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Abstract—Invariants generation has been intensively consid-
ered as an effective verification method for concurrent systems.
However, none of the existing work on the topic strongly
exploits the structure of the system and the algebra that
defines the interactions between its components. This not only
has an impact on the computation time, but also on the
scalability of the method. In a series of recent work, we
developed an efficient approach for generating invariants for
systems described in the BIP component framework. BIP is
an expressive modeling formalism including a rich algebra to
describe component interactions. Our technique, which focuses
on generating Boolean invariants corresponding to a subclass
of the conjunctive normal form, was then extended to an
incremental one capable of generating global invariants from
smaller invariants obtained for sub-systems by exploiting the
algebra that describes their interactions. This approach gives
a panoply of techniques and libraries to rigurously design
potentially complex systems. We also showed that Boolean
invariants generated by our methodology correspond to trap
of the Petri net induced by the BIP model. Unfortunately,
this class of invariants may be too unprecise, and hence leads
to discovery of false positive counter examples. The objective
of this paper is to propose new techniques dedicated to the
computation of linear interactions invariants, i.e., invariants
that are described by linear constraints and that relate states
of several components in the system. By definition, such new
class is incomparable to the one of Boolean invariants, but we
will show that it is generally more precise. In addition, we
propose an incremental approach that allows to discover and
reuse invariants that have already been computed on subparts
of the model. Those new techniques have been implemented
in DFINDER, a tool for checking deadlock freedom on BIP
systems using invariants, and evaluated on several case studies.
The experiments show that our approach outperforms classical
techniques on a wide range of models.

Keywords-component-based systems; model-checking; invari-
ants generation; linear algebra.

I. INTRODUCTION

Component-based design confers numerous advantages, in

particular, an increased productivity through reuse of exist-

ing components. Nonetheless, establishing the correctness

of the designed systems remains an open issue. In con-

trast to other engineering disciplines, software and system
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under grant agreements no 257414 (ASCENS), no 288175 (CERTAINTY),
from ARTEMIS JU grant ARTEMIS-2009-1-100208 (ACROSS) and from
France FUI grant agreement no 092930642 (CHAPI).

engineering badly ensures predictability at design time.

Consequently, a posteriori verification as well as empirical

validation are essential for ensuring correctness. Monolithic

verification [1], [2] of component-based systems is a chal-

lenging problem. It often requires computing for a composite

component the product of its constituents by using both

interleaving and synchronization. The complexity of the

product system is often prohibitive due to state explosion.

A solution to this problem is to generate an invariant that is

an abstraction of the state-space of the system.

We observed that most of the existing work on generating

invariants for component-based systems are too general and

do not strongly exploit the structure of the system and the

algebra that defines the interactions between its components.

In a series of recent work [3], [4], [5], we proposed novel

approaches and the DFINDER tool [6] for generating invari-

ants for systems described in the BIP framework [7]. BIP

is an expressive modeling formalism equipped with a rich

algebra to describe component interactions. Our techniques

start by building invariants for individual components, which

can be done with any existing approach for invariants

generation on sequential programs. The novel concept in

DFINDER is that the invariant for the overall system is then

obtained by glueing this set of individual invariants with

another one that is an abstraction of the algebra used to

define the interactions between the components. By doing

so, one avoids building huge part of the state-space before

generating the invariant. One of the major advantages of our

approach is that it allows for the development of incremental

techniques such as [5] capable of reusing invariants that

have already been computed on subparts of the model. The

incremental approach is particularly useful when multiple

instances of the same components (atomic or composite)

are used in the system. In such cases, it allows to factorize

some part of the analysis. Thus, local invariants established

on some part of the system can be automatically lifted to all

similar parts within the system.

Until now, the DFINDER approach has been limited to

invariants that can be represented by conjunctive normal

forms, called here Boolean Invariants. This representation,

which corresponds to the traps of the Petri net induced

by the BIP model [3], has been shown to be convenient in

many contexts, going from simple to complex case studies



[8]. However, there are situations where Boolean invariants

may not be appropriate. Consider the state variable at li
which monitors that (local) control state li of some process

is currently active. Whatever the transition relation of the

system is, DFINDER will only be able to generate invariants

of the form e.g., at l1 ∨ at l2 ∨ at l3. Such an invariant

ensures that one of the control states l1, l2, l3 is active,

which is sometimes sufficient to infer the deadlock freeness.

However, such invariants (which cannot count) are not

precise enough to prove a mutual exclusion property. Here,

what is needed is an invariant that guarantees that at most

one process is in its crictical section.

Hence, to reason on such more complex properties, we

have to work with invariants capable of counting how many

processes are at a given states. A way to do this is to

use linear invariants, i.e., invariants that can be represented

by sets of linear equations. Such invariants have already

been studied for a wide range of models for concurrent

systems, and in particular for Petri Nets [9]. The objective

of this paper is to propose new methods for linear invariants

generation in BIP. As a first contribution, we lay out a

new framework to specify such invariants within the incre-

mental structure proposed by the BIP framework. We then

focus on computing linear invariants. Our methods build

on transitions of components that are abstracted by linear

equations and then combined to form a system of equations.

We show that each solution of such system is a linear

invariant. Solving systems of linear equations can be done

with classical techniques such as Gauss-Jordan elimination

or LU-factorization. However, those general approaches do

not exploit the structure of the system under consideration

and may scale badly on large size systems. As a solution

to this scalability problem, we propose an online algorithm

that processes equations in the system in an iterative manner.

The advantage of this algorithm, which is rather a trivial

adaptation from [10], is that its structure eases the design of a

new and efficient incremental approach for linear invariants.

Concretely, the second main contribution of this paper is

a new incremental approach to generate linear invariants by

exploiting the incremental design process offered by the BIP

language . This new approach clearly exploits the framework

from [5], but it requires a new decomposition methodology

due to the nature of invariants we intend to generate.

