
HAL Id: hal-00878702
https://hal.science/hal-00878702

Submitted on 30 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(Re)partitioning for stream-enabled computation
Erwan Le Merrer, Yizhong Liang, Gilles Trédan

To cite this version:
Erwan Le Merrer, Yizhong Liang, Gilles Trédan. (Re)partitioning for stream-enabled computation.
2013. �hal-00878702�

https://hal.science/hal-00878702
https://hal.archives-ouvertes.fr

(Re)partitioning for stream-enabled computation

Erwan Le Merrer, Yizhong Liang

Technicolor

Rennes, France

surname.name@technicolor.com

Gilles Trédan

LAAS/CNRS

Toulouse, France

gtredan@laas.fr

Abstract—Partitioning an input graph over a set of workers
is a complex operation. Objectives are twofold: split the work
evenly, so that every worker gets an equal share, and minimize
edge cut to achieve a good work locality (i.e. workers can work
independently). Partitioning a graph accessible from memory
is a notorious NP-complete problem. Motivated by the regain
of interest for the stream processing paradigm (where nodes
and edges arrive as a flow to the datacenter), we propose in
this paper a stream-enabled graph partitioning system that
constantly seeks an optimum between those two objectives.
We first expose the hardness of partitioning using classic and
static methods; we then exhibit the cut versus load balancing
tradeoff, from an application point of view.

With this tradeoff in mind, our approach translates the
online partitioning problem into a standard optimization prob-
lem. A greedy algorithm handles the stream of incoming
graph updates while optimizations are triggered on demand
to improve upon the greedy decisions. Using simulations, we
show that this approach is very efficient, turning a basic
optimization strategy such as hill climbing into an online
partitioning solution that compares favorably to literature’s
recent stream partitioning solutions.

Keywords-Graph-partitioning, Stream Processing, Load Bal-
ancing, Network Cuts.

I. INTRODUCTION

Contemporary big-data applications ingest considerable

amounts of data to produce meaningful and valuable infor-

mation. As datasets keep on growing to unprecedented sizes,

applications must rely on efficient and scalable computation

means. Graph-based applications as social networks [1],

search engines or recommender systems [2] have to deal

with giant and constantly evolving networks of user or

item interactions. As those terabytes of data cannot be

efficiently processed and served by a single machine in the

horizontal scalability model using commodity hardware, the

solution is to partition the interaction graph onto multiples

machines for parallel computation and request handling. As

computation is fast with this scheme, the dataset evolution

could be incorporated seamlessly by the application, so that

fresh results are always available.

The MapReduce framework allows to process massive

amount of information, in an offline manner [3]. Since

very recently, there is a resurgence of interest about stream

processing, with the proposal of open platforms such as

Storm [4]. In this framework, data is treated as a flow,

and each flow element is processed on the fly (and then

possibly discarded). While more restrictive that MapReduce,

this allows for online computation.

As the raison d’être of stream processing is to exhibit

a low latency in its operation, relying on offline parti-

tioning methods is not an option. As the graph structure

continuously changes due to node/edge creations, calling

a procedure that recomputes a partitioning from scratch

at each change is overkill (see e.g. traditional approaches

as [5]). In other words, incremental approaches to parti-

tioning are mandatory. In this light, datacenter applications

like Pregel [6] partition nodes onto machines based solely

on their IDs; this is apparented to dispatch those nodes at

random. A recent work proposes to load the graph stored

on a disk as a stream of nodes, and to use cheap heuristics

for node placement over one of the k processing machines

on the fly [7]. Although the fact that this approach handles

nodes as they are read, it assumes a full knowledge model,

where the whole graph is accessible at a given time as the

input.

In this paper, we propose a system that receives incoming

edges, and places their endpoint nodes greedily in partitions,

then performing online partitioning. Our system operates

over a continuous flow of events arriving at a datacenter, then

suiting the stream processing paradigm. Greedy placement

is complemented with periodic partitioning reconfigurations

at runtime, using solely little feedback from the application.

The contributions of this paper are:

• to exhibit (i) the instability of optimal partitions created

by static partitioning algorithms, if they are run each

time few new edges are added to the current graph, and

(ii) the existence of a graph-related tradeoff between a

well balanced graph (work is evenly divided among the

parallel instances) and a low edge cut (workers should

be able to process most of the request information

local to their partition). Intuitively, this tradeoff pops up

every time the system has to decide between favoring

edge-cut at the price of well balancedness, or vice versa.

• based on these observations, to consider the problem

of stream-enabled graph partitioning as a standard

mathematical optimization problem. In this problem,

the optimization parameters are the well balancedness

and the edge-cut, and the metric to optimize is the

application performance, measured for instance by the

average request processing time.

• to propose a stream-enabled graph partitioner built

upon these observations. The realistic simulations we

conducted show that a standard greedy optimization is

efficient compared to current state-of-the-art stream-

enabled partitioner [7], while executing in a more

restricted model. Thanks to the greedy nature of the

optimization, this performance is achieved for cheap.

