N

N
N

HAL

open science

Component Assemblies in the Context of Manycore

Ananda Basu, Saddek Bensalem, Marius Bozga, Paraskevas Bourgos, Mayur
Maheshwari, Joseph Sifakis

» To cite this version:

Ananda Basu, Saddek Bensalem, Marius Bozga, Paraskevas Bourgos, Mayur Maheshwari, et al..
Component Assemblies in the Context of Manycore. Formal Methods for Components and Objects,
10th International Symposium, FMCO 2011, Oct 2011, Torino, Italy. pp.314-333, 10.1007/978-3-642-
35887-6_17 . hal-00878716

HAL Id: hal-00878716
https://hal.science/hal-00878716
Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00878716
https://hal.archives-ouvertes.fr

Component Assemblies
in the Context of Manycore *

Ananda Basu'!, Saddek Bensalem', Marius Bozga!,
Paraskevas Bourgos!, Mayur Maheshwari', and Joseph Sifakis!2

! UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France
name.surname@imag.fr
2 RISD Laboratory, EPFL joseph.sifakis@epfl.ch

Abstract. We present a component-based software design flow for build-
ing parallel applications running on top of manycore platforms. The flow
is based on the BIP - Behaviour, Interaction, Priority - component frame-
work and its associated toolbox. It provides full support for modeling of
application software, validation of its functional correctness, modeling
and performance analysis on system-level models, code generation and
deployment on target manycore platforms. The paper details some of
the steps of the design flow. The design flow is illustrated through the
modeling and deployment of two applications, the Cholesky factoriza-
tion and the MJPEG decoding on MPARM, an ARM-based manycore
platform. We emphasize the merits of the design flow, notably fast per-
formance analysis as well as code generation and efficient deployment on
manycore platforms.

1 Introduction

The emergence of manycore platforms is nowadays challenging the design prac-
tices for embedded software. Manycore platforms built on increasingly complex
2D or 3D hardware architectures which, besides a high number of computational
cores, usually include complex memory/cache hierarchies, synchronization pat-
terns and/or communication buses and networks. Commonly, all hardware re-
sources are either partially or fully exposed to software developers. By doing so,
one expects optimized exploitation of resources while meeting requirements for
both software performance (e.g., real-time requirements) and efficient platform
management (e.g., thermal and power efficiency).

Concurrency is paramount for boosting software performance on manycore plat-
forms. Nonetheless, correct and fast development of highly parallel, fine-grain

* The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
no. 248776 (PRO3D) and from ARTEMIS JU grant agreement ARTEMIS-2009-1-
100230 (SMECY).

concurrent software is known to be notoriously hard even for expert develop-
ers. In general, the inherent complexity of concurrent (handwritten) software
is hardly manageable by current verification and validation methods and tools.
Moreover, software adaptation and deployment to selected manycore platform
targets usually require significant manual transformation, with no strong guar-
antees about their correctness.

The PRO3D project [32] proposes a holistic approach for the development of em-
bedded applications on top of manycore 3D platforms. PRO3D activities range
from programming to architecture exploration and fabrication technologies. The
major challenges are the thermal management of 3D platforms and the rigorous,
tool-supported design flow of parallel application software.

We propose and implement a design flow for applications based on the BIP
component framework [6]. This flow sticks to the general principles of rigorous
design introduced in [8]. It has several key features, namely:

— it is model-based, that is, both application software and mixed hardware/
software system descriptions are modeled by using a single, semantic frame-
work. As stated in [8], this allows maintaining the coherency along with the
flow by proving that various transformations used to move from one descrip-
tion to another preserve essential properties.

— it is component-based, that is, it provides primitives for building composite
components as the composition of simpler components. Using components
reduces development time by favoring component reuse and provides support
for incremental analysis and design, as introduced in [10, 11, 13]

— it is tool-supported, that is, all steps in the design flow are realized automat-
ically by tools. This ensures significant productivity gains, in particular due
to elimination of potential errors that can occur in manual transformations.

To the best of our knowledge, the BIP design flow is unique as it uses a sin-
gle semantic framework to support application modeling, validation of func-
tional correctness, performance analysis on system models and code generation
for manycore platforms. Building faithful system models is mandatory for val-
idation and performance analysis of concurrent software running on manycore
platforms. Existing system modeling formalisms either seek generality at the
detriment of rigorousness, such as SySML [30] and AADL [20] or have a limited
scope as they are based on specific models of computation such as Ptolemy [18].
Simulation based methods use ad-hoc executable system models such as [22] or
tools based on SystemC [28]. The latter provide cycle-accurate results, but in
general, they have long simulation time as a major drawback. As such, these
tools are not adequate for thorough exploration of hardware platform dynam-
ics, neither for estimating effects on real-life software execution. Alternatives
include trace-based co-simulation methods as used in Spade [26], Sesame [19] or
Daedalus [29]. Additionally, there exist much faster techniques that work on ab-
stract system models e.g., Real Time Calculus [36] and SymTA/S [4]. They use
formal analytical models representing a system as a network of nodes exchanging

streams. They often oversimplify the dynamics of the execution characterized by
execution times. Moreover, they allow only estimation of pessimistic worst-case
quantities (delays, buffer sizes, etc) and require adequate abstract models of the
application software. Building such models entails an additional significant mod-
eling effort. Similar difficulties arise in performance analysis techniques based on
Timed-Automata [3,33]. These can be used for modeling and solving scheduling
problems. An approach combining simulation and analytic models is presented
in [23], where simulation results can be propagated to analytic models and vice
versa through adequate interfaces.

