Paul C Attie

Saddek Bensalem

Marius Bozga

Mohamad Jaber

Joseph Sifakis

Fadi A Zaraket

An Abstract Framework for Deadlock Prevention in BIP

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Deadlock freedom is a crucial property of concurrent and distributed systems. With increasing system complexity, the challenge of assuring deadlock freedom and other correctness properties becomes even greater. In contrast to the alternatives of (1) deadlock detection and recovery, and (2) deadlock avoidance, we advocate deadlock prevention: design the system so that deadlocks do not occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACEcomplete in general [15, chapter 19]. To achieve tractability, we can either make our deadlock freedom check incomplete (sufficient but not necessary), or we can restrict the systems that we check to special cases. We choose the first option: a system meeting our condition is free of both local and global deadlocks, while a system which fails to meet our condition may or may not be deadlock free.

We generalize previous works [START_REF] Paul | Synthesis of large concurrent programs via pairwise composition[END_REF][START_REF] Attie | Efficiently Verifiable Conditions for Deadlockfreedom of Large Concurrent Programs[END_REF][START_REF] Attie | Synthesis of Concurrent Systems with Many Similar Processes[END_REF] by removing the requirement that interaction between processes be expressed pairwise, and also by applying to BIP [START_REF] Basu | Modeling Heterogeneous Realtime Components in BIP[END_REF], a framework from which efficient distributed code can be generated. In contrast, the model of concurrency in [START_REF] Paul | Synthesis of large concurrent programs via pairwise composition[END_REF][START_REF] Attie | Efficiently Verifiable Conditions for Deadlockfreedom of Large Concurrent Programs[END_REF][START_REF] Attie | Synthesis of Concurrent Systems with Many Similar Processes[END_REF] requires shared memory read-modify-write operations with a large grain of atomicity. The full paper, including proofs for all theorems, is available on-line, as is our implementation of the method.

BIP -Behavior Interaction Priority

BIP is a component framework for constructing systems by superposing three layers of modeling: Behavior, Interaction, and Priority. A technical treatment of priority is beyond the scope of this paper. Adding priorities never introduces a deadlock, since priority enforces a choice between possible transitions from a state, and deadlock-freedom means that there is at least one transition from every (reachable) state. Hence if a BIP system without priorities is deadlock-free, then the same system with priorities added will also be deadlock-free.

Definition 1 (Atomic Component

). An atomic component B i is a labeled transition system represented by a triple (Q i , P i , → i) where Q i is a set of states, P i is a set of communication ports, and → i ⊆ Q i × P i × Q i is a set of possible transitions, each labeled by some port.

For states s i , t i ∈ Q i and port p i ∈ P i , write s i pi → i t i , iff (s i , p i , t i) ∈ → i . When p i is irrelevant, write s i → i t i . Similarly, s i pi → i means that there exists t i ∈ Q i such that s i pi → i t i . In this case, p i is enabled in state s i . Ports are used for communication between different components, as discussed below.

In practice, we describe the transition system using some syntax, e.g., involving variables. We abstract away from issues of syntactic description since we are only interested in enablement of ports and actions. We assume that enablement of a port depends only on the local state of a component. In particular, it cannot depend on the state of other components. This is a restriction on BIP, and we defer to subsequent work how to lift this restriction. So, we assume the existence of a predicate enb i pi that holds in state s i of component 1(a) shows atomic components for a philospher P and a fork F in dining philosophers. A philosopher P that is hungry (in state h) can eat by executing get and moving to state e (eating). From e, P releases its forks by executing release and moving back to h. Adding the thinking state does not change the deadlock behaviour of the system, since the thinking to hungry transition is internal to P , and so we omit it. A fork F is taken by either: (1) the left philosopher (transition get l) and so moves to state u l (used by left philosopher), or (2) the right philosopher (transition get r) and so moves to state u r (used by right philosopher). From state u r (resp. u l), F is released by the right philosopher (resp. left philosopher) and so moves back to state f (free). Definition 2 (Interaction). For a given system built from a set of n atomic components

B i iff port p i is enabled in s i , i.e., s i (enb i pi) = true iff s i pi → i . Figure
{B i = (Q i , P i , → i)} n i=1
, we require that their respective sets of ports are pairwise disjoint, i.e., for all i, j such that i, j ∈ {1..n} ∧ i = j, we have P i ∩P j = ∅. An interaction is a set of ports not containing two or more ports from the same component. That is, for an interaction a we have a ⊆ P ∧ (∀i ∈ {1..n} : |a ∩ P i | ≤ 1), where P = n i=1 P i is the set of all ports in the system. When we write a = {p i } i∈I , we assume that p i ∈ P i for all i ∈ I, where I ⊆ {1..n}.

