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Abstract-Invariants generation has been intensively considered as an effective verification method for concurrent systems. However, none of the existing work on the topic strongly exploits the structure of the system and the algebra that defines the interactions between its components. This not only has an impact on the computation time, but also on the scalability of the method. In a series of recent work, we developed an efficient approach for generating invariants for systems described in the BIP component framework. BIP is an expressive modeling formalism including a rich algebra to describe component interactions. Our technique, which focuses on generating Boolean invariants corresponding to a subclass of the conjunctive normal form, was then extended to an incremental one capable of generating global invariants from smaller invariants obtained for sub-systems by exploiting the algebra that describes their interactions. This approach gives a panoply of techniques and libraries to rigurously design potentially complex systems. We also showed that Boolean invariants generated by our methodology correspond to trap of the Petri net induced by the BIP model. Unfortunately, this class of invariants may be too unprecise, and hence leads to discovery of false positive counter examples. The objective of this paper is to propose new techniques dedicated to the computation of linear interactions invariants, i.e., invariants that are described by linear constraints and that relate states of several components in the system. By definition, such new class is incomparable to the one of Boolean invariants, but we will show that it is generally more precise. In addition, we propose an incremental approach that allows to discover and reuse invariants that have already been computed on subparts of the model. Those new techniques have been implemented in DFINDER, a tool for checking deadlock freedom on BIP systems using invariants, and evaluated on several case studies. The experiments show that our approach outperforms classical techniques on a wide range of models.

I. INTRODUCTION

Component-based design confers numerous advantages, in particular, an increased productivity through reuse of existing components. Nonetheless, establishing the correctness of the designed systems remains an open issue. In contrast to other engineering disciplines, software and system
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engineering badly ensures predictability at design time. Consequently, a posteriori verification as well as empirical validation are essential for ensuring correctness. Monolithic verification [START_REF] Queille | Specification and verification of concurrent systems in CESAR[END_REF], [START_REF] Clarke | Model checking[END_REF] of component-based systems is a challenging problem. It often requires computing for a composite component the product of its constituents by using both interleaving and synchronization. The complexity of the product system is often prohibitive due to state explosion. A solution to this problem is to generate an invariant that is an abstraction of the state-space of the system. We observed that most of the existing work on generating invariants for component-based systems are too general and do not strongly exploit the structure of the system and the algebra that defines the interactions between its components. In a series of recent work [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF], [START_REF] Bensalem | D-finder: A tool for compositional deadlock detection and verification[END_REF], [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF], we proposed novel approaches and the DFINDER tool [START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF] for generating invariants for systems described in the BIP framework [START_REF]BIP -incremental component-based construction of realtime systems[END_REF]. BIP is an expressive modeling formalism equipped with a rich algebra to describe component interactions. Our techniques start by building invariants for individual components, which can be done with any existing approach for invariants generation on sequential programs. The novel concept in DFINDER is that the invariant for the overall system is then obtained by glueing this set of individual invariants with another one that is an abstraction of the algebra used to define the interactions between the components. By doing so, one avoids building huge part of the state-space before generating the invariant. One of the major advantages of our approach is that it allows for the development of incremental techniques such as [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF] capable of reusing invariants that have already been computed on subparts of the model. The incremental approach is particularly useful when multiple instances of the same components (atomic or composite) are used in the system. In such cases, it allows to factorize some part of the analysis. Thus, local invariants established on some part of the system can be automatically lifted to all similar parts within the system. Until now, the DFINDER approach has been limited to invariants that can be represented by conjunctive normal forms, called here Boolean Invariants. This representation, which corresponds to the traps of the Petri net induced by the BIP model [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF], has been shown to be convenient in many contexts, going from simple to complex case studies [START_REF] Bensalem | A formal approach for incremental construction with an application to autonomous robotic systems[END_REF]. However, there are situations where Boolean invariants may not be appropriate. Consider the state variable at l i which monitors that (local) control state l i of some process is currently active. Whatever the transition relation of the system is, DFINDER will only be able to generate invariants of the form e.g., at l 1 ∨ at l 2 ∨ at l 3 . Such an invariant ensures that one of the control states l 1 , l 2 , l 3 is active, which is sometimes sufficient to infer the deadlock freeness. However, such invariants (which cannot count) are not precise enough to prove a mutual exclusion property. Here, what is needed is an invariant that guarantees that at most one process is in its crictical section. Hence, to reason on such more complex properties, we have to work with invariants capable of counting how many processes are at a given states. A way to do this is to use linear invariants, i.e., invariants that can be represented by sets of linear equations. Such invariants have already been studied for a wide range of models for concurrent systems, and in particular for Petri Nets [START_REF]Charlie: a tool to analyse Petri nets[END_REF]. The objective of this paper is to propose new methods for linear invariants generation in BIP. As a first contribution, we lay out a new framework to specify such invariants within the incremental structure proposed by the BIP framework. We then focus on computing linear invariants. Our methods build on transitions of components that are abstracted by linear equations and then combined to form a system of equations. We show that each solution of such system is a linear invariant. Solving systems of linear equations can be done with classical techniques such as Gauss-Jordan elimination or LU-factorization. However, those general approaches do not exploit the structure of the system under consideration and may scale badly on large size systems. As a solution to this scalability problem, we propose an online algorithm that processes equations in the system in an iterative manner. The advantage of this algorithm, which is rather a trivial adaptation from [START_REF] Haulzbaur | A specialized, incremental solved form algorithm for systems of linear inequalities[END_REF], is that its structure eases the design of a new and efficient incremental approach for linear invariants. Concretely, the second main contribution of this paper is a new incremental approach to generate linear invariants by exploiting the incremental design process offered by the BIP language . This new approach clearly exploits the framework from [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF], but it requires a new decomposition methodology due to the nature of invariants we intend to generate. Finally, our last contribution is the implementation and experimental evaluation of these novel technique as an extension of the tool DFINDER. This new version was then evaluated on several case studies. Contrary to the DFINDER approach for Boolean invariants that relies on symbolic techniques, our new approach relies on sparse matrices that fully exploit the structure of our algorithms. The experiments show how our approaches outperform classical techniques on a wide range of models. Particularly, our method is as efficient as the one to compute Boolean invariants, and it allows for finer state-space approximations (hence removing more spurious counter-examples). We also make comparison with a classical mathematical approach. Related Work.: The literature on generation of Boolean invariants for BIP and comparison with other works is wide and partly covered in [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF], [START_REF] Bensalem | Incremental component-based construction and verification using invariants[END_REF]. There exists an huge amount of literature on automatic generation of linear invariants for different categories of systems and/or programs. In fact, first results have been obtained in the context of hardware systems (see e.g. [START_REF] Mcmillan | Symbolic model checking[END_REF]). The main difference with our work is that we exploit a rich component-based design language that is clearly more expressive than classical Boolean circuts. Work on discovery of linear relations between variables of a sequential program dates back to early days of program verification [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF]. Linear invariants have received particular attention for generation methods derived from abstract interpretation [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. In the former, linear constraints are definitely among the most useful, expressive abstract domain for program analysis. The work on algebraic methods for the generation of so called linear state-invariants for Petri net models is perhaps the most closest to ours. An introductory survey can be found in [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] while several extensions for invariants generation under particular constraints are described in [START_REF] Krückeberg | Mathematical methods for calculating invariants in petri nets[END_REF]. These methods have been implemented since a long time and tools like CHARLIE [START_REF]Charlie: a tool to analyse Petri nets[END_REF] are widely known in the Petri net community. While being the most known, these techniques are however neither compositional nor incremental: the invariants generation problem is directly rephrased as linear algebra problem and solved using standard methods. Another method for generating linear invariants for Petri nets has been explored in [START_REF] Sankaranarayanan | Petri net analysis using invariant generation[END_REF]. This method relies on Farkas lemma as an effective mean for quantifier elimination. Invariant computation is carried transition by transition, and therefore avoid a global computation phase. Nonetheless, this method is not incremental and can be applied only once the system has been entirely constructed. The main difference with other works is also the full exploitation of the very expressive input language of the BIP toolset. Structure of the paper. : Section II recalls some basic definitions used throughout the rest of the paper. Section III introduces the component-based framework as well as the basic principles for compositional and incremental design. Section IV defines linear invariants and discuss their global generation. Section V presents a novel method for incremental generation. Finally, section VI review implementation and the experimental work done to validate the approach.

