
HAL Id: hal-00878752
https://hal.science/hal-00878752v1

Submitted on 27 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Abstract Framework for Deadlock Prevention in BIP
Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph

Sifakis, Fadi A. Zaraket

To cite this version:
Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis, et al.. An Abstract
Framework for Deadlock Prevention in BIP. 15th International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOOODS) / 33th International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE), Jun 2013, Florence, Italy. pp.161-177,
�10.1007/978-3-642-38592-6_12�. �hal-00878752�

https://hal.science/hal-00878752v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Abstract Framework for Deadlock
Prevention in BIP?

Paul C Attie1, Saddek Bensalem2, Marius Bozga2, Mohamad Jaber1,
Joseph Sifakis3, and Fadi A Zaraket4

1 Department of Computer Science, American University of Beirut, Beirut, Lebanon
2 UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France

3 Rigorous System Design Laboratory, EPFL, Lausanne, Switzerland
4 Department of Electrical and Computer Engineering, American University of

Beirut, Beirut, Lebanon

Abstract. We present a sound but incomplete criterion for checking
deadlock freedom of finite state systems expressed in BIP: a component-
based framework for the construction of complex distributed systems.
Since deciding deadlock-freedom for finite-state concurrent systems is
PSPACE-complete, our criterion gives up completeness in return for
tractability of evaluation. Our criterion can be evaluated by model-
checking subsystems of the overall large system. The size of these sub-
systems depends only on the local topology of direct interaction between
components, and not on the number of components in the overall system.

We present two experiments, in which our method compares favorably
with existing approaches. For example, in verifying deadlock freedom
of dining philosphers, our method shows linear increase in computation
time with the number of philosophers, whereas other methods (even those
that use abstraction) show super-linear increase, due to state-explosion.

1 Introduction

Deadlock freedom is a crucial property of concurrent and distributed systems.
With increasing system complexity, the challenge of assuring deadlock freedom
and other correctness properties becomes even greater. In contrast to the alter-
natives of (1) deadlock detection and recovery, and (2) deadlock avoidance, we
advocate deadlock prevention: design the system so that deadlocks do not occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACE-
complete in general [15, chapter 19]. To achieve tractability, we can either make
our deadlock freedom check incomplete (sufficient but not necessary), or we can
restrict the systems that we check to special cases. We choose the first option: a
system meeting our condition is free of both local and global deadlocks, while a
system which fails to meet our condition may or may not be deadlock free.

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 288175 (CERTAINTY) and no 257414 (ASCENS).

We generalize previous works [2–4] by removing the requirement that inter-
action between processes be expressed pairwise, and also by applying to BIP [6],
a framework from which efficient distributed code can be generated. In contrast,
the model of concurrency in [2–4] requires shared memory read-modify-write
operations with a large grain of atomicity. The full paper, including proofs for
all theorems, is available on-line, as is our implementation of the method.

2 BIP - Behavior Interaction Priority

BIP is a component framework for constructing systems by superposing three
layers of modeling: Behavior, Interaction, and Priority. A technical treatment
of priority is beyond the scope of this paper. Adding priorities never introduces
a deadlock, since priority enforces a choice between possible transitions from
a state, and deadlock-freedom means that there is at least one transition from
every (reachable) state. Hence if a BIP system without priorities is deadlock-free,
then the same system with priorities added will also be deadlock-free.

Definition 1 (Atomic Component). An atomic component Bi is a labeled
transition system represented by a triple (Qi, Pi,→i) where Qi is a set of states,
Pi is a set of communication ports, and →i⊆ Qi × Pi ×Qi is a set of possible
transitions, each labeled by some port.

For states si, ti ∈ Qi and port pi ∈ Pi, write si
pi→i ti, iff (si, pi, ti) ∈→i.

When pi is irrelevant, write si →i ti. Similarly, si
pi→i means that there exists

ti ∈ Qi such that si
pi→i ti. In this case, pi is enabled in state si. Ports are used

for communication between different components, as discussed below.

In practice, we describe the transition system using some syntax, e.g., involv-
ing variables. We abstract away from issues of syntactic description since we are
only interested in enablement of ports and actions. We assume that enablement
of a port depends only on the local state of a component. In particular, it cannot
depend on the state of other components. This is a restriction on BIP, and we
defer to subsequent work how to lift this restriction. So, we assume the existence
of a predicate enbipi that holds in state si of component Bi iff port pi is enabled

in si, i.e., si(enbipi) = true iff si
pi→i.

Figure 1(a) shows atomic components for a philospher P and a fork F in
dining philosophers. A philosopher P that is hungry (in state h) can eat by
executing get and moving to state e (eating). From e, P releases its forks by ex-
ecuting release and moving back to h. Adding the thinking state does not change
the deadlock behaviour of the system, since the thinking to hungry transition is
internal to P , and so we omit it. A fork F is taken by either: (1) the left philoso-
pher (transition get l) and so moves to state ul (used by left philosopher), or (2)
the right philosopher (transition getr) and so moves to state ur (used by right
philosopher). From state ur (resp. ul), F is released by the right philosopher
(resp. left philosopher) and so moves back to state f (free).