Execution of an interaction a involves all the components which have ports in a.

Definition 3 (Composite Component).

A composite component (or simply component) B γ(B 1 , . . . , B n) is defined by a composition operator parameterized by a set of interactions γ ⊆ 2 P . B has a transition system (Q, γ, →), where

Q = Q 1 × • • • × Q n and →⊆ Q × γ × Q is the least set of transitions satisfying the rule a = {p i } i∈I ∈ γ ∀i ∈ I : s i pi → i t i ∀i ∈ I : s i = t i s 1 , . . . , s n a → t 1 , . . . , t n
This inference rule says that a composite component B = γ(B 1 , . . . , B n) can execute an interaction a ∈ γ, iff for each port p i ∈ a, the corresponding atomic component B i can execute a transition labeled with p i ; the states of components that do not participate in the interaction stay unchanged. Given an interaction a = {p i } i∈I , we denote by C a the set of atomic components participating in a, formally:

C a = {B i | p i ∈ a}. Figure 1(b)
shows a composite component consisting of four philosophers and the four forks between them. Each philosopher and its two neighboring forks share two interactions: Get = {get, use l , use r } in which the philosopher obtains the forks, and Rel = {release, free l , free r } in which the philosopher releases the forks.

Definition 4 (Interaction enablement). An atomic component B i = (Q i , P i , → i) enables interaction a in state s i iff s i pi → i , where p i = P i ∩ a is the port of B i involved in a. Let B = γ(B 1 , . . . , B n) be a composite component, and let s = s 1 , . . . , s n be a state of B. Then B enables a in s iff every B i ∈ C a enables a in s i .

The definition of interaction enablement is a consequence of Definition 3. Interaction a being enabled in state s means that executing a is one of the possible transitions that can be taken from s. Let enb i a denote the enablement condition for interaction a in component B i . By definition, enb i a = enb i pi where p i = a∩P i .

Definition 5 (BIP System). Let B = γ(B 1 , . . . , B n) be a composite component with transition system (Q, γ, →), and let Q 0 ⊆ Q be a set of initial states. Then (B, Q 0) is a BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry) and forks initially in state f (free).

Definition 6 (Execution). Let (B, Q 0) be a BIP system with transition system (Q, γ, →). Let ρ = s 0 a 1 s 1 . . . s i-1 a i s i . . . be an alternating sequence of states of B and interactions of B. Then ρ is an execution of (B, Q 0) iff (1) s 0 ∈ Q 0 , and (2) ∀i > 0 :

s i-1 ai → s i .
A state or transition that occurs in some execution is called reachable. Definition 9 (Subsystem). Let (B, Q 0) be a BIP system where B = γ(B 1 , . . . , B n), and let {B j1 , . . . , B j k } be a subset of {B 1 , . . . , B n }. Then the subsystem (B , Q 0) of (B, Q 0) based on {B j1 , . . . , B j k } is as follows:

1. B is the subcomponent of B based on {B j1 , . . . , B j k } 2. Q 0 = Q 0 {B j1 , . . . , B j k } Definition 10 (Execution Projection). Let (B, Q 0) be a BIP system where B = γ(B 1 , . . . , B n), and let (B , Q 0), with B = γ (B j1 , . . . , B j k) be the sub- system of (B, Q 0) based on {B j1 , . . . , B j k }. Let ρ = s 0 a 1 s 1 . . . s i-1 a i s i . . . be an execution of (B, Q 0). Then, ρ (B , Q 0), the projection of ρ onto (B , Q 0), is the sequence resulting from:
1. replacing each s i by s i {B j1 , . . . , B j k }, i.e., replacing each state by its projection onto {B j1 , . . . , B j k } 2. removing all a i s i where a i ∈ γ Proposition 1 (Execution Projection). Let (B, Q 0) be a BIP system where

B = γ(B 1 , . . . , B n), and let (B , Q 0), with B = γ (B j1 , . . . , B j k) be the sub- system of (B, Q 0) based on {B j1 , . . . , B j k }. Let ρ = s 0 a 1 s 1 . . . s i-1 a i s i . . . be an execution of (B, Q 0). Then, ρ (B , Q 0) is an execution of (B , Q 0). Corollary 1. Let (B , Q 0) be a subsystem of (B, Q 0). Let s be a reachable state of (B, Q 0). Then s B is a reachable state of (B , Q 0). Let s a → t be a reachable transition of (B, Q 0), and let a be an interaction of (B , Q 0). Then s B a → t B is a reachable transition of (B , Q 0).
To avoid tedious repetition, we fix, for the rest of the paper, an arbitrary BIP-system (B, Q 0), with B γ(B 1 , . . . , B n), and transition system (Q, γ, →).

