
HAL Id: hal-00878678
https://hal.science/hal-00878678v1

Preprint submitted on 30 Oct 2013 (v1), last revised 16 Jul 2014 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Existence and stability of charged drops
Michael Goldman, Matteo Novaga, Berardo Ruffini

To cite this version:
Michael Goldman, Matteo Novaga, Berardo Ruffini. Existence and stability of charged drops. 2013.
�hal-00878678v1�

https://hal.science/hal-00878678v1
https://hal.archives-ouvertes.fr


EXISTENCE AND STABILITY OF CHARGED DROPS

MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

Abstract. We consider a variational problem related to the shape of charged liquid drops
at equilibrium. We show that this problem never admits global minimizers with respect to
L

1 perturbations preserving the volume. This leads us to study it in more regular classes of
competitors, for which we show existence of minimizers. We then prove that the ball is the
unique solution for sufficiently small charges.

1. Introduction

In this paper we investigate a variational model describing the shape of a charged liquid
drop at equilibrium. It is known since the pioneering paper of Lord Rayleigh [26], that such
a drop maintains a spherical shape as long as the excess charge Q is not too large. When the
charge overcomes a critical threshold Qc, which depends on the volume of the drop and on
the characteristic constants of the liquid (surface tension and dielectric constant), there is a
symmetry breaking. Typically, the drops tends to deform into a very eccentric prolate spheroid
and ejects a very thin jet from its poles (see [2, 10]). These jets carry about 1 % of the mass but
up to 30 % of the charge. The unstable regime is still only poorly understood both experimentally
and mathematically (see [25, 11] and the references therein).

In order to introduce the model, we denote by Iα the Riesz potential energy

Iα(E) := inf

{∫

Rd×Rd

dµ(x)dµ(y)

|x− y|α : µ(E) = 1

}
,

where α ∈ (0, d − 1) and E is a compact subset of Rd. We refer to the monograph [20] for
a detailed analysis of this family of functionals and we recall that the Coulomb interaction
corresponds to α = d− 2. A charged liquid drop in equilibrium is then a local minimizer among
sets of prescribed volume of the energy

γ P (E) + ε0Q
2Id−2(E),

where P (E) denotes the perimeter of E (which is equal to Hd−1(∂E) when E is an open set).
The constants γ and ε0 represent respectively the surface tension and the dielectric constant of
the liquid, and Q measures the excess charge of the drop. Up to renormalization constants, we
are thus led to consider the (more general) functional

Fα,Q(E) := P (E) + Q2Iα(E)

where Q > 0 and α ∈ (0, d). Quite surprisingly, when α ∈ (0, d − 1) it turns out that, for every
given charge and volume, the functional Fα,Q has no minimizer among subsets of Rd of this
given volume. Indeed, it is more convenient to dissipate the excess charge into little drops far
away from each other (see Theorem 3.2). This is somewhat reminiscent of the creation of the
liquid jets, experimentally observed in [2, 10].
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As a by-product of our analysis we also get that Fα,Q does not even have local minimizers in
the L1 topology. This comes from the fact that the perimeter is defined up to sets of Lebesgue
measure zero while the Riesz potential energy is defined up to sets of zero capacity. This
phenomenon is further illustrated when considering the problem among sets which are contained
in a fixed bounded domain Ω. In this case we prove that the isoperimetric problem and the
charge minimizing problem completely decouple (see Theorem 3.3). This negative result strongly
supports the idea that global (or even local) L1 minimizers are not the physically relevant
objects to consider. One should instead look for stable configurations which are typically local
minimizers for a stronger topology. It is then reasonable to look for minimizers of Fα,Q in some
smaller class of sets with some extra regularity conditions. In particular, in Theorem 4.2 we
prove that, for all δ > 0 there exists Qδ > 0 such that, if Q < Qδ, one can find a minimizer of
Fα,Q in the class of closed sets satisfying the δ-ball condition (see Definition 2.18). If we further
assume that the sets are connected, then a minimizer exists for all Q > 0 (see Theorem 4.3).
Then, we show that when α = d − 2 and possibly reducing the threshold Qδ, the ball is the
unique minimizer in the class of sets satisfying the δ-ball condition (see Corollary 5.6). This
shows that for small charges, the ball is stable under small C1,1 perturbations. This extends a
previous result of M.A. Fontelos and A. Friedman [11], which asserts the stability with respect
to C2,α perturbations. These authors also gave a detailed analysis of the linear stability. We
remark that our proof of the stability of the ball is quite different from the one in [11], and is
inspired by the proofs in [19, 7]. In particular, it makes use of the quantitative isoperimetric
inequality with optimal exponent, which has been recently established in [13] (see also [1]).

It is interesting to compare our results with the analysis in [18, 19] (see also [7, 22, 6]) of
the non-local isoperimetric problem, known as Ohta-Kawasaki model,

min
|E|=m

P (E) +

∫

E×E

dx dy

|x− y|α ,

which is motivated by the theory of diblock copolymers and the stability of atomic nuclei. The
authors show that there exist two (possibly equal) critical volumes 0 < m1(α) ≤ m2(α) such that
minimizers exist if m ≤ m1, while there are no minimizers if m > m2. Moreover, the minimizers
are balls when α < d− 1 and the volume is sufficiently small. A crucial difference between our
model and the Ohta-Kawasaki model is that in the latter, the non-local term is Lipschitz with
respect to the measure of the symmetric difference between sets (see for instance [7, Prop. 2.1]).
Hence, on small scales, the perimeter dominates the non-local part of the energy. This implies in
particular that minimizers enjoy the same regularity properties as minimal surfaces. In our case,
it is quite the contrary since on small scales, the functional Iα dominates the perimeter. This
prevents a priori the hope to get any regularity result for stable configurations. Let us notice
that the same type of existence/non-existence issues in variational models where the perimeter
competes against a non-local energy has been recently addressed in other models. For instance,
in [5] the authors study a model related to epitaxial growth where the non-local part forces
compactness whereas the perimeter part favor spreading.

The paper is organized as follows. In Section 2, we recall some properties of the Riesz
potentials Iα. In Section 3, we prove the non-existence of minimizers for the functional Fα,Q.
In Section 4, we study this existence issue in some smaller class, before proving in Section 5 the
stability of the ball. Finally, in Section 6, we extend our results to the logarithmic potential
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energy

Ilog(E) := inf

{∫

E×E
log

(
1

|x− y|

)
dµ(x)dµ(y) : µ(E) = 1

}
.

2. The Riesz potential energy

In this section we recall some results regarding the Riesz potential energy (see Definition
2.1 below). Most of the material presented here comes from [20].

In the following, given an open set Ω ⊂ Rd, we denote by M(Ω) the set of all Borel measures
with support in Ω. For x ∈ Rd and r > 0 we denote by Br(x) the open ball of radius r centered
in x and simply by B the unit ball and by ωd = |B| its Lebesgue measure. For k ∈ [0, d], we will
denote by Hk the k-dimensional Hausdorff measure.

Definition 2.1. Let d ≥ 2 and α > 0. Given µ, ν ∈ M(Rd), we define the interaction energy
(or potential energy) between µ and ν by

Iα(µ, ν) :=
∫

Rd×Rd

dµ(x) dν(y)

|x− y|α ∈ [0,+∞].

When µ = ν, we simply write Iα(µ) := Iα(µ, µ). When the measures are absolutely continuous
with respect to the Lebesgue measure, that is µ = fHd E and ν = gHd E for some set E
and functions f and g, we denote Iα(µ, ν) = IE

α (f, g) (and when f = g we denote it by IE
α (f)).

Similarly, when µ = fHd−1 ∂E and ν = gHd−1 ∂E we write Iα(µ, ν) = I∂E
α (f, g) (and when

f = g we denote it by I∂E
α (f)).

The following proposition can be found in [20, (1.4.5)].

Proposition 2.2. The functional Iα is lower semicontinous for the weak* convergence of mea-
sures.

Definition 2.3. Let d ≥ 2 and α > 0 then for every Borel set A we define the Riesz potential
energy of A by

Iα(A) := inf
{
Iα(µ) : µ ∈ M(Rd), µ(A) = 1

}
. (2.1)

Remark 2.4. Notice that, if we change µ in Qµ for a given charge Q > 0, then for any Borel
set A ⊂ Rd, it holds

Q2Iα(A) := inf
{
Iα(µ) : µ ∈ M(Rd), µ(A) = Q

}
.

Notice also that, for all λ > 0, there holds

Iα(λA) = λ−αIα(A). (2.2)

Remark 2.5. An important notion related to Iα(A) is the so-called α-capacity [21, 20, 23]

Cα(A) :=
1

Iα(A)
.