Fork F

Philosopher P

release

get

e h

release get

fur ul

user use l

free lfreer

user use l

freer
free l

(a) Philosopher P and fork F atomic
components.

ge
t

user

use l

re
le
as
e

release

get

get

release

release

get

use l

free l

user
freer

P0

P3

P2

P1

F0 F1

F2F3

use l
free l

freer
user

use l

user

free l

freer

freer

free l

(b) Dining philosophers composite com-
ponent with four philosophers.

Fig. 1. Dining philosophers.

Definition 2 (Interaction). For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}ni=1, we require that their respective sets of ports
are pairwise disjoint, i.e., for all i, j such that i, j ∈ {1..n} ∧ i 6= j, we have
Pi∩Pj = ∅. An interaction is a set of ports not containing two or more ports from
the same component. That is, for an interaction a we have a ⊆ P ∧(∀i ∈ {1..n} :
|a ∩ Pi| ≤ 1), where P =

⋃n
i=1 Pi is the set of all ports in the system. When we

write a = {pi}i∈I , we assume that pi ∈ Pi for all i ∈ I, where I ⊆ {1..n}.

Execution of an interaction a involves all the components which have ports in a.

Definition 3 (Composite Component). A composite component (or simply
component) B , γ(B1, . . . , Bn) is defined by a composition operator parameter-
ized by a set of interactions γ ⊆ 2P . B has a transition system (Q, γ,→), where
Q = Q1 × · · · ×Qn and →⊆ Q× γ ×Q is the least set of transitions satisfying
the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : si
pi→i ti ∀i 6∈ I : si = ti

〈〈〈s1, . . . , sn〉〉〉
a→ 〈〈〈t1, . . . , tn〉〉〉

This inference rule says that a composite component B = γ(B1, . . . , Bn) can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding atomic
component Bi can execute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged. Given an interaction
a = {pi}i∈I , we denote by Ca the set of atomic components participating in a,
formally: Ca = {Bi | pi ∈ a}. Figure 1(b) shows a composite component consist-
ing of four philosophers and the four forks between them. Each philosopher and

its two neighboring forks share two interactions: Get = {get , usel, user} in which
the philosopher obtains the forks, and Rel = {release, freel, freer} in which the
philosopher releases the forks.

Definition 4 (Interaction enablement). An atomic component Bi =

(Qi, Pi,→i) enables interaction a in state si iff si
pi→i, where pi = Pi ∩ a is

the port of Bi involved in a. Let B = γ(B1, . . . , Bn) be a composite component,
and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of B. Then B enables a in s iff every Bi ∈ Ca
enables a in si.

The definition of interaction enablement is a consequence of Definition 3. Inter-
action a being enabled in state s means that executing a is one of the possible
transitions that can be taken from s. Let enbia denote the enablement condition
for interaction a in component Bi. By definition, enbia = enbipi where pi = a∩Pi.

Definition 5 (BIP System). Let B = γ(B1, . . . , Bn) be a composite compo-
nent with transition system (Q, γ,→), and let Q0 ⊆ Q be a set of initial states.
Then (B,Q0) is a BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry)
and forks initially in state f (free).

Definition 6 (Execution). Let (B,Q0) be a BIP system with transition system
(Q, γ,→). Let ρ = s0a1s1 . . . si−1aisi . . . be an alternating sequence of states of
B and interactions of B. Then ρ is an execution of (B,Q0) iff (1) s0 ∈ Q0, and

(2) ∀i > 0 : si−1
ai→ si.

A state or transition that occurs in some execution is called reachable.

Definition 7 (State Projection). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn) and let s = 〈〈〈s1, . . . , sn〉〉〉 be a state of (B,Q0). Let
{Bj1 , . . . , Bjk} ⊆ {B1, . . . , Bn}. Then s�{Bj1 , . . . , Bjk} , 〈〈〈sj1 , . . . , sjk〉〉〉. For
a single Bi, we write s�Bi = si. We extend state projection to sets of states
element-wise.

Definition 8 (Subcomponent). Let B , γ(B1, . . . , Bn) be a composite com-
ponent, and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Let P ′ = Pj1 ∪ · · · ∪
Pjk , i.e., the union of the ports of {Bj1 , . . . , Bjk}. Then the subcomponent B′ of
B based on {Bj1 , . . . , Bjk} is as follows:

1. γ′ , {a ∩ P ′ | a ∈ γ ∧ a ∩ P ′ 6= ∅}
2. B′ , γ′(Bj1 , . . . , Bjk)

That is, γ′ consists of those interactions in γ that have at least one partici-
pant in {Bj1 , . . . , Bjk}, and restricted to the participants in {Bj1 , . . . , Bjk}, i.e.,
participants not in {Bj1 , . . . , Bjk} are removed.

We write s�B′ to indicate state projection onto B′, and define s�B′ ,
s�{Bj1 , . . . , Bjk}, where Bj1 , . . . , Bjk are the atomic components in B′.

