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Abstract

We study the stochastically forced system of isentropic Euler equa-
tions of gas dynamics with a γ-law for the pressure. When 1 < γ ≤ 2,
we show the existence of martingale solutions; we also discuss the ex-
istence of invariant measure in the concluding section.
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1 Introduction

In this paper, we study the stochastically forced system of isentropic Euler
equations of gas dynamics with a γ-law for the pressure.
Let (Ω,F ,P, (Ft), (βk(t))) be a stochastic basis, let T1 be the one-dimensional
torus, let T > 0 and set QT := T1 × (0, T ). We study the system

dρ+ (ρu)xdt = 0, in QT , (1.1a)

d(ρu) + (ρu2 + p(ρ))xdt = Φ(ρ, u)dW (t), in QT , (1.1b)

ρ = ρ0, ρu = ρ0u0, in T1 × {0}, (1.1c)

where p follows the γ-law

p(ρ) = κργ , κ =
θ2

γ
, θ =

γ − 1

2
, (1.2)

for γ > 1, W is a cylindrical Wiener process and Φ(0, u) = 0. Therefore the
noise affects the momentum equation only and vanishes in vacuum regions.
Our aim is to prove the existence of solutions to (1.1) for general initial data
(including vacuum). When γ ≤ 2, we will manage to show the existence of
martingale solutions, cf. Theorem 2.7 below.

There are to our knowledge no existing results on stochastically forced sys-
tems of first-order conservation laws1. The question of existence of solutions
for (1.1) is one of the first problem to be solved, and what we will do here for

1see however the works by Tornare and Fujita [TFY97] and by Feireisl, Maslowski,
Novotny [FMN13] on stochastically forced flows with viscosity
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1 < γ ≤ 2, but there are some other ones to be considered (see the conclu-
sion part, Section 6 on this subject). In the deterministic case, the existence
of (entropy) solutions has been proved by Lions, Perthame, Souganidis in
[LPS96] (let us mention also the anterior papers by Di Perna [DiP83a], Ding,
Chen, Luo [DCL85], Chen [Che86], Lions, Perthame, Tadmor [LPT94a]).
The uniqueness of entropy solutions is still an open question nowadays.

For scalar non-linear hyperbolic equations with a stochastic forcing term,
the theory has recently known a lot of developments. Well-posedness has
been proved in different contexts and under different hypotheses and also
with different techniques: by Lax-Oleinik formula (E, Khanin, Mazel, Sinai
[EKMS00]), Kruzhkov doubling of variables for entropy solutions (Kim [Kim03],
Feng, Nualart [FN08], Vallet, Wittbold [VW09], Chen, Ding, Karlsen [CDK12],
Bauzet, Vallet, Wittbold [BVW12], kinetic formulation (Debussche, Vovelle
[DV10, DV], the more general results being the resolution in L1 given in
Debussche, Vovelle [DV13]. Let us also mention the works of Hofmanová
in this fields (extension to second-order scalar degenerate equations, conver-
gence of the BGK approximation [Hof13b, DHV13, Hof13a]) and the recent
works by Lions, Perthame, Souganidis [LPS12, LPS13] on scalar conserva-
tion laws with quasilinear stochastic terms.

We will show existence of martingale solutions to (1.1), see Theorem 2.7 be-
low, under the restriction γ ≤ 2. The procedure is standard: we prove the
convergence of (subsequence of) solutions to the parabolic approximation
to (1.1). For this purpose we have to adapt the concentration compactness
technique (cf. [DiP83a, LPS96]) of the deterministic case to the stochastic
case. Such an extension has already been done for scalar conservation laws
by Feng and Nualart [FN08] and what we do is quite similar. The mode
of convergence for which there is compactness, if we restrict ourselves to
the alea, is the convergence in law. That is why we obtain martingale solu-
tions. There is a usual trick (the Gyöngy-Krylov characterization of conver-
gence in probability) that allow to recover pathwise solutions once pathwise
uniqueness of solutions is known (cf. [Hof13b, Section4.5]). However for the
stochastic problem (1.1) (as it is already the case for the deterministic one),
no such results of uniqueness are know and we will say nothing else about
pathwise solutions.

Besides the proof of convergence of the parabolic approximation to Prob-
lem (1.1) (cf. Problem (3.1)) which needs serious adaptation due to the loss
of L∞ bounds with respect to the deterministic case, a large part of our
analysis is devoted to the proof of existence of martingale solutions to the
parabolic approximation (3.1) which is not a classical point here. What is
challenging, and differ from the deterministic case, is the issue of positivity
of the density. We solve this problem by using the uniformization effects
of parabolic equations with drifts and a bound given by the entropy, in the
spirit of Mellet, Vasseur[MV09], cf. Theorem A.1. We will give more details
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about the main problematic of the paper in Section 2.4, after our framework
has been introduced more precisely.

2 Notations and main result

2.1 Stochastic forcing

Our hypotheses on the stochastic forcing term Φ(ρ, u)W (t) are the following
ones. We assume that W =

∑
k≥1 βkek where the βk are independent brow-

nian processes and (ek)k≥1 is a complete orthonormal system in a Hilbert
space U. For each ρ ≥ 0, u ∈ R, Φ(ρ, u) : U→ L2(T1) is defined by

Φ(ρ, u)ek = σk(·, ρ, u) = ρσ∗k(·, ρ, u), (2.1)

where σ∗k(·, ρ, u) is a 1-periodic continuous function on R. More precisely,
we assume σ∗k ∈ C(T1

x × R+ × R), with the bound

G∗(x, ρ, u) :=

(∑
k≥1
|σ∗k(x, ρ, u)|2

)1/2

≤ D0(1 + |u|+ ρ
γ−1
2 ), (2.2)

and

G∗j (x, ρ, u) :=

(∑
k≥1
|∇jρ,uσ∗k(x, ρ, u)|2

)1/2

≤ D1(1 + ρ
γ−1
2
−j), (2.3)

where x ∈ T1, ρ ≥ 0, u ∈ R and j ∈ {1, 2}.

We define the auxiliary space U0 ⊃ U via

U0 =

{
v =

∑
k≥1

αkek;
∑
k≥1

α2
k

k2
<∞

}
,

endowed with the norm

‖v‖2U0
=
∑
k≥1

α2
k

k2
, v =

∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert-Schmidt. Moreover, trajectories
of W are P-a.s. in C([0, T ];U0) (see Da Prato, Zabczyk [DPZ92]).

2.2 Notations

We denote by

U =

(
ρ
q

)
, A(U) =

(
q

q2

ρ + p(ρ)

)
, q = ρu, (2.4)
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the 2-dimensional unknown and flux of the conservative part of the problem.
We also set

Φ∗(U) = ρ−1Φ(U), ψk(U) =

(
0

σk(U)

)
, Ψ(U) =

(
0

Φ(U)

)
.

Note that Φ∗ is well defined by (2.1) and that, with the notation above,
(1.1) rewrites more concisely as

dU + ∂xA(U)dt = Ψ(U)dW (t). (2.5)

We will also set, for ρ ≥ 0,

G(U) = ρG∗(U). (2.6)

If E is a space of real-valued functions on T1, we will denote U(t) ∈ E instead
of U(t) ∈ E × E when this occur (with E = W 1,∞(T1) or E = L∞(T1) for
example in Definition 3.1, Theorem 3.2, etc.)

We denote by P the predictable σ-algebra on Ω × [0, T ] generated by (Ft)
and we denote by P2 the completion of P ⊗B(T1), where B(T1) is the Borel
σ-algebra on T1.

If η ∈ C(R2) is an entropy (cf. (2.8) below) and U : T1 → R2, we let

Γη(U) :=

∫
T1

η(U(x))dx (2.7)

denote the total entropy of U.