For α = d− 2 and K compact, we have the following representation of the capacity [21]:

Cd−2(K) = inf

{∫

Rd

|∇f |2 : f ∈ C1
c (R

d), f ≥ 0, f ≥ 1 on K

}
.
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We stress however, for the sake of clearness, that this is not the only definition of capacity
one may find in the literature, see for instance the discussion in [21, Section 11.15]. The proof
of the following result is given in [20, pages 131 and 132].

Lemma 2.6. If A is a compact set, the infimum in (2.1) is achieved.

Remark 2.7. When the set A is unbounded, there does not always exist an optimal measure
µ, i.e. in (2.1) is not achieved. Indeed, it is possible to construct a set E of finite volume with
Iα(E) = 0. To this aim, consider α ∈ (0, d − 1), γ ∈ ( 1

d−1 ,+∞) and the set E = {(x, x′) ∈
R× Rd−1 : |x′| ≤ 1 and |x′| ≤ 1

|x|γ }. The set E has finite volume and taking N balls of radius

r = N−β inside E, at mutual distance ℓ = N
β
γ
−1, with charge 1/N distributed uniformly on

each ball, we have

Iα(E) ≤ C
(
Nαβ−1 +N

(1−β
γ
)α
)

for some C > 0, so that Iα(E) = 0 if 1
d−1 < γ < β < 1

α . Similarly, if d > 2 and α < d−2, taking

γ > 1
d−2 one can even construct a set with finite perimeter for which the same property holds.

Definition 2.8. Given a non-negative Radon measure µ on Rd and α ∈ (0, d), we define the
potential function

vµα(x) :=

∫

Rd

dµ(y)

|x− y|α = µ ∗ kα(x)

where kα(x) = |x|−α. We will sometime drop the dependence of µ and α in the definition of vµα
and we will refer to it as potential.

Definition 2.9. We say that two functions u and v are equal α-quasi everywhere (briefly u = v
α-q.e.) if they coincide up to a set of α-capacity 0.

The Euler-Lagrange equation of Iα(A) reads as follows:
Lemma 2.10. Let A be a compact set and let µ be a minimizer for Iα(A) then vµ = Iα(A)
α-q.e. on spt(µ), and vµ ≥ Iα(A) α-q.e. on A. Moreover, the following equation holds in the
distributional sense

(−∆)
d−α
2 vµ = c(α, d)µ , (2.3)

where (−∆)s denotes the fracional Laplacian (see [9]). In particular,

(−∆)
d−α
2 vµ = 0 on R

d \A .
Proof. The first assertions on vµ follow from [20, Theorem 2.6 and page 137] (see also [14] where
these conditions were first derived).

Equation (2.3) can be directly verified by means of the Fourier Transform, namely

̂
(−∆)

d−α
2 vµ(ξ) = |ξ|d−αµ̂ ∗ kα(ξ) = c(α, d) µ̂(ξ) ,

where we used the fact [20, Equation (1.1.1)]

k̂α(ξ) = c(α, d) kd−α(ξ) with c(α, d) := πα−
d
2
Γ
(
d−α
2

)

Γ
(
α
2

) .

�
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We recall another important result which will be exploited in Section 4. We refer to [20,
Theorem 1.15] (see also [21, Corollary 5.10]) for its proof.

Theorem 2.11. For any signed measure µ and for any α ∈ (0, d), there holds

Iα(µ) =
∫

Rd

(
vµα/2(x)

)2
dx

and therefore,

Iα(µ) ≥ 0.

Moreover equality holds if and only if µ = 0.

Remark 2.12. A consequence of Theorem 2.11, is that the functional Iα(·, ·) is a positive,
bilinear operator on the product space of Radon measures on Rd, M(Rd)×M(Rd). In particular
it satisfies the Cauchy-Schwarz inequality

Iα(µ, ν) ≤ Iα(µ)1/2Iα(ν)1/2. (2.4)

The following uniqueness result can be found in [20, page 133].

Lemma 2.13. For every compact set A the measure minimizing Iα(A) is unique.

Lemma 2.14. Let α ∈ (0, d − 1). For every open bounded set E, the minimizer µ of Iα(E)
satisfies:

i) If α ≤ d− 2 then spt(µ) ⊂ ∂E. In particular Iα(E) = Iα(∂E).
ii) If α > d− 2 then spt(µ) = E.

Moreover, when α ≥ d− 2, vµα = Iα(E) on E.

Proof. The case α ≤ d− 2 can be found in [20, page 162]. If α > d− 2, by [20, Theorem 2.6 and
page 137], we know that vµα = Iα(E) α-q.e. on E and vµα ≤ Iα(E) on Rd. Moreover, outside of
spt(µ), vµα is smooth and ∆vµα > 0. Assume that there exists x ∈ E \ spt(µ). Then there exists
an open ball Br(x) ⊂ E \ spt(µ). But this is impossible since this would imply vµα = Iα(E) in
Br(x) and hence ∆vµα = 0 in Br(x) contradicting ∆vµα > 0. The last claim of the lemma follows
by the fact that vµα is, in this case, a regular function on E which is α-q.e. equal to Iα(E). �

We now prove a density result which is an adaptation of [20, Theorem 1.11 and Lemma 1.2].

Proposition 2.15. Let E be a smooth connected closed set of Rd, then for every α ∈ (0, d),

Iα(E) = inf

{
IE
α (f) : µ = fdx, f ∈ L∞(E),

∫

E
f dx = 1

}
.

Proof. Let µ be such that µ(E) = 1, spt(µ) ⊂ E and Iα(µ) < +∞ then for ε > 0 consider the
measure µε dx defined as

µε(x) =
1

|Bε(x) ∩ E|

∫

Bε(x)
dµ(y).

Since ‖µε‖L∞(E) ≤ (minx∈E |Bε(x) ∩ E|)−1 ≤ (Cεd)−1, we only have to prove that IE
α (µε) →

Iα(µ). By Theorem 2.11 we have

IE
α (µε) =

∫

Rd

(
vµε

α/2(x)
)2

dx.
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Let us show that for all x ∈ Rd,

vµε

α/2(x) ≤ Cvµα/2(x) and lim
ε→0

vµε

α/2(x) = vµα/2(x)

from which we can conclude by means of the Dominated Convergence Theorem. Denoting by
χA the characteristic function of the set A, we have, for any x ∈ Rd,

vµε

α/2(x) =

∫

E

∫

E

1

|Bε(y) ∩E|χBε(y)
dµ(z)

|x− y|α/2 dy

=

∫

E

(∫

Bε(z)∩E

1

|Bε(y) ∩ E|
|x− z|α/2
|x− y|α/2 dy

)
dµ(z)

|x− z|α/2

≤
∫

E

(
C

εd

∫

Bε(z)

|x− z|α/2
|x− y|α/2 dy

)
dµ(z)

|x− z|α/2 .

Moreover it is possible to prove that the function (x, z, ε) 7→ ε−d
∫
Bε(z)

|x−z|α2
|x−y|α2

dy is uniformly

bounded in (x, z, ε) (see [20, Theorem 1.11]) so that vµε

α/2(x) ≤ Cvµα/2(x) for a suitable constant

C > 0. Consider now a point x ∈ Rd such that vµα/2(x) < +∞. Then for every δ > 0 there is

a ball Bη(x) such that vµ
′

α/2 < δ where µ′ = µ Bη(x). By the previous computations, we know

that v
(µ′)ε
α/2 (x) ≤ Cδ. Moreover limε→0 v

(µ−µ′)ε
α/2 (x) = vµ−µ′

α/2 (x) (see again [20, Theorem 1.11]) and

v
(µ−µ′)ε
α/2 = vµε

α/2 − v
µ′

ε

α/2. Thus we have

vµα/2(x) = vµ
′

α/2(x) + vµ−µ′

α/2 (x) ≤ δ + lim
ε→0

v
(µ−µ′)ε
α/2 (x)

≤ (1 + C)δ + lim
ε→0

vµε

α/2(x) ≤ (1 + C)δ + lim
ε→0

vµε

α/2(x)

≤ (1 + C)δ + lim
ε→0

v
µ′

ε

α/2(x) + lim
ε→0

v
(µ−µ′)ε
α/2 (x)

≤ 2(1 +C)δ + vµα/2(x)

so that letting δ → 0 we get that limε→0 v
µε

α/2(x) = vµα/2(x) as claimed. �

The following result can be proven analogously.

Proposition 2.16. Let E be a smooth connected closed set of Rd then for every α ∈ (0, d),

Iα(∂E) = inf

{
I∂E
α (f) : µ = fdHd−1, f ∈ L∞(∂E),

∫

∂E
f dHd−1 = 1

}
.

For the unit ball, since the problem is invariant by rotations, it is not hard to compute the
exact minimizer of Iα(B) or Iα(∂B), see [20, Chapter II.13].