Definition 9 (Subsystem). Let (B,Q0) be a BIP system where B =
γ(B1, . . . , Bn), and let {Bj1 , . . . , Bjk} be a subset of {B1, . . . , Bn}. Then the
subsystem (B′, Q′0) of (B,Q0) based on {Bj1 , . . . , Bjk} is as follows:

1. B′ is the subcomponent of B based on {Bj1 , . . . , Bjk}
2. Q′0 = Q0�{Bj1 , . . . , Bjk}

Definition 10 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′0), the projection of ρ onto (B′, Q′0), is the
sequence resulting from:

1. replacing each si by si�{Bj1 , . . . , Bjk}, i.e., replacing each state by its pro-
jection onto {Bj1 , . . . , Bjk}

2. removing all aisi where ai 6∈ γ′

Proposition 1 (Execution Projection). Let (B,Q0) be a BIP system where
B = γ(B1, . . . , Bn), and let (B′, Q′0), with B′ = γ′(Bj1 , . . . , Bjk) be the sub-
system of (B,Q0) based on {Bj1 , . . . , Bjk}. Let ρ = s0a1s1 . . . si−1aisi . . . be an
execution of (B,Q0). Then, ρ�(B′, Q′0) is an execution of (B′, Q′0).

Corollary 1. Let (B′, Q′0) be a subsystem of (B,Q0). Let s be a reachable state

of (B,Q0). Then s�B′ is a reachable state of (B′, Q′0). Let s
a→ t be a reachable

transition of (B,Q0), and let a be an interaction of (B′, Q′0). Then s�B′
a→ t�B′

is a reachable transition of (B′, Q′0).

To avoid tedious repetition, we fix, for the rest of the paper, an arbitrary
BIP-system (B,Q0), with B , γ(B1, . . . , Bn), and transition system (Q, γ,→).

3 Characterizing Deadlock-freedom

Definition 11 (Deadlock-freedom). A BIP-system (B,Q0) is deadlock-free
iff in every reachable state s of (B,Q0), some interaction a is enabled.

We assume in the sequel that each individual component Bi is deadlock-free,
when considered in isolation, with respect to the set of initial states Q0�Bi.

3.1 Wait-for graphs

The wait-for-graph for a state s is a directed bipartite and-or graph which con-
tains as nodes the atomic components B1, . . . , Bn, and all the interactions γ.
Edges in the wait-for-graph are from a Bi to all the interactions that Bi enables
(in s), and from an interaction a to all the components that participate in a and
which do not enable it (in s).

Definition 12 (Wait-for-graph WB(s)). Let B = γ(B1, . . . , Bn) be a BIP
composite component, and let s = 〈〈〈s1, . . . , sn〉〉〉 be an arbitrary state of B. The
wait-for-graph WB(s) of s is a directed bipartite and-or graph, where

1. the nodes of WB(s) are as follows:

(a) the and-nodes are the atomic components Bi, i ∈ {1..n},
(b) the or-nodes are the interactions a ∈ γ,

2. there is an edge in WB(s) from Bi to every node a such that Bi ∈ Ca and
si(enbia) = true, i.e., from Bi to every interaction which Bi enables in si,

3. there is an edge in WB(s) from a to every Bi such that Bi ∈ Ca and
si(enbia) = false, i.e., from a to every component Bi which participates in a
but does not enable it, in state si.

A component Bi is an and-node since all of its successor actions (or-nodes)
must be disabled for Bi to be incapable of executing. An interaction a is an
or-node since it is disabled if any of its participant components do not enable
it. An edge (path) in a wait-for-graph is called a wait-for-edge (wait-for-path).
Write a → Bi (Bi → a respectively) for a wait-for-edge from a to Bi (Bi to a
respectively). We abuse notation by writing e ∈WB(s) to indicate that e (either
a → Bi or Bi → a) is an edge in WB(s). Also B → a → B′ ∈ WB(s) for
B → a ∈ WB(s) ∧ a → B′ ∈ WB(s), i.e., for a wait-for-path of length 2, and
similarly for longer wait-for-paths.

Consider the dining philosophers system given in Figure 1. Figure 2(a) shows
its wait-for-graph in its sole initial state. Figure 2(b) shows the wait-for-graph
after execution of get0. Edges from components to interactions are shown solid,
and edges from interactions to components are shown dashed.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(a) Wait-for-graph in initial state.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

(b) Wait-for-graph after execution of
get0.

Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1.

3.2 Supercycles and deadlock-freedom

We characterize a deadlock as the existence in the wait-for-graph of a graph-
theoretic construct that we call a supercycle:

Definition 13 (Supercycle). Let B = γ(B1, . . . , Bn) be a composite compo-
nent and s be a state of B. A subgraph SC of WB(s) is a supercycle in WB(s)
if and only if all of the following hold:

1. SC is nonempty, i.e., contains at least one node,
2. if Bi is a node in SC, then for all interactions a such that there is an edge
in WB(s) from Bi to a:

(a) a is a node in SC, and
(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈WB(s) implies Bi → a ∈ SC,
3. if a is a node in SC, then there exists a Bj such that:

(a) Bj is a node in SC, and
(b) there is an edge from a to Bj in WB(s), and
(c) there is an edge from a to Bj in SC,

that is, a ∈ SC implies ∃Bj : a→ Bj ∈WB(s) ∧ a→ Bj ∈ SC,

where a ∈ SC means that a is a node in SC, etc. WB(s) is supercycle-free iff
there does not exist a supercycle SC in WB(s). In this case, say that state s is
supercycle-free.