II. PRELIMINARIES

We denote respectively by Z and Q the sets of integer and rational numbers. We consider homogeneous linear systems S of the form S ≡ m i=1 ( n j=1 a ij x j = 0) where x j are integer unknowns and a ij ∈ Z are integer coefficients, for all 1 ≤ j ≤ n, 1 ≤ i ≤ m. Such systems are compactly denoted as Ax = 0 where A = (a ij ) 1≤i≤m,1≤j≤n ∈ Z m×n is the matrix of coefficients, x = (x j ) 1≤j≤n is the vector of unknowns and 0 is the null vector in Z m . A vector of integers u ∈ Z n is a solution of the system if it satisfies Au = 0. We denote with Sol (S) the set of solutions of the system S. Two systems S 1 and S 2 are called equivalent and denoted by S 1 ≈ S 2 if they have the same set of solutions, that is, Sol (S 1 ) = Sol (S 2 ). For any system S, the set of solutions contains at least the trivial solution which is the null vector 0 n in Z n . Moreover, if the set Sol (S) contains non-trivial solutions, then it is infinite. In this latter case, we call solution basis any minimal (w.r.t. inclusion) set of solutions {u k } k∈K ⊆ Sol (S) that allows to generate Sol (S) as linear combinations with rational coefficients, formally such that

Sol (S) = k∈K λ k u k | λ k ∈ Q ∩ Z n .
We know from linear algebra that, for any system S, a solution basis with at most n elements always exists. Such a basis can be effectively computed by using e.g., Gauss-Jordan elimination to transform the system (with an appropiate renaming of variables) into an equivalent solved (or left-bound) system S ′ of the form 

S ′ ≡ m ′ i=1 (a ′ ii x i = n j=m ′ +1 a ′ ij x j ) where m ′ ≤ m, a ′ ii = 0 for all 1 ≤ i ≤ m ′ . A basis is obtained immediately from the solved form by selecting the set of solutions {u k } m ′ +1≤k≤n such that u ki is equal to (1) a ′ ik L/a ′ ii for all 1 ≤ i ≤ m ′ , (2) L, if i = k and (3) 0, for all m ′ + 1 ≤ i = k ≤ n and where L = lcm{a ′ ii |1 ≤ i ≤ m ′ }. For example, the system 2x 1 + 3x 3 -x 4 = 0 ∧ x 2 -5x 3 + 2x 4 = 0 ∧ 4x 1 + x 2 + x 3 = 0 can be transformed into the left bound form 2x 1 = -3x 3 + x 4 ∧ x 2 = 5x 3 -

III. COMPONENT-BASED DESIGN

In this section, we introduce the underlying concepts for modeling and design of component-based systems. Our component-based framework is a fragment of the BIP framework [START_REF]BIP -incremental component-based construction of realtime systems[END_REF]. The BIP -Behavior, Interaction, Priority -framework allows description of complex, heterogeneous systems in a hierarchical and compositional manner. BIP supports a modeling methodology based on the assumption that components are obtained as the superposition of three layers, that is:

• behavior, specified as a set of automata extended with C data and functions, • interactions between the automata, modeled as sets of structured connectors, • priorities used to schedule among possible interactions. In this paper, we restrict ourselves to a strict fragment of BIP, that is, without data and without priorities. In fact, we have previously shown in [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF] how data can be taken into account for computing invariants through abstraction. Regarding priorities, we do not consider them, however, let us remark that priorities preserve invariant properties and deadlock-freedom [START_REF] Gößler | Priority systems[END_REF].