The paper is organized as follows. Section 2 provides a brief overview of the BIP
component framework and toolbox. Section 3 introduces the BIP design flow
and details several of its steps. An illustration of the design flow is provided in
section 4. We provide results about performance analysis and implementation of
two non-trivial concurrent applications on manycore. Finally, section 5 concludes
and provides future work directions.

2 The BIP Framework

The BIP — Behaviour / Interaction / Priority — framework [6] is aiming at design
and analysis of complex, heterogeneous embedded applications. BIP is a highly
expressive, component-based framework with rigorous semantical basis. It allows
the construction of complex, hierarchically structured models from atomic com-
ponents characterized by their behavior and their interfaces. Such components
are transition systems enriched with data. Transitions are used to move from
a source to a destination location. Each time a transition is taken, component
data (variables) may be assigned new values, computed by user-defined functions
(in C). Atomic components are composed by layered application of interactions
and priorities. Interactions express synchronization constraints and define the
transfer of data between the interacting components. Priorities are used to fil-
ter amongst possible interactions and to steer system evolution so as to meet
performance requirements e.g., to express scheduling policies.

Atomic Components. We define atomic components as transition systems
extended with a set of ports and a set of variables. Formally, an atomic compo-
nent B is a labelled transition system represented by a tuple (Q, X, P,T) where
Q is a set of control locations, X is a set of variables, P is a set of communication
ports and T is a set of transitions. Each transition 7 is of the form (¢,p, g, f,¢')
where ¢,q' € Q are control locations, p € P is a port, g is the guard and f is
the update function of 7. g is a predicate defined over variables in X and f is a
function (or a sequential procedure) that computes new values for X according
to the current ones.

Interactions. In order to compose a set of n atomic components {B; =
(Qiy X4, Pi, T;) Y, we assume that their respective sets of ports and variables
are pairwise disjoint; i.e., for all ¢ # j we require that P,NP; = ¢ and X;NX,; = 0.

We define the global set P def Ui, Pi of ports. An interaction a is a triple
(Pa, G, F,), where P, C P is a set of ports, G, is a guard, and F, is a data
transfer function. By definition P, contains at most one port from each compo-
nent. We denote P, = {p; }icr with I C {1..n} and p; € P;. We assume that G,
and F, are defined on the variables of participating components, (i.e. |J;c; Xi).
We denote by F. the restriction of F, on variables X;.

Priorities. Given a set 7y of interactions, we define a priority as a strict partial
order m C v X . We write anb for (a,b) € 7, to express the fact that interaction
a has lower priority than interaction b.

Composite Components. A composite component 7y(B1, ..., By) is defined
by a set of atomic components By, --- , B,, composed by a set of interactions =y
and a priority m C v x v. If 7 is the empty relation, then we may omit 7 and
simply write v(B1, - , By).

A global state of ny(By,---,B,) where B; = (Q;, X;, P;,T;) is defined by a
couple (gq,v), where ¢ = (¢1, -+ ,¢n) is a tuple of control locations such that
¢i € Q; and v = (v1,---,v,) is a tuple of valuations of variables such that v; €
Val(X;) = {o: X; » D}, foralli = 1,---n and for D being some universal data
domain. The behavior of a composite component without priority v(B1, -+ , By)
is a labeled transition system (5,7, —,), where S = @, Q; x Q. Val(X;)
and — is the least set of transitions satisfying the rule:

a = ({pi}ielvGavFa) €Y Vg = {'Ui}iel Ga(va)
Vie I (¢, find;) €Ty gi(vi) v = fi(Fa(va))

((QL---aQn)v(Ulvu-;vn)) i>’v ((qlla-“aqg)v(vllv'-wvil))

[INTERACTION]

Intuitively, the inference rule INTERACTION specifies that a composite component
B =~(By,. .., By) can execute an interaction a € v, iff (1) for each port p; € P,,
the corresponding atomic component B; allows a transition from the current
location labelled by p; (i.e. the corresponding guard g; evaluates to true), and
(2) the guard G, of the interaction evaluates to true. If the two above conditions
hold for an interaction a at state (g, v), a is enabled at that state. Execution of a
modifies participating components’ variables by first applying the data transfer
function F, on variables of all interacting components and then the update
function f; for each interacting component. The (local) states of components
that do not participate in the interaction stay unchanged.

We define the behavior of the composite component B = 7y(Bj,. .., B,) as the
labeled transition system (5,7, —r,) where — . is the least set of transitions
satisfying the rule:

’

(q,v) 5, (¢,v') Vd' €. armd = (q,v) %,

(¢,v) Sry (¢'0)

[PRIORITY]

X Vi Iy iz
y=X - t z=y p
oute——@ in oute———ein
E iol tick i02 j tick
[10<c] out [CS?O} c=c+1
T c=0 in| Jjout m T
X= f(i c=0
tick tick
lintx, ¢! c=ctl linty lintz, ¢!
Sender Buffer Receiver

Fig. 1. BIP Example: Sender/Buffer/Receiver System

The inference rule PRIORITY filters out interactions which are not maximal with
respect to the priority order. An interaction is executed only if no other one with
higher priority is enabled.

Ezample 1. Figure 1 shows a graphical representation of an example model in
BIP. It consists of atomic components Sender, Buffer and Receiver. The behavior
of Sender is described as a transition system with control locations L1 and L2. It
communicates through ports tick and out. Port out exports the variable z. Com-
ponents Sender, Buffer and Receiver are composed by two binary connectors 01,
102 and a ternary connector tick. tick represents a rendezvous synchronization
between the tick ports of the respective components. 701 represents an interac-
tion with data transfer from the port out of Sender to the port in of Buffer. As a
result of the data transfer associated with 701, the value of variable z of Sender
is assigned to the variables y of the Buffer.