Characterizing Deadlock-freedom

Definition 11 (Deadlock-freedom). A BIP-system (B, Q 0) is deadlock-free iff in every reachable state s of (B, Q 0), some interaction a is enabled.

We assume in the sequel that each individual component B i is deadlock-free, when considered in isolation, with respect to the set of initial states Q 0 B i .

Wait-for graphs

The wait-for-graph for a state s is a directed bipartite and-or graph which contains as nodes the atomic components B 1 , . . . , B n , and all the interactions γ. Edges in the wait-for-graph are from a B i to all the interactions that B i enables (in s), and from an interaction a to all the components that participate in a and which do not enable it (in s).

Definition 12 (Wait-for-graph W B (s)). Let B = γ(B 1 , . . . , B n) be a BIP composite component, and let s = s 1 , . . . , s n be an arbitrary state of B. The wait-for-graph W B (s) of s is a directed bipartite and-or graph, where 1. the nodes of W B (s) are as follows:

(a) the and-nodes are the atomic components B i , i ∈ {1..n}, (b) the or-nodes are the interactions a ∈ γ, 2. there is an edge in W B (s) from B i to every node a such that B i ∈ C a and s i (enb i a) = true, i.e., from B i to every interaction which B i enables in s i , 3. there is an edge in W B (s) from a to every B i such that B i ∈ C a and s i (enb i a) = false, i.e., from a to every component B i which participates in a but does not enable it, in state s i .

A component B i is an and-node since all of its successor actions (or-nodes) must be disabled for B i to be incapable of executing. An interaction a is an or-node since it is disabled if any of its participant components do not enable it. An edge (path) in a wait-for-graph is called a wait-for-edge (wait-for-path). Write a → B i (B i → a respectively) for a wait-for-edge from a to B i (B i to a respectively). We abuse notation by writing e ∈ W B (s) to indicate that e (either

a → B i or B i → a) is an edge in W B (s). Also B → a → B ∈ W B (s) for B → a ∈ W B (s) ∧ a → B ∈ W B (s), i.e.
, for a wait-for-path of length 2, and similarly for longer wait-for-paths.

Consider the dining philosophers system given in Figure 1. Figure 2(a) shows its wait-for-graph in its sole initial state.

Supercycles and deadlock-freedom

We characterize a deadlock as the existence in the wait-for-graph of a graphtheoretic construct that we call a supercycle:

Definition 13 (Supercycle). Let B = γ(B 1 , . . . , B n) be a composite
B i to a, that is, B i → a ∈ W B (s) implies B i → a ∈ SC, 3.
if a is a node in SC, then there exists a B j such that:

(a) B j is a node in SC, and (b) there is an edge from a to B j in W B (s), and (c) there is an edge from a to

B j in SC, that is, a ∈ SC implies ∃B j : a → B j ∈ W B (s) ∧ a → B j ∈ SC,
where a ∈ SC means that a is a node in SC, etc. W B (s) is supercycle-free iff there does not exist a supercycle SC in W B (s). In this case, say that state s is supercycle-free. 3 shows an example supercycle (with boldened edges) for the dining philosophers system of Figure 1. P 0 waits for (enables) a single interaction, Get 0 . Get 0 waits for (is disabled by) fork F 0 , which waits for interaction Rel 0 . Rel 0 in turn waits for P 0 . However, this supercycle occurs in a state where P 0 is in h and F 0 is in u l . This state is not reachable from the initial state.

The existence of a supercycle is sufficient and necessary for the occurrence of a deadlock, and so checking for supercycles gives a sound and complete check for deadlocks. Write SC ⊆ W B (s) when SC is a subgraph of W B (s). Proposition 2 states that the existence of a supercycle implies a local deadlock: all components in the supercycle are blocked forever.

Proposition 2. Let s be a state of B. If SC ⊆ W B (s) is a supercycle, then all components B i in SC cannot execute a transition in any state reachable from s, including s itself.

Proof sketch. Every interaction a that B i enables is not enabled by some participant. By Defintion 4, a cannot be executed. Hence B i cannot execute any transition.

Proposition 3 states that the existence of a supercycle is necessary for a local deadlock to occur: if a set of components, considered in isolation, are blocked, then there exists a supercycle consisting of exactly those components, together with the interactions that each component enables. Proposition 3. Let B be a subcomponent of B, and let s be an arbitrary state of B such that B , when considered in isolation, has no enabled interaction in state s B . Then, W B (s) contains a supercycle.

Proof sketch. Every atomic component B i in B is individually deadlock free, by assumption, and so there is at least one interaction a i which B i enables. Now a i is not enabled in B , by the antecedent of the proposition. Hence a i has some outgoing wait-for-edge in W B (s). The subgraph of W B (s) induced by all the B i and all their (locally) enabled interactions is therefore a supercycle.