Finally, our last contribution is the implementation and

experimental evaluation of these novel technique as an

extension of the tool DFINDER. This new version was then

evaluated on several case studies. Contrary to the DFINDER

approach for Boolean invariants that relies on symbolic

techniques, our new approach relies on sparse matrices that

fully exploit the structure of our algorithms. The experiments

show how our approaches outperform classical techniques

on a wide range of models. Particularly, our method is as

efficient as the one to compute Boolean invariants, and it

allows for finer state-space approximations (hence removing

more spurious counter-examples). We also make comparison

with a classical mathematical approach.

Related Work.: The literature on generation of Boolean

invariants for BIP and comparison with other works is wide

and partly covered in [3], [5]. There exists an huge amount

of literature on automatic generation of linear invariants for

different categories of systems and/or programs. In fact,

first results have been obtained in the context of hardware

systems (see e.g. [11]). The main difference with our work

is that we exploit a rich component-based design language

that is clearly more expressive than classical Boolean circuts.

Work on discovery of linear relations between variables of

a sequential program dates back to early days of program

verification [12]. Linear invariants have received particu-

lar attention for generation methods derived from abstract

interpretation [13]. In the former, linear constraints are

definitely among the most useful, expressive abstract domain

for program analysis.

The work on algebraic methods for the generation of so

called linear state-invariants for Petri net models is perhaps

the most closest to ours. An introductory survey can be

found in [14] while several extensions for invariants gen-

eration under particular constraints are described in [15].

These methods have been implemented since a long time

and tools like CHARLIE [9] are widely known in the Petri

net community. While being the most known, these tech-

niques are however neither compositional nor incremental:

the invariants generation problem is directly rephrased as

linear algebra problem and solved using standard methods.

Another method for generating linear invariants for Petri nets

has been explored in [16]. This method relies on Farkas

lemma as an effective mean for quantifier elimination.

Invariant computation is carried transition by transition, and

therefore avoid a global computation phase. Nonetheless,

this method is not incremental and can be applied only

once the system has been entirely constructed. The main

difference with other works is also the full exploitation of

the very expressive input language of the BIP toolset.

Structure of the paper. : Section II recalls some basic

definitions used throughout the rest of the paper. Section III

introduces the component-based framework as well as the

basic principles for compositional and incremental design.

Section IV defines linear invariants and discuss their global

generation. Section V presents a novel method for incremen-

tal generation. Finally, section VI review implementation and

the experimental work done to validate the approach.

II. PRELIMINARIES

We denote respectively by Z and Q the sets of integer and

rational numbers. We consider homogeneous linear systems

S of the form S ≡
∧m

i=1
(
∑n

j=1
aijxj = 0) where xj are

integer unknowns and aij ∈ Z are integer coefficients, for

all 1 ≤ j ≤ n, 1 ≤ i ≤ m. Such systems are compactly

denoted as Ax = 0 where A = (aij)1≤i≤m,1≤j≤n ∈ Zm×n



is the matrix of coefficients, x = (xj)1≤j≤n is the vector

of unknowns and 0 is the null vector in Zm. A vector of

integers u ∈ Zn is a solution of the system if it satisfies

Au = 0. We denote with Sol(S) the set of solutions of the

system S . Two systems S1 and S2 are called equivalent and

denoted by S1 ≈ S2 if they have the same set of solutions,

that is, Sol(S1) = Sol(S2). For any system S , the set of

solutions contains at least the trivial solution which is the

null vector 0n in Zn. Moreover, if the set Sol(S) contains

non-trivial solutions, then it is infinite. In this latter case,

we call solution basis any minimal (w.r.t. inclusion) set of

solutions {uk}k∈K ⊆ Sol(S) that allows to generate Sol(S)
as linear combinations with rational coefficients, formally

such that Sol(S) =
{
∑

k∈K λkuk | λk ∈ Q
}

∩ Zn. We

know from linear algebra that, for any system S , a solution

basis with at most n elements always exists. Such a basis

can be effectively computed by using e.g., Gauss-Jordan

elimination to transform the system (with an appropiate re-

naming of variables) into an equivalent solved (or left-bound)

system S ′ of the form S ′ ≡
∧m′

i=1
(a′iixi =

∑n
j=m′+1

a′ijxj)
where m′ ≤ m, a′ii 6= 0 for all 1 ≤ i ≤ m′. A basis is

obtained immediately from the solved form by selecting the

set of solutions {uk}m′+1≤k≤n such that uki is equal to (1)

a′ikL/a
′
ii for all 1 ≤ i ≤ m′, (2) L, if i = k and (3) 0, for all

m′ + 1 ≤ i 6= k ≤ n and where L = lcm{a′ii|1 ≤ i ≤ m′}.

For example, the system 2x1 + 3x3 − x4 = 0 ∧ x2 − 5x3 +
2x4 = 0 ∧ 4x1 + x2 + x3 = 0 can be transformed into

the left bound form 2x1 = −3x3 + x4 ∧ x2 = 5x3 − 2x4
which gives the basis {u3,u4} where u3 = [−3, 10, 2, 0]
and u4 = [1,−4, 0, 2].

III. COMPONENT-BASED DESIGN

In this section, we introduce the underlying concepts for

modeling and design of component-based systems.

Our component-based framework is a fragment of the BIP

framework [7]. The BIP - Behavior, Interaction, Priority

- framework allows description of complex, heterogeneous

systems in a hierarchical and compositional manner. BIP

supports a modeling methodology based on the assumption

that components are obtained as the superposition of three

layers, that is:

• behavior, specified as a set of automata extended with

C data and functions,

• interactions between the automata, modeled as sets of

structured connectors,

• priorities used to schedule among possible interactions.

In this paper, we restrict ourselves to a strict fragment of

BIP, that is, without data and without priorities. In fact,

we have previously shown in [3] how data can be taken

into account for computing invariants through abstraction.