The remaining of this paper is structured as follows:

Section II exhibits the danger of seeking optimal partition-

ings in the context of streamed graphs, before presenting

the model of execution considered. We then observe in

Section III that traditional graph partitioning metrics are

bound by a graph-dependent tradeoff that impacts applica-

tion performance. Based on these observations, Section IV

models the streamed-graph partitioning problem as an opti-

mization problem, and proposes a greedy online partitioning

mechanism, along with simulation results. A reconfigura-

tion technique to be used periodically at runtime is then

presented. Section V illustrates this partitioning scheme in

an application context: graph-based recommendation. We

finally present Related Work in Section VI before we

conclude.

II. MODEL: PROCESSING OVER STREAMED GRAPHS

A. Instability of Optimal Partitionings

This sections illustrates the difficulty of simply transpos-

ing traditional graph partitioning metrics in the context of

graph streaming. The first major problem comes from the

complexity of finding an optimal partitioning, which is NP-

complete [8]. Considering the update rate of a streamed

graph, such problem would have to be solved for every

increment, which is not realistic.

Second problem stems from the unstability of such opti-

mal partitioning. To illustrate this, consider the following ex-

ample. Assume that k servers operate on a graph composed

of a ring of 2k fully-connected clusters C1, . . . C2k, with

|Ci| =
n
2k . Assume for i ∈ [1, k], we have A links between

C2i−1 and C2i, and B links between C2i and C2i+1[2k], with

A,B < n
2k . Figure 1 illustrates such topology in the case

k = 3.

C1

C6 C5

C4

C3C2

A

AA
B

B B

Figure 1. A ring graph for k = 3. Depending on the order of new edge
arrivals, this topology triggers unstable decisions by partitioning methods.

Since any graph partition cutting through a cluster Ci

would cut at least n
2k links, balanced cuts are either along A,

either along B. Assume A = B−1: the optimal assignment

is to map (C2i∪C2i+1[2k]) to server i. Now assume that two

new edges arrive on the A cut, for instance between C1 and

C2. The new optimal assignment is to map (C2i∪C2i−1[2k])
to server i. To reach this new optimal assignment, n

2 nodes

need to be transferred during the reconfiguration. Observe

that the arrival of two new edges along a B cut (or the

removal of two edges along an A cut) can now generate the

same amount of reconfiguration.

Let us imagine a worst case scenario where originally

A = 1 and B = 2, and a stream of edges repeating the

aforementioned scheme (A,A,B,B,A,A, . . .) until A =
B = n

2k . The described reconfiguration then happens k n
4k

times. This implies n
2

n
4k = Ω(n2) node transfers. Although

this is a pathological worst-case scenario, bad situations

cannot be discarded in dealing with real world graphs either.

This illustrates the need for a specific approach to support

graph updates, then adapted to the streamed graph model

we now define.

B. Partitioning Model and Metrics for Streamed Graphs

We consider a streamed graph model, where edges arrive

continuously to a central machine called the partitioner,

P . P is in charge of partitioning the streamed graph G =
(V,E) over a fixed set of k machines or cores, according

to the computing hardware setup. Practically, it positions an

incoming edge endpoints (i.e. nodes) on one or two of the

machines that are hosting a partition of G, under the form

of adjacency lists. G∞ can be seen as the graph resulting

from the aggregation of all arrivals, at the end of times. P (i)
denotes partition number i, and |P (i)| the number of nodes

currently in P (i). Each partition has the capacity to host C

nodes.
k⋃

i=1

P (i) then contains all nodes and edges from G

seen so far.

We do not make any assumption on the order of arrival of

elements in set E. The system operates on edges, implying

that if one endpoint (i.e. one node) is unknown, its creation

is handled by the system. Γ(v) denotes the set of neighbors

of node v.

P maintains a table mapping all nodes seen so far (i.e.

edge endpoints) to their current partition assignment (an

integer [1, k]), for being able to take greedy decisions on

placement of incoming edges. State maintained at P is thus

O(|V |).
In this paper, we are interested in optimizing the average

request processing time of the application on top of which

our partitioning system is deployed. However, throughout

the paper, we refer to two traditional metrics of graph

partitioning:

• Load balancing is computed as the spread between the

less and the more loaded of the k partitions. It can be

written as
mini∈[k](|P (i)|)

maxi∈[k](|P (i)|)
,

where 0 denotes a very uneven load between the

partitions, and 1 denotes a perfect balancing.

• Cut is the fraction of edges that have endpoints located

in different partitions. This represents an important

quantity, as traversing such edge will require data to

be exchanged among the machines, therefore adding

latency to the request processing time. Formally, the

cut is defined as:

1−
|{(a, b) ∈ E|a ∈ P (i), b ∈ P (j), i 6= j}|

|E|
.

Again, 0 denotes a non-desirable situation where all

edges have endpoints in different partitions, and 1

denotes a partitioning cutting no edge.

III. PARTITIONING: CUTS, LOAD AND APPLICATIONS

Let us first consider a rough model of the environment

of an application running in a centralized setting. Upon

arrival of a request r, this application will consume two

quantities: memory and CPU time. Let m(r) and c(r) be

these quantities. In this abstract model, we consider that the

system knows instantly at the arrival of r what will be m(r)
and c(r).