In the rest of the section, we recall the most relevant concepts useful in this context, that is, atomic components and their parallel composition through interactions. Then, we recapitulate a recent methodology proposed in [START_REF] Bensalem | Incremental invariant generation for compositional design[END_REF] for incremental design of component-based systems with BIP.

A. Components and Interactions

In our setting, atomic components are labeled transition systems. Transitions' labels are called ports and are used to interact with other components. Definition 1 (Atomic Component): An atomic component is a transition system B = (L, P, T ), where L = {l 1 , l 2 , . . . , l k } is a set of locations, P is a set of ports, and T ⊆ L × P × L is a set of transitions. Without loss of generality, we assume that, every port p labels exactly one transition τ p ∈ T . Given τ p = (l, p, l ′ ) ∈ T , l and l ′ are the source and destination locations for τ . These locations are equally denoted respectively as • τ and τ • . 1 presents a simplified variant of the Reader-Writers problem with four atomic components P 1 , P 2 , P 3 and Lock. The ports of component P 1 are p 1 , q 1 , r 1 . P 1 has three locations l 11 , l 12 and l 13 and three transitions τ 1 = (l 11 , p 1 , l 12 ), τ 2 = (l 12 , q 1 , l 13 ) and τ 3 = (l 13 , r 1 , l 11 ).

l 11 l 12 l 13 p 1 q 1 r 1 P 1 p 1 q 1 r 1 l 41 l 42 s t Lock s t l 21 l 22 l 23 p 2 q 2 r 2 P 2 p 2 q 2 r 2 l 31 l 32 l 33 p 3 q 3 r 3 P 3 p 3 q 3 r 3 p 1 s p 2 s p 3 s q 1 t q 2 t q 3 t r 1 r 2 r 3
Atomic components are running in parallel and communicate via interactions, i.e., by synchronization on ports. Formally, interactions and connectors are defined as follows. Definition 2 (Interaction, Connector):

Let {B i = (L i , P i , T i )} n
i=1 be a set of atomic components with sets of locations and ports pairwise disjoint, that is, L i ∩ L j = ∅ and P i ∩ P j = ∅ for all i = j. An interaction a is a set of ports, that is, a subset of

n i=1 P i , such that ∀i = 1, . . . , n. |a ∩ P i | ≤ 1. A connector γ is a set of interactions {a 1 , . . . , a m }.
For the sake of simplicity, we write p 1 p 2 . . . p k to denote the interaction {p 1 , p 2 , . . . p k }. We also write a 1 ⊕ . . . ⊕ a m for the connector {a 1 , . . . , a m }. Example 2: Graphically, interactions are represented by links between ports. The connector represented in Figure 1 consists of six binary and one ternary interactions, respectively p 1 s ⊕ p 2 s ⊕ p 3 s ⊕ q 1 t ⊕ q 2 t ⊕ q 3 t ⊕ r 1 r 2 r 3 .

We use parallel composition parameterized by a connector γ to build composite components from atomic components. Any global step of the composite component corresponds to an interaction a of γ. For any such interaction a, only those components that are involved in a can make a step. This is ensured by following a transition labelled by the port used in a. If a component does not participate to the interaction, then it remains in the same location. Definition 3 (Composite Component): Given a set of atomic components {B i = (L i , P i , T i )} n i=1 and a connector γ, we define the composite component B = γ(B 1 , . . . , B n ) as the transition system (L, γ, T ), where:

• L = L 1 × L 2 × . . . × L n is the set of global states,
• γ is the set of interactions, and

• T ⊆ L × γ × L contains all global transitions τ = ((l 1 , . . . , l n ), a, (l ′ 1 , . . . , l ′ n )) obtained by synchroniza- tion of sets of transitions {τ i = (l i , p i , l ′ i ) ∈ T i } i∈I such that {p i } i∈I = a ∈ γ and l ′ j = l j if j ∈ I. We denote by ℓ a -→ ℓ ′ transitions (ℓ, a, ℓ ′ ) ∈ T . We say that a global state ℓ is reachable from an initial global state ℓ 0 if there exist a sequence of interactions a 1 , • • • , a k and global states ℓ 1 , • • • , ℓ k such that ℓ 0 a1 -→ ℓ 1 a2 -→ • • • a k -→ ℓ k = ℓ.
Moreover, we extend the notation of source and destination to interactions and denote

• a = { • τ p | p ∈ a} and a • = {τ • p | p ∈ a}. Example 3:
The example given in Figure 1 presents the composite component γ(P 1 , P 2 , P 3 , Lock ) where γ = p 1 s ⊕ p 2 s ⊕ p 3 s ⊕ q 1 t ⊕ q 2 t ⊕ q 3 t ⊕ r 1 r 2 r 3 . Let us observe also that any composite component B = γ(B 1 , . . . , B n ) can be equivalently seen as a 1-safe 1 Petri net whose set of places is L = n i=1 L i , that is, the set of locations of B, and whose transition relation is given by T .