BIP is supported by a rich toolset[1] which includes tools for checking correct-
ness, for source-to-source transformations and for code generation. Correctness
can be either formally proven using invariants and abstractions, or tested by
using simulation. For the latter case, simulation is driven by a specific middle-
ware, the BIP engine, which allows to explore and inspect traces corresponding
to BIP models. Source-to-source transformations allow to realize static optimiza-
tions as well as specific transformations towards implementation i.e., distribu-
tion. Finally, code generation targets different platforms and operating systems
support (e.g., distributed, multi-threaded, real-time, for single/multi-core plat-
forms, etc.).

3

BIP Design Flow for Manycore

The BIP design flow uses a single language to ensure consistency between the dif-
ferent design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. The design flow involves several distinct
steps, as illustrated in figure 2 and explained below:

1.

The translation of the application software into a BIP model. This allows
its representation in a rigorous semantic framework. Translations for several
programming models (including synchronous, data-flow and event-driven)
and domain specific languages into BIP are defined and implemented.

. Correctness checking of functional properties of the application software.

Functional verification needs to be done only on high-level models since
safety properties and deadlock-freedom are preserved by different transfor-
mations applied along the design flow. To avoid inherent complexity limi-
tations, the verification method relies on compositionality and incremental
techniques.

The construction of an abstract system model. This model is automatically
generated from 1) the BIP model representing the application software; 2)
a BIP model of the target execution platform; 3) a mapping of the atomic
components of the application software model into processing elements of
the platform. The abstract system model takes into account hardware con-
straints such as various latencies, mutual exclusion induced from sharing
physical resources (like buses, memories and processors) as well as schedul-
ing policies seeking optimal use of these resources.

The construction of a distributed system model. This model is automatically
generated from the abstract system model by expressing high-level coordi-
nation mechanisms e.g., interactions and priorities, in terms of primitives
of the execution platform. This transformation involves the replacement of
atomic multiparty interactions and/or dynamic priorities by protocols using
asynchronous message passing (send/receive primitives) and arbiters ensur-
ing semantics preservation. These transformations are proved correct-by-
construction [14].

The generation of platform dependent code, including both functional and
glue code for deploying and running the application on the target many-
core. In particular, components mapped on the same core can be statically
composed thus avoiding extra overhead for (local) coordination at runtime.
The calibration step, which consists in estimating execution times of actions
of the distributed system model. These are obtained through execution and
profiling of code fragments compiled on the target platform. They are used
to obtain an instrumented system model which takes into account dynamic
behavior of the execution platform.

The performance analysis step involving simulation-based methods combined
with statistical model checking on the instrumented system model.

Hardware

Application

Mapping

Platforrn (MPARMD,

Software Platform
translation | step 1 translation | step 3
Application Hardware
Software Platform
Model BIP Model BIP
model
correctness | step 2 transformation | step 3
D—Finder Abstract
System Model BIP
model
transformation | step 4 code
.. il
Distributed gtene;a on W Functional Code H Glue Code T
System Model step
Y BIlP ‘ Runtime ‘
model | execution & calibratio, } J‘
[]

transformation 'step 6

Instrumented
System Model BIP

performance
analysis | step 7
Simulation
Statistical Model Checking

Fig. 2. BIP Design Flow for Manycore

Some of the steps of the design flow are detailed hereafter. We focus on the
translation of the application software in BIP (step 1), functional correctness
checking by using D-Finder (step 2), platform dependent code generation (step
5), calibration and performance analysis (steps 6 and 7). The construction of
the abstract system model (step 3) is presented in [15]. A complete presentation
of transformations for building distributed system models (step 4), ready for
implementation on distributed platforms, can be found in [14].

3.1 Translating Application Software into BIP

The first step in the design flow requires the generation of a BIP model for the
application software. We have developed a general method for generating BIP
models from languages with well-defined operational semantics. We have imple-
mented BIP model generators for several programming models and languages
such as Lustre, Simulink and NesC/TinyOS. In this paper, we focus on applica-
tions described in the DOL (Distributed Operation Layer) framework [35].

An application software in DOL is a Kahn process network that consists of
three basic entities: Processes, FIFO channels, and Connections. The network
structure is described in XML. Processes are defined as sequential C programs
with a particular structure. For a process P, its state is defined as an arbitrary
C data structure named P_state and its behavior as the program P_init(); while
(true) P_fire(); where P_init(), P_fire() are arbitrary functions operating on the

process state. Communication is realized by two primitives, namely write and
read for respectively sending and receiving data to FIFO channels. Moreover, the
P_fire() method invokes a detach primitive in order to terminate the execution
of the process.

The construction of the application software model in BIP is done through trans-
lation of the above entities in BIP. The construction is structure-preserving: every
process and every FIFO are independently translated into atomic components
in BIP and then connected according to the connections in the process network
[15]. The translation of process behavior requires extraction of an explicit control
flow graph from the C code and its representation as an atomic component in
BIP. A FIFO channel is translated into a predefined BIP atomic component.