The system is able to provide memory and processing

power at rate µ and χ per time unit, respectively. Therefore,

if r is the only request on the system, we consider that its

processing will take the time required to gather the required

resources tr = m(r)/µ+c(r)/χ. As a simple model for con-

gestion, assume that nr requests are processed on the system

at each time. Then tr becomes nr.(m(r)/µ + c(r)/χ): the

system evenly splits its processor and memory supply to all

the requests, and side effects (such as context switch) are

neglected.

Now let us consider the same application running in a

distributed setting. Consider that the input of this application

is a graph G: the memory requirements of a request r
can now be expressed as a subgraph of G: m(r) ⊂ G.

We consider the following distributed setting: k machines

are fully connected through synchronous equal links. Each

machine i has enough memory to hold a subgraph P (i) (G
such that {P (i)}1≤i≤k forms a partition of G.

A. Analyzing a Simple Locality Model

Let us assume the memory needs of a request consist in

the ℓ-hop neighborhood of a node: m(r) ≃ B(v, ℓ), where

v is the center of request r. We define ℓ as a measure of

requests’ locality. Let us illustrate this concept:

• the request “get v’s neighbors” has a locality of 0: the

neighbors of v are known locally by v.

• the request “get v’s eccentricity” has a locality of D,

the graph diameter, as the most eccentric nodes are D
hops apart.

Nn n

N N

C

C
1 1

Figure 2. A vicious graph for partitioning methods. Two contradictory
decisions can be made: favoring load balancing OR cut ratio.

• a damping random walk (jump with a probability α <
1) can be modeled by an “expected” locality (e.g. ℓ =
⌈−1/ log(α)⌉).

Let p be the machine holding node v, center of a request r
of locality ℓ. If B(v, ℓ) ⊂ P (p), all the required information

to process r is already available on p, the request processing

time only depends on the processing resources available on

p. However, if ∃q,B(v, ℓ) ∩ P (q) 6= ∅, then information

will have to be fetched from machine q, and the duration of

this fetch will add up to the request processing time.

More formally, let λ be the network latency induced by

such fetching operation. We consider that remote fetches

cannot be made parallely, mostly because in the streaming

context the ℓ hop neighbors (and therefore the partitions

holding them) are not known in advance besides direct

neighbors. Therefore we model the processing time of

request r when processed by p as:

tr =
c(r)|P (p)|

χp
︸ ︷︷ ︸

computing time

+λ|{j 6= p, s. t. P (j) ∩B(r, ℓ) 6= ∅}|
︸ ︷︷ ︸

information gathering time

.

Observe that the computing time contribution depends on

the size of P (p) since the bigger the partition is, the more

requests machine p will have to serve in parallel. The infor-

mation gathering time also depends on P (p) since the bigger

P (p) is, the higher the chances are that B(v, ℓ) ⊂ P (p),
therefore reducing the information gathering time to 0.

Thus, we have here a first visible tradeoff the partitioning

strategy has to solve in order to minimize request compute

time:

• Computations over small partitions are processed faster,

since the load on the machine holding the partition is

low, at the cost of higher information gathering costs.

• Computation over big partitions are slower, but require

on average less information fetching.

Now, considering that we have a fixed number of machines

k, this tradeoff translates in: shall we prefer to minimize the

cut or to optimize the load balancing ?

B. Graph-Related Tradeoff

With the aforementioned tradeoff in mind, consider the

graph depicted figure 2. This graph consists in 4 fully

connected clusters of sizes N,N, n and n. Clusters of equal

size are connected by C links, and two links connect one

cluster of size N with one of size n. Assume that N > n
and n > C > 1. Two key observations are:

• Any exactly balanced bisection (i.e. two partitions

G1, G2 such that |G1| = |G2| = (N + n)) of the

graph cuts at least 2C links. Let PWB such partition,

symbolized by Cs on Figure 2.

• The graph is 2-connex. The minimal edge-cut is 2 and

has a balancedness min(|G1|, |G2|)/max(|G1|, |G2|)
of n/N . Let PMC such partition, symbolized by 1s

on Figure 2.

Now let us compute the average request processing time

E(tr) centered on a node v. Since we have only two clusters,

assuming ℓ ∈ {0, 1}, computing the information fetch cost

is easy. Let B be the boundary of each cluster, and φ = c(r).
Assume well balancedness is preferred:

E(tr|PWB) =
φ(n+N)

χ
+ λℓPr(v ∈ B) (1)

=
φ(n+N)

χ
+ λℓ

2C

n+N
. (2)

Now assume cut minimization strategy is preferred:

E(tr|PMC) = Pr(v ∈ P1)
φ|P1|

χ
+ Pr(v ∈ P2)

φ|P2|

χ
+

(3)

λℓPr(v ∈ B) (4)

=
N

n+N

2Nφ

χ
+

n

n+N

2nφ

χ
+ λℓPr(v ∈ B)

(5)

=
2φ(n2 +N2)

χ(n+N)
+ λℓ

2

n+N
. (6)

If we compare those two quantities we have:

E(tr|PWB) ≤ E(tr|PMC) ⇔ (7)

φ(n+N)2 + 2ℓλχC ≤ 2φ(n2 +N2) + 2ℓλχ ⇔ (8)

2ℓλχ(C − 1) ≤ φ(n2 +N2 − 2nN) ⇔ (9)

2ℓλχ(C − 1) ≤ φ(n−N)2 ⇔ (10)

2ℓλχ

φ
≤

(n−N)2

C − 1
. (11)

Therefore, in such a setting, one can draw the following

conclusions:

• if the problem is only local (ℓ = 0), well balancedness

is always faster.