Lemma 2.17. The uniform measure on the sphere ∂B

dUB =
1

P (B)
dHd−1 ∂B
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is the unique optimizer for Iα(∂B). For d > α > d− 2, the measure

dŨB =
Cα

(1− |x|2)α
2

dHd B

is the unique optimizer for Iα(B) (where Cα is a suitable renormalization constant).

Definition 2.18. Given δ > 0, we say that E satisfies the internal δ-ball condition if for any
x ∈ ∂E there is a ball of radius δ contained in E and tangent to ∂E in x. Analogously, E
satisfies the external δ-ball condition if for any x ∈ ∂E, there is a ball of radius δ contained in
Ec. Finally, if E satisfies both the internal and the external δ-ball condition we shall say that it
satisfies the δ-ball condition.

We remark that the sets which satisfies the δ-ball condition have C1,1 boundary with prin-
cipal curvatures bounded from above by 1/δ, see [8]. We denote by Kδ the class of all the closed
sets which satisfy the δ-ball condition and by Kco

δ the subset of Kδ composed of connected sets.

Remark 2.19. An equivalent formulation of Definition 2.18 is requiring that dE ∈ C1,1({|dE | <
δ}), where

dE(x) =

{
dist(x, ∂E) if x 6∈ E
−dist(x, ∂E) if x ∈ E

is the signed distance function from ∂E.

Lemma 2.20. Let δ > 0, then every set E ∈ Kco
δ with |E| = m satisfies

diam(E) ≤
√
d 2d+2 m

ωd
δ1−d.

Proof. Consider the tiling of Rd given by [0, 2δ)d + 2δZd and for k ∈ Zd let Ck = [0, 2δ)d + 2δk.
For every k ∈ Zd such that Ck ∩ E 6= ∅, let Bδ(xk) be a ball of radius δ such that Bδ(xk) ⊂ E
and Bδ(xk) ∩ Ck 6= ∅. the existence of such a ball is guaranteed by the δ-ball condition. Any
such ball can intersect at most 2d cubes Cj so that

♯{k ∈ Z
d : E ∩ Ck 6= ∅} =

1

|Bδ|
∑

k:Ck∩E 6=∅
|Bδ(xk)| ≤

2d

|Bδ|
|E|,

where ♯A is the cardinality of the set A. The fact that E is connected implies that, up to

translation, E ⊂ [0, 4δ 2d

|Bδ|m]d. Thus we can conclude that

diam(E) ≤ diam

([
0, 4δ

2d

|Bδ|
m

]d)
=

√
d 2d+2 m

ωd
δ1−d.

�

Remark 2.21. In some sense the δ-ball condition is the analog of the famous density estimates
for problem in which the perimeter term is dominant see [16]. Since in the problems we are going
to consider, both the perimeter and the Riesz potential energy are of the same order, there is a
priori no hope to get such density estimates from the minimality. It is a classical feature that
for connected sets, these density estimates provide a bound on the diameter [17].



8 MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

Proposition 2.22. Let d ≥ 3, α = d − 2, δ > 0 and E ⊂ Rd be a compact set which satisfies
the δ-ball condition. Then the optimal measure µ for Iα(E) = Iα(∂E) can be written as µ =
fHd−1 ∂E with ‖f‖

L∞(∂E)
≤ Iα(E)(d − 2)δ−1.

Proof. By Lemma 2.14 we know that the optimizer µ is concentrated on ∂E. Denote by v = vµd−2

the potential related to µ on E. By Lemma 2.14, we know that v = Iα(E) on E, and that
−∆v = µ. By classical elliptic regularity (see for instance [15, Cor. 8.36]), v is regular in Rd\E,
and C1,β up to the boundary of E. Consider now a point x ∈ ∂E and let y ∈ E such that the
ball Bδ(y) is contained in E and is tangent to ∂E in x. The existence of such a y is guaranteed
by the δ-ball condition satisfied by E. Let u be a solution of

∆u = 0 in Bc
δ(y); u = v(x) = Iα(E) on ∂Bδ(y).

Notice that u(z) = Iα(E)δd−2

|z−y|d−2 out of Bδ(y). By the maximum principle for harmonic functions,

u ≤ Iα(E) on ∂E. Thus, again by the maximum principle, applied to u− v, we get that v ≥ u
on Rd \E. Since u(x) = v(x),

|∇v(x)| ≤ |∇u(x)| = Iα(E)(d− 2)δ−1. (2.5)

Let us prove that µ = |∇v|Hd−1 ∂E. For this, let x ∈ ∂E and r > 0 and consider a test
function ϕ ∈ C∞

c (Rd). Then we have
∫

∂E
ϕdµ = −

∫

Rd

ϕ∆v =

∫

Rd

〈∇ϕ,∇v〉 dy

=

∫

Ec

〈∇ϕ,∇v〉 dy =

∫

∂E
ϕ〈∇v, νE〉dHd−1

(2.6)

where νE is the external normal to E. Since v is constant on ∂E, its tangential derivative is
zero. Thus, since v < Iα(E) on Rd\E we have that 〈∇v, νE〉 ≥ 0. Therefore, 〈∇v, νE〉 = |∇v|
on ∂E. Hence, by (2.6) we conclude that for every test function ϕ,

∫

∂E
ϕdµ =

∫

∂E
ϕ|∇v|dHd−1,

which is equivalent to the claim µ = |∇v|Hd−1 ∂E.
�

3. Non-existence of minimizers

Definition 3.1. Let d ≥ 2 and α > 0. For every Q > 0 and every open set E ⊂ Rd we define
the functionals,

Fα,Q(E) := P (E) +Q2Iα(E), (3.1)

and
Gα,Q(E) := P (E) +Q2Iα(∂E). (3.2)

Notice that by Lemma 2.14, for α ∈ (0, d−2] the functionals Fα,Q and Gα,Q coincide. Notice
also that Fα,Q(E) ≡ +∞ if α ≥ d, and Gα,Q(E) ≡ +∞ if α ≥ d− 1.

In this section we consider a closed, connected, regular set Ω ⊂ Rd (not necessarily bounded)
of measure |Ω| > m and address the following problems:

inf
|E|=m,E⊂Ω

Fα,Q(E), (3.3)
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and

inf
|E|=m,E⊂Ω

Gα,Q(E), (3.4)

where the (implicit) parameter α belongs to (0, d).

Theorem 3.2. For every α ∈ (0, d − 1), there holds

inf
|E|=m

Fα,Q(E) = inf
|E|=m

Gα,Q(E) = min
|E|=m

P (E) =

(
m

ωd

) d−1
d

P (B).

In particular, problems (3.3) and (3.4) do not admit minimizers when Ω = Rd.

Proof. Let N ∈ N and consider a number β which will be fixed later on. Consider N balls
of radius rN = N−β which we can consider mutually infinitely far away (since sending them
away leaves unchanged the perimeter and decrease the potential interaction energy), and put
on each of these balls a charge 1

N . Let VN = NrdNωd be their total volume and consider the set
E given by the union of these balls with a (non-charged) ball of volume m− VN . If we choose
β ∈ (1/(d − 1), 1/α), then we get

lim
N→+∞

Nrd−1
N = 0 and lim

N→+∞
1

N

1

rαN
= 0. (3.5)

which implies that VN → 0 and
(
m

ωd

) d−1
d

P (B) ≤ P (E) +Q2Iα(E) ≤
(
m− VN
ωd

) d−1
d

P (B) + C

(
Nrd−1

N +
Q2

N

1

rαN

)
.

Since the right-hand side converges to
(

m
ωd

) d−1
d
P (B), as N tends to +∞, the claim follows. �

We now consider the case of bounded Ω where the situation is more involved.

Theorem 3.3. Let Ω be a compact subset of Rd with smooth boundary, and let 0 < m < |Ω|.
Let E0 be a solution of the constrained isoperimetric problem

min {P (E) : E ⊂ Ω, |E| = m} . (3.6)

Then, for α ∈ (0, d− 1) and Q > 0 we have

inf
|E|=m,E⊂Ω

Fα,Q(E) = inf
|E|=m,E⊂Ω

Gα,Q(E) = P (E0) +Q2Iα(Ω). (3.7)

Proof. We divide the proof into three steps.