We consider subcomponent B in isolation to avoid other phenomena that prevent interactions from executing, e.g., conspiracies [START_REF] Attie | Fairness and Hyperfairness in Multiparty Interactions[END_REF]. Now the converse of Proposition 3 is that absence of supercycles in W B (s) means there is no locally deadlocked subsystem. Taking B = B, this implies that B is not deadlocked, and so there is at least one interaction of B which is enabled in state s.

Corollary 2. If, for every reachable state s of (B, Q 0), W B (s) is supercycle- free, then (B, Q 0) is deadlock-free.
Proof sketch. Immediate from Proposition 3 (with B = B) and Definition 11.

Structural properties of supercycles

We present some structural properties of supercycles, which are central to our deadlock-freedom condition. Definition 14 (Path, path length). Let G be a directed graph and v a vertex in

G. A path π in G is a finite sequence v 1 , v 2 , . . . , v n such that (v i , v i+1) is an edge in G for all i ∈ {1, . . . , n -1}. Write path G (π) iff π is a path in G. Define first(π) = v 1 and last(π) = v n .
Let |π| denote the length of π, which we define as follows:

if π is simple, i.e., all v i , 1 ≤ i ≤ n, are distinct, then |π| = n -1, i.e., the number of edges in π if π contains a cycle, i.e., there exist v i , v j such that i = j and v i = v j , then |π| = ω (ω for "infinity").

Definition 15 (In-depth, Out-depth). Let G be a directed graph and v a vertex in G. Define the in-depth of v in G, notated as in depth G (v), as follows:

if there exists a path π in G that contains a cycle and ends in v, i.e., |π|

= ω ∧ last(π) = v, then in depth G (v) = ω, -otherwise, let π be a longest path ending in v. Then in depth G (v) = |π|. Formally, in depth G (v) = (MAX π : path G (π) ∧ last(π) = v : |π|).
Likewise define out depth

G (v) = (MAX π : path G (π) ∧ first(π) = v : |π|)
, the out-depth of v in G, i.e., we consider paths starting (rather than ending) in v.

We use in depth B (v, s) for in depth W B (s) (v), and also out depth B (v, s) for out depth W B (s) (v). Proposition 4. A supercycle SC contains no nodes with finite out-depth. Proof sketch. By contradiction. Let v be a node in SC with finite out-depth. Hence all outgoing paths from v end in a sink node. By assumption, all atomic components are individually deadlock-free, i.e., they always enable at least one interaction. Hence these sink nodes are all interactions, and therefore they violate clause 3 in Definition 13. Proposition 5. Every supercycle SC contains at least one cycle. Proof sketch. Suppose not. Then SC is an acyclic supercycle. Hence every node in SC has finite out-depth, which contradicts Proposition 4. Proposition 6. Let B = γ(B 1 , . . . , B n) be a composite component and s a state of B. Let SC be a supercycle in W B (s), and let SC be the graph obtained from SC by removing all vertices of finite in-depth and their incident edges. Then SC is also a supercycle in W B (s). Proof sketch. By Proposition 5, SC is nonempty. Thus SC satisfies clause (1) of Definition 13. Let v be an arbitrary vertex of SC . Hence v has infinite in-depth, and therefore so do all of v's sucessors in SC. Hence all of these successors are in SC . Hence every vertex v in SC has successors in SC that satisfy clauses (2) and (3) of Definition 13.

A Global Condition for Deadlock Freedom

Consider a reachable transition s a → t of (B, Q 0). Suppose that the execution of this transition creates a supercycle SC, i.e., SC ⊆ W B (s) ∧ SC ⊆ W B (t). The only components that can change state along this transition are the participants of a, i.e., the B i ∈ C a , and so they are the only components that can cause a supercycle to be created in going from s to t. There are three relevant possibilities for each B i ∈ C a :

1. B i has finite in-depth in W B (t): then, if B i ∈ SC, it can be removed and still leave a supercycle SC , by Proposition 6. Hence SC exists in W B (s), and so B i is not essential to the creation of a supercycle. 2. B i has finite out-depth in W B (t): by Proposition 4, B i cannot be part of a supercycle, and so SC ⊆ W B (s). 3. B i has infinite in-depth and infinite out-depth in W B (t): in this case, B i is possibly an essential part of SC, i.e., SC was created in going from s to t.

We thus impose a condition which guarantees that only case 1 or case 2 occur.