Ezample 2. The C description of a DOL process is presented in Figure 3. This
process belongs to a process network used for the Cholesky factorization ex-
periment, presented later in section 4. The BIP atomic component generated
from the DOL process is shown in figure 4. It has ports IN.SPLIT, IN_2_1,
OUT_JOIN, control locations LI ... L6 and variables index, len, A, L and X.
Transitions are labeled by ports IN.SPLIT, IN_2_1, OUT_JOIN and § (internal).

3.2 Checking Application Correctness

The BIP design flow includes a verification step for checking essential functional
properties. Application software models in BIP are verified by using the D-
Finder tool[10,11]. D-Finder implements compositional methods for generation
of invariants and verification of safety properties, including deadlock-freedom.

In general, compositional verification techniques [5,2,17,16,21,27,31,34] are
used to cope with state explosion in concurrent systems. The idea is to ap-
ply divide-and-conquer approaches to infer global properties of complex systems
from properties of their components. Separate verification of components lim-
its state explosion. Nonetheless, designing compositional verification techniques
is difficult since components mutually interact in a system and their behavior
and properties are inter-related. As explained in [24], compositional rules are in
general of the form:

By <P >, By < Py >, O(@l,@z,@) (1)
BlHBQ <P >

That is, if two components with behaviors By, By meet individually properties
@4, &o respectively, and C(P1, Py, P) is some condition taking into account the
semantics of parallel composition operation and relating the individual properties
with the global property, then the system Bj|| By resulting from the composition
of By and By will satisfy a global property &.

void p-2-2_init(DOLProcess *p) {
p->local->index = 0;
p—>local->len = LENGTH; }
int p-2_2_fire(DOLProcess *p) {
if (p->local->index < p->local->len) {
// read input block Ass from splitter
read((void*)IN_SPLT, p->local->A,
(K) * (K) *sizeof (double), p);
// read result block Lo1 from Pai
read((void*)IN_2_1, p->local->X,
(K) * (K) #*sizeof (double), p);
// compute Ao = Asg — Lot x Lk
SubtractTProduct (p—>local->A,
p—>local->X, p->local->X);
// compute Las = seq-cholesky(Azz)
Cholesky(p->local->L, p->local->A);
// send the result Lo to the joiner var: index, len, A, L, X
write((void#*)0UT_JOIN, p->local->L, index=0; len=LENGTH;
(K) * (K) *sizeof (double), p);

A B
p->local->index++; } . [lindex<len] @[indexden] @INfsPLIT @
else {

// termination OUT_JOIN IN2 1
detach(p); index++; B
. SubtractTProduct(A,X,X);
return -1; } @‘ @
return 0; } | Chf’rliskY(L’A); 77777
L] X Al
OUT_JOIN | [IN2.1] IN_spLIT |
Fig. 3. DOL Process Description in C Fig. 4. Translation as BIP Atomic Component

D-Finder[10, 11] provides a novel approach for compositional verification of in-
variants in BIP based on the following rule:

{Bi <®i >}y, ¥ € H([ly, {Bi}ii) {Pi}iny), (N P)ANY =2 (2)
v(By,-B,) <® >

The rule (2) allows to prove a global invariant @ for a composite component
~v(Bi,...,B,), obtained by composing a set of atomic components By, ..., B,
by using a set of interactions . The premises ensure respectively that, @; is a
local invariant of component B; for every ¢ = 1,---n and ¥ is an interaction
invariant of y(Bj, ..., B,) computed automatically from interactions -y, compo-
nents B; and local invariants @;. D-Finder provides methods for computing both
component invariants and interaction invariants as follows:

— Invariants for atomic components are generated by static forward analysis
of their behavior. D-Finder uses different strategies which allow to derive
local assertions, that is, predicates attached to control locations and which
are satisfied whenever the computation reaches the corresponding control

location. These assertions are obtained through syntactic analysis of the
predicates occuring in guards and actions [12].

— Interaction invariants express global synchronization constraints between
atomic components. Their computation consists of the following steps. First,
for given component invariants @; of the atomic components B;, we com-
pute a finite-state abstractions B; of B; where «; is the abstraction in-
duced by the elementary predicates occurring in @;. This step is necessary
only for components B; which are infinite state. Second, the composition
~v(B{*, -+, B%) which is an abstraction of v(Bi,- -, B,), can be consid-
ered as a 1-safe finite Petri net. The set of structural invariants (traps and
locks) and linear invariants of this Petri net defines a global abstract inter-
action invariant, which is computed symbolically by D-Finder. Finally, the
concretization of this invariant gives an interaction invariant of the original
system.

D-Finder relies on a semi-algorithm to prove invariance of @ by iterative ap-
plication of the rule (2). The semi-algorithm takes a composite component
~v(Bi,...,B,) and a predicate ®. It iteratively computes invariants of the form
X =W A (A, $;) where ¥ is an interaction invariant and @; an invariant of
component B;. If X' is not strong enough for proving that @ is an invariant
(X A —=® = false) then either a new iteration with stronger ®; is started or the
algorithm stops. In this case, we cannot conclude about invariance of ®.

Checking global deadlock-freedom of a component (B, ..., By,) is a particular
case of proving invariants - proving invariance of the predicate —DIS, where
DIS is the set of the states of v(By,...,By,) from which all interactions are
disabled.

3.3 Platform Dependent Code Generation

The design flow provides the facility for generating code for the MPARM plat-
form [9] from distributed system models in BIP. The generated code is tar-
geted for a runtime called Native Programming Layer (NPL) implemented for
MPARM. The runtime provides APIs for thread management, memory alloca-
tion, communication and synchronization. The code generation consists of two
parts, the generation of the functional code and the generation of the glue code.