Step 1. For ε > 0 and f ∈ L∞(Ω), with f ≥ 0 and

∫

Ω
fdx = 1, we shall construct a measure

µ̃ε with spt(µ̃ε) ⊂ Ω, µ̃ε(Ω) = 1, satisfying

P (spt(µ̃ε)) ≤ ε (3.8)

and

Iα(µ̃ε) ≤ IΩ
α (f) + ε. (3.9)

Let δ > λ > 0 be small parameters to be fixed later and consider the tiling of the space given
by [0, λ)d + λZd. For every k ∈ Zd such that (λk+ [0, λ)d)∩Ω 6= ∅, we let Ck = λk+ [0, λ)d and



10 MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

denote by xk be the centre of Ck. Notice that the number N of such squares Ck is bounded by

C(Ω)λ−d. Letting fk :=

∫

Ck

f dx, it holds

∑

|xk−xj |≥2δ

fkfj
|xk − xj |α

=
∑

|xk−xj |≥2δ

∫

Ck×Cj

f(x)f(y)

|x− y|α
|x− y|α
|xk − xj|α

dx dy

≤
∑

|xk−xj |≥2δ

∫

Ck×Cj

f(x)f(y)

|x− y|α
(|xk − xj |+ 2λ)α

|xk − xj|α
dx dy

≤
∑

|xk−xj |≥2δ

∫

Ck×Cj

f(x)f(y)

|x− y|α
(
1 + C(α)

λ

δ

)
dx dy

(3.10)

where we used the fact that
∑

|xk−xj |≥2δ

∫

Ck×Cj

f(x)f(y)

|x− y|α dxdy ≤
∫

Ω×Ω

f(x)f(y)

|x− y|α dxdy = IΩ
α (f) <∞.

Let now r = (λ/2)β , with β > 1. If dist(xk,R
d \ Ω) ≤ r, we replace the point xk with a point

x̃k ∈ Cj(k), with |x̃k − xj(k)| ≥ λ/4, where Cj(k) ⊂ Ω is a cube adjacent to Ck. For simplicity of
notation, we still denote x̃k by xk. We consider N balls of radius r centered at the points xk,
and we set

µ̃ε :=
∑

k

fk
|Br|

χBr(xk).

Notice that, by construction, it holds spt(µ̃ε) ⊂ Ω and µ̃ε(Ω) =

∫

Ω
fdx = 1. We have

Iα(µ̃ε) =
∑

j,k

fkfj
|Br|2

∫

Br(xj)×Br(xk)

dxdy

|x− y|α

=
∑

k

f2k
|Br|2

∫

Br(xk)×Br(xk)

dxdy

|x− y|α

+
∑

|xj−xk|<2δ, k 6=j

fkfj
|Br|2

∫

Br(xj)×Br(xk)

dxdy

|x− y|α

+
∑

|xj−xk|≥2δ

fkfj
|Br|2

∫

Br(xj)×Br(xk)

dxdy

|x− y|α

= I1 + I2 + I3.

Moreover we have that

I1 ≤ CN‖f‖2L∞(Ω)|Ck|2
1

rα
≤ C‖f‖2L∞(Ω)λ

d−αβ , (3.11)

and

I2 ≤ CδdN2‖f‖2L∞(Ω)|Ck|2
1

λα
≤ C‖f‖2L∞(Ω)

δd

λα
. (3.12)
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Eventually, from (3.10) it follows

I3 =
∑

|xj−xk|≥2δ

fkfj
|xk − xj|α

1

|Br|2
∫

Br(xj)×Br(xk)

|xk − xj|α
|x− y|α dxdy

≤
∑

|xk−xj |≥2δ

fkfj
|xk − xj|α

(
1 + C(α)

r

δ

)

≤ IΩ
α (f)

(
1 +C(α)

λ

δ

)(
1 + C(α)

r

δ

)

≤ IΩ
α (f) + C(α)IΩ

α (f)
λ

δ
.

(3.13)

Letting λ = δγ , from (3.11), (3.12), (3.13) we then get

Iα(µ̃ε) = I1 + I2 + I3 ≤ IΩ
α (f) + C(α)IΩ

α (f)δ
γ−1 + C‖f‖2L∞(Ω)

(
δγ(d−αβ) + δd−αγ

)
.

Choosing 1 < β < d/α and 1 < γ < d/α, for δ small enough we obtain (3.9).
We now show that (3.8) also holds. To this aim, we notice that

P (spt(µ̃ε)) ≤ CNrd−1 = CNλβ(d−1) = Cλβ(d−1)−d (3.14)

so that, for λ small enough, (3.8) follows from (3.14) by letting d/α > β > d/(d − 1), choice
which is allowed since α < d− 1.

Step 2. Let now E0 be a solution of the constrained isoperimetric problem (3.6), and let

Eε :=

(
E0 ∪

⋃

k

Br(xk)

)
\Bη, µε :=

µ̃ε Eε

1− µ̃ε(Bη)
,

where Bη ⊂ E0 is a ball such that |Eε| = m. Notice that spt(µε) ⊂ Eε and µε(Eε) = 1. By
(3.14) we have

|Bη|
d−1
d ≤

∣∣∣∣∣
⋃

k

Br(xk)

∣∣∣∣∣

d−1
d

≤ CP

(
⋃

k

Br(xk)

)
≤ Cλβ(d−1)−d,

so that η ≤ Cλβ−
d

d−1 . In particular, recalling (3.9), for λ sufficiently small the measure µε
satisfies

Iα(µε) ≤ Iα(µ̃ε) + ε ≤ IΩ
α (f) + 2ε. (3.15)

From (3.15) we then get

lim
ε→0

P (Eε) +Q2Iα(µε) = P (E0) +Q2IΩ
α (f). (3.16)

Step 3. By Proposition 2.15 we can find a function f ∈ L∞(Ω) such that

∫

Ω
fdx = 1 and

IΩ
α (f) ≤ Iα(Ω) + ε. Thus (3.7) follows by (3.16) and a diagonal argument.

�
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Remark 3.4. Notice that when α ∈ (d−2, d−1), Problem (3.4) relaxes to its “natural” domain,
in the sense that the infimum is P (E0) + Q2Iα(Ω) and not P (E0) + Q2Iα(∂Ω) as one might
expect.

Remark 3.5. An interpretation of Theorem 3.3 is that Problem (3.7) decouples into the isoperi-
metric problem (3.6) and the charge-minimizing problem (2.1), which are minimized separately.
This is essentially due to the fact that the perimeter is defined up to a set of zero Lebesgue
measure, while the Riesz potential energy is defined up to a set of zero capacity [20, Chapter 2].
A consequence of this is that the minimum problem

min {Fα,Q(E) : |E| = m, E ⊂ A}
has in general no solution.

Remark 3.6. When considering a bounded domain A it is also interesting to study the Riesz
potential associated to the Green kernel GA, with Dirichlet or Neumann boundary conditions.
Since

GA(x, y) = kd−2(|x− y|) + h(x, y)

with h harmonic in A (see [20, Chapter 1.3], [7]), Theorem 3.3 can be easily extended to that
case.

Remark 3.7. For α ∈ [d − 1, d), it seems difficult to construct a sequence of open sets with
vanishing perimeter but of positive capacity. This is due to the fact that sets of positive α-
capacity have Hausdorff measure at least α (see [23]). As a consequence, the infimum of (3.7)
should be strictly larger than P (E0). In order to study the question of existence or non-existence
of minimizers, one would need to extend the definition of Fα,Q to sets which are not open. There
are mainly two possibilities to do it. The first is to let for every Borel set E

Fα,Q(E) := P (E) +Q2Iα(E)

where now P (E) denotes the total variation of χE (see [3]). It is easy to see that the problem
is still ill posed in this class. Indeed, for every set E, it is possible to consider a set F of
positive α-capacity but of Lebesgue measure zero so that Fα,Q(E ∪ F ) < Fα,Q(E). The second
possibility would be to consider the relaxation of the functional Fα,Q defined on open sets for
a suitable topology. Because of the previous discussion, we see that the L1 topology, for which
the perimeter has good compactness and lower semicontinuity properties, is not the right one.
The Hausdorff topology might be more adapted to this situation. Unfortunately, the resulting
functional seems hard to identify.

4. Existence of minimizers under some regularity conditions

In the previous section we have seen that we cannot hope to get existence for Problem (3.3)
without some further assumptions on the class of minimization. In this section we investigate
the existence question in the classes Kδ and Kco

δ . More precisely, we consider the following
problems:

min {Fα,Q(E) : |E| = m, E ∈ Kco
δ } , (4.1)

min {Gα,Q(E) : |E| = m, E ∈ Kco
δ } , (4.2)

min {Fα,Q(E) : |E| = m, E ∈ Kδ } , (4.3)
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min {Gα,Q(E) : |E| = m, E ∈ Kδ } . (4.4)

Notice that, up to rescaling, we can always assume that |E| = ωd. Indeed, if we let Ẽ :=(
ωd
m

)1/d
E, so that |Ẽ| = ωd, from (2.2) we get

Fα,Q(E) = Fα,Q

((
m

ωd

)1/d

Ẽ

)
=

(
m

ωd

) d−1
d

F
α,(ωd

m )
d−1+α

2d Q
(Ẽ) (4.5)

Gα,Q(E) = Gα,Q

((
m

ωd

)1/d

Ẽ

)
=

(
m

ωd

) d−1
d

G
α,(ωd

m )
d−1+α

2d Q
(Ẽ). (4.6)

Definition 4.1. For any set E with |E| = ωd, we let δP (E) := P (E) − P (B) ≥ 0 be the
isoperimetric deficit of E.