Regarding priorities, we do not consider them, however, let

us remark that priorities preserve invariant properties and

deadlock-freedom [17].

In the rest of the section, we recall the most relevant

concepts useful in this context, that is, atomic components

and their parallel composition through interactions. Then,

we recapitulate a recent methodology proposed in [18] for

incremental design of component-based systems with BIP.

A. Components and Interactions

In our setting, atomic components are labeled transition

systems. Transitions’ labels are called ports and are used

to interact with other components.

Definition 1 (Atomic Component): An atomic component

is a transition system B = (L,P, T ), where L =
{l1, l2, . . . , lk} is a set of locations, P is a set of ports,

and T ⊆ L× P × L is a set of transitions.

Without loss of generality, we assume that, every port p
labels exactly one transition τp ∈ T . Given τp = (l, p, l′) ∈
T , l and l′ are the source and destination locations for τ .

These locations are equally denoted respectively as •τ and

τ•.
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Figure 1. Running example: global composition

Example 1: Figure 1 presents a simplified variant of the

Reader-Writers problem with four atomic components P1,

P2, P3 and Lock. The ports of component P1 are p1, q1, r1.

P1 has three locations l11, l12 and l13 and three transitions

τ1 = (l11, p1, l12), τ2 = (l12, q1, l13) and τ3 = (l13, r1, l11).

Atomic components are running in parallel and communicate

via interactions, i.e., by synchronization on ports. Formally,

interactions and connectors are defined as follows.

Definition 2 (Interaction, Connector): Let {Bi =
(Li, Pi, Ti)}

n
i=1 be a set of atomic components with

sets of locations and ports pairwise disjoint, that is,

Li ∩ Lj = ∅ and Pi ∩ Pj = ∅ for all i 6= j. An interaction

a is a set of ports, that is, a subset of
⋃n

i=1
Pi, such that

∀i = 1, . . . , n. |a ∩ Pi| ≤ 1. A connector γ is a set of

interactions {a1, . . . , am}.

For the sake of simplicity, we write p1p2 . . . pk to denote

the interaction {p1, p2, . . . pk}. We also write a1 ⊕ . . .⊕ am
for the connector {a1, . . . , am}.

Example 2: Graphically, interactions are represented

by links between ports. The connector represented in

Figure 1 consists of six binary and one ternary interactions,



respectively p1s⊕ p2s⊕ p3s⊕ q1t⊕ q2t⊕ q3t⊕ r1r2r3.

We use parallel composition parameterized by a connector

γ to build composite components from atomic components.

Any global step of the composite component corresponds to

an interaction a of γ. For any such interaction a, only those

components that are involved in a can make a step. This is

ensured by following a transition labelled by the port used

in a. If a component does not participate to the interaction,

then it remains in the same location.

Definition 3 (Composite Component): Given a set of atomic

components {Bi = (Li, Pi, Ti)}
n
i=1 and a connector γ, we

define the composite component B = γ(B1, . . . , Bn) as the

transition system (L, γ, T ), where:

• L = L1 × L2 × . . .× Ln is the set of global states,

• γ is the set of interactions, and

• T ⊆ L × γ × L contains all global transitions τ =
((l1, . . . , ln), a, (l

′
1, . . . , l

′
n)) obtained by synchroniza-

tion of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I

such that {pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I .

We denote by ℓ
a
−→ ℓ′ transitions (ℓ, a, ℓ′) ∈ T . We say that

a global state ℓ is reachable from an initial global state ℓ0 if

there exist a sequence of interactions a1, · · · , ak and global

states ℓ1, · · · , ℓk such that ℓ0
a1−→ ℓ1

a2−→ · · ·
ak−→ ℓk = ℓ.

Moreover, we extend the notation of source and destination

to interactions and denote •a = {•τp | p ∈ a} and a• =
{τ•p | p ∈ a}.

Example 3: The example given in Figure 1 presents the

composite component γ(P1, P2, P3,Lock) where γ = p1s⊕
p2s⊕ p3s⊕ q1t⊕ q2t⊕ q3t⊕ r1r2r3.

Let us observe also that any composite component B =
γ(B1, . . . , Bn) can be equivalently seen as a 1-safe1 Petri

net whose set of places is L =
⋃n

i=1
Li, that is, the set of

locations of B, and whose transition relation is given by T .

B. Incremental Design

In component-based design, the construction of a composite

system is both step-wise and hierarchical. Systems are

usually obtained from atomic components by successive

additions of new interactions also called increments. We

have proposed in [18] a methodology to add new interactions

to a composite component without breaking the existing

synchronization. This way, properties enforced by synchro-

nization at some step in the design flow are never lost in

successive steps when increments are added.

In our theory, a connector describes a set of interactions and,

by default, also those interactions where only one component

can make progress. This assumption allows us to define new

increments only in terms of existing interactions.

Definition 4 (Increments): Consider a connector γ over

atomic components B1, ..., Bn and let δ ⊆ 2γ be a set

of interactions. We say δ is an increment over γ if for

1the number of tokens in any place never exceeds one

any interaction a ∈ δ there exists disjoint interactions

b1, . . . , bn ∈ γ such that
⋃n

i=1
bi = a.

In a dual manner, when increments are used, one has also

to make sure that existing interactions in γ will not break

the synchronizations that are enforced by the increment δ.

For doing so, we remove from the original connector γ
all the interactions that are forbidden by δ. This is done

with the operation of Layering, which describes how an

increment can be added to an existing set of interactions

without breaking synchronization enforced by the increment.

Formally, we have the following definition.

Definition 5 (Layering): Given a connector γ and an incre-

ment δ over γ, the set of interactions obtained by combining

δ and γ, also called layering (or incremental modification

of γ by δ), is given by the set δγ = (γ \ δf ) ⊕ δ where

δf = {a | a 6∈ δ ∧ ∃b ∈ δ.a ( b} is the set of interactions

forbidden by δ.