The functional code is generated from the application components consisting
of processes and FIFOs. Processes are implemented as threads, and FIFOs are
implemented as shared queue objects provided by the NPL library. Each pro-
cess component is translated into a thread. The implementation in C contains
the thread local data, queue handles and the routine implementing the specific
thread functionality. The latter is a sequential program consisting of plain C
computation statements and communication calls (e.g., queue API) provided by
the runtime. A read transition is substituted by a pop API call on the respective
queue handle. Similarly a write transition is substituted by a push API call on
its respective queue handle.

The glue code implements the deployment of the application to the platform,
i.e., allocation of threads to cores and the allocation of data to memories. The
glue code is essentially obtained from the mapping. Threads are created and
allocated to cores according to the process mapping. Data allocation deals with
allocation of the thread stacks and allocation of FIFO queues for communication.
In particular, for MPARM deployment, every thread stack is allocated into the
L1 memory of the core to which the thread is deployed. Queue handles and queue
objects are allocated from the cluster shared L2 memory. All these operations
are implemented by using the API provided by the runtime.

The code generator has been fully integrated into a tool-chain and connected
to the BIP system model generation flow. The generated code is compiled by
the arm-gcc compiler. The compiled code is linked with the runtime library to
produce the binary image for execution on the MPARM virtual simulator.

3.4 System Level Modeling and Performance Analysis

In the BIP design flow, system models are used to integrate the (extra-functional)
hardware constraints into the software model according to some chosen deploy-
ment mapping. The abstract system model is constructed through a series of
transformations from the BIP models of respectively the application software
and the hardware platform. These two models are composed according to the
mapping. The construction has been introduced in [15]. The transformations
preserve functional properties of the application software model.

The abstract system model is then transformed for distributed implementation
and progressively refined by including timing constraints for execution on the
chosen platform. These constraints define execution times for elementary func-
tional blocks, that is, BIP transitions within the application software model.
More precisely, execution times are measured by running the executable code on
MPARM. We measure the CPU time spent by each process performing blocks of
computations. This is done by instrumenting the generated code with profiling
API provided by the runtime. The API provides cycle accurate estimates for
executing a block of code in each processor.

The instrumented system model is therefore used to analyze non-functional prop-
erties such as contention for buses and memory accesses, transfer latencies, con-
tention for processors, etc. In the BIP design flow, these properties are evalu-
ated by simulation of the system model extended with observers. Observers are
regular BIP components that sense the state of the system model and collect
pertinent information with respect to relevant properties i.e., delay for particu-
lar data transfers, blocking time on buses, etc. Actually, we provide a collection
of predefined observers monitoring and recording specific information for most
common non-functional properties.

Simulation is performed by using the native BIP simulation tool[1]. The BIP sys-
tem model extended with observers is used to produce simulation code that runs
on top of the BIP engine, that is, the middleware for execution/simulation of BIP

models. The outcome of the simulation with the BIP engine is twofold. First, the
information recorded by observers can be used as such to gain insight about the
properties of interest. Second, the same information can be used to build much
simpler, abstract stochastic models. These models can be further used to com-
pute probabilistic guarantees on properties by using statistical-model checking.
This two-phase approach combining simulation and statistical model-checking
has been successfully experimented in a different context[7]. It is fully scalable
and allows (at least partially) overcoming the drawbacks related to simulation-
based approaches, that is, long simulation times and lack of confidence in the
obtained results.

4 Experiments

In this section, we report results about implementation and performance evalu-
ation of two applications using the BIP design flow. We consider Cholesky fac-
torization, a useful inverse-like operation on particular matrices, and MJPEG
decoding, a streaming application for decoding of video streams. For both ap-
plications, we target the MPARM platform, which is a highly customizable,
experimental, many-core platform available in the PRO3D project.

4.1 MPARM Platform

The MPARM [9] platform is a virtual ARM-based multi-cluster manycore plat-
form. It is configured by the number of clusters, the number of ARM cores per
cluster, and the interconnect between the clusters. The MPARM simulator al-
lows experimentation with at most four clusters, each with eight ARM7-TDMI
processors. The clusters are connected through a 2 x 2 NoC interconnect. The
architecture is shown in Figure 5. Inside a cluster, each ARM core is connected
with its private (L1) memory through a local bus. There is also a shared cluster
memory (L2) which is connected with the cores through a cross-bar intercon-
nect. A NoC-based infrastructure is used for inter-cluster communication, which
consists of a router, a link, and the network interface (NI) of the individual
clusters. The simulator provides cycle-accurate measurements for the execution
on the virtual platform. Henceforth, we will use the term MPARM execution to
denote execution on the MPARM virtual simulator.

As input to our design flow, we have used the hardware model in BIP generated
from a structural description in DOL. The DOL description of the hardware ar-
chitecture specifies resources connected by communication paths. Resources are
of type computation (processors, memories) or communication (buses, crossbar
interconnect, routers and links, etc.). Communication paths define the connec-
tions between the resources. A part of the DOL description of MPARM is given
in Figure 6.