Theorem 4.2. For all Q ≥ 0 problem (4.1) and (4.2) have a solution.

Proof. Let us focus on (4.1) since the proof of the existence for (4.2) is very similar. Let En ∈ Kco
δ

be a minimizing sequence, with |En| = ωd. And let µn be the corresponding optimal measures
for Iα(En). We can then assume that

δP (En) ≤ Q2Iα(B),

therefore P (En) is uniformly bounded. By Lemma 2.20, the sets En are also uniformly bounded
so that by the compactness criterion for functions of bounded variation (see for instance [3]),
there exists a subsequence converging in L1 to some set E with |E| = m. Similarly, up to
subsequence, µn is weakly* converging to some probability measure µ.

Let us prove that En converges to E also in the Kuratowski convergence, or equivalently, in
the Hausdorff metric (see for instance [4]). Namely we have to check the following two conditions:

(i)xn → x, xn ∈ En ⇒ x ∈ E;

(ii)x ∈ E ⇒ ∃xn ∈ En such that xn → x.

The second condition is an easy consequence of the L1-convergence. To prove the first one, we
notice that by the internal δ-ball condition, up to choose a radius r small enough there exists
a constant c = c(d, δ) > 0 such that |B(xn, r) ∩ En| ≥ crd which implies, together with the
L1-convergence, that a limit point x must be in E. Similarly one can also prove the Hausdorff
convergence of ∂En to ∂E. Since the family Kco

δ is stable under Hausdorff convergence, we get
E ∈ Kco

δ .
Recalling that P is lower semicontinuous under L1 convergence, and Iα(µ) is lower semi-

continuous under weak*-convergence (for the kernel is a positive function, and thus Iα(·) is the
supremum of continuous functional over M), we have

lim
n→+∞

P (En) +Q2Iα(µn) ≥ P (E) +Q2Iα(µ).

By the Hausdorff convergence of En, there also holds spt(µ) ⊂ E, which concludes the proof. �

Thanks to the quantitative isoperimetric inequality [13], we can also prove existence for small
charges of minimizers even without assuming a priori the connectedness. This is reminiscent of
[18, 19, 7].
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Theorem 4.3. There exists a constant Q0 = Q0(α, d) such that, for every δ > 0, m ≥ ωdδ
d and

Q

m
d−1+α

2d

≤ Q0
δd

m
,

problems (4.3) and (4.4) have a solution.

Proof. We only consider (4.3), since the proof of (4.4) is identical. Assume first that m = ωd.
As noticed in Theorem 4.2, for every minimizing sequence En ∈ Kδ, with |En| = ωd, we can

assume that there holds

δP (En) ≤ Q2Iα(B).

Thus, up to translating the sets En, by the quantitative isoperimetric inequality [13] we can
assume that

|B∆En|2 ≤ C(d) δP (En) ≤ C(d)Q2Iα(B)

so that |En ∩ Bc| ≤ CQ. Since every connected component of En ∈ Kδ has volume at least
|Bδ| = ωdδ

d, for Q ≤ c(α, d)δd the set En must be connected. The existence of minimizers then
follows as in Theorem 4.2.

The case of a general volume m can be obtain by rescaling from (4.5). �

Remark 4.4. We point out that there are other interesting classes where existence can be
obtained. This is for instance the case in R2 in the class of connected sets of area m. Indeed,
a minimizing sequence is compact for the Hausdorff topology by the Blaschke Theorem [4,
Theorem 4.4.15] and semicontinuous thanks to the Golab Theorem [4, Theorem 4.4.17]. Another
remarkable class for which the existence issue can be easily solved, is that of convex sets. The
proof can be made as in Theorem 4.2, simply by observing that, by the quantitative isoperimetric
inequality, if En is a minimizing sequence then

|En∆B|2 + δP (En) ≤ C(α, d),

which gives, together with the convexity of the sets En, the compactness of the sequence in the
Hausdorff metric.

It is natural to expect that, for a charge Q large enough, it is more favorable to have two
connected components rather than one, which would lead to non-existence of minimizers in Kδ.
Let us prove that it is indeed the case, at least for small enough α. We start with the following
lemma.

Lemma 4.5. Let α > 0 and let E be a compact set then

Iα(E) ≥ 1

diam(E)α
.

In particular,

inf
|E|=ωd,E∈Kco

δ

Fα,Q(E) ≥
(
m

ωd

) d−1
d

P (B) +
(√

d 2d+2
)−α

Q2δ(d−1)α , (4.7)

and

inf
|E|=ωd,E∈Kco

δ

Fα,Q(E) ≥
(
m

ωd

) d−1
d

P (B) +
(√

d 2d+2
)−α

Q2δ(d−1)α. (4.8)
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Proof. Let µ be any positive measure with support in E such that µ(E) = 1 then

Iα(E) ≥
∫

E×E

dµ(x)dµ(y)

|x− y|α ≥
∫

E×E

dµ(x)dµ(y)

diam(E)α
=

1

diam(E)α
.

By Lemma 2.20 and of isoperimetric inequality, we get (4.7) and (4.8). �

We can now prove a non-existence result in Kδ.

Theorem 4.6. For all α < 1 there exist c0 = c0(α) > 0 and Q0 = Q0(α) > 0 such that, for
every δ > 0, m ≥ c0δ

d, and
Q

m
d−1+α

2d

> Q0

(m
δd

) dα+1−α
2d

problems (4.3) and (4.4) do not have a solution.

Proof. We only discuss problem (4.3), since the non-existence result for problem (4.4) follows
analogously.

As in Theorem 4.3 we first consider the case m = ωd, so that δ ≤ 1. If there exists a
minimizer then the optimal measure µ is necessarily contained in a connected component of the
minimizer. From (4.8) it then follows that the energy of the minimizer is greater than

P (B) +
(√

d 2d+2
)−α

δ(d−1)αQ2 , (4.9)

which bounds from below the energy of any set in Kco
δ with volume ωd. Hence, in order to prove

the non-existence, it is enough to construct a competitor E ∈ Kδ with energy less than (4.9).
Consider the set E given by N (which we suppose to be an integer) balls of radius δ, equally

charged. Up to increasing their mutual distances, we can suppose that the Riesz potential energy
of E is made only of the self interaction of each ball with itself. We then have

P (E) +Q2Iα(E) = Nδd−1P (B) +
Q2

N
Iα(Bδ) =

1

δ
P (B) + Iα(B)δd−αQ2. (4.10)

Notice that, if d − α > (d − 1)α, i.e. if α < 1, there exists δ0 = δ0(α) such that for all δ ≤ δ0
there holds

Iα(B) δd−α ≤ 1

2

(√
d 2d+2

)−α
δ(d−1)α.

With this condition in force, from (4.10) we get

P (E) +Q2Iα(E) < P (B) +
(√

d 2d+2
)−α

Q2δ(d−1)α ,

for

Q >
√

2P (B)
(√

d 2d+2
)α

2 1

δ
dα+1−α

2

.

The general case can be obtain by rescaling from (4.5). �

Remark 4.7. If α < d−1
d , we can improve the previous estimate on Q by considering a construc-

tion similar to the one of Theorem 3.2. Indeed, for β ∈ (dα, d − 1), taking N := δ−β charged
balls of radius δ and a non charged ball of volume m− ωdNδ

d, we find a contradiction if

Q

m
d−1+α

2d

> Q̃0(α)
(m
δd

)β−(1−α)(d−1)
2d

.
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Notice that, if α < d−1
2d−1 , we can choose β such that the exponent β−(1−α)(d−1)

2d is negative.

5. Minimality of the ball

In this section we prove that in the harmonic case α = d − 2, the ball is a minimizer for
Problem (3.3) among sets in the family of the nearly spherical sets belonging to Kco

δ introduced
in Definition 2.18, that is, the sets which are a small W 1,∞ perturbation of the ball and that
satisfy the δ-ball condition.

Consider a set E such that |E| = ωd, and such that ∂E can be written as a graph over ∂B.
In polar coordinates we have

E =
{
R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B

}
.