• under this last form, the inequality’s left hand side only

contains application and hardware dependent variables,

that are unlikely to change along the progress of the

stream. The inequality’s right hand side only contains

graph dependent variables: these are likely to evolve

along the streaming progress.

0.00

0.25

0.50

0.75

1.00

0.6 0.8 1.0
Low cut ratio

W
el

l b
al

an
ce

d
n

es
s

Graph dolphins football karate lesmis

Figure 3. Reachable configurations while partitioning 4 different graphs,
under the load balancing vs cut ratio tradeoff. Each point represents a
particular configuration: each graph as it own particular set of “good”
configurations (positions on the top-right envelope are the desirable ones).

This simple model illustrates a major problem of clas-

sical graph-partitioning approaches when dealing with the

incremental nature of streamed graph: the fastest partitioning

strategy depends both on the target application and on the

target graph. As at least the graph is unknown, meaning

that we cannot make strong assumptions on the evolution

of its characteristics or on the order on which will be

received particular updates, we therefore argue that an online

exploration of this well balancedness/min-cut tradeoff is

mandatory for top-application performance.

One might wonder, due to the artificial nature of the

constructions used to illustrate this tradeoff, whether such

situation do happen in practice. To answer this question,

we took a set of standard small real-world topologies1,

and randomly partitioned them into 4 pieces, and measured

the obtained well balancedness and cut size. We repeat

the process 1, 000 times for each topology, therefore “sam-

pling” the partitioning configuration possibilities. Figure 3

represents the obtained results. Each point represents a

random partitioning, and although chances are low that

optimal partitionings are represented on this figure, the point

cloud associated with each topology represents the likely

outcomes of partitionings. As we can see, they differ from

one topology to the other: each topology allows its own

tradeoff between well balancedness and low edge cut.

IV. (RE)PARTITIONING FROM STREAMED GRAPHS

We have seen in previous sections that the hardness of

partitioning precludes a new partitioning iteration on the

1Topologies are available at http://www-personal.umich.edu/∼mejn/
netdata/. The authors would like to thank M.E.J. Newman for providing
these topologies.

whole graph at each new edge arrival. We have established

that the partitioning achieving the lowest request processing

time has to find an optimum between a good load balancing,

and a low edge cut. Moreover, we have seen that such

optimum not only depends on the application, but also on

the characteristics of the streamed graph.

We now propose a greedy solution for partitioning

and reconfiguration, that handles increments as graphs are

streamed.

A. Global Framework Overview

....P1 P2 PkP3

graph updates

Optimizer

select "bad" nodes

migrate

Figure 4. Overall system overview

The framework we propose is the following one, as shown

on Figure 4. The stream of incoming graph updates (edge

additions) is dispatched to the partitions by P . Since the

optimal balance between load balanced partitions and low

cut ratio depends on the graph (which is constantly evolving)

and the application (whose sweet spot for performance is

not necessarily known), and since the continuous stream

of updates has to be handled as quickly a possible, the

partitioner decides which partition to assign new edges to in

a greedy fashion. A logical optimizer monitors the state of

the machines, and periodically optimizes this greedy layout

by choosing nodes in partitions, and by migrating them. The

choice of which nodes to move, and of where to migrate

them is driven by an optimization procedure following two

strategies: it tries to improve either the edge cut, either

the load balancing. The precise role of each component is

described afterwards.

B. Stream-greedy: A Simple Greedy Partitioner

We first introduce the two related work competitors for

efficient online partitioning.

1) Related Approaches: The common approach, due to its

simplicity, is to partition at random. Once a node arrives at

the datacenter, a partition is selected according to a modulo

operation over the node identifier (itself being pseudo-

random), see e.g. Pregel [6]. This often called hashing.

More advanced heuristics for partitioning a graph that is

read from disk as a stream of nodes, are presented in [7].

They all outperform hashing. The best performing heuristic

is called weighted deterministic greedy, and is node driven.

It consists of placing an incoming node v to the partition

Initialize k partitions with Capacity C;

For each incoming edge eij :

if ∃i and ∃j then
addLink(i, j)

else if ∃i and ∄j then
Place j in P (i) if not full. Otherwise, place j at

the least occupied partition. addLink(i, j)
else

//i.e. ∄i and ∄j
Place both i and j at the least occupied partition.

addLink(i, j)

Figure 5. stream-greedy heuristic for streamed graph partitioning.

j where it has the most edges, weighting this by a linear

penalty function based on the capacity of the partition:

j = argmax
i∈[k]

(|P (i) ∩ Γ(v)|(1−
|P (i)|

C
)). (12)

All methods stream nodes in random order or in a

breadth/depth first search fashion. The major assumption of

this technique is that each streamed node comes with its

complete (non-yet seen) neighbor-list. This make this study

not applicable to the stream processing model where edges

are received as events at a datacenter along the application

life (as opposed to nodes read from a disk containing the

whole graph).