Example 4: The connector γ illustrated in Figure

1 can be obtained by successive layering from

γ⊥ = p1⊕q1⊕r1⊕p2⊕q2⊕r2⊕p3⊕q3⊕r3⊕s⊕ t. That

is, γ = δ3δ2δ1γ⊥ where (i) increment δ1 = {p1s, q1t, s, t}
corresponds to synchronization of P1 and Lock on

p1s and q1t while leaving open s and t for further

interactions (ii) increment δ2 = {r2r3} corresponds to

synchronization of P2 and P3 and (iii) finally, increment

δ3 = {p2s, p3s, q2t, q3t, r1r2r3} enforces the remaining

interactions between respectively P2, P3, Lock and P1, P2,

P3. This incremental construction is illustrated in Figure 2.
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LockP1 P2 P3

p1

q1r1

s

t

p2

q2 r2

p3

q3 r3

p1s
p2s

p3s

q1t

q2t q3t

r2r3

r1r2r3

Figure 2. Running example: Incremental composition

IV. LINEAR INVARIANTS

Let B = γ(B1, . . . , Bn) be a composite component obtained

by parallel composition using connector γ of atomic compo-

nents {Bi = (Li, Pi, Ti)}
n
i=1. Let (L, γ, T ) be the transition

system associated to B, as defined by definition 3. Let ℓ0
be an initial global state of B, fixed.

We consider the set At of location variables {at l | l ∈ L =
∪n
i=1Li}. At any global state ℓ = (l1, l2, ..., ln) ∈ L, each

location variable of At is assigned to a binary value through

the valuation function σℓ : At → {0, 1}. This function

characterizes the global state ℓ by mapping to 1 (resp. 0)

variables corresponding to locations (resp. not) in ℓ, formally

σℓ(at l) = 1 iff l ∈ {l1, l2, ..., ln} and σℓ(at l) = 0
otherwise.



We consider linear equality constraints of the form
∑

l∈L ul ·
at l = u0 built from location variables and with integer

coefficients u0, ul ∈ Z for all l ∈ L. By abuse of notation,

we interpret (ul)l∈L and (at l)l∈L as vectors and we denote

more compactly the constraints above as u
T · At = u0.

Similarly, we define the particular vector At0 as σℓ0(At)
which denotes the initial valuation of variables at ℓ0.

Definition 6 (Linear Invariant): A linear invariant is a

linear equality constraint uT · At = u0 which holds in all

reachable global states of the composite component, that is,

for all ℓ reachable from ℓ0 it holds
∑

l∈L ul ·σℓ(at l) = u0.

Observe that linear invariants are different from the model

of BIP Boolean invariants proposed in [3], that corresponds

to conjunctive normal forms. BIP Boolean invariants are by

definition incomparable with BIP linear invariants.

Example 5: In the example of Figure 1, the equality

constraint at l12 + at l22 + at l32 + at l41 = 1 is a linear

invariant for the composite component with initial global

state (l11, l21, l31, l41). This linear invariant characterises

a mutual exclusion property, that is, at most one process

P1, P2, P3 is in its critical location respectively l12, l22, l32
at any time.

If not empty, the set of linear invariants is infinite. For

instance, it can be easily checked that if u
T · At = u0 is a

linear invariant, so is (λuT ) · At = (λu0) for any integer

coefficient λ ∈ Z. In order to provide a finite representation

of such sets, we introduce the notion of basis of linear

invariants, as follows.

Definition 7 (Basis of Linear Invariants): Let I be a set of

linear invariants. A finite subset I0 ⊆ I, I0 = {uT
k · At =

u0k}k∈K is a basis for I if and only if for all invariant uT ·
At = u0 ∈ I there exists rational coefficients (λk)k∈K ∈ Q

such that u =
∑

k∈K λkuk and u0 =
∑

k∈K λku0k.

A. Automatic Generation of Linear Invariants

Consider a composite component B = γ(B1, . . . , Bn) with

associated transition system (L, γ, T ) and initial state ℓ0.

In this section, we introduce the global method to compute

linear invariants from solutions of the homogeneous system

of flow equations which characterizes B. While this first

algorithm is a rather trivial extension from [10], we shall

see in Section V that its structure ease the design of a new

and efficient incremental approach for linear invariants.

We first introduce characteristic System, that is a system

of linear equations representing the interactions within the

BIP model. We then show that solutions of the character-

istic systems are indeed linear invariants. This means that

computing linear invariants reduces to solving a system of

linear equations. Latter, we propose an efficient version of

the Gauss-Jordan algorithm that exploits the structure of our

specification language.

Definition 8 (Characteristic System): For a finite set of

atomic components B1, . . . , Bn synchronized by a connector

γ, the characteristic system SG(γ,B1, . . . , Bn) is defined as

the conjunction

SG(γ,B1, . . . , Bn) ≡
∧

a∈γ

(

∑

l∈a•

xl −
∑

l∈•a

xl = 0
)

The unknowns xl correspond to locations l ∈ L = ∪n
i=1Li.

The characteristic system introduces exactly one flow

equation for each interaction a of the system.

Example 6: The characteristic system for Example 1 fol-
lowing the enumeration of interactions p1s, p2s, p3s, q1t,
q2t, q3t, r1r2r3 is

SG ≡







xl12 − xl11 + xl42 − xl41 = 0
xl22 − xl21 + xl42 − xl41 = 0
xl32 − xl31 + xl42 − xl41 = 0
xl13 − xl12 + xl41 − xl42 = 0
xl23 − xl22 + xl41 − xl42 = 0
xl33 − xl32 + xl41 − xl42 = 0
xl11 + xl21 + xl31 − xl13 − xl23 − xl33 = 0

We are now ready to show that solutions of the characteristic

system are indeed linear invariants for the corresponding

model.