Get3

Rel3

Get1

Rel1

F1

Get2

Get0

Rel2

Rel0

P3

F0

F2

P1

P2

P0

F3

Fig. 3. Example supercycle for dining philosophers system of Figure 1.

Figure 3 shows an example supercycle (with boldened edges) for the dining
philosophers system of Figure 1. P0 waits for (enables) a single interaction, Get0.
Get0 waits for (is disabled by) fork F0, which waits for interaction Rel0. Rel0
in turn waits for P0. However, this supercycle occurs in a state where P0 is in h
and F0 is in ul. This state is not reachable from the initial state.

The existence of a supercycle is sufficient and necessary for the occurrence of
a deadlock, and so checking for supercycles gives a sound and complete check for
deadlocks. Write SC ⊆WB(s) when SC is a subgraph of WB(s). Proposition 2
states that the existence of a supercycle implies a local deadlock: all components
in the supercycle are blocked forever.

Proposition 2. Let s be a state of B. If SC ⊆WB(s) is a supercycle, then all
components Bi in SC cannot execute a transition in any state reachable from s,
including s itself.

Proof sketch. Every interaction a that Bi enables is not enabled by some par-
ticipant. By Defintion 4, a cannot be executed. Hence Bi cannot execute any
transition.

Proposition 3 states that the existence of a supercycle is necessary for a local
deadlock to occur: if a set of components, considered in isolation, are blocked,
then there exists a supercycle consisting of exactly those components, together
with the interactions that each component enables.

Proposition 3. Let B′ be a subcomponent of B, and let s be an arbitrary state
of B such that B′, when considered in isolation, has no enabled interaction in
state s�B′. Then, WB(s) contains a supercycle.

Proof sketch. Every atomic component Bi in B′ is individually deadlock free, by
assumption, and so there is at least one interaction ai which Bi enables. Now ai
is not enabled in B′, by the antecedent of the proposition. Hence ai has some
outgoing wait-for-edge in WB(s). The subgraph of WB(s) induced by all the Bi
and all their (locally) enabled interactions is therefore a supercycle.

We consider subcomponent B′ in isolation to avoid other phenomena that
prevent interactions from executing, e.g., conspiracies [5]. Now the converse of
Proposition 3 is that absence of supercycles in WB(s) means there is no locally
deadlocked subsystem. Taking B′ = B, this implies that B is not deadlocked,
and so there is at least one interaction of B which is enabled in state s.

Corollary 2. If, for every reachable state s of (B,Q0), WB(s) is supercycle-
free, then (B,Q0) is deadlock-free.

Proof sketch. Immediate from Proposition 3 (with B′ = B) and Definition 11.

3.3 Structural properties of supercycles

We present some structural properties of supercycles, which are central to our
deadlock-freedom condition.

Definition 14 (Path, path length). Let G be a directed graph and v a vertex
in G. A path π in G is a finite sequence v1, v2, . . . , vn such that (vi, vi+1) is an
edge in G for all i ∈ {1, . . . , n− 1}. Write pathG(π) iff π is a path in G. Define
first(π) = v1 and last(π) = vn. Let |π| denote the length of π, which we define
as follows:

– if π is simple, i.e., all vi, 1 ≤ i ≤ n, are distinct, then |π| = n− 1, i.e., the
number of edges in π

– if π contains a cycle, i.e., there exist vi, vj such that i 6= j and vi = vj, then
|π| = ω (ω for “infinity”).

Definition 15 (In-depth, Out-depth). Let G be a directed graph and v a
vertex in G. Define the in-depth of v in G, notated as in depthG(v), as follows:

– if there exists a path π in G that contains a cycle and ends in v, i.e., |π| =
ω ∧ last(π) = v, then in depthG(v) = ω,

– otherwise, let π be a longest path ending in v. Then in depthG(v) = |π|.

Formally, in depthG(v) = (MAX π : pathG(π) ∧ last(π) = v : |π|).
Likewise define out depthG(v) = (MAX π : pathG(π)∧first(π) = v : |π|), the

out-depth of v in G, i.e., we consider paths starting (rather than ending) in v.

We use in depthB(v, s) for in depthWB(s)(v), and also out depthB(v, s) for
out depthWB(s)(v).

Proposition 4. A supercycle SC contains no nodes with finite out-depth.

Proof sketch. By contradiction. Let v be a node in SC with finite out-depth.
Hence all outgoing paths from v end in a sink node. By assumption, all atomic
components are individually deadlock-free, i.e., they always enable at least one
interaction. Hence these sink nodes are all interactions, and therefore they violate
clause 3 in Definition 13.

Proposition 5. Every supercycle SC contains at least one cycle.