We pick this deterministic greedy heuristic as the baseline

technique to compare to in the rest of this paper.

2) stream-greedy partitioner: As we are bound to a

restrictive model where edges are received arbitrarily fol-

lowing the application logic, and because a crucial point

for system scalability is to propose a fast and lightweight

partitioning method at P , we detail a simple and intuitive

greedy partitioner: when eij arrives at the datacenter, place-

ment decision is made following the pseudo-code provided

on Figure 5. addLink(i, j) is a function triggered by P ,

that informs machines hosting i and j (they could be one

single machine) to link those two nodes via and edge in their

respective adjacency lists.

Computationally, this heuristic simply require P to per-

form membership tests and cardinality operations over the

mapping table (for finding the least represented partition).

C. Improving Current Partitioning

To improve the current partitioning, the optimizer relies

on two heuristics. The first targets an improvement on

the load balancing criterion, while the second targets an

improvement on the cut criterion. The simulation results

presented Section IV-D show that both heuristics are efficient

most of the time: each one improves one metric without

significant degradation of the other.

Both heuristics select nodes of machines based on their

“badness”, which measures each node’s individual contribu-

tion to the size of the cut. Rationale behind using the same

selection being that even if load balancing is not concerned

by cut ratio, selecting bad nodes instead of random ones

does not degrade intentionally the second metric. For each

node v in a partition i, it is formally defined as:

badness(v) =
|Γ(v) ∩ P (i))|

|Γ(v)|
, (13)

(the lower the worse). However, while improvement towards

cut selects the same amount of nodes in each machine, the

load-balancing improvement heuristic only selects nodes on

the most loaded machines.

The selected nodes are then migrated to a different

machine. Again, heuristic improving cut proceeds while

ignoring the machine loads: it migrates each selected node

to the partition j containing the most of its neighbors:

j = argmax
i∈[k]

(|P (i) ∩ Γ(v)|). (14)

In contrast, the load balancing heuristic takes each machine

load into account when selecting a new partition for each

node: for this it relies on the baseline strategy (12). Note that

we can apply baseline, as when this heuristic is executed,

the system deals with already received edges and nodes for

reconfiguration.

Afterwards, both heuristics proceed the same way. They

send the node to the selected partition, and update P
regarding the node’s new location.

Given the state of the partitioning at a given time, im-

proving on one criterion means reconfiguring the system, by

moving a small part of system nodes from one partition to

another one. The migration rate must be small, in order not

to impact the application running on top of the partitioning.

The optimizer measures the application performance at run-

time, decides when to reconfigure, chooses a reconfiguration

strategy, and commits it if it considers this reconfiguration

was successful. In order not to force the developers to

over instrument the application, and for overall simplic-

ity/reusability, we built a system that self-tunes solely based

on one information given by the application at runtime. This

information takes the form of the average computation time.

From this value, the optimizer decides when to trigger a

reconfiguration, and measures after a reconfiguration if the

average runtime is lower or not than before a reconfiguration.

The optimization problem is then to reach a configuration,

i.e. a certain graph partitioning, that minimizes request exe-

cution time at the application. As finding a particular graph

partitioning is NP-complete (e.g. bisecting static graphs [8]),

we have to rely on local search optimization. Considering

our computing time feedback, and two improvement crite-

rions, a natural optimization framework is hill climbing.

The difference of our setup with canonical hill climbing is

Figure 6. Blind hill climbing optimization over current partitioning.
stream-greedy leaves the system in configuration A. Ideal configuration
is top-right (shaded area). From A, running a heuristic for improvement
would lead to configuration B or C. Random coin flip selects heuristic to
improve on cut ratio. Process is iterated (going from C to E, F and G), until
none of the two heuristics can improve upon G. Rollbacks are operated for
return to G, waiting for substantial graph growth before new optimization
trials.

that we cannot instantly evaluate both neighbors of current

configuration, i.e. the new configuration after a step on load

balancing and after a step on cut ratio. We thus make a

random choice towards one criterion, and act as a function

of resulting compute time. We call this variant blind hill

climbing.

This approach is summed-up by Figure 6; periodic op-

timizations are conduced under trial and error. When no

progress is possible in any of the two directions, the

configuration has reached a sweet spot for the application

performances. Note that as nodes and edges arrive continu-

ously at the datacenter, this spot moves after each addition.

Each optimization step then performs in best effort fashion

voluntarily considering current graph as static.

Finally, note that we presented the optimizer as an inde-

pendent centralized entity for the sake of clarity. In practice,

the optimizer task is distributed on each machine.

D. Simulation Results

1) Simulation Setup: For the sake of comparison with

simulation results conduced in [7], we use the same three

graphs depicted as representative from the major three

types of network structures. The first one, PL1000, is a

synthetic graph of 1, 000 nodes with clustered power-law

characteristics2. The social network, Marvel, consists in

6, 486 characters, having 427, 018 interactions in comics.