2.3 Entropy Solution

In relation with the kinetic formulation for (1.1) in [LPT94b], there is a
family of entropies

η(U) =

∫
R
g(ξ)χ(ρ, ξ − u)dξ, with q = ρu, (2.8)

for (1.1), where

χ(U) = cλ(ρ2θ − u2)λ+, λ =
3− γ

2(γ − 1)
, cλ =

(∫ 1

−1
(1− z2)λ+ dz

)−1
,

sλ+ := sλ1s>0 and the parameter g ∈ C2(R) is a convex function. In what
follows we will consider only such sub-polynomial g, with the following

Definition 2.1 (Sub-polynomial function). We say that g ∈ C(R) is sub-
polynomial if there exists m ∈ N and C ≥ 0 such that

|g(ξ)| ≤ C(1 + |ξ|m),

for all ξ ∈ R.
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Formally, by the Itô Formula, solutions to (1.1) satisfy

dEη(U) + EH(U)xdt =
1

2
E∂2qqη(U)G2(U)dt, (2.9)

where the entropy flux H is given by

H(U) =

∫
R
g(ξ)[θξ + (1− θ)u]χ(ρ, ξ − u)dξ, with q = ρu. (2.10)

Note that, by a change of variable, we also have

η(U) = ρcλ

∫ 1

−1
g

(
q

ρ
+ zρ(γ−1)/2

)
(1− z2)λ+dz (2.11)

and

H(U) = ρcλ

∫ 1

−1
g

(
q

ρ
+ zρ(γ−1)/2

)(
q

ρ
+
γ − 1

2
zρ(γ−1)/2

)
(1− z2)λ+dz.

(2.12)
In particular, for g(ξ) = 1 we obtain the density η(U) = ρ. To g(ξ) = ξ
corresponds the impulsion η(U) = q and to g(ξ) = 1

2ξ
2 corresponds the

energy

ηE(U) =
1

2
ρu2 +

κ

γ − 1
ργ .

If (2.9) is satisfied with an inequality≤, then formally (2.2) and the Gronwall
Lemma give a bound on Eη(U)(t) in terms of Eη(U)(0). Indeed, we have

ηE(U) = ρcλ

∫
1

2

[
q

ρ
+ zρ

γ−1
2

]2
(1− z2)λ+dz,

and ∂2qqηE(U) = 1
ρ , which gives

E∂2qqηE(U)G2(U) ≤ CEηE(U),

where C is a constant. Similarly, by taking g(ξ) = ξ2m, m ≥ 2, we shall see
(cf. Section 3.1.2) that if (2.9) is satisfied with an inequality ≤, then (2.2)
and the Gronwall Lemma give a bound on Eη(U)(t) in terms of Eη(U)(0).
Note however that, in contrast with the deterministic case Φ ≡ 0, and unless
Φ is compactly supported, it is not possible to obtain an L∞-estimate on
U.

We will prove rigorously uniform bounds for approximated parabolic solu-
tions in Section 3.1.2. The above formal computations are however sufficient
for the moment to introduce the following definition.

Definition 2.2 (Entropy solution). Let ρ0, u0 ∈ L∞(T1) with ρ0 ≥ 0 a.e..
A P2-measurable function

U : Ω× (0, T )× T1 → R+ × R

is said to be an entropy solution to (1.1) with initial datum U0 if
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• we have

Φ(U) ∈ L2
(
Ω× [0, T ],P, dP× dt;L2(U;L2(T1))

)
, (2.13)

where L2(U;L2(T1)) is the space of Hilbert-Schmidt operators from U
into L2(T1),

• for all m ∈ N∗,

E ess sup
0≤t≤T

Γη(U(t)) ≤ C(EΓη(U0), T,m), (2.14)

for all entropy η of the form (2.8) with g(ξ) = ξ2m,

• for any (η,H) given by (2.8)-(2.10), where g ∈ C2(R) is convex and
sub-polynomial, for all t ∈ (0, T ], for all nonnegative ϕ ∈ C1(T1), and
nonnegative α ∈ C1

c ([0, t)), we have∫ t

0

〈
η(U)(s), ϕ

〉
α′(s) +

〈
H(U)(s), ∂xϕ

〉
α(s) ds

+

∫ t

0

〈
G2(U)∂2qη(U), ϕ

〉
α(s) ds+

〈
η(U0), ϕ

〉
α(0)

+
∑
k≥1

∫ t

0

〈
σk(U)∂qη(U), ϕ

〉
α(s) dβk(s) ≥ 0, (2.15)

P-almost surely.

Remark 2.3. An entropy solution U is not defined as a process. It is indeed
difficult to specify a Banach space in which the process U(t) would evolve.
Indeed the natural bounds for q are in Lp(ν) spaces where the measure ν
depends on ρ. Actually, even if we had found such a Banach space X, we
would still have to consider entropy solutions U as equivalence classes in,
say, L1(Ω × [0, T ],P, dP × dt;X), for the simple reason that the entropy
solutions that we obtain are issued from a limiting process that does not give
convergence for every time t. Certainly, if we knew that a

U ∈ L1(Ω× [0, T ],P, dP× dt;X)

had a representative with some continuity property in time, this one may
be considered as a stochastic process in its own. However, we do not know
how to obtain such continuity properties for entropy solutions to (1.1); this
is related to the lack of techniques for proving uniqueness.

Remark 2.4. By (2.13), the stochastic integral t 7→
∫ t
0 Φ(U)(s)dW (s) is

a well defined process taking values in L2(T1) (see [DPZ92] for detailed
construction). There is a little redundancy here in the definition of entropy
solutions since, apart from the predictability, the integrability property (2.13)
will follow from (2.2) and the bounds (2.14).
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Remark 2.5. If we take (for g(ξ) = 1 and ξ respectively)

(η(U), H(U)) = (ρ, q), (η(U), H(U)) = (q,
q

ρ
+ p(ρ)),

we can deduce from (2.15) the weak formulation of (1.1).

Definition 2.6 (Martingale solution). Let ρ0, u0 ∈ L∞(T1) with ρ0 ≥ 0 a.e.
A martingale solution to (1.1) with initial datum U0 is a multiplet

(Ω,F ,P, (Ft),W,U),

where (Ω,F ,P) is a probability space, with filtration (Ft) and Wiener process
W , and U(t) defines an entropy solution to (1.1) with initial datum U0.

Theorem 2.7 (Main result). Assume 1 < γ ≤ 2 and the growth hypotheses
(2.2), (2.3) on the noise. Let ρ0, u0 ∈ L∞(T1) with ρ0 ≥ 0 a.e. Then there
exists a martingale solution to (1.1) with initial datum U0.

2.4 Organization of the paper and main problematic

The paper is organized as follows. In Section 3, we prove the existence of
martingale solutions to the parabolic approximation of Problem (1.1). This
is done by a splitting method. One difficulty here is to obtain gradient es-
timates on high moments of the solution (cf. Section 3.1.3) since no L∞

bounds are satisfied due to the stochastic perturbation. An other difficulty
is to obtain some positivity results on the density: we need quantitative es-
timates, cf. Section 3.1.4. To that purpose we use De Giorgi type estimates
in a way developed by Mellet and Vasseur in [MV09]: this is the subject
of Appendix A. Once the existence of martingale solution to the parabolic
approximation of Problem (1.1) has been proved, we want to take the limit
on the regularizing parameter to obtain a martingale solution to (1.1). As
in the deterministic case [DiP83a, DiP83b, LPS96], we use the concept of
measure-valued solution (Young measure) to achieve this. In Section 4 we
develop the tools on Young measure (in our stochastic framework) which
are required. This is taken in part (but quite different) from Section 4.3
in [FN08]. We also use the probabilistic version of Murat’s Lemma from
[FN08, Appendix A], to identify the limiting Young measure. This is the
content of Section 5, which requires two other fundamental tools: the analy-
sis of the consequences of the div-curl lemma in [LPS96, Section I.5] and an
identification result for densely defined martingales from [Hof13b, Appendix
A]. We obtain then the existence of a martingale solution to (1.1). In Sec-
tion 6 we conclude on some open questions about Problem (1.1) (uniqueness
inlaw, existence of an invariant measure). As explained above, we need at
some point some bounds from below on solutions to (1-dimensional here)
parabolic equations, which are developed in Appendix A. We also need
some regularity results, with few variations, on the (1-dimensional) heat
semi-group, and those are given in Appendix B.
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3 Parabolic Approximation

