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Abstract. Natural texture images can exhibit high intra-class diversity
due to the acquisition conditions. To reduce its impact on classification
performances, the geometry of the cluster in the feature space should
be considered. We introduce the Spherically Invariant Random Vector
(SIRV) representation, which is based on scale-space decomposition, for
the modeling of spatial dependencies characterizing the texture image.
From the specific properties of the SIRV process, i.e. the independence
between the two sub-processes of the compound model, we derive a cen-
troid estimation scheme from a pseudo-distance i.e. the Jeffrey diver-
gence. Next, a K-centroids based (K-CB) supervised classification algo-
rithm is introduced to handle the intra-class variability of texture im-
ages in the feature space. A comparative study on various conventional
texture databases is conducted and reveals the impact of the proposed
classification algorithm.

Keywords: Supervised classification, texture, Jeffrey divergence, information
geometry.

1 Introduction

In research area devoted to machine vision, texture analysis is still an issue
for applications ranging from classification and segmentation to indexing ap-
proaches. One of the challenging problems is the diversity in appearance of the
image samples coming from the same class of natural textures. Depending on the
viewing or illumination conditions under which images are acquired, the classi-
fication of texture images can become a hard task. In order to provide invariant
approaches to the intra-class diversity, the geometry of the cluster in the fea-
ture space must be considered. Over the last decade, numerous works devoted
to texture analysis have shown the interest to use jointly scale-space decomposi-
tion and stochastic modeling to characterize the textural content [1,2,3,4]. The
more recent works propose parametric probability density function (pdf), i.e.
prior such as Generalized Gaussian density (GGD) or Weibull density, to fit the
empirical histogram of sub-band coefficients [1]. Some works have pointed out
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the pertinence to consider multivariate modeling such as multivariate GGD [5],
Spherically Invariant Random Vector (SIRV) [6], and copulas based models in or-
der to take into account the spatial dependency [5,6] rather than simple univari-
ate modeling. Incorporating the dependency in the model enables us to increase
the performance of classification methods. In addition, these works have pro-
posed to exploit probabilistic dissimilarity such as Kullback-Leibler divergence
(KL) [7,1], geodesic distance [8,6] or Jeffrey divergence (J) [9,10]. Thereby, the
parametric space with such dissimilarity defines a smooth Riemannian manifold
for which well-founded processing can be derived. In this way, Choy and Tong
have proposed in [1] to compute a centroid from several instances of parameter
vectors from each sub-band for a given class using the GGD model and the KL
divergence. Even if their proposed algorithm exploits the geometrical properties
of the manifold, the main drawbacks of their proposal is that (i) classifying with
only one centroid is not sufficiently robust to handle diversity and (ii) they do
not exploit the spatial dependency of wavelet coefficients through multivariate
models. Those two issues are the main goals of this work.

The paper contribution is twofold. Firstly, the SIRV distribution is intro-
duced for the modeling of wavelet coefficients. By considering the independence
between the multiplier τ and the Gaussian vector g of the SIRV model, an al-
gorithm is developed in Section 2 to estimate the centroid from a collection
of SIRV parameters. Secondly, we introduce in Section 3 a K-centroids based
(K-CB) supervised classification algorithm to handle the intra-class diversity
of texture images. Some classification results are next presented in Section 4
to evaluate the performance of the proposed K-CB classification algorithm on
various texture databases. Conclusions and future works are finally reported in
Section 5.

2 SIRV Modeling and Centroid Evaluation

2.1 Stochastic Model

To model wavelet coefficients, Spherically Invariant Random Vectors (SIRV)
have been proposed in [11] overall. This class of models has been introduced to
take into account the non-Gaussianity of the signal. In such a case, the observed
d−dimensional vector x is decomposed as:

x =
√
τg, (1)

where τ is a scalar random variable called multiplier (τ ∈ R
+) and g a real

Gaussian vector with zero mean and covariance matrix Σ = E{ggT }. Processes
τ and g are assumed independent. In the literature [6], various models issued
from the Pearson system have been introduced to represent the multiplier τ
such as Gamma, Inverse Gamma and Fisher distributions. In this paper, the
univariate Weibull distribution is considered to model the multiplier. Its pdf is:

pw(τ ; a, b) =
a

b

(τ

b

)a−1

exp
{

−
(τ

b

)a}

(2)
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where a and b are respectively the shape and scale parameters. Since the SIRV
model is uniquely defined with respect to the covariance matrix parameter up
to a multiplicative constant, the multiplier τ is normalized to have an unitary
mean, i.e. E{τ} = 1. It yields that b = (Γ (1/a+ 1))