The last graph, 4elt, of 15, 606 nodes and 45, 878 edges, is

a FEM graph from the NASA.

For all three datasets, as the graph is streamed in a random

order from the first edge to the last one. The number of

partitions is set to 4 for PL1000, 8 for Marvel and 4 for 4elt,

as in [7] for matters of reproducibility. Our greedy heuristic,

as well as random and baseline results are exposed. Please

note that as baseline assumes that when a node arrives at the

2generated with NetworkX (http://networkx.github.io/)

 0

 0.2

 0.4

 0.6

 0.8

 1

M
et

ri
c

V
al

u
e

(h
ig

h
 i

s
b
es

t)

Time

(a) PL1000 graph, k = 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

Time

(b) marvel graph, k = 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

Time

(c) 4elt graph, k = 4.

Figure 7. stream-greedy partitioner (solid line), random (dashed line) and baseline (dotted line) competitors, on 3 representative graphs. Load balancing
(circles) and cut ratio (crosses) are plotted (the higher the better on the y-axis) for each approach, as the graph is streamed from its first edge to its last
one (x-axis).

-10

-5

 0

 5

 10

 15

-10 -5 0 5 10 15

%
 i

m
p

ro
v

.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(a) PL1000

-10

-5

 0

 5

 10

 15

-10 -5 0 5 10 15

%
 i

m
p

ro
v

.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(b) marvel

-10

-5

 0

 5

 10

 15

-10 -5 0 5 10 15

%
 i

m
p

ro
v

.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(c) 4elt

Figure 8. Improvement on cut ratio and load balancing on greedily partitioned graphs, produced by successive runs seeking to improve cut ratio. Each
point represents the percentage of improvement obtained considering current configuration and then executing heuristic to improve on cut. Ideally, points
should follow the positive y-axis. The rightmost point on (a) means that a single call to heuristic improved previous cut by 12% and also improving load
balancing 2.6% as a side effect.

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

%
 i

m
p
ro

v
.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(a) PL1000

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

%
 i

m
p
ro

v
.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(b) marvel

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

%
 i

m
p
ro

v
.
o

n
 l

o
ad

 b
al

an
ci

n
g

% improv. on cut ratio

(c) 4elt

Figure 9. Improvement on min cut and load balancing, produced by successive runs seeking to improve load balancing Ideally, points should follow the
positive x-axis (setting similar to Figure 8).

partitioner, all its (future) neighbor nodes are also known, we

implement such assumption in our simulation. This clearly

gives it an advantage over the two other approaches, but also

serves as an indicator of the gap between greedy methods

and the one with full knowledge.

2) stream-greedy performance: We now assess the per-

formances of random, baseline and stream-greedy heuris-

tics by simulation, in a streamed graph setup.

Figure 7 present results for well balancedness (lines with

rounds) and cut (lines with crosses) metrics on the y-axis,

the higher the better. The x-axis represents time, from t = 0
where first edge is dispatched, to tend where the whole graph

has been streamed (then having G∞ partitioned).

Regarding load balancing curves, results for all three

graphs and all three competitors are consistent and close

to perfect balancing at tend, and all three are comparable.

Now regarding cut, we first remark that baseline results are

consistent with results produced in [7] (where only cut ratio

is considered), as operating under the same assumptions.

Produced results for random partitioning are also consistent

with theory, as random placement is awaited to cut a fraction

of 3/4 of edges for k = 4 and 7/8 for k = 8. The first

learning is that baseline always beats random partitioning (as

seen in [7]); this is also the case for our greedy approach.

Surprisingly, despite the fact that baseline beats stream-

greedy on Marvel and slightly on 4elt graphs, stream-

greedy outperforms the deterministic greedy approach on

PL1000. This shows that even with an increased amount of

information, baseline does not perform better, as it could be

beaten by stream-greedy, even operating on less informa-

tion. We thus learn that operating under reduced assumptions

still make possible a very competitive first partitioning step,

using an intuitive partitioner such as stream-greedy.

We have presented and compared a simple one pass

greedy stream partitioner; as a consequence, edges placed by

that heuristic are never moved from one partition to another

one. Next section shows that we can periodically improve

on one criterion or the other at runtime.
3) Improving on Cut Ratio: Figure 8 presents improve-

ment percentages for the cut criterion. Ideally, running a

heuristic on one criterion (e.g. on cut ratio) should of course

improve it, but also avoid degrading the second one (e.g. not

degrade load balancing). Simulations show that, on the same

three graphs at tend, there is room for improvement. With

a typical value for top-K worst nodes of 10%, up to 12%
improvement is achieved at each procedure call, after what

next calls produce more slight changes. We also see that

except for few percent on the Marvel graph, improving on

cut ratio does not degrade current load balancing of graphs.
4) Improving on Load Balancing: Figure 9 present re-

sults. Improvement on load balancing at each call is positive

but less important that for improvement on the cut ratio

criterion. This is explained by the fact that at tend, as seen

on Figure 7, load balancing is already close to perfect. Those

calls does not degrade the other criterion either.