B. Incremental Design

In component-based design, the construction of a composite system is both step-wise and hierarchical. Systems are usually obtained from atomic components by successive additions of new interactions also called increments. We have proposed in [START_REF] Bensalem | Incremental invariant generation for compositional design[END_REF] a methodology to add new interactions to a composite component without breaking the existing synchronization. This way, properties enforced by synchronization at some step in the design flow are never lost in successive steps when increments are added. In our theory, a connector describes a set of interactions and, by default, also those interactions where only one component can make progress. This assumption allows us to define new increments only in terms of existing interactions. Definition 4 (Increments): Consider a connector γ over atomic components B 1 , ..., B n and let δ ⊆ 2 γ be a set of interactions. We say δ is an increment over γ if for 1 the number of tokens in any place never exceeds one any interaction a ∈ δ there exists disjoint interactions b

1 , . . . , b n ∈ γ such that n i=1 b i = a.
In a dual manner, when increments are used, one has also to make sure that existing interactions in γ will not break the synchronizations that are enforced by the increment δ. For doing so, we remove from the original connector γ all the interactions that are forbidden by δ. This is done with the operation of Layering, which describes how an increment can be added to an existing set of interactions without breaking synchronization enforced by the increment. Formally, we have the following definition. Definition 5 (Layering): Given a connector γ and an increment δ over γ, the set of interactions obtained by combining δ and γ, also called layering (or incremental modification of γ by δ), is given by the set δγ = (γ \ δ f ) ⊕ δ where δ f = {a | a ∈ δ ∧ ∃b ∈ δ.a b} is the set of interactions forbidden by δ. Example 4: The connector γ illustrated in Figure 1 can be obtained by successive layering from

γ ⊥ = p 1 ⊕ q 1 ⊕ r 1 ⊕ p 2 ⊕ q 2 ⊕ r 2 ⊕ p 3 ⊕ q 3 ⊕ r 3 ⊕ s ⊕ t. That is, γ = δ 3 δ 2 δ 1 γ ⊥ where (i) increment δ 1 = {p 1 s, q 1 t
, s, t} corresponds to synchronization of P 1 and Lock on p 1 s and q 1 t while leaving open s and t for further interactions (ii) increment δ 2 = {r 2 r 3 } corresponds to synchronization of P 2 and P 3 and (iii) finally, increment δ 3 = {p 2 s, p 3 s, q 2 t, q 3 t, r 1 r 2 r 3 } enforces the remaining interactions between respectively P 2 , P 3 , Lock and P 1 , P 2 , P 3 . This incremental construction is illustrated in Figure 2. 

δ 1 δ 2 δ 3 Lock P 1 P 2 P 3 p 1 q 1 r 1 s t p 2 q 2 r 2 p 3 q 3 r 3 p 1 s p 2 s p 3 s q 1 t q 2 t q 3 t r 2 r 3 r 1 r 2 r 3
{B i = (L i , P i , T i )} n i=1 .
Let (L, γ, T ) be the transition system associated to B, as defined by definition 3. Let ℓ 0 be an initial global state of B, fixed. We consider the set At of location variables {at l | l ∈ L = ∪ n i=1 L i }. At any global state ℓ = (l 1 , l 2 , ..., l n ) ∈ L, each location variable of At is assigned to a binary value through the valuation function σ ℓ : At → {0, 1}. This function characterizes the global state ℓ by mapping to 1 (resp. 0) variables corresponding to locations (resp. not) in ℓ, formally σ ℓ (at l) = 1 iff l ∈ {l 1 , l 2 , ..., l n } and σ ℓ (at l) = 0 otherwise.

We consider linear equality constraints of the form l∈L u l • at l = u 0 built from location variables and with integer coefficients u 0 , u l ∈ Z for all l ∈ L. By abuse of notation, we interpret (u l ) l∈L and (at l) l∈L as vectors and we denote more compactly the constraints above as u T • At = u 0 . Similarly, we define the particular vector At 0 as σ ℓ0 (At) which denotes the initial valuation of variables at ℓ 0 . Definition 6 (Linear Invariant): A linear invariant is a linear equality constraint u T • At = u 0 which holds in all reachable global states of the composite component, that is, for all ℓ reachable from ℓ 0 it holds l∈L u l • σ ℓ (at l) = u 0 .

Observe that linear invariants are different from the model of BIP Boolean invariants proposed in [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF], that corresponds to conjunctive normal forms. BIP Boolean invariants are by definition incomparable with BIP linear invariants. Example 5: In the example of Figure 1, the equality constraint at l 12 + at l 22 + at l 32 + at l 41 = 1 is a linear invariant for the composite component with initial global state (l 11 , l 21 , l 31 , l 41 ). This linear invariant characterises a mutual exclusion property, that is, at most one process P 1 , P 2 , P 3 is in its critical location respectively l 12 , l 22 , l 32 at any time.

If not empty, the set of linear invariants is infinite. For instance, it can be easily checked that if u T • At = u 0 is a linear invariant, so is (λu T ) • At = (λu 0 ) for any integer coefficient λ ∈ Z. In order to provide a finite representation of such sets, we introduce the notion of basis of linear invariants, as follows. Definition 7 (Basis of Linear Invariants): Let I be a set of linear invariants. A finite subset I 0 ⊆ I, I 0 = {u T k • At = u 0k } k∈K is a basis for I if and only if for all invariant u T • At = u 0 ∈ I there exists rational coefficients (λ k ) k∈K ∈ Q such that u = k∈K λ k u k and u 0 = k∈K λ k u 0k .