−1
. SIRV parameters are

hence extracted according to the SIRV estimation scheme developed in [12].
Unfortunately, no closed-form expression exists for the pdf of the multivariate

vector x in the case of Weibull distributed multiplier. However, characterizing
texture content can be provided considering vector y = (τ, g) resulting from the
SIRV representation. Using the Weibull distributed multiplier and the indepen-
dence between τ and g, the joint pdf of vector y is pY (y;λ) = pw(τ ; a) pG(g;Σ)
where λ = {a,Σ} is the parametric vector associated to the SIRV model. The
components λ form a parametric Riemannian manifold. In the sequel of the
paper, we call M the corresponding manifold.

In the general framework of classification, a measure is required to estimate
the dissimilarity between two images from their respective set of features. In
this paper, the Jeffrey divergence (J) is considered to compute the probabilistic
distance between two parametric vectors. By working on the vector y = (τ, g),
the Jeffrey divergence is obtained using the ”chain rule”, since the multiplier
parameter τ and the Gaussian process g are independent in the SIRV model.

J
(

p(y;λ), p(y;λ′)
)

= J
(

pG(g;Σ), pG(g;Σ
′)
)

+ J
(

pw(τ ; a), pw(τ ; a
′)
)

. (3)

The first term in (3) corresponds to J for the multivariate Gaussian process,
while the second term corresponds to J for the stochastic model of the multiplier.

2.2 Centroid Computation

Let Λ = (λn)
NTr

n=1
be a collection of NTr parametric vectors from a specific class

of textured images. In [1], Choy and Tong have introduced an iterative algorithm
to estimate the barycentric sample λ̄ (also called centroid) from this collection
of samples. We propose an extension of the iterative procedure using (3), the
optimization problem is split into two simpler problems: one for the multivariate
Gaussian part and one for the univariate Weibull part. It yields that the centroid
λ̄ = {ā, Σ̄} is composed by two centroids:

ā = arg min
a∈Mw

1

NTr

NTr
∑

n=1

J
(

pw(τ ; a), pw(τ ; an)
)

, (4)

Σ̄ = arg min
Σ∈MG

1

NTr

NTr
∑

n=1

J
(

pG(g;Σ), pG(g;Σn)
)

. (5)

More details concerning the centroid computation can be found in [13] where an
enhanced iterative procedure is presented.

3 Problem of Handling Diversity

Let I be a texture image. Let No and Ns be respectively the number of orien-
tations and scales of a multi-scale decomposition. I is hence decomposed into
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No×Ns sub-bands. Let us consider the parametric vector λs,o of the pdf associ-
ated to each sub-band. The collection T = {λs,o|s = 1, . . . , Ns, o = 1, . . . , No} of
those parametric vectors represents the texture image I. The components λs,o

of the vector TI form a parametric Riemannian manifold. Let (Tc,n)
NTr

n=1
be NTr

training samples from the same class c. The centroid is then defined as:

T̄ =
{

λ̄s,o|s = 1, . . . , Ns, o = 1, . . . , No

}

. (6)

3.1 Capabilities and Limits of Using an Unique Centroid
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Fig. 1. Scatter plot in the projected subspace: (a) for textures with low intra-class di-
versity and (b) for textures with different orientations. Computed centroid is displayed
by a blue square.