Theorem 1: Any solution u of SG defines the linear invari-

ant uT · At = u
T · At0 of the composite component B.

Proof: Regarding the composite component B as its

equivalent Petri-Net PN , the characteristic system of SG is

equivalent to the equation CTx = 0, where C is incidence

matrix of PN . Each solution denotes an invariant of PN
(c.f. [14]) and thus, an invariant of B.

Theorem 2: Any set of invariants {uT
k ·At = u

T
k ·At0}k∈K

constructed from a solution basis (uk)k∈K of SG is a basis

for the set of all linear invariants obtained from SG.

Proof: Using the solution basis (uk)k∈K , all solutions

u can be expressed as a linear combination such that we

have the invariant (
∑

k∈K λku
T
k )·At =

∑

k∈K λku
T
k )·At0.

This invariant is trivially implied by the set of {uT
k · At =

u
T
k · At0}k∈K .

The common techniques to solve homogeneous systems

Ax = 0 are the Gauss-Jordan elimination, Cholesky-, QR-

or LU-factorization. These general well-known algorithms

have low polynomial complexity and can be directly applied

to solve the characteristic system SG. Nonetheless, naive

implementations may badly scale to realistic systems, in

particular, if they do not consider carefully the structure and

the sparsity of the characteristic systems.

To ensure scalability, we developed an online resolution

algorithm (Algorithm 1 below) that processes equations in

the characteristic systems iteratively, one by one, while

producing an equivalent left-bound system. It is essentially

a variant of Gauss-Jordan that exploits the locality of

unknowns as well as the particular form of equations. In



addition to efficiency that will be illustrated in Table II, one

of the major advantages of the new algorithm is that its

structure can be exploited to derive an incremental version.

This shall be the subject of the next section.

In the algorithm, function REWRITE(eq,LeftB) returns the

equation eq in which all bounded unknowns xi are substi-

tuted according to their definition def i given by (xi = def i)
in LeftB . Function PROPAGATE is the dual of REWRITE.

PROPAGATE(LeftB , x = def ) returns the system LeftB

where all occurences of the free (unbounded) unknowns x
are substitued by def . When SOLVE(eq) is called, eq ≡
∑

kjxj = 0 contains only free unknowns. One of them is

selected and the equation is rewritten into a solved form

x = def . The choice is led by prefering the xj with the

smallest absolute value for kj .

Our algorithm has been implemented in DFINDER.

Experimental results and comparison with similar

tools/methodologies are reported in section VI.

Algorithm 1 Online algorithm for direct resolution of SG

1: LeftB ← ∅ ⊲ LeftB ≡
∧

i∈I

(
xi =

defi
︷ ︸︸ ︷
∑

j∈J

λijxj

)
, I ∩ J = ∅

2: while ¬finished do

3: eq ← READEQUATION()
4: eq ← REWRITE(eq, LeftB) ⊲ eq has the form

∑

j∈J kjxj = 0
5: if ¬TRIVIAL(eq) then

6: (x = def )← SOLVE(eq)
7: LeftB ← PROPAGATE(LeftB, x = def )
8: LeftB ← LeftB ∧

(
x = def

)

9: end if

10: end while

11: return LeftB

Example 7: Using Algorithm 1, the characteristic system

SG given in Example 6 is transformed in left bound form

shown below left. The solution basis extracted from the

solved form generates I0 the basis of linear invariants.

SG ≡



























xl12 = xl32 + xl13 − xl33

xl42 = xl41 − xl32 + xl33

xl22 = xl32 + xl23 − xl33

xl11 = xl13

xl21 = xl23

xl31 = xl33

I0 =



















at l13 + at l12 + at l11 = 1
at l23 + at l22 + at l21 = 1
at l33 + at l32 + at l31 = 1

at l41 + at l42 = 1
at l12 + at l22 + at l32 + at l41 = 1

V. INCREMENTAL APPROACH

We now present one of the major contributions of the paper,

that is to exploit incremental design to ease the generation

of linear invariants. In fact, the incremental approach allows

to organize the computation of linear invariants by following

the incremental design process. Actually, incremental design

provides a natural and meaningful manner to split the global

characteristic system and to optimize its resolution.

The incremental approach relies on construction and manip-

ulation of incremental characteristic systems. For a compos-

ite component, this characteristic system characterizes both

(1) the existing interactions defined inside and (2) the still

open possibilities for further interaction (inside or with extra

components).

Definition 9 (Incremental Characteristic System): For a fi-

nite set of atomic components B1, . . . , Bn synchronized

by a connector γ, the incremental characteristic system

SI(γ,B1, . . . , Bn) is defined as the conjunction

SI(γ,B1, . . . , Bn) ≡
∧

a∈γ

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

The main difference with the global characteristic system

is that, in addition to unknowns xl associated to locations

l ∈ L = ∪n
i=1Li, the incremental system uses unknowns

ya associated to interactions a ∈ γ. These unknowns are

used to capture the (still) partial composition through γ.

Every unknown ya can be interpreted as denoting the partial

flow realized on interaction a in the current composition by

γ. Intuitively, any further extension of γ through layering

will simply add extra constraints on the ya unknowns,

and preserve entirely the existing equations involving xl
unknowns.

When the parallel composition is completed, that is, no

more interactions are added, the global characteristic system

can be obtained from the incremental system simply by

substituting with the constant 0 all the unknowns that

correspond to the interactions. We define this operation as

freezing of interaction constraints.

Theorem 3 (Freezing): For every composite component

γ(B1, . . . , Bn), the characteristic system SG is obtained

from the incremental characteristic system SI as follows:

SG ≈ (∃ya)a∈γ

(

SI ∧
∧

a∈γ

ya = 0
)

Proof: The proof is trivial: the substitution of each

unknown ya by 0 in SI gives syntactically the system SG.