Let ε > 0. In this section, we prove the existence of a solution to the
following problem.

dUε + ∂xA(Uε)dt = ε∂2xU
εdt+ Ψ(Uε)dW (t), (3.1a)

Uε
|t=0 = Uε

0. (3.1b)

Definition 3.1 (Weak martingale solution to the parabolic approximation).
Let Uε

0 ∈ L∞(T1) and T > 0. A sextuplet
(
Ω̃, F̃ , (F̃t), P̃, W̃ , Ũε

)
is said to

be a weak martingale solution to (3.1) with initial datum U0 if
(
Ω̃, F̃

)
is a

probability space, (F̃t) a filtration, W̃ a cylindrical Wiener process and Ũε

is a predictible process with values in C([0, T ];W 1,2(T1)) satisfying: for all
test function ϕ ∈ C∞(T1;R2),

〈
Ũε(t), ϕ

〉
=
〈
Ũ0, ϕ

〉
−
∫ t

0

〈
∂xA(Ũε)− ∂2xŨε, ϕ

〉
ds

+

∫ t

0

〈
Ψ(Ũε) dW̃ (s), ϕ

〉
, t ∈ [0, T ], P̃-a.s..

Recall that Γη is defined by (2.7). We will prove the following result

Theorem 3.2 (Martingale solution to (3.1)). Assume Uε
0 ∈ W 1,∞(T1).

Then (3.1) admits a martingale solution
(
(Ω,F , (Ft),P),W,Uε

)
which sa-

tisfies the following estimates (uniform in ε)

1. some moment estimates: for all m ∈ N,

E sup
t∈[0,T ]

∫
T1

(
|uε|2m + |ρε|m(γ−1)

)
ρεdx = O(1), (3.2)

where O(1) depends on T , γ, on the constant D0 in (2.2), on m and
on EΓη(U

ε
0) for the entropy η associated to |ξ|2m,

2. some gradient estimates: for all α, β ≥ 0,

εE
∫∫

QT

(
|uε|α|ρε|γ−2 + |ρε|γ−2+β

)
|∂xρε|2dxdt = O(1), (3.3)

9



and

εE
∫∫

QT

(
|uε|αρε + |ρε|1+β

)
|∂xuε|2dxdt = O(1), (3.4)

where O(1) depends on T , γ, on the constant D0 in (2.2) and on a
finite number of quantities EΓηj (U

ε
0), for entropies ηj associated to

various power-like functions |ξ|rj , for given rj’s depending on α, β.

Besides, Uε satisfies the Itô formula

dη(Uε) + ∂xH(Uε)dt

=ε∂2xη(Uε)dt+ ∂qη(Uε)Φ(Uε)dW (t)− εη′′(Uε) · (Uε
x,U

ε
x)dt

+
1

2
|G(Uε)|2∂2qqη(Uε)dt. (3.5)

for all entropy - entropy flux couple (η,H) where η is of the form (2.8) with
a subpolynomial function g.

Note that (3.5) has the following meaning: for all test-function ϕ ∈ C∞(T1),
we have

〈η(Uε), ϕ〉(t) = 〈η(Uε
0), ϕ〉(t) +

∫ t

0
〈H(Uε(s)), ∂xϕ〉 − ε〈η(Uε(s)), ∂2xϕ〉ds

−
∫ t

0
ε〈η′′(Uε) · (Uε

x,U
ε
x), xϕ〉ds+

∑
k≥1

∫ t

0
〈∂qη(Uε)σk(U

ε), ϕ〉dW (s)

+
1

2

∫ t

0
〈|G(Uε)|2∂2qqη(Uε), ϕ〉ds,

for all t ∈ [0, T ], P-almost surely.

3.1 Solution to the parabolic problem

3.1.1 Time splitting

Assume, without loss of generality, that ε = 1. To prove the existence of a
martingale solution to (3.1), we perform a splitting in time. Let τ > 0. Set
tk = kτ , k ∈ N. We solve alternatively the deterministic, parabolic part of
(3.1) on time intervals [t2k, t2k+1) and the stochastic part of (3.1) on time
intervals [t2k+1, t2k+2), i.e.

• for t2k ≤ t < t2k+1,

∂tU
τ + 2∂xA(Uτ ) = 2∂2xU

τ in QT , (3.6a)

Uτ (t2k) = Uτ (t2k−) in T1, (3.6b)

• for t2k+1 ≤ t < t2k+2,

dUτ =
√

2Ψτ (Uτ )dW (t) in QT , (3.7a)

Uτ (t2k+1) = Uτ (t2k+1−) in T1. (3.7b)

10



Note that we took care to speed up the deterministic equation (3.6a) by a
factor 2 and the stochastic equation (3.7a) by a factor

√
2, this rescaling

procedure should yield a solution Uτ consistent with the solution Uε=1 to
(3.1) when τ → 0. In (3.7) we have also regularized the coefficient Φ into
a coefficient Φτ which, together with its derivatives, is globally Lipschitz
continuous, satisfies (2.2), (2.3) uniformly in τ and converges punctually to
Φ when τ → 0.

The deterministic problem (3.6) is solved in [LPS96]: for Lipschitz contin-
uous initial data (ρ0, q0) with an initial density ρ0 uniformly positive, say
ρ0 ≥ c0 > 0 on T1, the Problem (3.6) admits a unique solution U in the
class of functions

U ∈ L∞(0, τ,W 1,∞(T1))2 ∩ C([0, τ ];L2(T1))2; ρ ≥ µc0 on T1 × [0, τ ].

Here µ > 0 is a constant depending on γ, τ . Besides, U is smooth on
T1 × (0, τ ]. The stochastic problem (3.7) is an ordinary stochastic differen-
tial equation and does not act on the density. It follows that, starting from
an initial datum (ρ0, q0) Lipschitz continuous, with an initial density ρ0 uni-
formly positive on T1, the splitting method defines a solution Uτ on [0, tK ],
K ∈ N fixed, such that, a.s., Uτ is smooth on T1× (0, tK ], Uτ is continuous
on [0, tK ] with values in L2(T1)2 and ρτ (t) > 0 on T1 for all t ∈ [0, tK ].
In the sections that follow we prove some bounds uniform in τ on Uτ ; we
then pass to the limit [τ → 0] in Section 3.1.6 and Section 3.1.7. Note that,
unless the forcing coefficient Φ is compactly supported, we can not expect
some bounds in L∞(T1) on the solutions, such as the one satis fied when
there is no force term in the equations (in particular in the deterministic
case [LPS96]).

3.1.2 Entropy bounds

If η ∈ C(R2) is an entropy and U : T1 → R2, let

Γη(U) :=

∫
T1

η(U(x))dx

denote the total entropy of U. We also define the following indicator func-
tions

hdet =
∑
k≥0

1[t2k,t2k+1), hsto = 1− hdet, (3.8)

which will be used to localize various estimates below.

Proposition 3.3 (Entropy bounds). Let m ∈ N. The solution Uτ to (3.6)-
(3.7) satisfies the estimate

E sup
t∈[0,T ]

Γη(U
τ (t)) + 2E

∫∫
QT

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxdt = O(1), (3.9)

11



where (η,H) is the entropy-entropy flux couple given by (2.8)-(2.10) corre-
sponding to g(ξ) = ξ2m, and O(1) depends on T , γ, on the constant D0 in
(2.2), on m and EΓη(U0).