A. Automatic Generation of Linear Invariants

Consider a composite component B = γ(B 1 , . . . , B n ) with associated transition system (L, γ, T ) and initial state ℓ 0 . In this section, we introduce the global method to compute linear invariants from solutions of the homogeneous system of flow equations which characterizes B. While this first algorithm is a rather trivial extension from [START_REF] Haulzbaur | A specialized, incremental solved form algorithm for systems of linear inequalities[END_REF], we shall see in Section V that its structure ease the design of a new and efficient incremental approach for linear invariants. We first introduce characteristic System, that is a system of linear equations representing the interactions within the BIP model. We then show that solutions of the characteristic systems are indeed linear invariants. This means that computing linear invariants reduces to solving a system of linear equations. Latter, we propose an efficient version of the Gauss-Jordan algorithm that exploits the structure of our specification language. Definition 8 (Characteristic System): For a finite set of atomic components B 1 , . . . , B n synchronized by a connector γ, the characteristic system S G (γ, B 1 , . . . , B n ) is defined as the conjunction

S G (γ, B 1 , . . . , B n ) ≡ a∈γ l∈a • x l - l∈ • a x l = 0
The unknowns x l correspond to locations l ∈ L = ∪ n i=1 L i . The characteristic system introduces exactly one flow equation for each interaction a of the system.

Example 6: The characteristic system for Example 1 following the enumeration of interactions p 1 s, p 2 s, p 3 s, q 1 t, q 2 t, q 3 t, r 1 r 2 r 3 is

S G ≡                  x l 12 -x l 11 + x l 42 -x l 41 = 0 x l 22 -x l 21 + x l 42 -x l 41 = 0 x l 32 -x l 31 + x l 42 -x l 41 = 0 x l 13 -x l 12 + x l 41 -x l 42 = 0 x l 23 -x l 22 + x l 41 -x l 42 = 0 x l 33 -x l 32 + x l 41 -x l 42 = 0 x l 11 + x l 21 + x l 31 -x l 13 -x l 23 -x l 33 = 0
We are now ready to show that solutions of the characteristic system are indeed linear invariants for the corresponding model. Theorem 1: Any solution u of S G defines the linear invariant u T • At = u T • At 0 of the composite component B.

Proof: Regarding the composite component B as its equivalent Petri-Net P N , the characteristic system of S G is equivalent to the equation C T x = 0, where C is incidence matrix of P N . Each solution denotes an invariant of P N (c.f. [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]) and thus, an invariant of B. Proof: Using the solution basis (u k ) k∈K , all solutions u can be expressed as a linear combination such that we have the invariant

( k∈K λ k u T k )•At = k∈K λ k u T k )•At 0 . This invariant is trivially implied by the set of {u T k • At = u T k • At 0 } k∈K .
The common techniques to solve homogeneous systems Ax = 0 are the Gauss-Jordan elimination, Cholesky-, QRor LU-factorization. These general well-known algorithms have low polynomial complexity and can be directly applied to solve the characteristic system S G . Nonetheless, naive implementations may badly scale to realistic systems, in particular, if they do not consider carefully the structure and the sparsity of the characteristic systems.

To ensure scalability, we developed an online resolution algorithm (Algorithm 1 below) that processes equations in the characteristic systems iteratively, one by one, while producing an equivalent left-bound system. It is essentially a variant of Gauss-Jordan that exploits the locality of unknowns as well as the particular form of equations. In addition to efficiency that will be illustrated in Table II, one of the major advantages of the new algorithm is that its structure can be exploited to derive an incremental version. This shall be the subject of the next section.

In the algorithm, function REWRITE(eq, LeftB ) returns the equation eq in which all bounded unknowns x i are substituted according to their definition def i given by (x i = def i ) in LeftB . Function PROPAGATE is the dual of REWRITE. PROPAGATE(LeftB , x = def ) returns the system LeftB where all occurences of the free (unbounded) unknowns x are substitued by def . When SOLVE(eq) is called, eq ≡ k j x j = 0 contains only free unknowns. One of them is selected and the equation is rewritten into a solved form x = def . The choice is led by prefering the x j with the smallest absolute value for k j . Our algorithm has been implemented in DFINDER. Experimental results and comparison with similar tools/methodologies are reported in section VI.

Algorithm 1 Online algorithm for direct resolution of S

G 1: Lef tB ← ∅ ⊲ Lef tB ≡ i∈I x i = def i j∈J λ ij x j , I ∩ J = ∅ 2: while ¬f inished do 3: eq ← READEQUATION() 4:
eq ← REWRITE(eq, Lef tB) ⊲ eq has the form j∈J k j x j = 0 5:

if ¬TRIVIAL(eq) then 6:

(x = def ) ← SOLVE(eq) 7:

Lef tB ← PROPAGATE(Lef tB, x = def ) 8:

Lef tB ← Lef tB ∧ x = def 9:

end if 10: end while 11: return Lef tB Example 7: Using Algorithm 1, the characteristic system S G given in Example 6 is transformed in left bound form shown below left. The solution basis extracted from the solved form generates I 0 the basis of linear invariants.

SG ≡              x l 12 = x l 32 + x l 13 -x l 33 x l 42 = x l 41 -x l 32 + x l 33 x l 22 = x l 32 + x l 23 -x l 33 x l 11 = x l 13 x l 21 = x l 23 x l 31 = x l 33 I0 =          at l13 + at l12 + at l11 = 1 at l23 + at l22 + at l21 = 1 at l33 + at l32 + at l31 = 1
at l41 + at l42 = 1 at l12 + at l22 + at l32 + at l41 = 1

V. INCREMENTAL APPROACH

We now present one of the major contributions of the paper, that is to exploit incremental design to ease the generation of linear invariants. In fact, the incremental approach allows to organize the computation of linear invariants by following the incremental design process. Actually, incremental design provides a natural and meaningful manner to split the global characteristic system and to optimize its resolution.

