior results. The best decomposition level ranged from 5 

to 10, and more than 10 levels of decomposition showed no significant enhancement in 
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the results. In this paper, the results of WD are based on the use of Coiflet5 wavelet with 

10 levels of decomposition which has shown the best performance among the other 

combinations in our dataset. 

The quantitative comparison of the performance of different denoising methods is 

provided by comparing the amount of the signal-to-noise ratio (SNR) improvement 

achieved for the input signal which is defined as 

SNRimprovement SNRout SNRin        (20) 

where SNRout and SNRin are the SNR of the output signal (in decibels) and the SNR of 

the input signal (in decibels), respectively, which are defined as follows: 

[ ] [ ]
10 log 10 log

[ ] [ ] [ ]

[ ]
10 log

ˆ[ ] [ ]
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x n x n
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     (21) 

where  x n
 
is a test signal and      n

x n x n N n 
 
is the noisy signal obtained by 

adding a noise  N n
 
with an appropriate variance to the test signal. The  n

x n
 
is the 

input signal to the denoising algorithm, and  x̂ n
 
is its output. 

The synthetic white Gaussian noise with different variances were generated and added to 

the PCG segments, and the noisy signals with different SNRs were processed using the 

proposed method and the wavelet method. The whole procedure was repeated over the 30 

PCG segments, and each time a different random noise was added to the signal. The 

reported SNR improvement was averaged over the whole 30 results and to ensure that the 

transient state of the filter has no influence on the results, the first 20% of the signal was 

not included in SNR calculation. In Figure 9 typical results of the EKS and WD are 

illustrated for an input signal of 0 dB. By visual inspection, it can be seen that EKS shows 

better performances and demonstrates the smoother result with respect to WD. 

The main strength of the proposed denoising method is the knowledge it has about the 

PCG signal and its contents. This a priori knowledge is achieved from the dynamic of the 

signal and provides an appropriate tool for extracting the basic components of the normal 

PCG form the all unwanted components that may exist in the signal. The traditional WD 

decomposes signal into different subspaces and then puts thresholds on them. So, some 

unwanted components (particularly those with high amplitude and wide frequency range) 

may pass through thresholding stage and appear in the denoised signal. In this case, WD 

is incapable of eliminating the unwanted components, since it has no sense about the 

certain events in the PCG (Figure 9(d)). In contrast, EKS is quite capable of removing 

such components.  

In addition to the environmental and recording noises, there may be some source of 

artifacts such as breath or lung sounds which have quite different nature from white 
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Gaussian noise. Although analyzing the nature of these sounds (breath and lung sounds) 

and how they affect heart sounds require another independent study (which is out of 

current study), however we claim that the proposed EKS structure is capable of removing 

such artifacts. In order to justify the capability of the proposed framework to remove such 

artifacts, it may suffice to illustrate the results qualitatively in Figure 10. As it is seen, 

EKS structure has successfully removed the breath sounds contaminating heart sounds. 

The reason is that EKS is based upon the proposed model for fundamental components of 

PCG signal (S1 and S2 sounds) and therefore is able to extract these components (heart 

sounds) from other components such as breath sounds which follow different underlying 

dynamics.     

For a quantitative comparison, the mean and standard deviation (SD) of the SNR 

improvement versus input SNRs, achieved over the 30 PCG segments are plotted in 

Figure 11. In low SNR scenarios, EKS demonstrates the best performance, and in high 

SNR scenarios, EKS and WD have somehow similar outputs. It is seen that WD has the 

least standard deviation over the different PCG segments. 

The results are obtained using fixed covariance matrices 
k

Q  and 
k

R  for all PCG signals 

with the same input SNRs; although tuning the 
k

Q  and 
k

R  for each person, may enhance 

the results of the filter. But since WD has no signal-dependent tuning parameter, we used 

this policy to make the filter analogous with WD. 

There is a trade-off between the number of Gabor kernels used for modeling each heart 

sound and the complexity of the denoising algorithm. The number of kernels used for 

each heart sound usually depends on the heart sounds waveform and are chosen from 

three to five kernels in this paper. 

For the analysis of the quality of the denoised PCG, 2 sets of 6 recordings with 

respectively a SNR equal to 15 db and 20 db, are denoised and submitted to a senior 

cardiologist expert in the phonocardiography. After listening to both original and restored 

recordings, the expert has confirmed that the denoised PCG are not suffering from any 

distortion and the restitution of the main components of the PCG is successful.  

6. Conclusion and future works 

In this paper, we introduced a new dynamical model for PCG which is capable of 

synthesizing realistic PCG signals. The introduced model is based on PCG morphology 

and model parameters may be chosen to generate various valid morphologies for 

synthesized heart sound waveforms. The sampling frequency and beat-to-beat intervals 

can also be adjusted. Having access to a realistic PCG provides a benchmark for testing 

numerous signal processing techniques. A number of applications are perceivable for the 

model, 
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 by fitting the model to the morphology of various normal PCGs, and extracting 

their model parameters, a database of realistic PCGs could be created. 

 by finding the pattern or relation among model parameters of one's normal heart 

sounds, abnormal morphologies could be detected. 

 the synthetic PCG could be used to evaluate the effectiveness of different 

techniques for denoising, heart sound segmentation and compression. 

 model-based PCG processing framework for different aims can be introduced. 

Then, according to the latest application mentioned above, we established a new PCG 

denoising framework based on the proposed PCG dynamical model. The Bayesian 

denoising framework presented in this study was based on combining the Kalman filter 

structure with the introduced dynamical model. The results of the proposed denoising 

method were compared with those of WD. The results of the EKS demonstrate that the 

proposed model-based framework may serve as a novel approach to retrieve clean PCG 

from a noisy one. On the other hand, the EKS method has the superiority of real-time 

PCG processing and the fixed-lag smoother is usually more appropriate for this purpose. 

Furthermore, since ECG model-based processing via Bayesian filters has been developed 

recently, this framework may also be very helpful to joint ECG-PCG real-time processing 

for clinical application.  
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