Proof sketch. Suppose not. Then SC is an acyclic supercycle. Hence every node
in SC has finite out-depth, which contradicts Proposition 4.

Proposition 6. Let B = γ(B1, . . . , Bn) be a composite component and s a state
of B. Let SC be a supercycle in WB(s), and let SC ′ be the graph obtained from
SC by removing all vertices of finite in-depth and their incident edges. Then SC ′

is also a supercycle in WB(s).

Proof sketch. By Proposition 5, SC ′ is nonempty. Thus SC ′ satisfies clause (1) of
Definition 13. Let v be an arbitrary vertex of SC ′. Hence v has infinite in-depth,
and therefore so do all of v’s sucessors in SC. Hence all of these successors are
in SC ′. Hence every vertex v in SC ′ has successors in SC ′ that satisfy clauses
(2) and (3) of Definition 13.

4 A Global Condition for Deadlock Freedom

Consider a reachable transition s
a→ t of (B,Q0). Suppose that the execution of

this transition creates a supercycle SC, i.e., SC 6⊆ WB(s) ∧ SC ⊆ WB(t). The
only components that can change state along this transition are the participants
of a, i.e., the Bi ∈ Ca, and so they are the only components that can cause a
supercycle to be created in going from s to t. There are three relevant possibilities
for each Bi ∈ Ca:

1. Bi has finite in-depth in WB(t): then, if Bi ∈ SC, it can be removed and
still leave a supercycle SC ′, by Proposition 6. Hence SC ′ exists in WB(s),
and so Bi is not essential to the creation of a supercycle.

2. Bi has finite out-depth in WB(t): by Proposition 4, Bi cannot be part of a
supercycle, and so SC ⊆WB(s).

3. Bi has infinite in-depth and infinite out-depth in WB(t): in this case, Bi is
possibly an essential part of SC, i.e., SC was created in going from s to t.

We thus impose a condition which guarantees that only case 1 or case 2 occur.

Definition 16 (DFC(a)). Let s
a→ t be a reachable transition of BIP-system

(B,Q0). Then, in t, the following holds. For every component Bi of Ca: either
Bi has finite in-depth, or finite out-depth, in WB(t). Formally,

∀Bi ∈ Ca : in depthB(Bi, t) < ω ∨ out depthB(Bi, t) < ω.

To proceed, we show that wait-for-edges not involving some interaction a and
its participants Bi ∈ Ca are unaffected by the execution of a. Say that edge e in
a wait-for-graph is Bi-incident iff Bi is one of the endpoints of e.

Proposition 7 (Wait-for-edge preservation). Let s
a→ t be a transition of

composite component B = γ(B1, . . . , Bn), and let e be a wait-for edge that is not
Bi-incident, for every Bi ∈ Ca. Then e ∈WB(s) iff e ∈WB(t).

Proof sketch. Components not involved in the execution of a do not change state
along s

a→ t. Hence the endpoint of e that is a component has the same state in
s as in t. The proposition then follows from Definition 12.

We show, by induction on the length of finite exeuctions, that every reachable
state is supercycle-free. Assume that every initial state is supercycle-free, for the
base case. Assuming DFC(a) for all a ∈ γ provides, by the above discussion, the
induction step.

Theorem 1 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (i.e., a ∈ γ), DFC(a) holds,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof. We only need show the induction step: for every reachable transition s
a→

t, WB(s) is supercycle-free implies that WB(t) is supercycle-free. We establish
the contrapositive: if WB(t) contains a supercycle, then so does WB(s).

Let SC be a supercycle in WB(t), and let SC ′ be SC with all nodes of finite
in-depth removed. SC ′ is a supercycle in WB(t) by Proposition 6. Let e be an
arbitrary edge in SC ′. Hence e ∈ WB(t). Also, both nodes of e have infinite
in-depth (by construction of SC ′) and infinite out-depth (by Proposition 4) in
WB(t). Let Bi be an arbitrary component in Ca. By DFC(a), Bi has finite in-
depth or finite out-depth in WB(t): in depthB(Bi, t) < ω ∨ out depthB(Bi, t) <
ω. Hence e is not Bi-incident. So, e ∈ WB(s), by Proposition 7. Hence SC ′ ⊆
WB(s), and so WB(s) contains a supercycle.

5 A Local Condition for Deadlock Freedom

Evaluating DFC(a) requires checking all reachable transitions of (B,Q0), which
is subject to state-explosion. We need a condition which implies DFC(a) and can
be checked efficiently. Observe that if in depthB(Bi, t) < ω∨out depthB(Bi, t) <
ω, then there is some finite ` such that in depthB(Bi, t) = `∨out depthB(Bi, t) =
`. This can be verified in a subsystem whose size depends on `, as follows.

Definition 17 (Structure Graph GB, G`
i , G`

a). The structure graph GB of
composite component B = γ(B1, . . . , Bn) is a bipartite graph whose nodes are
the B1, . . . , Bn and all the a ∈ γ. There is an edge between Bi and interaction a
iff Bi participates in a, i.e., Bi ∈ Ca. Define the distance between two nodes to
be the number of edges in a shortest path between them. Let G`

i (G`
a respectively)

be the subgraph of GB that contains Bi (a respectively) and all nodes of GB that
have a distance to Bi (a respectively) less than or equal to `.