This equivalence allows to establish that linear invariants

are preserved through freezing. If u is a solution of the

incremental characteristic system which assigns 0 to all

ya unknowns then, its restriction u|L to xl unknowns is

a solution of global characteristic system. Such solutions

u of incremental systems are called hereafter invariant-

generating. By using the observation above and theorem 1

it holds that u|L defines a linear invariant for the composite

component γ(B1, ..., Bn) for any invariant-generating solu-

tion u of SI(γ,B1, ..., Bn).

The main advantage of incremental systems is that they

are easily transformed through layering. That is, there exist

a strong relationship between the incremental systems,



before and after layering, as stated by the following theorem.

Theorem 4 (Layering): Given composite component

γ(B1, . . . , Bn) and δ an increment of γ, it holds that

SI(δγ,B1, . . . , Bn) ≈

(∃yb)b∈γ∩δf

(

SI(γ,B1, · · · , Bn) ∧
∧

a∈δ

(

ya −
∑

bk ∈ γ,
⊔kbk = a

ybk = 0
)

)

Proof: By definition of layering, δγ = (γ ⊖ δf ) ⊕ δ.

The incremental characteristic system S(δγ,B1, ..., Bn) is

therefore equal to SI((γ ⊖ δf ) ⊕ δ, B1, ..., Bn) and can be

rewritten as:
∧

a∈γ⊖δf

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

∧

∧

a∈δ

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

The first conjunction term can be obtained by applying

existential quantification of unknowns (yb)b∈γ∩δf on the

conjunction over the set of interactions γ:
∧

a∈γ⊖δf

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

≡

(∃yb)b∈γ∩δf

(

∧

a∈γ

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

)

The existential quantification can be safely extended over

both conjunction terms, as quantified unknowns do not occur

(yet) in the second term. But now, regarding this second

term, any interaction a of the increment δ can be written as

a disjoint union a = ⊔kbk where interactions bk ∈ γ, for

all k. It follows that •a = ⊔k
•bk, a• = ⊔kb

•
k hence, we can

rewrite for any a ∈ δ the sums
∑

l∈a•

xl −
∑

l∈•a

xl =
∑

bk∈γ,⊔kbk=a

(

∑

l∈b•
k

xl −
∑

l∈•bk

xl
)

=
∑

bk∈γ,⊔kbk=a

ybk

The above facts can be used together and prove the result.

A direct consequence of the above theorem is that linear

invariants are preserved by layering. That is, any invariant-

generating solution u of SI(γ,B1, ..., Bn) can be extended

to an invariant-generating solution u
′ of SI(δγ,B1, ..., Bn)

such that u|L = u
′
|L. In fact, one can easily check that,

whenever the ya unknowns are set to 0, incremental systems

put less constraints on the xl unknowns after layering

than before, and hence, invariant-generating solutions are

preserved. Consequently, linear invariants discovered at any

step of the composition are preserved through layering

operations.

Finally, the incremental system can also be split on disjoint

union of components, as stated by the following proposition.

Proposition 1 (Disjoint Union): Let B1 = γ1({Bi}i∈I1),
B2 = γ2({Bi}i∈I2) be disjoint composite components, that

is, I1 ∩ I2 = ∅. Then, it holds:

SI(γ1 ⊕ γ2, {Bi}i∈I1∪I2) ≈

SI(γ1,{Bi}i∈I1)
∧

SI(γ2, {Bi}i∈I2)

Proof: Using Definition 9, we obtain the characteristic

system of the component (γ1 ⊕ γ2)({Bi}i∈I1∪I2). In this

system, we split the main conjunction in the system by

unfolding independently the two connectors γ1 and γ2:

SI(γ1 ⊕ γ2, {Bi}i∈I1∪I2) ≈
∧

a∈γ1

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

∧
∧

a∈γ2

(

∑

l∈a•

xl −
∑

l∈•a

xl − ya = 0
)

Using Definition 9, we rewrite each subterm to

obtain the equivalence SI(γ1 ⊕ γ2, {Bi}i∈I1∪I2) ≈
SI(γ1, {Bi}i∈I1∪I2)∧SI(γ2, {Bi}i∈I1∪I2). The interactions

in γ1 are only defined over the component set {Bi}i∈I1 .

For any interaction a ∈ γ1, each unknown xl in the

sets •a or a• corresponds to the location l. This location

belongs to a component of {Bi}i∈I1 that is separated from

{Bi}i∈I1 : the characteristic systems SI(γ1, {Bi}i∈I1∪I2)
and SI(γ1, {Bi}i∈I1) are equivalent. We similarly deduce

that SI(γ2, {Bi}i∈I1∪I2) ≈ SI(γ2, {Bi}i∈I2). After

rewriting terms using equivalence relation, the conclusion

is immediate.

This proposition allows to infer that invariant-generating

solutions are preserved by disjoint union, and consequently,

any linear invariant discovered locally for γ1({Bi}i∈I1)
and γ2({Bi}i∈I2) is also an invariant for the composite

(γ1 ⊕ γ2)({Bi}i∈I1∪I2).

Example 8: Following the incremental composition used for

the example illustrated in Figure 2, the incremental charac-

teristic systems constructed at different steps of the design

are given in the Table I. For each increment (a subdivision

of the table) we discover some linear invariants. The com-

putation steps associated to the increments δ1 and δ2 gives

an invariant at li1+at li2+at li3 = 1 for each component

Pi and the invariant at l41 + at l42 = 1 for the component

Lock. The next step corresponds to the disjoint union: we

merge the two characteristic systems, and we collect the

invariants obtained form each one. For the last increment δ3,

we obtain the invariant at l12+at l22+at l32+at l41 = 1.

This invariant ensures the mutual exclusion property in the

system. When Lock is activated at l42 = 1 and hence

at l41 = 0, the invariant ensures that exactly one of the

Pi reached its location at li2.