Definition 16 (DFC(a)). Let s a → t be a reachable transition of BIP-system (B, Q 0). Then, in t, the following holds. For every component B i of C a : either B i has finite in-depth, or finite out-depth, in W B (t). Formally,

∀B i ∈ C a : in depth B (B i , t) < ω ∨ out depth B (B i , t) < ω.
To proceed, we show that wait-for-edges not involving some interaction a and its participants B i ∈ C a are unaffected by the execution of a. Say that edge e in a wait-for-graph is B i -incident iff B i is one of the endpoints of e.

Proposition 7 (Wait-for-edge preservation). Let s a → t be a transition of composite component B = γ(B 1 , . . . , B n), and let e be a wait-for edge that is not

B i -incident, for every B i ∈ C a . Then e ∈ W B (s) iff e ∈ W B (t).
Proof sketch. Components not involved in the execution of a do not change state along s a → t. Hence the endpoint of e that is a component has the same state in s as in t. The proposition then follows from Definition 12.

We show, by induction on the length of finite exeuctions, that every reachable state is supercycle-free. Assume that every initial state is supercycle-free, for the base case. Assuming DFC(a) for all a ∈ γ provides, by the above discussion, the induction step.

Theorem 1 (Deadlock-freedom). If (1) for all s 0 ∈ Q 0 , W B (s 0) is supercyclefree, and (2) for all interactions a of B (i.e., a ∈ γ), DFC(a) holds, then for every reachable state u of (B, Q 0): W B (u) is supercycle-free.

Proof. We only need show the induction step: for every reachable transition s a → t, W B (s) is supercycle-free implies that W B (t) is supercycle-free. We establish the contrapositive: if W B (t) contains a supercycle, then so does W B (s).

Let SC be a supercycle in W B (t), and let SC be SC with all nodes of finite in-depth removed. SC is a supercycle in W B (t) by Proposition 6. Let e be an arbitrary edge in SC . Hence e ∈ W B (t). Also, both nodes of e have infinite in-depth (by construction of SC) and infinite out-depth (by Proposition 4) in W B (t). Let B i be an arbitrary component in C a . By DFC(a), B i has finite indepth or finite out-depth in W B (t): in depth B (B i , t) < ω ∨ out depth B (B i , t) < ω. Hence e is not B i -incident. So, e ∈ W B (s), by Proposition 7. Hence SC ⊆ W B (s), and so W B (s) contains a supercycle.

Evaluating DFC(a) requires checking all reachable transitions of (B, Q 0), which is subject to state-explosion. We need a condition which implies DFC(a) and can be checked efficiently. Observe that if in depth B (B i , t) < ω ∨out depth B (B i , t) < ω, then there is some finite such that in depth B (B i , t) = ∨out depth B (B i , t) = . This can be verified in a subsystem whose size depends on , as follows.

Definition 17 (Structure Graph G B , G i , G a). The structure graph G B of composite component B = γ(B 1 , . . . , B n
) is a bipartite graph whose nodes are the B 1 , . . . , B n and all the a ∈ γ. There is an edge between B i and interaction a iff B i participates in a, i.e., B i ∈ C a . Define the distance between two nodes to be the number of edges in a shortest path between them. Let G i (G a respectively) be the subgraph of G B that contains B i (a respectively) and all nodes of G B that have a distance to B i (a respectively) less than or equal to .

Then in depth B (B i , t) = ∨ out depth B (B i , t) = can be verified in the wait-for-graph of G +1 i , since we verify either that all wait-for-paths ending in B i have length ≤ , or that all wait-for-paths starting in B i have length ≤ . These conditions can be checked in G +1 i , since G +1 i contains every node in a wait-forpath of length + 1 or less and which starts or ends in

B i . Since G +1 i ⊆ G +2 a for B i ∈ C a , we use G +2 a instead of the set of subsystems {G +1 i : B i ∈ C a }.
We leave analysis of the tradeoff between using one larger system (G +2 a) versus several smaller ones (G +1 i) to another paper. Define D a , the deadlock-checking subsystem for interaction a and depth , to be the subsystem of (B, Q 0) based on G +2 a .

Definition 18 (LDFC(a,)). Let s a a → t a be a reachable transition of D a . Then, in t a , the following holds. For every component B i of C a : either B i has in-depth at most , or out-depth at most , in W D a (t a). Formally,

∀B i ∈ C a : in depth D a (B i , t a) ≤ ∨ out depth D a (B i , t a) ≤ .
To infer deadlock-freedom in (B, Q 0) by checking LDFC(a,), we show that wait-for behavior in B "projects down" to any subcomponent B , and that waitfor behavior in B "projects up" to B.