In this section, some experiments are conducted on real texture images to
evaluate the potential and limits of the unique centroid representation. To vi-
sualize the similarity of the texture images, a dimension reduction algorithm is
necessary since the manifold M is immersed in an high dimensional space. Here,
we have considered an isometric feature mapping (isomap) algorithm [14] to pro-
vide tractable graphical interpretation. This algorithm can be divided into three
steps. First, a pairwise dissimilarity matrix D1 is computed on the database
using the Jeffrey divergence: D1(i, j) = J(Ti, Tj), ∀i, j ∈ [1, . . . , NTr] . Since the
Jeffrey distance does not satisfy the triangular inequality, a shortest path algo-
rithm, for instance Dijkstra [15], is used to find the shortest distance between
two texture images. Hence, isomap estimates the geodesic distances D2(i, j) be-
tween all pairs of images on the manifold M. Next, this matrix is transformed

into a covariance-like matrix using a Gaussian kernel, i.e.: W = exp
{

− D2

2

2·σ2

}

.

Finally, a principal component analysis (PCA) is applied on W . The top first
eigenvectors (principal component) associated to the highest eigenvalues of W
allow an embedding of texture images in a low dimensional space.

Fig. 1 draws a scatter plot of texture images in a subspace of dimension
2 characterized by the first two eigenvectors of W . The blue square indicates
the location of the estimated centroid. As observed on Fig. 1.(a), when the
scatter plot is compact, the centroid represents well the cluster. Nevertheless,
when the intra-class diversity is large, an unique centroid is not able to capture
this diversity. This is the case for Fig. 1.(b) where the samples are issued from
the same texture class and samples could have up to five different orientations.
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The natural diversity inside a class of texture images is due to many reasons
such as differences in the scene enlightenment, in the scale considered, in the
perspective, . . . This diversity modifies the shape of the scatter plot by stretching
or splitting the clusters. To capture this intra-class diversity, we propose in the
next section a multi-centroid approach.

3.2 K-Centroids-Based Supervised Classification (K-CB)
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Fig. 2. Embedding of texture images in a subspace of dimension 2 characterized by:
(a) the first two eigenvectors and (b) the 2nd and 3rd eigenvectors of W. This allows a
scatter plot representation in its three principal directions. A centroid is computed for
each cluster and represented by a red square for the red cluster (resp. blue and green)

For each class c = 1, . . . , Nc,K centroids (T̄c,k)
K
k=1 are computed according to

the K-means classifier. Practically, for a given texture class, a K-means classifier
is applied. Next, the centroid is computed for each obtained cluster according
to (4) and (5). Let Tt be a test sample. This sample is labeled to the class ĉ,
corresponding to the class of the closest centroid, i.e.

ĉ (λs,o,t) = arg min
c

{

Ns
∑

s=1

No
∑

o=1

J(λs,o,t, λ̄s,o,c,k)|∀k = 1, . . . ,K

}

, (7)

In the following, this supervised classification algorithm is referred by K-CB.
Note that the algorithm corresponding to (4) and (5) is a particular case of
K-CB when K = 1. Note also that when K is equal to the number of training
samples per class, NTr, the K-CB classifier reduces to the nearest neighbor
(1-NN) classifier.

To evaluate the potential of a multi-centroid approach, theK-means classifier
with K = 3 and J has been applied on the images of Fig. 1.(b). Three centroids
are hence estimated for this texture class. They are represented by the red,
blue and green squares of Fig. 2. Fig. 2.(a) and Fig. 2.(b) draws a scatterplot
of texture images in a subspace of dimension 2 composed by respectively the
first two eigenvectors (F1 and F2) and by the 2nd and 3rd eigenvectors (F2 and
F3). As observed, the clusters are well represented by their central element: the
centroid.
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4 Results

4.1 Context

To evaluate the performance of supervised classification algorithms, the database
is split into a training database and a disjoint testing database. Practically, NTr

training samples are randomly selected for each texture class, the remaining
sample are used as testing samples. Two databases are considered here: Vis-
Tex [16] with 40 classes and Nsa = 16 images per class (128 × 128 pixels), and
Brodatz [17] with 13 classes and Nsa = 112 images per class (128× 128 pixels).
VisTex database contains some texture images with different illumination con-
ditions, while Brodatz one exhibits a higher intra-class variability due to various
viewing conditions such as rotated image. In the following, 100 Monte Carlo
runs have been used to evaluate performances of the different classifiers (kappa
index and error bars). The kappa index refers to the proportion of consistent
classifications observed beyond that expected by chance alone [18].