Proof. Using an entropy identity for (3.6) and Itô Formula for the evolution
by (3.7), we obtain

EΓη(U
τ (t)) + 2E

∫∫
Qt

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxds = EΓη(U

τ
0) + ERη(t),

where

Rη(t) :=

∫∫
Qt

hsto|ρτ |2(G∗)2(Uτ )∂2qqη(Uτ )dxds

is the Itô correction. If m = 0, then ∂2qqη = 0 and we obtain (3.9). To
estimate Rη in the case m ≥ 1, we compute, by (2.11),

∂2qqη(U) =
1

ρ
cλ

∫ 1

−1
g′′
(
q

ρ
+ zρ(γ−1)/2

)
(1− z2)λ+dz. (3.10)

Since g(ξ) = ξ2m, and (a + b)α ≤ 2α(aα + bα), a, b ∈ R, α = 2m − 2, we
obtain, using Young’s inequality, the bound

|∂2qqη(U)|
[
ρ2 + q2 + ργ+1

]
= O(1)

[
ρ+

q2m

ρ2m−1
+ ρm(γ−1)+1

]
. (3.11)

On the other hand, η(U) can be estimated from below: by developing the
power,

η(U) = ρcλ

∫ 1

−1

(
u+ zρ(γ−1)/2

)2m
(1− z2)λ+dz

= ρcλ

∫ 1

−1

2m∑
k=0

(
k

2m

)
u2m−kzkρk(γ−1)/2(1− z2)λ+dz

= ρcλ

∫ 1

−1

m∑
l=0

(
2l

2m

)
u2(m−l)z2lρ2l(γ−1)/2(1− z2)λ+dz

since the odd terms are zero. Retaining only the extremal terms (l = 0,m),
we obtain

q2m

ρ2m−1
+ ρm(γ−1)+1 = O(1)η(U). (3.12)

By (2.2), (3.11) and the case m = 0, we deduce that

ERη(t) = O(1)

∫ t

0
EΓη(U

τ (s))ds (3.13)

12



and, by Gronwall’s Lemma,

sup
t∈[0,T ]

EΓη(U
τ (t)) + 2E

∫∫
QT

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxdt = O(1). (3.14)

To obtain (3.9), we have to take into account the noise term: we have

0 ≤ Γη(U
τ (t)) = Γη(U

τ
0) +Mη(t) +Rη(t)−Dη(t) (3.15)

where

Mη(t) =
√

2
∑
k≥1

∫ t

0
hsto(s)〈σk(Uτ (s)), ∂qη(Uτ (s))〉L2(T1)dβk(s)

and

Dη(t) = 2

∫∫
Qt

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxds.

Since Dη ≥ 0, we have

0 ≤ Γη(U
τ (t)) ≤ Γη(U

τ
0) +Mη(t) +Rη(t).

Similarly as for (3.13), we have E sup
t∈[0,T ]

|Rη(t)| = O(1)

∫ T

0
EΓη(U

τ (s))ds,

then by (3.14), the last term Rη satisfies the bound

E sup
t∈[0,T ]

|Rη(t)| = O(1).

By the Burkholder-Davis-Gundy inequality, we also have

E sup
t∈[0,T ]

|Mη(t)| ≤ CE

∫ T

0

∑
k≥1
〈σk(Uτ (s)), ∂qη(Uτ (s))〉2L2(T1) ds

1/2

,

for a given constant C. Now σk(U) = ρσ∗k(U) and ∂qη(U) = (|u|2m−1 +

ρ(2m−1)(γ−1)/2)O(1) leads for E sup
t∈[0,T ]

|Mη(t)| to control ρ(1+u2m+ρ(γ−1)m)

using (2.2). Therefore (3.12) and (3.14) give

E sup
t∈[0,T ]

|Mη(t)| = O(1).

This concludes the proof of the proposition.
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Corollary 3.4 (Entropy bounds). Let m ∈ N. Let I be a Borel subset of
[0, T ]. The solution Uτ to (3.6)-(3.7) satisfies the estimate

E
∣∣∣∣ ∫

I

∫
T1

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxdt

∣∣∣∣2 = O(1)|I|, (3.16)

where |I| denote the Lebesgue measure of I, where η is the entropy given
by (2.8) corresponding to g(ξ) = ξ2m, and O(1) depends on T , γ, on the
constant D0 in (2.2), on m and EΓη2(U0).

Proof. We use the proof of Proposition 3.3: the identity (3.15) gives

DI
η(t) = ΓIη(U

τ
0) +M I

η (t) +RIη(t)− ΓIη(U
τ (t)),

where the superscript I indicates that we integrate on T1 × I ∩ (0, t) now,
instead of Qt = T1× (0, t). Taking square, then expectancy we easily obtain

E|Dη(T )|2 = O(1)|I|+ E|M I
η (T )|2.

By the Itô isometry, we also have E|Mη(T )|2 = O(1)|I|.

To convert the entropy estimates of Proposition 3.3 into moment estimates,
it is practical to work with the (ρ, u)-variables. If η is as in Proposition 3.3,
then η(U) satisfies the converse inequality from (3.12):

η(U) = O(1)

(
q2m

ρ2m−1
+ ρm(γ−1)+1

)
. (3.17)

In particular, we have the following corollary.

Corollary 3.5 (Bounds on the moments). The solution Uτ to (3.6)-(3.7)
satisfies:

E sup
t∈[0,T ]

∫
T1

(
|uτ |2m + |ρτ |m(γ−1)

)
ρτdx = O(1), (3.18)

for all m ∈ N, where O(1) depends on T , γ, on the constant D0 in (2.2), on
m and on EΓη(U0) for the entropy η associated to |ξ|2m.

If we introduce the measure

µτt : ϕ 7→
∫
T1

ϕ(x)ρτ (x, t)dx,

(which depend on the solution), we thus obtain estimates on

E
∫
T1

|uτ (x, t)|αdµτt (x) and E
∫
T1

|ρτ (x, t)|βdµτt (x),

for all α, β ≥ 0. It is then straightforward, using Young’s and Hölder’s
inequality to obtain some bounds on the moments of the entropy and entropy
flux:
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Proposition 3.6 (Bounds on the moments of the entropy). The solution
Uτ to (3.6)-(3.7) satisfies the estimate

E sup
t∈[0,T ]

∫
T1

[|η(Uτ (t))|p + |H(Uτ (t))|p] dx = O(1), (3.19)

for all m ∈ N, p ≥ 1, where (η,H) is the entropy-entropy flux couple given
by (2.8)-(2.10) corresponding to g(ξ) = ξ2m, and O(1) depends on T , γ, on
the constant D0 in (2.2), on m, p and EΓη(U0).

3.1.3 Gradient estimates

In Proposition 3.3 above, we have obtained an estimate on Uτ
x. In the case

where η is the energy (this corresponds to g(ξ) = 1
2ξ

2), some computations
show that

η′′(U) · (Ux,Ux) = κγ|ρ|γ−2|ρx|2 + ρ|ux|2. (3.20)

More generally, we have the following weighted estimates.

Proposition 3.7 (Gradient bounds). Let g ∈ C2(R) be a convex, sub-po-
lynomial function and let η be given by (2.8). Then, the solution Uτ to
(3.6)-(3.7) satisfies the estimate

E
∫∫

QT

hdet(t)G
[2](ρτ , uτ )

[
θ2|ρτ |γ−2|∂xρτ |2 + ρτ |∂xuτ |2

]
dxdt

+E
∫∫

QT

hdet(t)G
[1](ρτ , uτ ) 2θ|ρτ |

γ−2
2 |∂xρτ | · |ρτ |1/2∂xuτdxdt = O(1),

(3.21)

where

G[2](ρ, u) = cλ

∫ 1

−1
g′′(u+ zρ

γ−1
2 )(1− z2)λ+dz,

G[1](ρ, u) = cλ

∫ 1

−1
zg′′(u+ zρ

γ−1
2 )(1− z2)λ+dz,

and O(1) depends on T , γ, on the constant D0 in (2.2) and EΓη(U0).

Proof. We introduce the probability measure

dmλ(z) = cλ(1− z2)λ+dz

and the 2× 2 matrix

S =

(
1 0
u 1

)
,

which satisfies

∂xU = SW, W :=

(
∂xρ
ρ∂xu

)
. (3.22)
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By (3.9), we then have∫ T

0
E
∫
T1

hdet(t) 〈S∗η′′(Uτ )SW,W〉dxdt = O(1), (3.23)

where 〈·, ·〉 is the canonical scalar product on R2 and S∗ is the adjoint of S.
We compute (recall that θ = γ−1

2 )

η′′(U) =
1

ρ

∫
R

[
A(z)g′

(
u+ zρθ

)
+B(z)g′′

(
u+ zρθ

)]
dmλ(z),

where

A(z) =

(
γ2−1
4 zρθ 0

0 0

)
, B(z) =

((
−u+ θzρθ

)2 −u+ θzρθ

−u+ θzρθ 1

)
.