The condition |E| = ωd then becomes
∫

∂B

(
(1 + ϕ(x))d − 1

)
dHd−1(x) = 0

which implies that if ‖ϕ‖L∞(∂B) is small enough, then
∫

∂B
ϕdHd−1 = O(‖ϕ‖2L2(∂B)). (5.1)

Letting

ϕ̄ :=
1

|∂B|

∫

∂B
ϕdHd−1 ,

the Poincaré Inequality gives
∫

∂B
|∇ϕ|2dHd−1 ≥ C

∫

∂B
|ϕ− ϕ̄|2dHd−1 = C(d)

∫

∂B
ϕ2Hd−1 − C(d)

dωd

(∫

∂B
ϕdHd−1

)2

= C(d)

∫

∂B
ϕ2dHd−1 − C

4dωd

(∫

∂B
ϕ2dHd−1

)2

≥ 3

4
C(d)

∫

∂B
ϕ2dHd−1

(5.2)

as soon as ∫

∂B
ϕ2dHd−1 ≤ dωd. (5.3)

Up to translation, we can also assume that the barycenter of E is 0. This implies that∣∣∣∣
∫

∂B
xϕ(x)dHd−1(x)

∣∣∣∣ = O
(
‖ϕ‖2L2(∂B)

)
. (5.4)

Lemma 5.1. Suppose that ϕ : ∂B → Rd parametrizes ∂E and ‖ϕ‖L∞(∂B) is small enough so
that (5.3) is satisfied. Assume also that the barycenter of E is in 0. Then,

δP (E) ≥ c0

∫

∂B
|∇ϕ|2dHd−1 ≥ c1

∫

∂B
|ϕ|2dHd−1 =

c1
2

∣∣∣∣
∫

∂B
ϕdHd−1

∣∣∣∣ . (5.5)

Proof. We refer to [12] for the proof of the first inequality. The second inequality is (5.2), while
the third one follows from (5.1). �

A consequence of Lemma 5.1 is the following corollary.
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Corollary 5.2. Suppose that ∂E is parametrized on ∂B by a function ϕ which satisfies the
hypothesis of Lemma 5.1. Then there exists a positive constant C = C(α, d) such that

|I∂B
α (ϕ)| ≤ C δP (E), (5.6)

and, for any positive constant λ,

|I∂B
α (λ, ϕ)| ≤ Cλ δP (E). (5.7)

Proof. Inequality (5.7) is an immediate consequence of (5.5). Concerning the first one we have,
by the Hölder inequality and the Fubini Theorem,

I∂B
α (ϕ) =

∫

∂B×∂B

ϕ(x)ϕ(y)

|x− y|α dHd−1(x)dHd−1(y)

≤
(∫

∂B×∂B

ϕ(x)2

|x− y|α dH
d−1(x)dHd−1(y)

)1/2 (∫

∂B×∂B

ϕ(y)2

|x− y|α dH
d−1(x)dHd−1(y)

)1/2

= C

∫

∂B
ϕ(x)2 dHd−1(x).

So (5.6) follows again from (5.5). �

We will use the following technical lemma.

Lemma 5.3. Let E =
{
R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B

}
and let g ∈ L∞(∂B), then there

exists ε0(α, d) and a constant C = C(α, d) > 0 such that if ‖ϕ‖
W 1,∞(∂B)

≤ ε0 ≤ 1,
∣∣∣∣
∫

∂B×∂B

(
1

|R(x)−R(y)|α − (1− α
2ϕ(x))(1 − α

2ϕ(y))

|x− y|α
)
g(x)g(y)dHd−1(x) dHd−1(y)

∣∣∣∣

≤ C(α, d)(1 + ε0)‖g‖2L∞(∂B)
δP (E).

(5.8)

Proof. First, notice that since |x| = |y| = 1 we have

|R(x)x−R(y)y|2 = |x− y|2 (1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y)) (5.9)

where ψ(x, y) = (ϕ(x)−ϕ(y))2

|x−y|2 . Hence, for any x, y ∈ ∂B there holds,

|R(x)x−R(y)y|−α =
(1− α

2ϕ(x))(1 − α
2ϕ(y)) +

α(4−α)
4 ϕ(x)ϕ(y) − α

2 (ψ(x, y) + η(x, y))

|x− y|α
(5.10)

where
0 ≤ η(x, y) ≤ C

(
ϕ2(x) + ϕ2(y) + ψ2(x, y)

)
.

By (5.10) we get

∫

∂B×∂B

(
1

|R(x)−R(y)|α − (1− α
2ϕ(x))(1 − α

2ϕ(y))

|x− y|α
)
g(x)g(y)dHd−1(x) dHd−1(y)

=
α(4 − α)

4

∫

∂B×∂B

ϕ(x)ϕ(y)

|x− y|α g(x)g(y) dHd−1(x)dHd−1(y)

− α

2

∫

∂B×∂B

ψ(x, y) + η(x, y)

|x− y|α g(x)g(y) dHd−1(x)dHd−1(y).

(5.11)
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By Corollary 5.2 we get
∫

∂B×∂B

ϕ(x)ϕ(y)

|x− y|α dHd−1(x)dHd−1(y) = I∂B
α (ϕ) ≤ CδP (E).

Furthermore, we have
0 ≤ ψ(x, y) ≤ ‖∇ϕ‖2

L∞(∂B)
≤ ε0,

and ∫

∂B×∂B

ϕ(x)2 dHd−1(x)dHd−1(y)

|x− y|α =

∫

∂B

dHd−1(y)

|x− y|α
∫

∂B
ϕ(x)2 dHd−1(x) ≤ c(α, d)ε20,

for a suitable constant c(α, d). Therefore, since η(x, y) ≤ C
(
ϕ2(x) + ϕ2(y) + ψ(x, y)

)
, to prove

(5.8) we only have to check that
∫

∂B×∂B

ψ(x, y)

|x− y|α dH
d−1(x)dHd−1(y) ≤ CδP (E).

To this aim, consider x, y in ∂B and denote by Γx,y the geodesic going from x to y and by
ℓ(x, y) the geodesic distance between x and y (that is the length of Γx,y). Notice that on ∂B,
the euclidean distance and ℓ are equivalent so that it is enough proving∫

∂B×∂B
ℓ(x, y)−(α+2)(ϕ(x) − ϕ(y))2 dHd−1(x)dHd−1(y) ≤ CδP (E).

We have∫

∂B×∂B
ℓ(x, y)−(α+2)(ϕ(x) − ϕ(y))2

≤ c(d)

∫

∂B×∂B
ℓ(x, y)−(α+1)

∫

Γx,y

|∇ϕ|2(z)dz dHd−1(x)dHd−1(y)

= c(d)

∫

∂B

∫ 2π

0
t−(α+1)td−1

(∫

{ℓ(x,z)≤t}
|∇ϕ|2(z)dHd−1(z)

)
dt dHd−1(x)

= c(d)

∫ 2π

0
t(d−1)−(α+1)

(∫

∂B

∫

{ℓ(x,z)≤t}
|∇ϕ|2(z)dHd−1(x)dHd−1(z)

)
dt

= c(d)Hd−2(Sd−2)

∫ 2π

0
t(d−1)−α

(∫

∂B
|∇ϕ|2(z)dHd−1(z)

)
dt

= c(d)Hd−2(Sd−2)

∫ 2π

0
t(d−1)−αdt

(∫

∂B
|∇ϕ|2(z)dHd−1(z)

)

≤ CδP (E)

where Sd−2 is the (d− 2)-dimensional sphere and where we used the fact that α < d− 1. �

Before we prove our main stability estimates, we recall a classical interpolation inequality.

Lemma 5.4. For every 0 ≤ p < q < r < +∞, there exists a constant C(r, p, q) such that for
every ϕ ∈ Hr(Rd), there holds

‖ϕ‖
Hq(Rd)

≤ C
(
‖ϕ‖

Hr(Rd)

) r−q
r−p
(
‖ϕ‖

Hp(Rd)

) q−p
r−p

, (5.12)



CHARGED DROPS 19

where we adopted the notation ‖u‖Hp(Rd) := ‖|ξ|pû‖L2(Rd) and H
p(Rd) := {u ∈ L2(Rd) : ‖u‖Hp <

+∞}, being û the Fourier transform of the function u.

Proof. Let ϕ ∈ Hr(Rd) and λ > 0, then we have

‖ϕ‖2
Hq(Rd)

=

∫

Rd

|ϕ̂|2|ξ|2qdξ =
∫

|ξ|≤λ
|ϕ̂|2|ξ|2p|ξ|2(q−p)dξ +

∫

|ξ|≥λ
|ϕ̂|2|ξ|2r|ξ|2(q−r)dξ

≤ λ2(q−p)‖ϕ‖2
Hp(Rd)

+ λ−2(r−q)‖ϕ‖2
Hr(Rd)

.

An optimization in λ yields (5.12). �

Proposition 5.5. Let α ∈ [d− 2, d− 1), f ∈ L∞(∂E) and

∂E =
{
R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B

}
.