Proposition 8 (Wait-for-edge projection). Let (B , Q 0) be a subsystem of (B, Q 0). Let s be a state of (B, Q 0), and s = s B . Let a be an interaction of (B , Q 0), and

B i ∈ C a an atomic component of B . Then (1) a → B i ∈ W B (s) iff a → B i ∈ W B (s), and (2) B i → a ∈ W B (s) iff B i → a ∈ W B (s).
Proof sketch. Since s = s B , all port enablement conditions of components in B have the same value in s and in s . The proposition then follows by straightforward application of Definition 12.

Since wait-for-edges project up and down, it follows that wait-for-paths project up and down, provided that the subsystem contains the entire wait-for-path.

Proposition 9 (In-projection, Out-projection). Let ≥ 0, let B i be an atomic component of B, and let (B , Q 0) be a subsystem of (B, Q 0) which is based on a superset of G +1 i . Let s be a state of (B, Q 0), and s = s B . Then (1) in depth B (B i , s) ≤ iff in depth B (B i , s) ≤ , and (2) out depth B (B i , s) ≤ iff out depth B (B i , s) ≤ .

Proof sketch. Follows from Defintion 15, Proposition 8, and the observation that W B (s) contains all wait-for-paths of length ≤ that start or end in B i . We now show that LDFC(a,) implies DFC(a), which in turn implies deadlockfreedom.

Lemma 1. Let a be an interaction of B, i.e., a ∈ γ. If LDFC(a,) holds for some finite ≥ 0, then DFC(a) holds.

Proof sketch. Let s a → t be a reachable transition of (B, Q 0) and let

s a = s D a , t a = t D a . Then s a a → t a is a reachable transition of D a by Corollary 1. By LDFC(a,), in depth D a (B i , t a) ≤ ∨ out depth D a (B i , t a) ≤ . Hence by Propo- sition 9, in depth B (B i , t) ≤ ∨ out depth B (B i , t) ≤ . So in depth B (B i , t) < ω ∨ out depth B (B i , t) < ω. Hence DFC(a) holds. Theorem 2 (Deadlock-freedom). If (1) for all s 0 ∈ Q 0 , W B (s 0) is supercycle- free, and (2)
for all interactions a of B (a ∈ γ), LDFC(a,) holds for some ≥ 0, then for every reachable state u of (B, Q 0): W B (u) is supercycle-free.

Proof sketch. Immediate from Lemma 1 and Theorem 1.

Implementation and Experimentation

LDFC-BIP, (∼ 1500 LOC Java) implements our method for finite-state BIPsystems. Pseudocode for LDFC-BIP is shown in Figure 4. checkDF(B, Q 0) iterates over each interaction a of (B, Q 0), and checks (∃ ≥ 0 : LDFC(a,)) by starting with = 0 and incrementing until either LDFC(a,) is found to hold, or D a has become the entire system and LDFC(a,) does not hold. In the latter case, LDFC(a,) does not hold for any finite , and, in practice, computation would halt before D a had become the entire system, due to exhaustion of resources. locLDFC(a,) checks LDFC(a,) by examining every reachable transition that executes a, and checking that the final state satisfies Definition 18.

The running time of our implementation is O(Σ a∈γ |D a a |), where a is the smallest value of for which LDFC(a,) holds, and where |D a a | denotes the size of the transition system of D a a .

Experiment: Dining Philosophers

We consider n philosophers in a cycle, based on the components of Figure 1. Figure 5(a) provides experimental results. The x axis gives the number n of philosophers (and also the number of forks), and the y axis gives the verification time (in milliseconds). We verified that LDFC(a,) holds for = 1 and all interactions a. Hence dining philosophers is deadlock-free. We increase n and plot the verification time for both LDFC-BIP and D-Finder 2 [START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF]. D-Finder 2 implements a compositional and incremental method for the verification of BIP-systems. D-Finder (the precursor of D-Finder 2) has been compared favorably with NuSmv and SPIN, outperforming both NuSmv and SPIN on dining philosophers, and outperforming NuSmv on the gas station example [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF], treated next. Our results show that LDFC-BIP has a linear increase of computation time with the system size (n), and so outperforms D-Finder 2.

Experiment: Gas Station

A gas station [START_REF] Heimbold | Debugging Ada tasking programs[END_REF] consists of an operator, a set of pumps, and a set of customers. Before using a pump, a customer has to prepay. Then the customer uses the pump, collects his change and starts a new transaction. Before being used by a customer, a pump has to be activated by the operator. When a pump is shut off, it can be re-activated for the next operation.