In particular

S∗AS(z) =

(
γ2−1
4 zρθ 0

0 0

)
, S∗BS(z) =

(
θ2z2ρ2θ θzρθ

θzρθ 1

)
,

and (3.22)-(3.23) give

E
∫∫

QT

hdet(t)
(
I|∂xρτ |2 + J∂xρ

τ · |ρτ |1/2∂xuτ + Kρτ |∂xuτ |2
)
dxdt = O(1),

(3.24)
where

I = |ρτ |2θ−1
∫
R
θ2z2g′′

(
uτ + z|ρτ |θ

)
dmλ(z)

+ |ρτ |θ−1
∫
R

γ2 − 1

4
zg′
(
uτ + z|ρτ |θ

)
dmλ(z),

and

J =2|ρτ |θ−
1
2

∫
R
θzg′′

(
uτ + z|ρτ |θ

)
dmλ(z),

K =

∫
R
g′′
(
|uτ |+ z|ρτ |θ

)
dmλ(z).

We observe that 2zdmλ(z) = − cλ
λ+1d(1 − z2)λ+1

+ . By integration by parts,
the second term in I can therefore be written

1

λ+ 1
|ρτ |2θ−1

∫
R

γ2 − 1

8
(1− z2)g′′

(
u+ z|ρτ |

γ−1
2

)
dmλ(z).

Since γ2−1
8

1
λ+1 = θ2, we have

I = |ρτ |2θ−1
∫
R
θ2g′′

(
uτ + z|ρτ |

γ−1
2

)
dmλ(z).

This gives (3.21).
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We apply (3.21) with g(ξ) := |ξ|2m+2 and η given by (2.8). Then

|u|2m + ρm(γ−1) = Om(1)G[2](ρ, u)

and since G[1] is dominated by G[2], our estimate (3.21) gives

E
∫∫

QT

hdet(t)
[
|uτ |2m + |ρτ |m(γ−1)

] [
|ρτ |γ−2|∂xρτ |2 + ρτ |∂xuτ |2

]
dxdt

= O(1).

By letting m vary, we obtain the following

Corollary 3.8. The solution Uτ to (3.6)-(3.7) satisfies the estimates

E
∫∫

QT

hdet(t)
(
|uτ |α|ρτ |γ−2 + |ρτ |γ−2+β

)
|∂xρτ |2dxdt = O(1), (3.25)

and

E
∫∫

QT

hdet(t)
(
|uτ |αρτ + |ρτ |1+β

)
|∂xuτ |2dxdt = O(1), (3.26)

for all α, β ≥ 0, where O(1) depends on T , γ, on the constant D0 in (2.2)
and on a finite number of quantities EΓηj (U0), for entropies ηj associated
to various power-like functions |ξ|rj , for given rj’s depending on α, β.

3.1.4 Positivity of the density

Proposition 3.9 (Positivity). Let Uτ be the solution to (3.6)-(3.7) with
initial datum U0 = (ρ0, q0) and assume that ρ0 is uniformly positive: there
exists c0 > 0 such that ρ0 ≥ c0 a.e. on T1. Then, a.s., there exists c > 0
depending on c0, T and ∫∫

QT

hdet(t)ρ
τ |∂xuτ |2dxdt

only, such that ρτ ≥ c a.e. in T1 × [0, T ].

Proof. We apply the Corollary A.3 to Theorem A.1 from Appendix A by
considering specifically the equation satisfied by ρτ . Note that we have
then to modify slightly the argument of the proof to Theorem A.1 since the
equation satisfied by ρτ is

ρτt + 2hdet(t) [(ρτuτ )x − ρτxx] = 0,

while Equation (A.2) has no such factor hdet(t). This requires however only
minor adaptations (it is clear that, when hdet vanishes, the uniformization
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effect due to the evolution by the heat semi-group is but preserved). Specif-
ically, replace Uk in (A.4) by

Ũk := sup
τk≤t≤T

∫
T1

|wk|2dx+ 4

∫∫
Qτk,T

hdet(t)|∂xwk|2dxdt,

also replace the estimate (A.10) by the estimate

‖hdetwk‖2L6(Qτk−1,T
) ≤ Ũk,

and so on; we leave the details to the reader.

3.1.5 Bounds on higher derivatives of U τ

Assume, by adjusting τ if necessary, that T = t2K , K ∈ N∗. Let R > 0 and
let us introduce the stopping time TR defined as the infimum of the times
t2k such that

sup
t∈[0,t2k]

Γη(U
τ (t)) + 2

∫∫
Qt2k

hdetη
′′(Uτ ) · (Uτ

x,U
τ
x)dxdt ≤ R, (3.27)

where the infimum over the empty set is taken to be t2K = T by definition.
Here we take for η the energy, i.e. the entropy associated to g(ξ) = 1

2 |ξ|
2.

In that case, we have by (3.20) the control∫∫
QTR

hdet(t)ρ
τ |∂xuτ |2dxdt ≤ R.

Let then Uτ
R denote the process deduced from Uτ by following a determinist

evolution after the time TR: Uτ
R is defined like Uτ by (3.6) where Φτ is

replaced with Φτ1t<TR . Since Γη(U
τ (TR)) ≤ R, we can adapt the proof of

Proposition 3.3 (it is now purely deterministic) to obtain∫ T

TR

∫
T1

hdet(t)ρ
τ
R|∂xuτR|2dxdt ≤M(R),

where the deterministic constant M(R) depends on T , γ, D0 and R only.
In particular, we have∫∫

QT

hdet(t)ρ
τ
R|∂xuτR|2dxdt ≤M(R) +R.

Proposition 3.9 in the previous section then asserts that there exists c(R) > 0
depending on c0, T and R such that

ρτR ≥ c(R) a.e. on T1 × [0, T ]. (3.28)

In this section we will use this uniform estimate (3.28) and the entropy
estimates from Section 3.1.2 to obtain some bounds independent on τ on the
higher derivatives of Uτ

R. Note in particular that the proof of Corollary 3.5
and Proposition 3.7 apply readily to Uτ

R as well so that we have the following
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Remark 3.10. The estimates (3.18), (3.25), (3.26) are satisfied by Uτ
R.

We will prove the following result.

Proposition 3.11 (Bounds on higher derivatives). Let U0 = (ρ0, q0) ∈
W 1,∞(T1)2, U0 deterministic. Let Uτ be the solution to (3.6)-(3.7) with
initial datum U0 = (ρ0, q0). Assume that ρ0 ≥ c0 a.e. on T1 where c0 > 0.
Let p > 2 and α ∈ (0, 1/2). Then for all R > 0, we have

E‖ρτR‖Cα([0,T ];Lp(T1)),E‖ρτR‖Lp(0,T ;W 3/2,p(T1)) = O(1), (3.29)

and
E‖uτR‖Cα([0,T ];Lp(T1)),E‖uτR‖Lp(0,T ;W 3/2,p(T1)) = O(1), (3.30)

where O(1) depends on R, on c0, on p, α, γ, T , on the constants D0 and
D1 in (2.2), (2.3) and on the moments of U0 and ∂xU0 up to a given order
depending on p and α.