The incremental approach relies on construction and manipulation of incremental characteristic systems. For a composite component, this characteristic system characterizes both (1) the existing interactions defined inside and ( 2) the still open possibilities for further interaction (inside or with extra components). Definition 9 (Incremental Characteristic System): For a finite set of atomic components B 1 , . . . , B n synchronized by a connector γ, the incremental characteristic system S I (γ, B 1 , . . . , B n ) is defined as the conjunction

S I (γ, B 1 , . . . , B n ) ≡ a∈γ l∈a • x l - l∈ • a x l -y a = 0
The main difference with the global characteristic system is that, in addition to unknowns x l associated to locations l ∈ L = ∪ n i=1 L i , the incremental system uses unknowns y a associated to interactions a ∈ γ. These unknowns are used to capture the (still) partial composition through γ. Every unknown y a can be interpreted as denoting the partial flow realized on interaction a in the current composition by γ. Intuitively, any further extension of γ through layering will simply add extra constraints on the y a unknowns, and preserve entirely the existing equations involving x l unknowns. When the parallel composition is completed, that is, no more interactions are added, the global characteristic system can be obtained from the incremental system simply by substituting with the constant 0 all the unknowns that correspond to the interactions. We define this operation as freezing of interaction constraints. Theorem 3 (Freezing): For every composite component γ(B 1 , . . . , B n ), the characteristic system S G is obtained from the incremental characteristic system S I as follows:

S G ≈ (∃y a ) a∈γ S I ∧ a∈γ y a = 0
Proof: The proof is trivial: the substitution of each unknown y a by 0 in S I gives syntactically the system S G . This equivalence allows to establish that linear invariants are preserved through freezing. If u is a solution of the incremental characteristic system which assigns 0 to all y a unknowns then, its restriction u |L to x l unknowns is a solution of global characteristic system. Such solutions u of incremental systems are called hereafter invariantgenerating. By using the observation above and theorem 1 it holds that u |L defines a linear invariant for the composite component γ(B 1 , ..., B n ) for any invariant-generating solution u of S I (γ, B 1 , ..., B n ). The main advantage of incremental systems is that they are easily transformed through layering. That is, there exist a strong relationship between the incremental systems, before and after layering, as stated by the following theorem.

Theorem 4 (Layering): Given composite component γ(B 1 , . . . , B n ) and δ an increment of γ, it holds that

S I (δγ, B 1 , . . . , B n ) ≈ (∃y b ) b∈γ∩δ f S I (γ, B 1 , • • • , B n ) ∧ a∈δ y a - b k ∈ γ, ⊔ k b k = a y b k = 0 Proof: By definition of layering, δγ = (γ ⊖ δ f ) ⊕ δ. The incremental characteristic system S(δγ, B 1 , ..., B n ) is therefore equal to S I ((γ ⊖ δ f ) ⊕ δ, B 1 , ..., B n
) and can be rewritten as:

a∈γ⊖δ f l∈a • x l - l∈ • a x l -y a = 0 ∧ a∈δ l∈a • x l - l∈ • a x l -y a = 0
The first conjunction term can be obtained by applying existential quantification of unknowns (y b ) b∈γ∩δ f on the conjunction over the set of interactions γ:

a∈γ⊖δ f l∈a • x l - l∈ • a x l -y a = 0 ≡ (∃y b ) b∈γ∩δ f a∈γ l∈a • x l - l∈ • a x l -y a = 0
The existential quantification can be safely extended over both conjunction terms, as quantified unknowns do not occur (yet) in the second term. But now, regarding this second term, any interaction a of the increment δ can be written as

a disjoint union a = ⊔ k b k where interactions b k ∈ γ, for all k. It follows that • a = ⊔ k • b k , a • = ⊔ k b •
k hence, we can rewrite for any a ∈ δ the sums

l∈a • x l - l∈ • a x l = b k ∈γ,⊔ k b k =a l∈b • k x l - l∈ • b k x l = b k ∈γ,⊔ k b k =a y b k
The above facts can be used together and prove the result.

A direct consequence of the above theorem is that linear invariants are preserved by layering. That is, any invariantgenerating solution u of S I (γ, B 1 , ..., B n ) can be extended to an invariant-generating solution u ′ of S I (δγ, B 1 , ..., B n ) such that u |L = u ′ |L . In fact, one can easily check that, whenever the y a unknowns are set to 0, incremental systems put less constraints on the x l unknowns after layering than before, and hence, invariant-generating solutions are preserved. Consequently, linear invariants discovered at any step of the composition are preserved through layering operations.

Finally, the incremental system can also be split on disjoint union of components, as stated by the following proposition.