V. ILLUSTRATION: GRAPH-BASED BASED INSTANT

RECOMMENDER

We now present a direct application of this optimization

framework in a system leveraging streamed graphs, detail

implementation needs, and show performance indicators.

A. System Implementation of Blind Hill Climbing

Regardless of the application relying on the partitioning

process, few system primitives are required to implement

while True do
cbefore ← getComputeTime();

snapshot();

buffer();

if Random(cut,balancing) == cut then
OptimizeOnCut()

else
OptimizeOnBalancing()

cafter ← getComputeTime();

if cafter > cbefore + ǫ ∗ cbefore then
rollback();

else
commit();

flushBuffer();

Figure 10. Blind hill climbing optimization, a generic approach for
improving computation time in stream-enabled applications.

the optimization framework, here is their detail:

• snapshot(): atomically records node/edge reparti-

tion over machines

• getComputeTime(): top application returns current

average compute time

• commit(): remain in current configuration, and free

structure used for snapshoting

• rollback(): return to previous configuration (snap-

shoted earlier)

• buffer(): record all incoming events (edges, re-

quests) in a message queue. flushBuffer() con-

sumes those buffered events.

From those primitives, we propose the following heuristic,

that pursue a hill climbing optimization based on application

feedback (see Figure 10).

As configuration switch has practical costs, system pa-

rameter ǫ denotes the degradation threshold over which

it is profitable to rollback to previous configuration. This

threshold also masks the slight deviation in average compute

time due to particular request patterns, or due to the arrival

of nodes and edges in between two optimizations.

B. A System for Instant Recommendation

A typical example of a latency critical service is rec-

ommendation. The reactivity capabilities of the application

to process fresh data is key for successful services, as

accurate and instant recommendation based on previous

clicks for instance [9]. We take the scenario of movie

recommendation for the rest of this paper. In this framework,

nodes are users/movies and an edge is present if one user

has rated a particular movie. We are interested in treating

ratings as a stream, as their direct incorporation into the

system for instant recommendation can for instance solve

the cold start problem at user registration (i.e. before waiting

for the platform to compute offline for later personalized

recommendations).

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000

N
u
m

b
er

 o
f

d
ep

en
d
en

ci
es

Time

w. blind hill climbing

stream-greedy only

baseline

(a) Actual improvement of blind hill climbing optimization over a
real dataset (MovieLens, k = 8).

Progress directions on hill climbing

Time

T
o
w

ar
d
s

cu
t

B
alan

cin
g

Failed attempts

(b) Success of blind hill climbing optimization: each point on the
two outer lines are successes, while inner lines represent failed
optimization steps.

Figure 11. Simulation of the blind hill climbing optimization framework, over the streamed MovieLens dataset.

Bahmani et al. [2] show that a variant of Pagerank, based

on random walks, provides fast and personalized recom-

mendations. On a user/item graph, it essentially consists

in launching multiple (damping) random walks from the

node (user) that needs a recommendation; most visited

nodes (items) are extracted through higher Pagerank values

and ranked. On such a graph, top-nodes (items) are good

recommendations for that user.

As random walks are locality critical in the context of

parallel computing, we expect partitioning to be crucial for

the recommender performances. With a good partitioning

(high density of links within machines and low edge cut),

launched damping random walks stay on the same machine3.

If not, then many dependencies arise from inter-machines

communications.

C. Simulation Over the MovieLens Dataset

We ran personalized Pagerank for recommendation over

the MovieLens dataset [10], a user/movie graph consisting

of 100, 000 ratings from 1, 000 users on 1, 700 movies.

The blind hill climbing optimization, described on Fig-

ure 10, is implemented by a logical optimizer in the follow-

ing way. P controls the frequency of optimizations. When

P decides to perform an optimization step, it flips a coin

to choose on which criterion to try to improve. It then

stops consuming events by calling the buffer() primitive

(architecturally this correspond in practice to let the message

queue store events, e.g. [11], and let it grow for an instant).

Order to call improvement heuristic is broadcasted to the

k machines. Bad nodes are computed (according to metric

3We prototyped a Storm-based system [4] implementing this recom-
mendation engine, and answering to PUT/GET queries on the MovieLens
graph. While adding and edge is made instantly, average computing time for
single sequential GET recommendations is around 150ms (using as much as
50, 000 random walks per recommendation), over a Xeon E5-2603 CPU
(DELL T5600). This motivates the will to keep computation local to a
machine for both speed and capability to handle many concurrent requests.

(13)) on each machine, in order not to add computational

burden onto the partitioner. On this simulation 10% of

the worst nodes of each partition are migrated in each

optimization cycle. Once optimization has completed on

all machines, a generic batch of requests is artificially

executed on the system. If getComputeTime() returns a

degraded average completion time, the partitioner broadcasts

a rollback order (a commit one otherwise). The rollback to

previous partitioning configuration is executed in a lockstep

at each machine, by a simple memory overwrite from pre-

vious snapshot() result. P then return in service mode

by called flushBuffer(). This simple implementation

constitutes a coarse grain handling of system states; we leave

a finer grain handling of consistency for future work.