Proof. For 0 ≤ s < t ≤ T , let Qs,t denote the cylinder T1 × (s, t). We
work on the variables ρ, u = q/ρ and rewrite (3.6) as a system of two heat
equations with source terms in the domain Qt2k,t2k+1

:(
1

2
∂t − ∂2x

)
ρτ = −uτ∂xρτ − ρτ∂xuτ =: f τ1 , (3.31)

and(
1

2
∂t − ∂2x

)
uτ = −uτ∂xuτ − κγ|ρτ |γ−2∂xρτ + 2

∂xρ
τ

ρτ
∂xu

τ =: f τ2 . (3.32)

Let us extend f τ1 and f τ2 by 0 in the strips Qt2k+1,t2k+2
, and set

Fτ =

(
f τ1
f τ2

)
,

and let S(t) denote the semi-group associated to −∂2x on Lp(T1). For f ∈
L1(QT ), z0 ∈ L1(T1), the solution to the equation(

1

2
∂t − ∂2x

)
z(x, t) = f(x, t), x ∈ T1, t > 0,

with initial datum z0 is

z(t) = S(2t)z0 + 2

∫ t

0
S(2(t− s))f(s)ds.

By iteration, it follows that Uτ is given by

Uτ (t) = S(t])U
τ (0) +

∫ t]

0
S(t] − s)Fτ (s[)ds

+
∑
k≥1

√
2

∫ t]

0
S(t] − s])hsto(s)ψk(Uτ (s))dβk(s),
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where we have defined

t] = min(2t− t2n, t2n+2), t[ =
t+ t2n

2
, t2n ≤ t < t2n+2.

For the “stopped” process Uτ
R, we have, similarly, a decomposition

Uτ
R = Uτ

0,R + Uτ
det,R + Uτ

sto,R, (3.33)

where

Uτ
0,R(t) = S(t])U

τ (0),

Uτ
det,R(t) =

∫ t]

0
S(t] − s)Fτ

R(s[)ds,

Uτ
sto,R(t) =

∑
k≥1

√
2

∫ t]∧TR

0
S(t] − s])hsto(s)ψk(Uτ (s))dβk(s),

and where Fτ
R is defined by similarity with Fτ , i.e.

Fτ
R =

f τ1,R
f τ2,R

 =

 −uτR∂xρτR − ρτR∂xuτR

−uτR∂xuτR − κγ|ρτR|γ−2∂xρτR + 2
∂xρτR
ρτR

∂xu
τ
R

 .

Higher derivatives in x: to obtain some estimates on the higher deriva-
tives in x of ρτR, uτR, we need to use a bootstrap method. Actually we will use
improved estimates in Equation (3.33) three times. For a better readibility
of this part of the proof, we will adopt the following convention of notation:
a constant CR, which may vary from lines to lines, is a constant depending
on T , γ, on the constant D0 in (2.2) and on R. A number ε > 0 being given,
we use the notation ε for quantities small with ε but possibly different from
ε. Therefore in what follows, Lr−ε may well be actually Lr−

ε
10 . Also, Lmε

is Lm for a m (quite high) depending on ε, which we do not specify and
again, the value of mε may vary from line to line. Eventually, we denote by
Mε(U0) a constant depending only on the moments∫

T1

(umε0 + ρ
mε(γ−1)
0 )ρ0dx,

∫
T1

|∂xu0|mε + |∂xρ0|mεdx,

where the exponent mε depends on ε.

We begin by showing that

‖∂xρτR‖L6−ε(QT ) ≤Mε(U0). (3.34)

Rewriting

f τ1,R = −|ρτR|
2−γ
2 · |ρτR|

γ−2
2 uτR∂xρ

τ
R − ρτR∂xuτR,
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we deduce from Remark 3.10, from the moment estimate (3.18), and from
the gradient estimates (3.25), (3.26) and from the Hölder inequality that

‖f τ1,R‖L2−ε(QT ) ≤Mε(U0).

By (B.7) this implies ‖∂xρτdet,R‖L6−ε(QT ) ≤Mε(U0). We have besides ρτsto,R =
0 and thus (3.34).
Then, in the equation satisfied by uτR, we use the expression

f τ2,R = − 1

|ρτR|1/2
· |ρτR|1/2uτR∂xuτR − κγ

1

|ρτR|
2−γ
2

· |ρτR|
γ−2
2 ∂xρ

τ
R

+ 2
1

|ρτR|2
· ∂xρτR · ρτR∂xuτR.

We deduce from Remark 3.10, from (3.18), (3.25), (3.26), (3.34), from (3.28)
and from the Hölder inequality that ‖f τ2,R‖L3/2−ε(QT )

≤ CRMε(U0), and thus,
by (B.7),

‖∂xuτdet,R‖3−εL3−ε(QT )
≤ CRMε(U0). (3.35)

To get a bound on uτsto,R, we use the following lemma.

Lemma 3.12. Let q ≥ 2. For k ∈ N∗, let hk ∈ L2(Ω × (0, T );Lq(T1)) be
some predictible processes such that

H :=

(∑
k≥1
|hk|2

)1/2

(3.36)

satisfies H ∈ Lq(Ω× (0, T )× T1). Then we have the estimate

E
∥∥∥∥∑
k≥1

∫ t]

0
S(t]−s])hk(s)dβk(s)

∥∥∥∥q
Lq(T1)

≤ CBDG(q)t
q−1
2

] E‖H‖qLq(Qt] ), (3.37)

for a given constant CBDG(q) depending on q only which is bounded for
bounded values of q ∈ [2,+∞).

Proof of Lemma 3.12: we apply the Burkholder-Davis-Gundy inequality in
the 2-smooth Banach space Lq(T1) to obtain

E sup
0≤σ≤t]

∥∥∥∥∑
k≥1

∫ σ

0
S(t] − s])hk(s)dβk(s)

∥∥∥∥q
Lq(T1)

≤ CBDG(q)E
(∫ t]

0
‖S(t] − s])H(s)‖2L2(T1)ds

)q/2
.

Since S(t) is a contraction from L2(T1) into L2(T1), we obtain (3.37) by
Jensen’s inequality.
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We apply Lemma 3.12 with

hk(t) = ∂x
(
hsto(t)σk(U

τ
R(t))

)
1t<TR

and q = 3 − ε. By the growth hypothesis (2.3) and (3.28) we obtain, for
T ≥ 1,

E‖∂xuτsto,R(t)‖3−ε
L3−ε(T1)

≤ CTCR
(
E‖∂xuτR‖3−εL3−ε(Qt] )

+ E‖∂xρτR‖3−εL3−ε(Qt] )

)
.

(3.38)
Here C := sup2≤q≤3CBDG(q) is an absolute constant.
From the identity (3.33), from (3.34) and the estimates (3.35), (3.38) and
the Gronwall Lemma, we obtain

E‖∂xuτR‖3−εL3−ε(QT )
≤ CRMε(U0). (3.39)

Now, Remark 3.10, the estimates (3.18), (3.28), (3.34), (3.39) and the iden-
tity

f τ1,R = −|ρτR|−
1
6 · |ρτR|

1
6uτR · ∂xρτR − ρτR · ∂xuτR,

give
E‖f τ1,R‖3−εL3−ε(QT )

≤ CRMε(U0).

Notice that for example, a bound for the term ρτR · ∂xuτR in Lp is given by
‖ρτR‖Lm‖∂xuτR‖Lq with q = 3 − ε, m = (3 − ε)(3 − 2ε)/ε, and the obtained
space is Lp with p = 3 − 2ε which is also denoting by L3−ε. By (B.7) and
(B.4b), it follows that

E‖∂xρτR‖
mε
Lmε (QT )

≤ CRMε(U0). (3.40)

Eventually, it follows from the decomposition

f τ2,R = − 1

|ρτR|1/(2m)
· |ρτR|1/(2m)uτR · ∂xuτR−κγ|ρτR|γ−2 · ∂xρτR

+ 2
1

|ρτR|
· ∂xρτR · ∂xuτR,

from Remark 3.10 and from estimates (3.18), (3.28), (3.39) and (3.40) that

E‖f τ2,R‖3−εL3−ε(QT )
≤ CRMε(U0),

which gives by (B.4a) the estimate

E‖∂xuτdet,R‖
mε
Lmε (QT )

≤ CRMε(U0). (3.41)

We also apply Lemma 3.12 to the martingale part in (3.33). Let m > 3 be
fixed (quite large). If 2 ≤ mε ≤ m, we have

E‖∂xuτsto,R(t)‖mε
Lmε (T1)

≤ C̃TE‖∂xuτR‖mεLmε (Qt] ), (3.42)
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where C̃ = sup2≤q≤mCBDG(q). By Gronwall Lemma it follows that

E‖∂xuτR‖mεLmε (QT ) ≤ CRMε(U0). (3.43)

Now the “near L∞” estimates (3.40), (3.43) together with the positivity
estimate (3.28) give f τ2,R ∈ Lp(QT ) where p is arbitrary. We use the estimate∥∥∥∥|D|3/2 ∫ t]

0
S(t]− s)f(s[)ds

∥∥∥∥
Lq(QT )

≤ C‖f̃‖Lp(QT ) if
1

q
>

1

p
− 1

6
, (3.44)

which can be derived similarly to (B.7) by using the estimate

‖|D|3/2S(t)‖Lpx→Lqx ≤ Ct
− 1

2

(
1
p
− 1
q

)
− 3

4 . (3.45)

Here, |D| denotes the square-root of the Laplacian: D = (−∂2x)1/2. We also
deduce from (3.45) that

‖|D|3/2S(t])u0‖Lp(QT ) ≤ C‖u0‖Lp(QT ).