Proposition 1 (Disjoint Union):

Let B 1 = γ 1 ({B i } i∈I1 ), B 2 = γ 2 ({B i } i∈I2 ) be disjoint composite components, that is, I 1 ∩ I 2 = ∅.
Then, it holds:

S I (γ 1 ⊕ γ 2 , {B i } i∈I1∪I2 ) ≈ S I (γ 1 ,{B i } i∈I1 ) S I (γ 2 , {B i } i∈I2 )
Proof: Using Definition 9, we obtain the characteristic system of the component (γ 1 ⊕ γ 2 )({B i } i∈I1∪I2 ). In this system, we split the main conjunction in the system by unfolding independently the two connectors γ 1 and γ 2 :

S I (γ 1 ⊕ γ 2 , {B i } i∈I1∪I2 ) ≈ a∈γ1 l∈a • x l - l∈ • a x l -y a = 0 ∧ a∈γ2 l∈a • x l - l∈ • a x l -y a = 0
Using Definition 9, we rewrite each subterm to obtain the equivalence

S I (γ 1 ⊕ γ 2 , {B i } i∈I1∪I2 ) ≈ S I (γ 1 , {B i } i∈I1∪I2 )∧S I (γ 2 , {B i } i∈I1∪I2
). The interactions in γ 1 are only defined over the component set {B i } i∈I1 . For any interaction a ∈ γ 1 , each unknown x l in the sets • a or a • corresponds to the location l. This location belongs to a component of {B i } i∈I1 that is separated from {B i } i∈I1 : the characteristic systems S I (γ 1 , {B i } i∈I1∪I2 ) and S I (γ 1 , {B i } i∈I1 ) are equivalent. We similarly deduce that S I (γ 2 , {B i } i∈I1∪I2 ) ≈ S I (γ 2 , {B i } i∈I2 ). After rewriting terms using equivalence relation, the conclusion is immediate. This proposition allows to infer that invariant-generating solutions are preserved by disjoint union, and consequently, any linear invariant discovered locally for γ 1 ({B i } i∈I1 ) and γ 2 ({B i } i∈I2 ) is also an invariant for the composite

(γ 1 ⊕ γ 2 )({B i } i∈I1∪I2 ).
Example 8: Following the incremental composition used for the example illustrated in Figure 2, the incremental characteristic systems constructed at different steps of the design are given in the Table I. For each increment (a subdivision of the table) we discover some linear invariants. The computation steps associated to the increments δ 1 and δ 2 gives an invariant at l i1 + at l i2 + at l i3 = 1 for each component P i and the invariant at l 41 + at l 42 = 1 for the component Lock. The next step corresponds to the disjoint union: we merge the two characteristic systems, and we collect the invariants obtained form each one. For the last increment δ 3 , we obtain the invariant at l 12 +at l 22 +at l 32 +at l 41 = 1. This invariant ensures the mutual exclusion property in the system. When Lock is activated at l 42 = 1 and hence at l 41 = 0, the invariant ensures that exactly one of the P i reached its location at l i2 .

VI. IMPLEMENTATION, EXPERIMENTS AND RESULTS

We split the section in two parts. First we show the power of algorithm 1; second we demonstrate the efficiency of our incremental approach.

A. On Algorithm 1

As we have seen in previous sections, linear invariants generation relies on methods to compute the set of solutions of a given homogeneous system of linear equations. The complexity of standard algorithms for solving such systems is O(mn 2 ), for systems of size m×n. Most of classical algorithms such as Gauss-Jordan elimination may reach this complexity. This is especially the case when considering dense systems. However, in the context of our work, we observed that characteristic systems are usually sparse. The reason is that interactions synchronize few components, and therefore the associated equations involve few locations. In many cases, the bigger the composition (which implies a large number of components and locations), the lower the fill factor of the characteristic system. Given a composition with |γ| interactions of atomic components totalizing |L| locations, the matrix A for S G has size of |γ| × |L|. If avg(γ) denotes the average number of components used per interaction, the fill factor of A is 2 • avg(γ)/|L|. Table II illustrates the fill factor for some common BIP examples. This particular structure is exploited by the global online Algorithm 1.

B. On Computing Linear Invariants

We have implemented the techniques proposed in this paper as an extension of DFINDER, a tool capable of checking deadlocks of programm written in the BIP language. DFINDER originally implements efficient symbolic techniques for computing Boolean invariants ψ of the interactions between components [START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF]. As shown in Figure 3 (that also illustrates the structure of the tool), ψ can then be combined with the invariant φ i of each constituent component to deduce a global invariant for the complete system (see [START_REF] Bensalem | Incremental invariant generation for compositional design[END_REF] for a proof). At the same time, the tool also computes all the potential deadlock states denoted by DIS. If the formula ∧ i φ i ∧ Ψ ∧ DIS is unsatifiable, then the system is deadlock free. In the other case, the solutions denote some suspicious counter examples that can be reused by the tool to refine automatically the analysis. For the purpose of this work, we have implemented new techniques based on linear invariants in order to compute ψ. Those techniques rely on algebraic sparse matrices representations rather than BDD used in classical DFINDER. Experiments. Table III represents a the results of a set of experiments. All the experiments have been conducted with incremental approach as we observed that it clearly outperforms the global one. All our experiments were done with a 2.4GHz Core 2 Duo CPU with 8GB of RAM (a laptop running Mac OS X 10.6). We generated linear invariants for various case studies, including the Gas Station [START_REF] Heimbold | Debugging Ada tasking programs[END_REF], a derived version of the Smoker [START_REF] Patil | Limitations and Capabilities of Dijkstra's Semaphore Primitives for Coordination among Processes[END_REF], the Automatic Teller Machine (ATM) [START_REF] Chaudron | A framework for formal component-based software architecting[END_REF] and the classical Dining Philosopher problem. Regarding the Gas Station example, we assume that every pump has 10 customers. Hence, if there are 50 pumps in a Gas Station, then we have 500 customers and the number of components including the operator is thus 551. In the ATM example, every ATM machine is associated to one user. Therefore, if we have 10 machines, then the number of components will be 22 (including the two components that describe the Bank). Each example is parameterized by scale, which denotes its "size"; location denotes the total number of control locations |L|; interaction is for the total number of interactions |γ|. The computation time is given in minutes and the memory usage is given in kilo-or MegaBytes. The timeout, i.e., "-" is one hour. We implemented the methods described in Section IV-A within DFINDER. Alternatively we implemented GAUSS a standard Gauss-Jordan elimination and we used CHARLIE, a general Petri-net analyzer [START_REF]Charlie: a tool to analyse Petri nets[END_REF]. We observe that the approach based on Algorithm 1 is always faster, and the consumed memory by DFINDER is negligible compared to the other approaches. We also observe that CHARLIE fails to analyze the Petri-nets generated from the BIP models. It generates a particular set of invariants so-called semi-linear positive invariants that require an important complexity. They allow to check several kinds of properties (structural, coverability, reachability, . . . ), but for the reachability analysis they are however equivalent to the linear invariants.