Then there exist ε0(α) > 0 and C = C(α) > 0 such that if ‖ϕ‖
W 1,∞(∂B)

≤ ε0 then

I∂E
α (f)− I∂B

α (f̄) ≥ −C‖f‖2L∞(∂E)δP (E), (5.13)

where f̄ :=
1

P (E)

∫

∂E
fdHd−1.

Proof. We have

I∂E
α (f) =

∫

∂E×∂E

f(x)f(y)

|x− y|α dHd−1(x) dHd−1(y)

=

∫

∂B×∂B

g(x)g(y)

|R(x)−R(y)|α dH
d−1(x)dHd−1(y)

(5.14)

where we set

g(x) = f(R(x)x)R(x)d−2
√
R(x)2 + |∇R(x)|2.

Up to choose ε0 small enough, we can suppose that

‖g‖L∞(∂B) ≤ 2‖f‖L∞(∂E). (5.15)

Let ḡ :=
1

P (B)

∫

∂B
gdHd−1 =

P (E)

P (B)
f̄ . Then we have

I∂E
α (f)− I∂B

α (f) = I∂E
α (f)− I∂B

α (g) + I∂B
α (g)− I∂B

α (f).

Focusing on the last two terms in the previous equality we have

∣∣∣I∂B
α (g)− I∂B

α (f)
∣∣∣ = I∂B

α (f)

∣∣∣∣∣1−
(
P (E)

P (B)

)2
∣∣∣∣∣

= Cf̄2
P (E) + P (B)

P (B)2
|P (E) − P (B)|

≤ C(α, d)‖f‖2L∞(∂E)δP (E).

Therefore, to prove (5.13) we only need to show that

I∂E
α (f) ≥ I∂B

α (ḡ)− ‖g‖2L∞(∂B) δP (E). (5.16)
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Formula (5.14) together with Lemma 5.3 imply

I∂E
α (f) = I∂B

α

(
g(1 − α

2
ϕ)
)
+R(g, ϕ)

with

|R(g, ϕ)| ≤ c‖g‖2L∞(∂E) δP (E),

so that

I∂E
α (f) ≥ I∂B

α

(
g(1 − α

2
ϕ)
)
− c‖g‖2L∞(∂E) δP (E). (5.17)

We need to estimate I∂B
α (g(1 − α/2)ϕ). By the bilinearity of I∂B

α we have that

I∂B
α (g(1 − α

2
ϕ)) =I∂B

α (g(1 − α

2
ϕ), g(1 − α

2
ϕ))

=I∂B
α (g, g) − αI∂B

α (g, gϕ) +
α2

4
I∂B
α (gϕ, gϕ)

=I∂B
α (ḡ, ḡ) + I∂B

α (g − ḡ, g − ḡ)− αI∂B
α (g − ḡ, gϕ) − αI∂B

α (ḡ, gϕ)

+
α2

4
I∂B
α (ḡϕ, ḡϕ) +

α2

2
I∂B
α (ḡϕ, (g − ḡ)ϕ) +

α2

4
I∂B
α ((g − ḡ)ϕ, (g − ḡ)ϕ)

=I∂B
α (ḡ) + I∂B

α (g − ḡ) +
α2

4
I∂B
α ((g − ḡ)ϕ)− αI∂B

α (g − ḡ, (g − ḡ)ϕ)

− αI∂B
α (ḡ, (g − ḡ)ϕ) − αI∂B

α (g − ḡ, ḡϕ) +
α2

2
I∂B
α (ḡϕ, (g − ḡ)ϕ)

− αI∂B
α (ḡ, ḡϕ) +

α2

4
I∂B
α (ḡϕ).

(5.18)
Thanks to (5.7), the last two terms in the right hand side of (5.18) satisfy:

−I∂B
α (ḡ, ḡϕ) +

α

4
I∂B
α (ḡϕ) ≥ −cḡ2 δP (E). (5.19)

By the Cauchy-Schwarz inequality (2.4) and Young’s inequality, we get that for every functions
h1 and h2 and for any ε > 0,

I∂B
α (h1, h2) ≤ I∂B

α (h1)
1
2I∂B

α (h2)
1
2 ≤ εI∂B

α (h1) +
1

4ε
I∂B
α (h2). (5.20)

In particular, applying such inequality to the functions h1 = g − ḡ and h2 = (g − ḡ)ϕ in the
fourth term in the right hand side of (5.18), and then to h1 = g − ḡ and h2 = ḡϕ in the sixth
term, and exploiting (5.19), we obtain the existence of a positive constant C such that

I∂B
α (g(1 − α

2
ϕ))− I∂B

α (ḡ)

≥ C

(
1

2
I∂B
α (g − ḡ)− I∂B

α (ḡ, (g − ḡ)ϕ)− I∂B
α ((g − ḡ)ϕ) − ḡ2 δP (E)

)
.

(5.21)

Again, by Lemma 5.1, we have that

−I∂B
α ((g − ḡ)ϕ) ≥ −‖g‖2L∞(∂B)I∂B

α (ϕ) ≥ −C‖g‖2L∞(∂B) δP (E).

Let us show that the term I∂B
α (ḡ, (g − ḡ)ϕ) can be estimated by the term I∂B

α (g − ḡ).
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Let ϕ̃ : Rd → R be a regular extension of ϕ, and let g̃ = (g − ḡ)dHd−1 ∂B. By a Fourier
transform we get

I∂B
α (ḡ, (g − ḡ)ϕ) =

∫

∂B

dHd−1(x)

|x− y|α ḡ

∫

∂B
(g − ḡ) dHd−1(y)ϕ = c(α, d)ḡ

∫

Rd

̂̃ϕ̂̃g

≤ḡ
(∫

Rd

̂̃ϕ2|ξ|d−α

) 1
2

(∫

Rd

̂̃g2

|ξ|d−α

) 1
2

=ḡ‖ϕ̃‖
H

d−α
2 (Rd)

I∂B
α (g − ḡ, g − ḡ)

1
2

≤C(d)ḡ‖ϕ‖
H

d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 .

We now observe that, if

I∂B
α (ḡ, (g − ḡ)ϕ) ≤ 1

2
I∂B
α (g − ḡ), (5.22)

then we would get

I∂B
α (g(1 − α

2
ϕ))− I∂B

α (ḡ) ≥ −C‖ḡ‖2L∞(∂B) δP (E),

which would imply (5.16) and so the claim of the proposition. On the other hand if (5.22) does
not hold, then, up to consider again a regular extension ϕ̃ : Rd → R of ϕ, we have

I∂B
α (g − ḡ) < C(d)ḡ‖ϕ‖

H
d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 ,

which implies

I∂B
α (g − ḡ)

1
2 < Cḡ‖ϕ‖

H
d−α
2 (∂B)

,

so that

I∂B
α (ḡ, (g − ḡ)ϕ) ≤ Cḡ‖ϕ‖

H
d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 ≤ Cḡ2‖ϕ‖2

H
d−α
2 (∂B)

.

If d−α
2 ≤ 1 then using (5.12) with p = 0, q = d−α

2 and r = 1, up to once again regularly extend

ϕ on Rd, we obtain

‖ϕ‖2
H

d−α
2 (∂B)

≤ c0

(
‖ϕ‖2

H1(∂B)

)1− d−α
2
(
‖ϕ‖2

L2(∂B)

) d−α
2 ≤ c1

(
‖ϕ‖2

H1(∂B)
+ ‖ϕ‖2

L2(∂B)

)
≤ CδP (E),

which concludes the proof. �

Corollary 5.6. Let d ≥ 3 and α = d − 2. Then for any δ > 0 and m ≥ ωdδ
d, there exists a

charge Q̄
(

δ
m1/d

)
> 0, such that if

Q

m
d−1+α

2d

≤ Q̄

(
δ

m1/d

)

the ball is the unique minimizer of problem (4.3).
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Proof. Up to a rescaling we can assume m = ωd. By Theorem 4.3, there exists C > 0 such that

problem (4.3) admits a minimizer EQ for every Q ∈ (0, Cδ
d
2 ). Since |EQ∆B|2 ≤ CδP (EQ) ≤

Q2Iα(B), EQ converges to B in L1 when Q → 0. As in Theorem 4.2, there is also convergence
in the Hausdorff sense of EQ and ∂EQ thanks to the δ-ball condition. Again, by the δ-ball
condition and the Hausdorff convergence of the boundaries, for Q small enough, ∂EQ is a graph
over ∂B of some C1,1 function with C1,1 norm bounded by 2/δ. ¿From this we see that if
∂EQ = {(1 + ϕQ(x))x : x ∈ ∂B} then ‖ϕQ‖W 1,∞(∂B)

is converging to 0. We can thus assume

that ϕQ satisfies the hypotheses of Proposition 5.5.