Router Router N . Cross—Bar ‘
s

Fig. 5. An MPARM architecture with four clusters

‘-
6
v

<cluster name="C1" type="MPARM">
<processor name="P1" type="ARMv7">
<memory name="Private" type="L1">
<configuration name="cycles" value="1"/>
</memory>
<hw_channel name="local" type="Bus"> </hw_channel>
</processor>

<processor name="P8" type="ARMv7">
<memory name="Private" type="L1">
<configuration name="cycles" value="1"/>
</memory>
<hw_channel name="local" type="Bus"> </hw_channel>
</processor>
<hw_channel name="X-bar" type="CrossBar">
<configuration name="cyclesperbyte" value="1"/>
</hw_channel>
<memory name="Shared" type="L2">
<configuration name="cyclesperbyte" value="2"/>
</memory>
</cluster>

Fig. 6. Fragment of the DOL description of an MPARM cluster

4.2 Cholesky Factorization

Cholesky Factorization decomposes a Hermitian positively-defined real-valued
matrix A into the product L - LT of a lower triangular real-valued matrix L
and its conjugate transpose L”. The Cholesky decomposition is used for solving
numerically linear equations Az = b. If A is symmetric and positive definite, then
we can solve Az = b by first computing the Cholesky decomposition A = L- LT
then solving Ly = b for y, and finally solving LTz = y for .

The sequential Cholesky factorization algorithm has computational complexity
O(N?) for matrices of size N x N. In this paper, our starting point is the se-
quential right-looking block-based version [25] provided as algorithm 1 which

Algorithm 1 Right-Looking Block-Based Cholesky Factorization
Require: A Hermitian, positive definite matriz
Ensure: A= L- L7, L lower triangular
for k=1to B do
Lk := seq-cholesky(Axx)
Lyl := invert(transpose(Lkk))
fori=k+1to B do
Lik i= Aix - Ll
end for
for j=k+1to Bdo
L7, := transpose(L;x)
for i = j to B do
Aij == Aij — Lir - L},
end for
end for
end for

provides immediate support for parallelization. In this algorithm, B denotes the
number of blocks composing the original matrix A, that is A = (4;;)1<j<i<B
and every A;; is a block matrix of size KX = N/B. The algorithm computes
the matrix L, block by block, such that A = L - LT. The algorithm 1 is easily
parallelizable by separating computations related to different ij-blocks on differ-
ent processes P;;. Nevertheless, interactions between these processes are highly
non-trivial. There are complex patterns for data dependencies, as illustrated in
Figure 7 for the cases B = 2, 3, 4. Moreover, the amount of computation carried
by each process is different. That is, as factorization proceeds, processes with
higher indexes (i, j) become computationally more intensive. Furthermore, both
data dependencies and the local amount of computation are tightly related to
the decomposition size B as well as to the block size K. Altogether, finding
optimal implementation on multi-processor platforms with fixed communication
and computation resources is a non-trivial problem.

For every B, we denote by Cholesky(B) the Cholesky factorization using a B x B
block decomposition. For our experiments, we implemented three versions in
DOL, for respectively B = 2,3,4. In all cases, the process networks contain
a Splitter process, a Joiner process and the computational processes for each
block (P;;)1<j<i<p. Process Splitter splits the initial A matrix into blocks and
dispatches them to computational processes. Every process F;; implements the
computation required on its corresponding matrix blocks A;; and L;;. As an ex-
ample, the computational processes for Cholesky(4) are Py1, Pa1, Pag, P31 ... Py
as shown in Figure 7. The final L matrix is re-constructed by the Joiner process.
Explicit communication between F;; processes is used to enforce data depen-
dencies. In these models, a dedicated FIFO is used for every pair of dependent
processes to transfer the result block from the source to the target process. In
the MPARM implementation, each computational process is deployed into an
ARM processor and all the FIFO buffers are allocated to the L2 shared memory.

Table 1. DOL, BIP Models and MPARM Implementation Characteristics

| [| B=2 [B=3] B=4

processes 5 8 12
DOL Process Network |# FIFOs 8 20 40
lines of code 864 1400 2171
components 40 120 181
BIP System Model # interactions 182 445 882
lines of code 5207 7491 13648

IMPARM implementation‘# lines of code‘ 1977‘ 3163‘ 4923‘

It is to be noted that for B = 2,3 the implementation fits into a single cluster,
and for B = 4, two clusters have been used. The magnitude of the different rep-
resentations produced along the BIP design flow (number of processes, FIFOs,
components, interactions, lines of code) is depicted in Table 1.

For every B = 2, 3,4, we evaluate Cholesky(B) on 60x60 input matrices of double
precision floating point numbers. Therefore, computational processes operate
on matrix blocks of size 30 x 30, 20 x 20 and 15 x 15 for respectively B =
2,3,4. During the calibration phase, each computational routine on matrix blocks
is characterized by the number of cycles required to execute it on an ARM
processor. This is done by running the generated application code on MPARM
and by accurate measurement of the number of cycles, for each routine. Table 2
reports the worst case execution times for different size of matrix blocks.

Table 3 presents an overview of the system-level performance analysis results
obtained using two methods, respectively simulation of the system model wvs.
implementation and measurement of code execution on the MPARM platform.

\—:rma
LT
g
Z?Zl;\GI,
IS0
T

(A) B)

Fig. 7. Data dependencies for 2 x 2(A),3 x 3(B) and 4 x 4(C) process decomposi-
tion. Identical patterns indicate respectively a similar amount of local computation
(processes) or potential for parallel communication (data dependencies).