Then in depthB(Bi, t) = ` ∨ out depthB(Bi, t) = ` can be verified in the
wait-for-graph of G`+1

i , since we verify either that all wait-for-paths ending in Bi
have length ≤ `, or that all wait-for-paths starting in Bi have length ≤ `. These
conditions can be checked in G`+1

i , since G`+1
i contains every node in a wait-for-

path of length `+ 1 or less and which starts or ends in Bi. Since G`+1
i ⊆ G`+2

a

for Bi ∈ Ca, we use G`+2
a instead of the set of subsystems {G`+1

i : Bi ∈ Ca}.
We leave analysis of the tradeoff between using one larger system (G`+2

a) versus
several smaller ones (G`+1

i) to another paper. Define D`
a, the deadlock-checking

subsystem for interaction a and depth `, to be the subsystem of (B,Q0) based
on G`+2

a .

Definition 18 (LDFC(a, `)). Let sa
a→ ta be a reachable transition of D`

a.
Then, in ta, the following holds. For every component Bi of Ca: either Bi has
in-depth at most `, or out-depth at most `, in WD`

a
(ta). Formally,

∀Bi ∈ Ca : in depthD`
a
(Bi, ta) ≤ ` ∨ out depthD`

a
(Bi, ta) ≤ `.

To infer deadlock-freedom in (B,Q0) by checking LDFC(a, `), we show that
wait-for behavior in B “projects down” to any subcomponent B′, and that wait-
for behavior in B′ “projects up” to B.

Proposition 8 (Wait-for-edge projection). Let (B′, Q′0) be a subsystem of
(B,Q0). Let s be a state of (B,Q0), and s′ = s�B′. Let a be an interaction of
(B′, Q′0), and Bi ∈ Ca an atomic component of B′. Then (1) a → Bi ∈ WB(s)
iff a→ Bi ∈WB′(s′), and (2) Bi → a ∈WB(s) iff Bi → a ∈WB′(s′).

Proof sketch. Since s′ = s�B′, all port enablement conditions of components in
B′ have the same value in s and in s′. The proposition then follows by straight-
forward application of Definition 12.

Since wait-for-edges project up and down, it follows that wait-for-paths project
up and down, provided that the subsystem contains the entire wait-for-path.

Proposition 9 (In-projection, Out-projection). Let ` ≥ 0, let Bi be an
atomic component of B, and let (B′, Q′0) be a subsystem of (B,Q0) which is
based on a superset of G`+1

i . Let s be a state of (B,Q0), and s′ = s�B′. Then (1)
in depthB(Bi, s) ≤ ` iff in depthB′(Bi, s

′) ≤ `, and (2) out depthB(Bi, s) ≤ `
iff out depthB′(Bi, s

′) ≤ `.
Proof sketch. Follows from Defintion 15, Proposition 8, and the observation that
WB′(s′) contains all wait-for-paths of length ≤ ` that start or end in Bi.

We now show that LDFC(a, `) implies DFC(a), which in turn implies deadlock-
freedom.

Lemma 1. Let a be an interaction of B, i.e., a ∈ γ. If LDFC(a, `) holds for
some finite ` ≥ 0, then DFC(a) holds.

Proof sketch. Let s
a→ t be a reachable transition of (B,Q0) and let sa = s�D`

a,

ta = t�D`
a. Then sa

a→ ta is a reachable transition of D`
a by Corollary 1. By

LDFC(a, `), in depthD`
a
(Bi, ta) ≤ ` ∨ out depthD`

a
(Bi, ta) ≤ `. Hence by Propo-

sition 9, in depthB(Bi, t) ≤ ` ∨ out depthB(Bi, t) ≤ `. So in depthB(Bi, t) <
ω ∨ out depthB(Bi, t) < ω. Hence DFC(a) holds.

Theorem 2 (Deadlock-freedom). If (1) for all s0 ∈ Q0, WB(s0) is supercycle-
free, and (2) for all interactions a of B (a ∈ γ), LDFC(a, `) holds for some ` ≥ 0,
then for every reachable state u of (B,Q0): WB(u) is supercycle-free.

Proof sketch. Immediate from Lemma 1 and Theorem 1.

6 Implementation and Experimentation

LDFC-BIP, (∼ 1500 LOC Java) implements our method for finite-state BIP-
systems. Pseudocode for LDFC-BIP is shown in Figure 4. checkDF(B,Q0) iterates
over each interaction a of (B,Q0), and checks (∃` ≥ 0 : LDFC(a, `)) by starting
with ` = 0 and incrementing ` until either LDFC(a, `) is found to hold, or D`

a

has become the entire system and LDFC(a, `) does not hold. In the latter case,
LDFC(a, `) does not hold for any finite `, and, in practice, computation would
halt before D`

a had become the entire system, due to exhaustion of resources.
locLDFC(a, `) checks LDFC(a, `) by examining every reachable transition

that executes a, and checking that the final state satisfies Definition 18.
The running time of our implementation is O(Σa∈γ |D`a

a |), where `a is the
smallest value of ` for which LDFC(a, `) holds, and where |D`a

a | denotes the size
of the transition system of D`a

a .