4.2 Results and Discussion
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Fig. 3. Evolution of the average kappa index as a function of the number of training
samples on the VisTex database.

In this experiment, the stationary wavelet decomposition (with 2 scales) with
Daubechies’ filter db4 is considered. Fig. 3 draws the evolution of the average
kappa index as a function of the number of training samples on the VisTex
database for the nearest neighbor (1-NN in red), the one centroid [1] (1-CB in
blue) and the proposed K-CB classifier with 3 centroids (3-CB in green). A gain
of more than ten points is observed when 3 centroids are considered instead of
only 1 centroid per class. Hence, the proposed 3-CB classifier allows a better
characterization of the intra-class diversity. We also note that the performance
of the 3-CB classifier are close to those of the 1-NN. However, the computa-
tion complexity is significantly lower with the K-CB classifier1, since only K
computations of the similarity measure between the query and centroids are
necessary while NTr are required for the 1-NN classifier. Since computational
considerations play a key role for practical application, the 1-NN classifier may
be intractable for large database. As a consequence, the K-CB classifier is a
good trade-off between classification accuracy and computation complexity.

1 The computation of the centroids being done off-line for the K-CB classifier.
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Spatial
Database K

1-NN 1-CB [1] K-CB 1-NN
neighborhood NTr = K NTr = NSa/2 NTr = NSa/2 NTr = NSa/2

3× 3
VisTex 3 83.7 % ±2.0 90.4 % ±1.3 96.8 % ±1.2 97.5 % ±0.8
Brodatz 10 50.6 % ±2.6 79.9 % ±1.5 96.2 % ±1.2 98.2 % ±0.5

1× 1
VisTex 3 78.7 % ±2.3 72.7 % ±2.0 88.9 % ±1.7 94.1 % ±1.1
Brodatz 10 65.8 % ±2.7 70 % ±1 97 % ±2 99 % ±1

Table 1. Average kappa index for the different supervised classifiers on the VisTex
and Brodatz databases.

Table 1 displays the average kappa index for the different classifiers (1-NN,
1-CB and K-CB) on the VisTex and Brodatz databases (K equals respectively 3
and 10 for the two databases). Note that two 1-NN classifiers have been consid-
ered, one with K training samples per class (the same complexity as the K-CB)
and one where half of the database is used for training. In this experiment, the
steerable pyramid with 2 scales and 8 orientations has been used for the decom-
position. Lines 3–4 show performance of SIRV on spatial neighborhood 3 × 3
where lines 5–6 show performance of univariate Generalized Gaussian distribu-
tion [1]. As observed in Table 1, for the same computational complexity, the
proposed K-CB classification exhibits a gain of minimum 10 points compared
to the nearest neighbor classifier (1-NN) with NTr = K. Hence, an adapted
selection of centroids with the K-means allows an increase of the kappa index.
We also note that the performance of the K-CB are very close to the 1-NN
classifier with the same number of training data. High performance of K-NN
are less increased than performance of K-CB with the multivariate assumption.
In addition, the proposed K-CB classifier based on a parametric point of view
outperforms a texton-based approach such as the one proposed by Varma and
Zisserman in [2] which has a Kappa index of about 82% on the VisTex database
with 20 centroids.

5 Conclusion

This paper has addressed the problem of centroid-based (CB) classification in the
multivariate case. We have firstly introduced the Spherically Invariant Random
Vector (SIRV) distribution for the modeling of wavelet coefficients, and secondly
introduced a K-centroids-based (K-CB) supervised classification to handle the
natural intra-class diversity of texture images. Classification results on texture
databases have shown that the proposed K-CB classifier allows to obtain a gain
of 1.5K points in classification accuracy for a gain of K points in computation
complexity against the 1-CB classifier. Further works will concern the develop-
ment of a supervised classification algorithm with an adapted and automatic
number of centroids per texture class (which will depend on the intra-class di-
versity) similar to Learning Vector Quantization approach[19].
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