Table 2. Execution times for computational routines on matrix blocks (in 10° cycles)

B=2 B=3 B=14

K=30 | K=20 | K=15
seq-cholesky 33.82 15.47 14.94
invert 34.85 16.06 15.47
transpose 0.13 0.08 0.08
multiply 115.64 53.23 47.16
tmultiply 104.80 45.01 34.89
subtract 1.66 1.05 1.05

Table 3. Performance Analysis: MPARM Execution vs BIP System Model Simulation

| | [B=2 [B=3[B=1]

Total Execution Time MPARM Execution 317.70| 229.58 -
(in 10° cycles) BIP System Model Simulation| 325.23| 277.69| 356.00
Accuracy 2.37%| 20.95% -
Analysis Time MPARM Execution 69'49"| 34’25" -
(in minutes) BIP System Model Simulation| 3743”7 7’547 2675”7
Speed-up 18.78 4.35 -

For both methods, we report the total execution time taken by the application to
run on the platform and the analysis time, that is, the time taken by the methods
to produce the results. We point out that simulation of BIP system models
produces fairly accurate results (max 20.95% relative error with respect to the
cycle-accurate MPARM execution) while significantly reducing the analysis time
(up to 19 times, in some situations). Note that for B = 4, the MPARM simulation
did not terminate in 72 hours and the simulation data is unavailable. However,
an estimate is obtained from the BIP system model simulation. A higher cycle
count reflects the communication overhead due to the presence of two clusters
with the NoC interconnect.

Finally, Figure 8 presents a detailed view of execution times and communica-
tion delays for computational processes for Cholesky(4). For each process, the
idle time denotes the waiting time spent before it gets access to read or write
on FIFO channels. The communication time denotes the time effectively spent
on reading or writing. The computation time denotes the total execution time
without the idle and the communication time. The figure 8 (left) confirms that
processes with higher indexes (4,j) are indeed computationally more intensive
than the others. Additionally, the same processes are also idle for longer time
than the others. This happens because of an increased number of data dependen-
cies from processes with lower indexes (i, 7). Communication time is impacted
by memory conflicts. Memory conflicts occur when two different processes try to
access simultaneously FIFO buffers located in the same shared memory. Figure 8
(right) depicts the delays due to memory conflicts for each process.

Co‘mputa‘t\on exxxm ‘Memor‘y Conf‘lict exxxm

250 Idle Time tem

Computation Delays (10G cycles)
Communication Delays (10G cycles)

LEm

Pu Pa Py Py Py Pig Pu P Pag P Piu Par Pz Py Py Psg Par Pap Pag Pas

Fig. 8. Performance Results of Computational Processes in Cholesky(4)

4.3 MJIPEG Decoding

The MJPEG decoder application software reads a sequence of JPEG frames and
displays the decompressed video frames. The process network of the application
software is shown in Figure 9. It contains five processes SplitStream (SS), Split-
Frame (SF), 1qzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream (MS).
The DOL description of the application processes contains approximately 1600
lines of C code.

The system model in BIP contains 42 atomic components with 198 interactions,
and consists of approximately 7325 lines of BIP code. The implementation gen-
erated for MPARM is approximately 3174 lines of code.

For the experiments, we mapped the application on a single MPARM cluster.
Each computational process is deployed into an ARM processor and all the
FIFO buffers are allocated to the L2 shared memory. The performance results
per process obtained by simulation of the system model are depicted in Figure 10.
We remark that process IqzigzagIDC'T is the heaviest in terms in computation,
while process MergeStream stays idle most of the time. The low values of memory
conflicts highlights the restricted parallelism within the application.

At system level, we measured the total execution time needed for the decompres-
sion of a single frame. Using BIP system model simulation, this time is estimated
at 472.88 Mcycles. This result is very close to the cycle-accurate value obtained
by measuring the MPARM execution, which is 468.83 Mcycles. The relative er-

[¥
[SplitStream || SplitFrame |—{IqzigzagIDCT}— MergeFrame |—MergeStream |

Fig. 9. Process Network of the MJPEG Decoder Application

T T T T y 0.2 T T T y T
Computation EXXX3 Memory Conflict Exxx=
450 Idle Time sy | 018 |
o])
L s i

__ 400 s 7 016
@ e o
8 aded S
% 350 gggé 1 & 014
< s B3
o s fa)
3 300 - g‘_g&"j 1% o2}
@ B 2
> o =
g 250 8 o1fp
[a) c
& 200 £ o008l
2 °
=1 c
a 150 2 006
£ £
8 g

100 O 004

50 0.02 -

0 R 0
Ss SF IDCT MF MS Ss SF IDCT MF MS

Fig. 10. Performance Results of Computational Processes in MJPEG Decoder

ror of our estimation is therefore less than 0.87%. Regarding analysis time, BIP
system model simulation outperforms execution on (virtual) MPARM. The for-
mer completes in 946" and is approximately 5.2 times faster than the second,
which completes in 50748".

The above experiments show the capability of the BIP design flow for fine grain
performance analysis on manycore platforms. It also shows the speedup com-
pared to simulation based techniques, without adversely affecting the accuracy
of the measurements.

5 Discussions

The presented method allows generation of a correct-by-construction system
model for manycore platforms from an application software and a mapping. The
method is based on source-to-source correct-by-construction transformation of
BIP models. It is completely automated and supported by the BIP toolset. The
system model is obtained by first refining the application software model and
then composing it with the hardware architecture model. The composition is
defined by the mapping. The construction of the system model is incremental
and structure-preserving. This ensures scalability as the complexity of system
models increases polynomially with the size of the application software and of
the target hardware architecture. Mastering system model complexity is achieved
thanks to the expressiveness of the BIP modeling framework.

The method clearly separates software and hardware design issues. It is also pa-
rameterized by design choices related to resource management such as scheduling
policies, memory size and execution times. This allows estimation of the impact
of each parameter on system behavior. Using BIP as a unifying modeling formal-
ism for both hardware and software confers multiple advantages, in particular

rigorousness. The obtained system models are correct-by-construction. This is a
main difference from other ad hoc model construction techniques.