Let µ = fdHd−1 ∂EQ be the minimizer of Iα(EQ). Since Iα(EQ) ≤ P (B) +Q2Iα(B), by

Proposition 2.22, ‖f‖
L∞(∂E)

≤ (d−2)δ−1(P (B)+Q2Iα(B)). Let f̄ :=
1

P (EQ)
=

1

P (EQ)

∫

∂EQ

fdHd−1.

By Lemma 2.17 we know that the optimal measure for Iα(B) is given by Hd−1 ∂B
P (B) . By the

minimality of EQ we then have

δP (EQ) = P (EQ)− P (B) ≤ Q2(Iα(B)− Iα(EQ))

= Q2
(
I∂B
α (f̄)− I∂EQ

α (f) + I∂B
α (1/P (B)) − I∂B

α (1/P (EQ))
)
.

A simple computation shows that

I∂B
α (1/P (B)) − I∂B

α (1/P (EQ)) ≤ C2 δP (EQ)

for a suitable positive constant C = C(α, d). Hence, by Proposition 5.5 we have that

δP (EQ) ≤ CQ2 δP (EQ)(1 + ‖f‖2L∞(∂EQ)) ≤ CQ2 δP (EQ),

which implies δP (EQ) = 0 that is EQ = B, for Q small enough. �

Remark 5.7. The previous proof of the stability does not apply to the case α > d− 2. Indeed,
this proof relies on L∞ bounds for the optimal measure µ for Iα which we are not able to obtain
in that case. For the very same reason, our approach seems not to work if we replace the class
Kδ by the class of convex sets. Indeed, using the maximum principle it is possible to show that
if the set has an acute enough corner, then the optimal measure is not in L∞.

6. The logarithmic potential energy

In this section we investigate the same type of questions for the logarithmic potential which
is given by − log(|x|). This potential naturally arises in two dimension where it corresponds to
the Coulomb interaction. Let then

Ilog(E) := min
µ(E)=1

∫

Rd×Rd

− log(|x− y|)dµ(x)dµ(y) (6.1)

and consider the problem

min
|E|=m

P (E) +Q2Ilog(E). (6.2)

In analogy to the notation adopted for the Riesz potential we define, for any Borel functions f
and g, the following quantity

Ilog∂E(f, g) :=
∫

∂E×∂E
− log(|x− y|)f(x) g(y)dHd−1(x) dHd−1(y).
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We list below some important properties of Ilog without proof, since they are analogous to those
given in Section 2 for the Riesz potential. We refer to [27, 20] for comprehensive guides on the
logarithmic potential.

Proposition 6.1. The following properties hold:

(i) for every compact set E, there exists a unique optimal measure µ for Ilog(E) which is
concentrated on the boundary of E,

(ii) for every Borel measure µ it holds

Ilog(µ) =
∫

Rd

(
vµd/2(x)

)2
dx ≥ 0

where

vµd/2(x) =

∫

Rd

− log |x− y| dµ(y),

(iii) for every smooth set E, if µ is the optimal measure for Ilog, then the equality

∫

∂E
− log(|x−

y|)dµ(y) = Ilog(E) holds for every x ∈ ∂E. Moreover the optimal measure for the ball
is the uniform measure,

(iv) if d = 2, then for every bounded set E satisfying the δ-ball condition, the optimal measure

is given by some measure µ = fHd−1 ∂E with ‖f‖
L∞(∂E)

≤ Ilog(E)
| log(δ)| .

In this setting, since the potential can be negative, the picture is slightly different from that
related to the Riesz energy. Indeed, we have the following Theorem.

Theorem 6.2. The following statements hold true:

(i) inf |E|=m P (E) +Q2Ilog(E) = −∞.

(ii) for any δ > 0, if m > 2ωdδ
d then inf |E|=m,E∈Kδ

P (E) +Q2Ilog(E) = −∞,

(iii) for every Q > 0 and every m > ωdδ
d, there exists a minimizer of

min
|E|=m,E∈Kco

δ

P (E) +Q2Ilog(E),

(iv) for every bounded smooth domain Ω,

inf
|E|=m,E⊂Ω

P (E) +Q2Ilog(E) = min
|E|=m,E⊂Ω

P (E) +Q2Ilog(Ω).

Proof. Statement (ii) implies (i) while (iii) can be proven exactly as in Theorem 4.2 and (iv)
as Theorem 3.3. To prove (ii) we set En = Bδ(x

n
1 ) ∪Bδ(x

n
2 ) and notice that if dist(xn1 , x

n
2 ) goes

to infinity, then Ilog(En) → −∞ as n→ +∞. �

Since Ilog(λE) = Ilog(E)− log(λ) for every λ > 0, without loss of generality we shall assume
that m = |B1/2| = π/4 in Problem (6.2). The following result is the counterpart of Proposition
5.5.

Proposition 6.3. Let d = 2, E =
{
R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B1/2

}
and let f ∈ L∞(∂E)

then there exists ε0 and a constant C = C(α) > 0 such that if ‖ϕ‖
W 1,∞(∂B1/2)

≤ ε0. Then

I∂E
log (f)− I∂B1/2

log (f̄) ≥ −C‖f‖2L∞(∂E) δP (E),
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where f̄ :=
1

P (E)

∫

∂E
fdH1.

Proof. Notice that since E ⊂ B, the logarithmic potential is positive. As in the proof of
Proposition 5.5, we have

I∂E
log (f) =

∫

∂B1/2×∂B1/2

− log(|R(x)−R(y)|)g(x)g(y)dH1(x)dH1(y),

where g(x) = f(R(x)x)
√
R(x)2 + |∇R(x)|2. Reminding that from (5.9), we have

|R(x)x−R(y)y| = |x− y| (1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y))1/2 ,

where, ψ(x, y) = (ϕ(x)−ϕ(y))2

|x−y|2 , we see that

I∂E
log (f) =

∫

∂B1/2×∂B1/2

− log(|x− y|) g(x)g(y) dH1(x)dH1(y)

+
1

2

∫

∂B1/2×∂B1/2

− log(1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y)) g(x)g(y) dH1(x)dH1(y).

As in Proposition 5.5, letting ḡ :=
1

P (B1/2)

∫

∂B1/2

g dH1, we have

I∂B1/2

log (g) =

∫

∂B1/2×∂B1/2

− log(|x− y|) g(x)g(y) dH1(x)dH1(y) = I∂B1/2

log (ḡ) + I∂B1/2

log (g − ḡ)

and

I∂B1/2

log (ḡ)− I∂B
log (f̄) ≤ C‖f‖2L∞(∂E) δP (E).

Using that for |t| ≤ 1, | log(1 + t)− t| ≤ t2

2 , we see that
∫

∂B1/2×∂B1/2

− log(1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y)) g(x)g(y) dH1(x)dH1(y)

= −
∫

∂B1/2×∂B1/2

(ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y) + η(x, y)) g(x)g(y) dH1(x)dH1(y)

where the function η(x, y) is well controlled. As in Lemma 5.3,
∫

∂B1/2×∂B1/2

ϕ(x)ϕ(y)g(x)g(y) dH1(x)dH1(y) ≤ C‖g‖2L∞(∂B1/2)
δP (E)

and ∫

∂B1/2×∂B1/2

ψ(x, y) g(x)g(y) dH1(x)dH1(y) ≤ C

(∫ 2π

0
t dt

)
δP (E).

Since
∫

∂B1/2×∂B1/2

ϕ(x)g(x)g(y)dH1(x)dH1(y) = ḡ

∫

∂B1/2

ϕ(x) (g(x) − ḡ) dH1(x)

+ ḡ2P (B1/2)

∫

∂B1/2

ϕ(x)dH1(x)
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and since

∫

∂B1/2

ϕ(x)dH1(x) ≤ CδP (E), we are left to prove that

I∂B1/2

log (g − ḡ)− ḡ

∫

∂B1/2

ϕ(x) (g(x)− ḡ) dH1(x) ≥ Cḡ2δP (E). (6.3)

As in the proof of Proposition 5.5, we use the Fourier transform to assert that for some regular
extension ϕ̃ of ϕ and for g̃ := (g − ḡ)H1 ∂B1/2,

∫

∂B1/2

ϕ(x) (g(x)− ḡ) dH1(x) ≤
(∫

R2

̂̃ϕ2|ξ|2 dξ
)1/2(∫

R2

̂̃g2|ξ|−2 dξ

)1/2

≤ C‖ϕ‖
H1I

∂B1/2

log (g − ḡ)

from which (6.3) follows arguing exactly as in the last part of the proof of Proposition 5.5. �

Arguing as in Corollary 5.6, we get the following result.

Corollary 6.4. Let d = 2 then for any δ > 0 and m > 0, there exists a Q̄
(

δ√
m

)
> 0 such that,

if Q
m1/4 < Q̄

(
δ√
m

)
, the ball is the unique minimizer of problem (6.2) among the sets in Kδ with

charge Q.
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