SG(γ, P1, P2, P3, Lock ) ∃yp 1 s∃yp 2 s∃yp 3 s∃yq 1 t∃yq 2 t∃yq 3 t∃yr 1 r 2 r 3 yp 1 s = 0 yp 2 s = 0 yp 3 s = 0 yr 1 r 2 r 3 = 0 yq 1 t = 0 yq 2 t = 0 yq 3 t = 0 SI (δ3(δ1(γ ⊥ 1 ⊕ γ ⊥ Lock ) ⊕ δ2(γ ⊥ 2 ⊕ γ ⊥ 3 )), P1, P2, P3, Lock ) ∃yr 1 ∃yp 2 ∃yq 2 ∃yp 3 ∃yq 3 ∃ys∃yt∃yr 2 r 3 yp 2 s = yp 2 + ys yp 3 s = yp 3 + ys yr 1 r 2 r 3 = yr 1 + yr 2 r 3 yq 2 t = yq 2 + yt yq 3 t = yq 3 + yt SI (δ1(γ ⊥ 1 ⊕ γ ⊥ Lock ), P1, Lock ) ∃yp 1 ∃yq 1 ∃ys∃yt yp 1 s = yp 1 + ys yq 1 t = yq 1 + yt SI (γ ⊥ 1 , P1) x l 12 -x l 11 = yp 1 x l 13 -x l 12 = yq 1 x l 11 -x l 13 = yr 1 ∧ SI (γ ⊥ Lock , Lock ) x l 42 -x l 41 = ys x l 41 -x l 42 = yt SI (δ2(γ ⊥ 2 ⊕ γ ⊥ 3 ), P2, P3) ∃yr 2 ∃yr 3 yr 2 r 3 = yr 2 + yr 3 SI (γ ⊥ 2 , P2) x l 22 -x l 21 = yp 2 x l 23 -x l 22 = yq 2 x l 21 -x l 23 = yr 2 ∧ SI (γ ⊥ 3 , P3) x l 32 -x l 31 = yp 3 x l 33 -x l 32 = yq 3 x l 31 -x l 33 = yr 3

Table I EXAMPLE OF INCREMENTAL SYSTEM

Preciseness. We also observe that our technique generates invariants that are coarser than Booleans ones, which decreases the risk of introducing counter examples. Figures 4, 6, and 5 give the accuracy of the generated invariants (for both the Boolean and the linear one) for the Dining Philosopers, the Gas Station and the ATM, for each system with different sizes. On these figures, the value 60% means that the reachable states of the system are 60% of all the states characterized by the invariants. It dually means that these same invariants catch 40% of unreachable states.

Notice that an accuracy of 0% (i.e. no reachable state contained) is never reached since the generated invariants are sound. But for some of the Boolean invariants, the approximation is so imprecise that the result is really close to 0% in the figures.

The above examples have differents types of interactions between the consituent componenents, and this has an impact on the preciseness. In the Dining Philosophers, one can see that all the interactions are there in order to introduce mutual exclusion mechanisms. As explained below, the linear invariants are really adequate to express such properties as they can be encoded by linear equations. For such an example, the result is of clear interest. Indeed, the generated linear invariants exactly denotes the set of reachable states. For the same reason, we also obtain an excellent precision (90%) with the linear invariants for Readers/Writers example. On the contrary, the approximation for the Gas Station example is coarser. Indeed, the relation between the consumers and the pumps is quite well-suited (e.g. resemble a mutual exclusion principle), but the overall behavior of the station is guaranteed by an operator that relies on global self-loops. Such interactions are more expressive than linear equation. This means that they can only be approximated by such equations. Additionally, each new pump added to the system is connected to the operator with interactions over the selfloops that deteriorate the precision of the approximation. In Figure 5, the ATM example contains also some interactions defined over self-loops. But they are used to define timers in some of the compenents. As such, they do not define strong synchronizations between the compenents. This means that their impact is smaller than for the Gas Station. Consequently, this justifies that for each ATM added in the system, the 60% of accuracy does not decrease so much. Globally, we clearly observe that the linear invariants drastically increase the accuracy of the verification compared to the Boolean invariants. But as explained in [START_REF] Bensalem | D-finder 2: Towards efficient correctness of incremental design[END_REF], Boolean invariants are sufficient to prove the deadlock freeness of a system. Moreover, if the linear invariants are more accurate than the Boolean invariants, the approximated states of the linear invariants are not always a subset of those of the Boolean invariants: the conjunction of the linear and Boolean invariants increase the precision of the analysis for the cases with self-loops like in the Gas Station example.

VII. CONCLUSION

We propose a technology to generate linear invariants for the BIP toolset. Contrary to our former contribution that relies on generating Boolean invariants, this new approach allows for the generation of linear invariants. Even though BIP Boolean invariants and BIP linear invariants are uncomparable, experimental results show the latter may be more precise. Future work includes proposing intensive techniques as well as extending the approach to the full class of liveness properties.
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