The primary metric to assess performance of the ap-

plication related to a given partitioning is the number of

dependencies. A dependency of the application occurs when

a random walk (launched at any machine) has to get onto

another machine to pursue process. It is a direct indicator of

the latency at the application level, as network costs clearly

overcome local CPU computation.

Each simulated request triggers 1, 000 random walks (with

a min-hop of 3 away from the querying user, and a damping

factor of α = 0.9). To simulate the increase of application-

usage as the graph grows, we ran a number of user requests

of 1% times the current graph size, after each increase of

the number of edges by 5%. With an optimization step being

triggered when graph size increases by 5%, ǫ = 1%, and k =
4, dependencies are plotted on Figure 11(a), as they evolve

while the graph is streamed. The hill climbing optimization

clearly maintains dependencies at a lower level that stream-

greedy (close to 30% less). The static partitioning resulting

from baseline performs again slightly better than stream-

greedy, but as its operation is not periodically optimized, it

cannot compete with our blind hill climbing approach.

We now plot the on Figure 11(b) the success/failure of

calls to improvement heuristics. For 100 optimizations on a

random criterion, 93 are successful on cut ratio criterion, and

6 on load balancing. There is only 1 rollback on cut, but 47
on load balancing. The more important failure rate over load

balancing is due to the already very goad balance achieved

without optimization, as seen on Figure 7 for other graphs

with stream-greedy. A solution to decrease this failure rate

is to bias the random choice towards the more successful of

the two criterion (i.e. learn and call the most successful one

with a higher probability).

In conclusion, there is a clear advantage in periodically

reconfiguring current partitioning by calling lightweight op-

timization procedures, for correcting past greedy decisions in

the context of streamed graphs. The framework we propose

only takes as input the application feedback and allows self-

tuning in an efficient way.

VI. RELATED WORK

Static partitioning approaches take a graph as input and

propose a bisection as an output (know as the minimum

bisection problem). Reaching a configuration with minimal

number of inter-machine edges while balancing the output

is well known to be NP-complete [8]. This as been extended

to k-partitioning, where the input graph is partitioned into

k pieces [5]. Methods for partitioning largely depends on

the application using the produced partitions, as computing

while partitions fit network architecture [12], minimizing

interactions between storage servers [1], or computing over

embarrassingly parallel datasets [6] for instance.

Approaches like GraphChi [13] or TurboGraph [14] aim at

computing metrics over large graphs on a centralized setting;

they differ from stream-based approaches as they compute

offline over the dataset and do not consider graph updates

for low latency operation and online request handling.

Staton et al. [7] are the first to consider a stream of nodes

to be placed onto partitions on the fly. Many heuristics

are proposed and tested, from intuitive ones (considering

balance) to more advanced ones (considering clustering

coefficient); we re-implement the best performing one in

this paper to compare it to our proposal. All approaches are

one pass; a placed vertex is never moved afterward. Their

paper assumes a full knowledge model, where the graph to

be streamed has to be present on one machine prior to the

execution of the proposed heuristics.

VII. CONCLUSION

This paper has exposed the hardness of partitioning a

streamed graph not already present on a computing device.

A greedy partitioner taking as input stream of edges has

been proposed, that can compete with a state of the art

heuristic for partitioning under full knowledge. While its

operation is satisfying, we show that it is of interest to

periodically call an optimization procedure to improve upon

current partitioning, on the edge cut ratio or on the load

balancing criterions. This building blocks form a general

optimization framework allowing for application self-tuning,

based solely on feedback on compute time. An interesting

question for future work is to formally ask if there exists a

greedy algorithm having provable bounds for its efficiency to

partition a streamed graph, in the classic stream processing

model.

REFERENCES

[1] Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris,
N., Chhabra, P., Rodriguez, P.: The little engine(s) that could:
scaling online social networks. IEEE/ACM Trans. Netw. 20
(2012) 1162–1175

[2] Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and
personalized pagerank. In: VLDB. (2010)

[3] Dean, J., Ghemawat, S.: Mapreduce: simplified data process-
ing on large clusters. Commun. ACM 51 (2008) 107–113

[4] Marz, N.: Storm Project. http://storm-project.net/ (2012)

[5] Andreev, K., Räcke, H.: Balanced graph partitioning. In:
SPAA. (2004)

[6] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn,
I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale
graph processing. In: SIGMOD. (2010)

[7] Stanton, I., Kliot, G.: Streaming graph partitioning for large
distributed graphs. In: KDD. (2012)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA (1990)

[9] Linden, G., Smith, B., York, J.: Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet
Computing 7 (2003) 76–80

[10] Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An
algorithmic framework for performing collaborative filtering.
In: SIGIR. (1999)

[11] Cook, B.: Kestrel distributed message queue. https://github.
com/robey/kestrel/ (2013)

[12] Ajwani, D., Ali, S., Morrison, J.: Graph partitioning for
reconfigurable topology. In: IPDPS. (2012)

[13] Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale
graph computation on just a pc. In: OSDI. (2012)

[14] Han, W.S., Lee, S., Park, K., Lee, J.H., Kim, M.S., Kim, J.,
Yu, H.: Turbograph: a fast parallel graph engine handling
billion-scale graphs in a single pc. In: KDD. (2013)