6.1 Experiment: Dining Philosophers

We consider n philosophers in a cycle, based on the components of Figure 1.
Figure 5(a) provides experimental results. The x axis gives the number n of
philosophers (and also the number of forks), and the y axis gives the verification
time (in milliseconds). We verified that LDFC(a, `) holds for ` = 1 and all inter-
actions a. Hence dining philosophers is deadlock-free. We increase n and plot the

checkDF(B,Q0), where B , γ(B1, . . . , Bn)
1. forall interactions a ∈ γ
2. //check (∃` ≥ 0 : LDFC(a, `))
3. `← 0; //start with ` = 0
4. while (true)
5. if (locLDFC(a, `) = true) break endif ; //success, so go on to next a

6. if (D`
a = γ(B1, . . . , Bn)) return(false) endif ;

7. `← `+ 1 //increment ` until success or intractable or failure
8. endwhile
9. endfor;
10. return(true) //return true if check succeeds for all a ∈ γ

locLDFC(a, `)

1. forall reachable transitions sa
a→ ta of D`

a

2. if (¬(∀Bi ∈ Ca : in depthD`
a
(Bi, ta) = ` ∨ out depthD`

a
(Bi, ta) = `))

3. return(false) //check Definition 18
4. endfor;
5. return(true) //return true if check succeeds for all transitions

Fig. 4. Pseudocode for the implementation of our method.

verification time for both LDFC-BIP and D-Finder 2 [8]. D-Finder 2 implements
a compositional and incremental method for the verification of BIP-systems. D-
Finder (the precursor of D-Finder 2) has been compared favorably with NuSmv
and SPIN, outperforming both NuSmv and SPIN on dining philosophers, and
outperforming NuSmv on the gas station example [7], treated next. Our results
show that LDFC-BIP has a linear increase of computation time with the system
size (n), and so outperforms D-Finder 2.

6.2 Experiment: Gas Station

A gas station [13] consists of an operator, a set of pumps, and a set of customers.
Before using a pump, a customer has to prepay. Then the customer uses the
pump, collects his change and starts a new transaction. Before being used by a
customer, a pump has to be activated by the operator. When a pump is shut
off, it can be re-activated for the next operation.

We verified LDFC(a, `) for ` = 2 and all interactions a. Hence gas station is
deadlock-free. Figures 5(b), 5(c), and 5(d) present the verification times using
LDFC-BIP and D-Finder 2. We consider a system with 3 pumps and variable
number of customers. In these figures, the x axis gives the number n of cus-
tomers, and the y axis gives the verification time (in seconds). D-Finder 2 suf-
fers state-explosion at n = 1800, because we consider only three pumps, and so
the incremental method used by D-Finder 2 deteriorates. LDFC-BIP outperforms
D-Finder 2 as the number of customers increases.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Number of Philosophers

LDFC
DFinder

(a) Dining philosophers benchmark.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(b) Gas station benchmark 1.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(c) Gas station benchmark 2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(s

ec
on

ds
)

Number of Customers

LDFC
D-Finder

(d) Gas station benchmark 3.

Fig. 5. Benchmarks generated by our experiments.

7 Discussion, Related Work, and Further Work

Related work. The notions of wait-for-graph and supercycle [3, 4] were initially
defined for a shared memory program P = P1 ‖· · ·‖PK in pairwise normal form:
a binary symmettric relation I specifies the directly interacting pairs (“neigh-
bors”) {Pi, Pj}. If Pi has neighbors Pj and Pk, then the code in Pi that interacts
with Pj is expressed separately from the code in Pi that interacts with Pk. These
synchronization codes are executed synchronously and atomically, so the grain
of atomicity is proportional to the degree of I. Attie and Chockler [3] give two
polynomial time methods for deadlock freedom. The first checks subsystems con-
sisting of three processes. The second computes the wait-for-graphs of all pair
subsystems Pi ‖Pj , and takes their union, for all pairs and all reachable states
of each pair. The first method considers only wait-for-paths of length ≤ 2. The

second method is prone to false negatives, because wait-for edges generated by
different states are all merged together, which can result in spurious supercycles

Gössler and Sifakis [12] use a BIP-like formalism, Interaction Models. They
present a criterion for global deadlock freedom, based on an and-or graph with
components and constraints as the two sets of nodes. A constraint gives the con-
dition under which a component is blocked. Edges are labeled with conjuncts of
the constraints. Deadlock freedom is checked by traversing every cycle, taking
the conjunction of all the conditions labeling its edges, and verifying that this
conjunction is always false, i.e., verifying the absence of cyclical blocking. No
complexity bounds are given. Martens and Majster-Cederbaum [14] present a
polynomial time checkable deadlock freedom condition based on structural re-
strictions: “the communication structure between the components is given by a
tree.” This restriction allows them to analyze only pair systems. Brookes and
Roscoe [11] provide criteria for deadlock freedom of CSP programs based on
structural and behavioral restrictions combined with analysis of pair systems.
No implementation, or complexity bounds, are given. Aldini and Bernardo [1]
use a formalism based on process algebra. They check deadlock by analysing
cycles in the connections between software components, and claim scalability,
but no complexity bounds are given.