We verified LDFC(a,) for = 2 and all interactions a. Hence gas station is deadlock-free. Figures 5(b), 5(c), and 5(d) present the verification times using LDFC-BIP and D-Finder 2. We consider a system with 3 pumps and variable number of customers. In these figures, the x axis gives the number n of customers, and the y axis gives the verification time (in seconds). D-Finder 2 suffers state-explosion at n = 1800, because we consider only three pumps, and so the incremental method used by D-Finder 2 deteriorates. LDFC-BIP outperforms D-Finder 2 as the number of customers increases. 7 Discussion, Related Work, and Further Work Related work. The notions of wait-for-graph and supercycle [START_REF] Attie | Efficiently Verifiable Conditions for Deadlockfreedom of Large Concurrent Programs[END_REF][START_REF] Attie | Synthesis of Concurrent Systems with Many Similar Processes[END_REF] were initially defined for a shared memory program P = P 1 • • • P K in pairwise normal form: a binary symmettric relation I specifies the directly interacting pairs ("neighbors") {P i , P j }. If P i has neighbors P j and P k , then the code in P i that interacts with P j is expressed separately from the code in P i that interacts with P k . These synchronization codes are executed synchronously and atomically, so the grain of atomicity is proportional to the degree of I. Attie and Chockler [START_REF] Attie | Efficiently Verifiable Conditions for Deadlockfreedom of Large Concurrent Programs[END_REF] give two polynomial time methods for deadlock freedom. The first checks subsystems consisting of three processes. The second computes the wait-for-graphs of all pair subsystems P i P j , and takes their union, for all pairs and all reachable states of each pair. The first method considers only wait-for-paths of length ≤ 2. The second method is prone to false negatives, because wait-for edges generated by different states are all merged together, which can result in spurious supercycles Gössler and Sifakis [START_REF] Gössler | Component-based construction of deadlock-free systems[END_REF] use a BIP-like formalism, Interaction Models. They present a criterion for global deadlock freedom, based on an and-or graph with components and constraints as the two sets of nodes. A constraint gives the condition under which a component is blocked. Edges are labeled with conjuncts of the constraints. Deadlock freedom is checked by traversing every cycle, taking the conjunction of all the conditions labeling its edges, and verifying that this conjunction is always false, i.e., verifying the absence of cyclical blocking. No complexity bounds are given. Martens and Majster-Cederbaum [START_REF] Martens | Deadlock-freedom in component systems with architectural constraints[END_REF] present a polynomial time checkable deadlock freedom condition based on structural restrictions: "the communication structure between the components is given by a tree." This restriction allows them to analyze only pair systems. Brookes and Roscoe [START_REF] Brookes | Deadlock analysis in networks of communicating processes[END_REF] provide criteria for deadlock freedom of CSP programs based on structural and behavioral restrictions combined with analysis of pair systems. No implementation, or complexity bounds, are given. Aldini and Bernardo [START_REF] Aldini | A General Approach to Deadlock Freedom Verification for Software Architectures[END_REF] use a formalism based on process algebra. They check deadlock by analysing cycles in the connections between software components, and claim scalability, but no complexity bounds are given.

We compared our implementation LDFC-BIP to D-Finder 2 [START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF]. D-Finder 2 computes a finite-state abstraction for each component, which it uses to compute a global invariant I. It then checks if I implies deadlock freedom. Unlike LDFC-BIP, D-Finder 2 handles infinite state systems. However, LDFC-BIP had superior running time for dining philosophers and gas station (both finite-state).

All the above methods verify global (and not local) deadlock-freedom. Our method verifies both. Also, our approach makes no structural restriction at all on the system being checked for deadlock. Discussion. Our approach has the following advantages:

Local and global deadlock Our method shows that no subset of processes can be deadlocked, i.e., absence of both local and global deadlock. Check works for realistic formalism By applying the approach to BIP, we provide an efficient deadlock-freedom check within a formalism from which efficient distributed implementations can be generated [START_REF] Bonakdarpour | From High-level Component-based Models to Distributed Implementations[END_REF]. Locality If a component B i is modified, or is added to an existing system, then LDFC(a,) only has to be re-checked for B i and components within distance of B i . A condition whose evaluation considers the entire system at once, e.g., [START_REF] Aldini | A General Approach to Deadlock Freedom Verification for Software Architectures[END_REF][START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF][START_REF] Gössler | Component-based construction of deadlock-free systems[END_REF] would have to be re-checked for the entire system. Easily parallelizable Since the checking of each subsystem D a is independent of the others, the checks can be carried out in parallel. Hence our method can be easily parallelized and distributed, for speedup, if needed. Alternatively, performing the checks sequentially minimizes the amount of memory needed. Framework aspect Supercycles and in/out-depth provide a framework for deadlock-freedom. Conditions more general and/or discriminating than the one presented here should be devisable in this framework. This is a topic for future work.