Therefore (3.33) and (3.44) give

E‖|D|3/2(uτ0,R + uτdet,R)‖pLp(QT ) = O(1). (3.46)

By (2.3) and by interpolation, we have

‖H‖Lp(QT ) ≤ CR(1 + ‖|D|3/2uτR‖Lp(QT )),

where H is defined by (3.36) with hk = |D3/2|
(
hsto(t)σk(U

τ
R(t))

)
1t<TR . By

Lemma 3.12, we deduce that

E
∥∥|D|3/2uτsto,R∥∥pLp(T1)

≤ C(1 + E‖|D|3/2uτR‖
p
Lp(QT )

).

By the Gronwall Lemma and (3.46) it follows that E‖uτR‖Lp(0,T ;W 3/2,p(T1)) =
O(1). To obtain time estimates on uτR now, we use the Kolmogorov criterion
and the a priori bounds of Section 3.1.2. Let p > 2. Set

hk(s) = hsto(s)ρ
τ
R(s)σk(U

τ
R(s)).

By the Burkholder-Davis-Gundy inequality in the 2-smooth Banach space
Lp(T1) we have, for 0 ≤ t ≤ t′ ≤ T ,

E
∥∥∥∥∑
k≥1

∫ t′]

t]

S(t′] − s])hk(s)dβk(s)
∥∥∥∥p
Lp(T1)

≤ CBDG(p)E
(∫ t′]

t]

‖S(t′] − s])H(s)‖2L2(T1)dxds

)p/2
,
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where H is defined as in (3.36). Since S(t) is a contraction from L2(T1) into
L2(T1), (2.2), Remark 3.10 and the moment estimate (3.18) show that

E

∥∥∥∥∑
k≥1

∫ t′]

t]

S(t′] − s])hk(s)dβk(s)
∥∥∥∥p
Lp(T1)

≤ CRMε(U0)|t′] − t]|p/2

≤ CRMε(U0)|t′ − t|p/2.

The Kolmogorov continuity Theorem ([DPZ92], Theorem 3.3) therefore gives

E‖uτsto,R‖Cα([0,T ];Lp(T1)) = O(1),

where 0 < α < 1
2 −

1
p . We can use a similar argument to deal with the term

uτdet,R: we have

E
∥∥∥∥∫ t′]

t]

S(t′] − s])f τ2,R(s)dβk(s)

∥∥∥∥p
Lp(T1)

≤ CRMε(U0)|t′] − t]|p−1,

and thus
E‖uτdet,R‖Cα([0,T ];Lp(T1)) = O(1),

where 0 < α < 1− 2
p . By the identity

S(t′])u0 − S(t])u0 =

∫ t′]

t]

∂xS(t)∂xu0dt

and (B.3), we obtain also ‖uτ0,R‖C1/2([0,T ];Lp(T1)) = O(1). This concludes the
proof of (3.30). The proof of (3.29) is similar and simpler since ρτsto,R = 0.

3.1.6 Compactness argument

For k ∈ N∗, we introduce the independent processes

Xk(t) =
√

2

∫ t

0
hsto(s)dβk(s)

and set W τ (t) =
∑

k≥1Xk(t)ek. Then Xk(t) − βk(t) is a centred Gaussian
process with variance ∫ t

0
|
√

2hsto(s)− 1|2ds = O(τ),

and therefore, if η > 0

P(‖W τ (t)−W (t)‖U0 > η) ≤ sup
k≥1

P(|Xk(t)− βk(t)| >
√

6

π
η) ≤ C τ

η
. (3.47)
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Let us fix p > 2. Define the path space X = XU ×XW , where

XU =
[
C
(
[0, T ];W 1,p(T1)

)]2
, XW = C

(
[0, T ];U0

)
.

Let us denote by µτU the law of Uτ on XU and by µW τ the law of W τ on
XW . Their joint law on X is then denoted by µτ .

Proposition 3.13. The set {µτ ; τ ∈ (0, 1)} is tight and therefore relatively
weakly compact in X .

Proof. First, we prove tightness of {µτU; τ ∈ (0, 1)} in XU. Let α ∈ (0, 1/2)
and M > 0. Then

KM :=
{
U ∈ XU; ‖U‖Cα([0,T ];Lp(T1)) + ‖U‖Lp([0,T ];W 3/2,p(T1)) ≤M

}
is compact in XU. Recall that the stopping time TR is defined by (3.27). By
the Markov inequality and the entropy estimate (3.9), we have

P(TR < T ) ≤ C

R
,

where the constant C depends on γ, T , D0 and on the moments of U0 and
∂xU0 up to a given order. We have therefore, by Proposition 3.11 and the
Markov inequality,

P(Uτ /∈ KM ) ≤ C

R
+ P(Uτ

R /∈ KM ) ≤ C

R
+
CR
M

,

by possibly augmenting the constant C. Therefore, given η > 0 there exists
R,M > 0 such that

µτU(KM ) ≥ 1− η.

Besides, the law µW τ is tight by (3.47). Consequently the set of the joint
laws {µτ ; τ ∈ (0, 1)} is tight. By Prokhorov’s theorem, it is relatively weakly
compact.

Let now (τn) be a sequence decreasing to 0. For simplicity we will keep the
notation τ for (τn) and eventual subsequences. Let µ be an adherence value,
for the weak convergence, of µτ . By the Skorokhod Theorem we can assume
a.e. convergence of the random variables by changing the probability space.

Proposition 3.14. There exists a probability space (Ω̃, F̃ , P̃) with a sequence
of X -valued random variables (Ũτ , W̃ τ ), τ ∈ (0, 1), and (Ũ, W̃ ) such that

1. the laws of (Ũτ , W̃ τ ) and (Ũ, W̃ ) under P̃ coincide with µτ and µ
respectively,

2. (Ũτ , W̃ τ ) converges P̃-almost surely to (Ũ, W̃ ) in the topology of X .
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3.1.7 Identification of the limit

Our aim in this section is to identify the limit (Ũ, W̃ ) given by Proposi-
tion 3.14. Let (F̃t) be the P̃-augmented canonical filtration of the process
(Ũ, W̃ ), i.e.

F̃t = σ
(
σ
(
%tŨ, %tW̃

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ],

where %t is the operator of restriction to the interval [0, t] defined as follows:
if E is a Banach space and t ∈ [0, T ], then

%t : C([0, T ];E) −→ C([0, t];E)

k 7−→ k|[0,t].
(3.48)

Clearly, %t is a continuous mapping. In this section we will prove the fol-
lowing result, where Ũε denotes the solution with the scaling ε for which we
have the same construction of the objects.

Proposition 3.15 (Martingale solution to (3.1)). The sextuplet(
Ω̃, F̃ , (F̃t), P̃, W̃ , Ũε

)
is a weak martingale solution to (3.1).