We compared our implementation LDFC-BIP to D-Finder 2 [8]. D-Finder 2
computes a finite-state abstraction for each component, which it uses to com-
pute a global invariant I. It then checks if I implies deadlock freedom. Unlike
LDFC-BIP, D-Finder 2 handles infinite state systems. However, LDFC-BIP had
superior running time for dining philosophers and gas station (both finite-state).

All the above methods verify global (and not local) deadlock-freedom. Our
method verifies both. Also, our approach makes no structural restriction at all
on the system being checked for deadlock.

Discussion. Our approach has the following advantages:

Local and global deadlock Our method shows that no subset of processes
can be deadlocked, i.e., absence of both local and global deadlock.

Check works for realistic formalism By applying the approach to BIP, we
provide an efficient deadlock-freedom check within a formalism from which
efficient distributed implementations can be generated [9].

Locality If a component Bi is modified, or is added to an existing system, then
LDFC(a, `) only has to be re-checked for Bi and components within distance
` of Bi. A condition whose evaluation considers the entire system at once,
e.g., [1, 8, 12] would have to be re-checked for the entire system.

Easily parallelizable Since the checking of each subsystem D`
a is independent

of the others, the checks can be carried out in parallel. Hence our method can
be easily parallelized and distributed, for speedup, if needed. Alternatively,
performing the checks sequentially minimizes the amount of memory needed.

Framework aspect Supercycles and in/out-depth provide a framework for
deadlock-freedom. Conditions more general and/or discriminating than the
one presented here should be devisable in this framework. This is a topic for
future work.

Further work. Our implementation uses explicit state enumeration. Using BDD’s
may improve the running time when LDFC(a, `) holds only for large `. An en-
abled port p enables all interactions containing p. Deadlock-freedom conditions
based on ports could exploit this interdepence among interaction enablement.
Our implementation should produce counterexamples when a system fails to sat-
isfy LDFC(a, `). Design rules for ensuring LDFC(a, `) will help users to produce
deadlock-free systems, and also to interpret counterexamples. A fault may create
a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally
arise. Tolerating a fault that creates up to f such spurious wait-for-edges requires
that there do not arise during normal (fault-free) operation subgraphs of WB(s)
that can be made into a supercycle by adding f edges. We will investigate criteria
for preventing formation of such subgraphs. Methods for evaluating LDFC(a, `)
on infinite state systems will be devised, e.g.,, by extracting proof obligations
and verifying using SMT solvers. We will extend our method to Dynamic BIP,
[10], where participants can add and remove interactions at run time.

References

1. Alessandro Aldini and Marco Bernardo. A General Approach to Deadlock Freedom
Verification for Software Architectures. FME, 2805:658–677, 2003.

2. Paul C. Attie. Synthesis of large concurrent programs via pairwise composition.
In CONCUR’99, number 1664 in LNCS. Springer-Verlag, August 1999.

3. Paul C. Attie and H. Chockler. Efficiently Verifiable Conditions for Deadlock-
freedom of Large Concurrent Programs. In VMCAI, France, January 2005.

4. Paul C. Attie and E. Allen Emerson. Synthesis of Concurrent Systems with Many
Similar Processes. TOPLAS, 20(1):51–115, January 1998.

5. P.C. Attie, N. Francez, and O. Grumberg. Fairness and Hyperfairness in Multiparty
Interactions. Distributed Computing, 6:245–254, 1993.

6. Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous Real-
time Components in BIP. In SEFM, pages 3–12, September 2006.

7. S. Bensalem, M. Bozga, T.H. Nguyen, and J. Sifakis. Compositional verification
for component-based systems and application. Software, IET, 4(3):181–193, 2010.

8. Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph
Sifakis, and Rongjie Yan. D-finder 2: Towards efficient correctness of incremental
design. In NASA Formal Methods, pages 453–458, 2011.

9. Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph
Sifakis. From High-level Component-based Models to Distributed Implementa-
tions. In EMSOFT, pages 209–218, 2010.

10. Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling
Dynamic Architectures Using Dy-BIP. In Software Composition, pages 1–16, 2012.

11. S.D. Brookes and A.W. Roscoe. Deadlock analysis in networks of communicating
processes. Distributed Computing, 4:209–230, 1991.

12. Gregor Gössler and Joseph Sifakis. Component-based construction of deadlock-free
systems. In FSTTCS, pages 420–433. Springer, 2003.

13. David Heimbold and David Luckham. Debugging Ada tasking programs. Software,
IEEE, 2(2):47 –57, March 1985.

14. Moritz Martens and Mila Majster-Cederbaum. Deadlock-freedom in component
systems with architectural constraints. FMSD, 41:129–177, 2012.

15. Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