VI. IMPLEMENTATION, EXPERIMENTS AND RESULTS

We split the section in two parts. First we show the power

of algorithm 1; second we demonstrate the efficiency of our

incremental approach.

A. On Algorithm 1

As we have seen in previous sections, linear invariants

generation relies on methods to compute the set of solutions

of a given homogeneous system of linear equations.

The complexity of standard algorithms for solving such sys-

tems is O(mn2), for systems of size m×n. Most of classical

algorithms such as Gauss-Jordan elimination may reach this

complexity. This is especially the case when considering

dense systems. However, in the context of our work, we

observed that characteristic systems are usually sparse. The

reason is that interactions synchronize few components, and

therefore the associated equations involve few locations. In

many cases, the bigger the composition (which implies a

large number of components and locations), the lower the

fill factor of the characteristic system. Given a composition

with |γ| interactions of atomic components totalizing |L|
locations, the matrix A for SG has size of |γ| × |L|. If

avg(γ) denotes the average number of components used per

interaction, the fill factor of A is 2 · avg(γ)/|L|. Table II

illustrates the fill factor for some common BIP examples.

This particular structure is exploited by the global online

Algorithm 1.

B. On Computing Linear Invariants

We have implemented the techniques proposed in this paper

as an extension of DFINDER, a tool capable of check-

ing deadlocks of programm written in the BIP language.

BIP Model Matrix A

Name |γ| |L| avg(γ) Matrix Size Fill factor

Voting Srv 18 29 2 522 17%
Philo(n) 5n 6n 2.2 30n2 4/(5n)
Smokers(n) 12n 9n 2.25 108n2 1/(2n)
ReadWrite(n) 33n 23n 2 759n2 1/(16n)
ATM(n) 39n 36n 0.6 1404n2 1/(3n)
Gas Station(n) 40n 43n 2.5 1720n2 1/(16n)

Table II
MATRIX SPARSITY FOR THE CHARACTERISTIC SYSTEMS SG

DFINDER originally implements efficient symbolic tech-

niques for computing Boolean invariants ψ of the interac-

tions between components [6]. As shown in Figure 3 (that

also illustrates the structure of the tool), ψ can then be com-

bined with the invariant φi of each constituent component

to deduce a global invariant for the complete system (see

[18] for a proof). At the same time, the tool also computes

all the potential deadlock states denoted by DIS. If the

formula ∧iφi ∧Ψ ∧DIS is unsatifiable, then the system is

deadlock free. In the other case, the solutions denote some

suspicious counter examples that can be reused by the tool

to refine automatically the analysis. For the purpose of this

work, we have implemented new techniques based on linear

invariants in order to compute ψ. Those techniques rely on

algebraic sparse matrices representations rather than BDD

used in classical DFINDER.

Experiments. Table III represents a the results of a set

of experiments. All the experiments have been conducted

with incremental approach as we observed that it clearly

outperforms the global one. All our experiments were done

with a 2.4GHz Core 2 Duo CPU with 8GB of RAM (a laptop

running Mac OS X 10.6). We generated linear invariants

for various case studies, including the Gas Station [19], a

SG(γ, P1, P2, P3,Lock)

∃yp1s∃yp2s∃yp3s∃yq1t∃yq2t∃yq3t∃yr1r2r3
yp1s = 0 yp2s = 0 yp3s = 0 yr1r2r3 = 0
yq1t = 0 yq2t = 0 yq3t = 0

SI(δ3(δ1(γ
⊥
1 ⊕ γ⊥

Lock)⊕ δ2(γ
⊥
2 ⊕ γ⊥

3 )), P1, P2, P3,Lock)

∃yr1∃yp2∃yq2∃yp3∃yq3∃ys∃yt∃yr2r3
yp2s = yp2 + ys yp3s = yp3 + ys yr1r2r3 = yr1 + yr2r3
yq2t = yq2 + yt yq3t = yq3 + yt

SI(δ1(γ
⊥
1 ⊕ γ⊥

Lock), P1,Lock)

∃yp1∃yq1∃ys∃yt
yp1s = yp1 + ys
yq1t = yq1 + yt

SI(γ
⊥
1 , P1)

xl12 − xl11 = yp1
xl13 − xl12 = yq1
xl11 − xl13 = yr1

∧

SI(γ
⊥
Lock,Lock)

xl42 − xl41 = ys
xl41 − xl42 = yt

∧

SI(δ2(γ
⊥
2 ⊕ γ⊥

3 ), P2, P3)

∃yr2∃yr3
yr2r3 = yr2 + yr3

SI(γ
⊥
2 , P2)

xl22 − xl21 = yp2
xl23 − xl22 = yq2
xl21 − xl23 = yr2

∧

SI(γ
⊥
3 , P3)

xl32 − xl31 = yp3
xl33 − xl32 = yq3
xl31 − xl33 = yr3

Table I
EXAMPLE OF INCREMENTAL SYSTEM
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Figure 3. Structure of the D-Finder tool

derived version of the Smoker [20], the Automatic Teller

Machine (ATM) [21] and the classical Dining Philosopher

problem. Regarding the Gas Station example, we assume

that every pump has 10 customers. Hence, if there are

50 pumps in a Gas Station, then we have 500 customers

and the number of components including the operator is

thus 551. In the ATM example, every ATM machine is

associated to one user. Therefore, if we have 10 machines,

then the number of components will be 22 (including the

two components that describe the Bank). Each example is

parameterized by scale, which denotes its “size”; location

denotes the total number of control locations |L|; interaction

is for the total number of interactions |γ|. The computation

time is given in minutes and the memory usage is given

in kilo- or MegaBytes. The timeout, i.e., “-” is one hour.