Further work. Our implementation uses explicit state enumeration. Using BDD's may improve the running time when LDFC(a,) holds only for large . An enabled port p enables all interactions containing p. Deadlock-freedom conditions based on ports could exploit this interdepence among interaction enablement. Our implementation should produce counterexamples when a system fails to satisfy LDFC(a,). Design rules for ensuring LDFC(a,) will help users to produce deadlock-free systems, and also to interpret counterexamples. A fault may create a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally arise. Tolerating a fault that creates up to f such spurious wait-for-edges requires that there do not arise during normal (fault-free) operation subgraphs of W B (s) that can be made into a supercycle by adding f edges. We will investigate criteria for preventing formation of such subgraphs. Methods for evaluating LDFC(a,) on infinite state systems will be devised, e.g.,, by extracting proof obligations and verifying using SMT solvers. We will extend our method to Dynamic BIP, [START_REF] Bozga | Modeling Dynamic Architectures Using Dy-BIP[END_REF], where participants can add and remove interactions at run time.

 Philosopher P and fork F atomic components. Dining philosophers composite component with four philosophers.

Fig. 1 .

 1 Fig. 1. Dining philosophers.

 Figure 2(b) shows the wait-for-graph after execution of get 0 . Edges from components to interactions are shown solid, and edges from interactions to components are shown dashed. Wait-for-graph in initial state. Wait-for-graph after execution of get 0 .

Fig. 2 .

 2 Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1.

F3Fig. 3 .

 3 Fig. 3. Example supercycle for dining philosophers system of Figure 1.

Figure

 Figure3shows an example supercycle (with boldened edges) for the dining philosophers system of Figure1. P 0 waits for (enables) a single interaction, Get 0 . Get 0 waits for (is disabled by) fork F 0 , which waits for interaction Rel 0 . Rel 0 in turn waits for P 0 . However, this supercycle occurs in a state where P 0 is in h and F 0 is in u l . This state is not reachable from the initial state.

Fig. 4 .

 4 Fig. 4. Pseudocode for the implementation of our method.

Fig. 5 .

 5 Fig. 5. Benchmarks generated by our experiments.

 Let {B j1 , . . . , B j k } ⊆ {B 1 , . . . , B n }. Then s {B j1 , . . . , B j k } s j1 , . . . , s j k . For a single B i , we write s B i = s i . We extend state projection to sets of states element-wise. Let B γ(B 1 , . . . , B n) be a composite component, and let {B j1 , . . . , B j k } be a subset of {B 1 , . . . , B n }. Let P = P j1 ∪ • • • ∪ P j k , i.e., the union of the ports of {B j1 , . . . , B j k }. Then the subcomponent B of B based on {B j1 , . . . , B j k } is as follows: {B j1 , . . . , B j k }, where B j1 , . . . , B j k are the atomic components in B .

	Definition 7 (State Projection). Let (B, Q 0) be a BIP system where B =
	γ(B 1 , . . . , B n) and let s = s 1 , . . . , s n be a state of (B, Q 0). Definition 8 (Subcomponent). 1. γ {a ∩ P | a ∈ γ ∧ a ∩ P = ∅}
	2. B	γ (B j1 , . . . , B j k)
	That is, γ consists of those interactions in γ that have at least one partici-
	pant in {B j1 , . . . , B j k }, and restricted to the participants in {B j1 , . . . , B j k }, i.e.,
	participants not in {B j1 , . . . , B j k } are removed.
	We write s B to indicate state projection onto B , and define s B
	s	

 component and s be a state of B. A subgraph SC of W B (s) is a supercycle in W B (s) if and only if all of the following hold: 1. SC is nonempty, i.e., contains at least one node, 2. if B i is a node in SC, then for all interactions a such that there is an edge in W B (s) from B i to a: (a) a is a node in SC, and (b) there is an edge in SC from

 Ca : in depth D a (Bi, ta) = ∨ out depth D a (Bi, ta) =))

	checkDF(B, Q0), where B γ(B1, . . . , Bn)
	1. forall interactions a ∈ γ	
	2.	//check (∃ ≥ 0 : LDFC(a,))
	3.	← 0;		//start with = 0
	4.	while (true)	
	5.	if (locLDFC(a,) = true) break endif ;	//success, so go on to next a
	6.	if (D a = γ(B1, . . . , Bn)) return(false) endif ;
	7.	← + 1	//increment until success or intractable or failure
	8.	endwhile	
	9. endfor;	
	10. return(true)		//return true if check succeeds for all a ∈ γ
	locLDFC(a,)	
	1. forall reachable transitions sa	a → ta of D a
	2. if (¬(∀Bi ∈ 3. return(false)		//check Definition 18
	4. endfor;	
	5. return(true)		//return true if check succeeds for all transitions

The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 288175 (CERTAINTY) and no 257414 (ASCENS).