When the generated system model is adequately instrumented with execution
times, it can be used for performance analysis and design space exploration.
Experimental results show the feasibility of the approach for fine grain analysis
of architecture and mapping constraints on system behavior. The method is
tractable and allows design space exploration to determine optimal solutions.

References

10.

11.

12.

13.

14.

15.

http://www-verimag.imag.fr /bip-tools,93.html

Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17(3), 507-534 (1995)

Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with Timed Automata. Theo-
retical Computer Science 354, 272-300 (2006)

Henia et al., R.: System-level performance analysis - the SymTA /S approach. In:
IEEE Proceedings Computers and Digital Techniques. vol. 152, pp. 148-166 (2005)
Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of LICS’96. pp. 207—
218. IEEE Computer Society Press (1996)

Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Systems in
BIP. In: Proceedings of SEFM’06. pp. 3-12. IEEE Computer Society Press (2006)
Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. In: Proceedings of
FMOODS/FORTE’10. LNCS, vol. 6117, pp. 32-46. Springer (2010)

Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Software,
Special Edition — Software Components beyond Programming — from Routines to
Services 28(3), 41-48 (2011)

Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M.: MPARM: Explor-
ing the Multi-Processor SoC Design Space with SystemC. Journal of VLSI Signal
Processing Systems 41, 169-182 (2005)

Bensalem, S., Bozga, M., Nguyen., T., Sifakis, J.: Compositional Verification for
Component-based Systems and Application. In: Proceedings of ATVA’08. LNCS,
vol. 5311, pp. 64-79. Springer (2008)

Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-Finder: A Tool for Compo-
sitional Deadlock Detection and Verification. In: Proceedings of CAV’09. LNCS,
vol. 5643, pp. 614-619. Springer (2009)

Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. FMSD 15(1), 75—
92 (1999)

Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental
Component-based Construction and Verification using Invariants. In: Proceedings
of FMCAD’10. pp. 257-256. IEEE (2010)

Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A Framework for
Automated Distributed Implementation of Component-based Models. Distributed
Computing (2012), to appear

Bourgos, P., Basu, A., Bozga, M., Bensalem, S., a nd K. Huang, J.S.: Rigorous
system level modeling and analysis of mixed HW/SW systems. In: Proceedings of
MEMOCODE’11. pp. 11-20. IEEE/ACM (2011)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Chandy, K., J.Misra: Parallel program design: a foundation. Addison-Wesley Pub-
lishing Company (1988)

Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings
of LICS’89. pp. 353-362 (1989)

Eker, J., Janneck, J.W., Lee, E.A.; Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity: The Ptolemy approach. Proceedings
of the IEEE 91(1), 127-144 (2003)

Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level
modeling and simulation of embedded systems architectures. EURASIP Journal on
Embedded Systems 2007 (2007)

Feiler, P.H., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Lan-
guage (AADL) Standard: A basis for model-based architecture-driven embedded
systems engineering. In: Proceedings of RTAS Workshop on Model-driven Embed-
ded Systems. pp. 1-10 (2003)

Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843-871 (1994)

Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quan-
titative analysis of application-specific dataflow architectures. In: Proceedings of
ASAP’97. pp. 338-349. IEEE Computer Society (1997)

Kiinzli, S., Poletti, F., Benini, L., Thiele, L.: Combining Simulation and Formal
Methods for System-level Performance Analysis. In: Proceedings of DATE’06. pp.
236-241 (2006)

Kupferman, O., Vardi, M.Y.: Modular Model Checking. In: Revised Lectures of
COMPOS’97. LNCS, vol. 1536, pp. 381-401 (1998)

Leary, D.P., Stewart, G.: Data-flow algorithms for parallel matrix computations.
Communications of the ACM 28(8), 840-853 (1985)

Lieverse, P., Stefanov, T., van der Wolf, P., Deprettere, E.: System level design
with SPADE: an M-JPEG case study. ICCAD pp. 31-38 (2001)

McMillan, K.L.: A compositional rule for hardware design refinement. In: Proceed-
ings of CAV’97. LNCS, vol. 1254, pp. 24-35. Springer (1997)

Moussa, 1., Grellier, T., Nguyen, G.: Exploring SW Performance Using SoC
Transaction-Level Modeling. In: Proceedings of DATE’03. pp. 20120-20125 (2003)
Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zis-
sulescu, C., Deprettere, E.: Daedalus: toward composable multimedia mp-soc de-
sign. In: Proceedings of DAC’08. pp. 574-579. ACM (2008)

OMG: OMG Systems Modeling Language SysML (OMG SysML). Object Man-
agement Group (2008)

Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams pp. 123-144 (1985)

PRO3D: Programming for Future 3D Architecture with Many Cores, FP7 project
funded by the EU under grant agreement 248 776, http://pro3d.eu/

Salah, R.B., Bozga, M., Maler, O.: Compositional Timing Analysis. In: Proceedings
of EMSOFT’09. pp. 39-48 (2009)

Stark, E-W.: A proof technique for rely/guarantee properties. In: Proceedings of
FSTTCS’85. vol. 206, pp. 369-391. Springer (1985)

Thiele, L., Bacivarov, 1., Haid, W., Huang, K.a.: Mapping Applications to Tiled
Multiprocessor Embedded Systems. In: Proceedings of ACSD’07. pp. 29-40. IEEE
Computer Society (2007)

Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proceedings of ISCAS’02. vol. 4, pp. 101-104. IEEE (2002)