We implemented the methods described in Section IV-A

within DFINDER. Alternatively we implemented GAUSS a

standard Gauss-Jordan elimination and we used CHARLIE, a

general Petri-net analyzer [9]. We observe that the approach

based on Algorithm 1 is always faster, and the consumed

memory by DFINDER is negligible compared to the other

approaches. We also observe that CHARLIE fails to analyze

the Petri-nets generated from the BIP models. It generates

a particular set of invariants so-called semi-linear positive

invariants that require an important complexity. They allow

to check several kinds of properties (structural, coverability,

reachability, . . . ), but for the reachability analysis they are

however equivalent to the linear invariants.

Preciseness. We also observe that our technique gener-

ates invariants that are coarser than Booleans ones, which

decreases the risk of introducing counter examples. Fig-

ures 4, 6, and 5 give the accuracy of the generated invariants

(for both the Boolean and the linear one) for the Dining

Philosopers, the Gas Station and the ATM, for each system

with different sizes. On these figures, the value 60% means

that the reachable states of the system are 60% of all

the states characterized by the invariants. It dually means

that these same invariants catch 40% of unreachable states.

Notice that an accuracy of 0% (i.e. no reachable state

contained) is never reached since the generated invariants

are sound. But for some of the Boolean invariants, the

approximation is so imprecise that the result is really close

to 0% in the figures.

The above examples have differents types of interactions be-

tween the consituent componenents, and this has an impact

on the preciseness. In the Dining Philosophers, one can see

that all the interactions are there in order to introduce mutual

exclusion mechanisms. As explained below, the linear invari-

ants are really adequate to express such properties as they

can be encoded by linear equations. For such an example,

the result is of clear interest. Indeed, the generated linear

invariants exactly denotes the set of reachable states. For

the same reason, we also obtain an excellent precision (90%)

with the linear invariants for Readers/Writers example.

On the contrary, the approximation for the Gas Station ex-

ample is coarser. Indeed, the relation between the consumers

and the pumps is quite well-suited (e.g. resemble a mutual

exclusion principle), but the overall behavior of the station

is guaranteed by an operator that relies on global self-loops.

Such interactions are more expressive than linear equation.

This means that they can only be approximated by such

equations. Additionally, each new pump added to the system

is connected to the operator with interactions over the self-

loops that deteriorate the precision of the approximation.

In Figure 5, the ATM example contains also some in-

teractions defined over self-loops. But they are used to

define timers in some of the compenents. As such, they do

not define strong synchronizations between the compenents.

This means that their impact is smaller than for the Gas

Station. Consequently, this justifies that for each ATM added

in the system, the 60% of accuracy does not decrease so

much.

Component information Time (m’ss) Memory (Bytes)

scale locations interactions CHARLIE GAUSS DFINDER CHARLIE GAUSS DFINDER

DINING PHILOSOPHERS

500 philos 3000 2500 8’40 0’03 >0’01 143M 120M 0.9M
1000 philos 6000 5000 74’42 0’13 0’01 468M 596M 1.0M
2000 philos 12000 10000 - 0’73 0’04 - 2.4G 1.2M
6000 philos 36000 30000 - - 1’40 - - 1.8M
9000 philos 54000 45000 - - 9’15 - - 2.0M

ATM

50 machines 1812 1656 - 0’14 >0’01 - 73M 1.6M
100 machines 3612 3306 - 1’38 0’01 - 238M 2.8M
200 machines 7212 6606 - 12’41 0’03 - 940M 4.0M
400 machines 14412 13206 - - 0’13 - 3.6G 6.4M
500 machines 18012 16506 - - 0’31 - - 7.2M

GAS STATION

50 pumps 2152 2000 - 1’17 0’01 - 69M 2.5M
100 pumps 4302 4000 - 14’58 0’04 - 271M 3.3M
200 pumps 8602 8000 - - 0’14 - - 4.7M
500 pumps 21502 20000 - - 2’30 - - 8.7M
700 pumps 30102 28000 - - 3’40 - - 11.4M

READERS - WRITERS

50 writers 1152 1650 3’15 1’06 >0’01 150M 54M 2.2M
100 writers 2322 3300 19’50 8’12 0’02 937M 212M 2.6M
200 writers 4642 6600 - 65’43 0’06 - 847M 3.2M
500 writers 11502 16500 - - 0’37 - - 5.0M

1000 writers 23002 33000 - - 3’22 - - 7.5M
2000 writers 46002 66000 - - 17’40 - - 9.7M

SMOKERS

300 smokers 906 901 0’17 0’30 0’01 90M 14M 1.4M
600 smokers 1806 1801 1’31 3’11 0’01 229M 52M 2.3M

1500 smokers 4506 4501 - 55’00 0’06 395M 319M 3.1M
6000 smokers 18006 18001 - - 1’51 - - 6.8M
9000 smokers 27006 27001 - - 4’37 - - 9.3M

Table III
EXECUTION TIME FOR SOME EXAMPLES



Figure 4. Dining Philosophers Figure 5. ATM Figure 6. Gas Station

Globally, we clearly observe that the linear invariants dras-

tically increase the accuracy of the verification compared

to the Boolean invariants. But as explained in [6], Boolean

invariants are sufficient to prove the deadlock freeness of a

system. Moreover, if the linear invariants are more accurate

than the Boolean invariants, the approximated states of the

linear invariants are not always a subset of those of the

Boolean invariants: the conjunction of the linear and Boolean

invariants increase the precision of the analysis for the cases

with self-loops like in the Gas Station example.

VII. CONCLUSION

We propose a technology to generate linear invariants for

the BIP toolset. Contrary to our former contribution that

relies on generating Boolean invariants, this new approach

allows for the generation of linear invariants. Even though

BIP Boolean invariants and BIP linear invariants are uncom-

parable, experimental results show the latter may be more

precise. Future work includes proposing intensive techniques

as well as extending the approach to the full class of liveness

properties.
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