The proof of Proposition 3.15 uses a method of construction of martingale
solutions of SPDEs that avoids in part the use of representation Theorem.
This technique has been developed in Ondreját [Ond10], Brzeźniak, On-
dreját [BO11] and used in particular in Hofmanová, Seidler [HS12] and in
[Hof13b, DHV13].

Recall that A (the flux of Equation (1.1)) is defined by (2.4). Let us define
for all t ∈ [0, T ] and a test function ϕ = (ϕ1, ϕ2) ∈ C∞(T1;R2),

M τ (t) =
〈
Uτ (t), ϕ

〉
−
〈
U0, ϕ

〉
+ 2

∫ t

0
hdet(s)

〈
∂xA(Uτ )− ∂2xUτ , ϕ

〉
ds,

M̃ τ (t) =
〈
Ũτ (t), ϕ

〉
−
〈
Ũ0, ϕ

〉
+ 2

∫ t

0
hdet(s)

〈
∂xA(Ũτ )− ∂2xŨτ , ϕ

〉
ds,

M̃(t) =
〈
Ũ(t), ϕ

〉
−
〈
Ũ0, ϕ

〉
+

∫ t

0

〈
∂xA(Ũ)− ∂2xŨ, ϕ

〉
ds.

In what follows, we fix some times s, t ∈ [0, T ], s ≤ t, and a continuous
function

γ : C
(
[0, s];Lp(T1)

)
× C

(
[0, s];U0

)
−→ [0, 1].

The proof of Proposition 3.15 will be a consequence of the following two
lemmas.

26



Lemma 3.16. The process W̃ is a (F̃t)-cylindrical Wiener process, i.e.
there exists a collection of mutually independent real-valued (F̃t)-Wiener
processes {β̃k}k≥1 such that W̃ =

∑
k≥1 β̃kek.

Proof. By (3.47), W̃ is a U0-valued cylindrical Wiener process and is (F̃t)-
adapted. According to the Lévy martingale characterization theorem, it
remains to show that it is also a (F̃t)-martingale. We have

F̃ γ
(
%sŨ

τ , %sW̃
τ
)[
W̃ τ (t)−W̃ τ (s)

]
= F γ

(
%sU

τ , %sW
τ
)[
W τ (t)−W τ (s)

]
= 0

since W τ is a martingale and the laws of (Ũτ , W̃ τ ) and (Uτ ,W τ ) coincide.
Next, the uniform estimate

sup
τ∈(0,1)

F̃‖W̃ τ (t)‖2U0
= sup

τ∈(0,1)
F‖W τ (t)‖2U0

<∞

and the Vitali convergence theorem yield

F̃ γ
(
%sŨ, %sW̃

)[
W̃ (t)− W̃ (s)

]
= 0

which finishes the proof.

Lemma 3.17. The processes

M̃, M̃2 −
∑
k≥1

∫ ·
0

〈
ψk(Ũ), ϕ

〉2
dr, M̃ β̃k −

∫ ·
0

〈
ψk(Ũ), ϕ

〉
dr

are (F̃t)-martingales.

Proof. Here, we use the same approach as in the previous lemma. Let us
denote by X̃τ

k , k ≥ 1 the real-valued Wiener processes corresponding to W̃ τ ,
that is W̃ τ =

∑
k≥1 X̃

τ
k ek. For all τ ∈ (0, 1), the process

M τ =
∑
k≥1

∫ ·
0

〈
στk(Uτ ), ϕ2

〉
dXτ

k (r)

is a square integrable (Ft)-martingale and therefore

(M τ )2 −
∑
k≥1

∫ ·
0

〈
στk(Uτ ), ϕ2

〉2
d〈〈Xτ 〉〉(r),

and

M τβk −
∫ ·
0

〈
στk(Uτ ), ϕ2

〉
d〈〈Xτ 〉〉(r)

are (Ft)-martingales, where we have denoted by

〈〈Xτ 〉〉(t) = 2

∫ t

0
hsto(r)dr
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the quadratic variation of Xτ
k . Besides, it follows from the equality of laws

that

Ẽ γ
(
%sŨ

τ , %sW̃
τ
)[
M̃ τ (t)− M̃ τ (s)

]
= E γ

(
%sU

τ , %sW
τ
)[
M τ (t)−M τ (s)

]
= 0,

(3.49)

Ẽ γ
(
%sŨ

τ , %sW̃
τ
)[

(M̃ τ )2(t)− (M̃ τ )2(s)−
∑
k≥1

∫ t

s

〈
στk(Ũτ ), ϕ2

〉2
d〈〈X̃τ 〉〉(r)

]

= E γ
(
%sU

τ , %sW
τ
)[

(M τ )2(t)− (M τ )2(s)

−
∑
k≥1

∫ t

s

〈
στk(Uτ ), ϕ2

〉2
d〈〈Xτ 〉〉(r)

]
= 0,

(3.50)

Ẽ γ
(
%sŨ

τ , %sW̃
τ
)[
M̃ τ (t)X̃τ

k (t)− M̃ τ (s)X̃τ
k (s)−

∫ t

s

〈
στk(Ũτ ), ϕ2

〉
〈〈X̃τ 〉〉(r)

]
= E γ

(
%sU

τ , %sW
τ
)[
M τ (t)Xτ

k (t)−M τ (s)Xτ
k (s)

−
∫ t

s

〈
στk(Uτ ), ϕ2

〉
d〈〈Xτ 〉〉(r)

]
= 0.

(3.51)

We can pass to the limit in (3.49)-(3.50)-(3.51) due to the moment estimates
(3.18) and the Vitali convergence theorem. We obtain

Ẽ γ
(
%sŨ, %sW̃

)[
M̃(t)− M̃(s)

]
= 0,

Ẽ γ
(
%sŨ, %sW̃

)[
M̃2(t)− M̃2(s)−

∑
k≥1

∫ t

s

〈
σk(Ũ), ϕ2

〉2
dr

]
= 0,

Ẽ γ
(
%sŨ, %sW̃

)[
M̃(t)β̃k(t)− M̃(s)β̃k(s)−

∫ t

s

〈
σk(Ũ), ϕ2

〉
dr

]
= 0,

which gives the (F̃t)-martingale property.

Proof of Proposition 3.15. Once the above lemmas are established, we infer
that 〈〈

M̃ −
∑
k≥1

∫ ·
0

〈
σk(Ũ) dβ̃k, ϕ2

〉〉〉
= 0,
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where 〈〈 · 〉〉 denotes the quadratic variation process. Accordingly, we have

〈
Ũ(t), ϕ

〉
=
〈
Ũ0, ϕ

〉
−
∫ t

0

〈
∂xA(Ũ)− ∂2xŨ, ϕ

〉
ds

+
∑
k≥1

∫ t

0

〈
σk(Ũ) dβ̃k, ϕ2

〉
, t ∈ [0, T ], P̃-a.s.,

and the proof is complete.

Proof of Theorem 3.2. We have just obtained the existence of a martingale
solution (

Ω̃, F̃ , (F̃t), P̃, W̃ , Ũε
)

to (3.1). By passing to the limit on the approximation Uτ , taking care to
the occurrence of the factor ε now, we also obtain the various estimates of
Theorem 3.2 and the Itô formula (3.5).

Remark 3.18. Let m ∈ N. Let I be a Borel subset of [0, T ]. By (3.16) we
obtain the following estimate for Ũε:

E
∣∣∣∣ ∫

I

∫
T1

η′′(Ũε) · (Ũε
x, Ũ

ε
x)dxdt

∣∣∣∣2 = O(1)|I|, (3.52)

where |I| denotes the Lebesgue measure of I, where η is the entropy given
by (2.8) corresponding to g(ξ) = ξ2m, and O(1) depends on T , γ, on the
constant D0 in (2.2), on m and EΓη2(Uε

0).

4 Probabilistic Young measures

Let
(
Ω,F , (Ft),P,W,Uε

)
be a martingale solution to (3.1). Our aim is to

prove the convergence of Uε. The standard tool for this is the notion of
measure-valued solution (introduced by Di Perna, [DiP83a]). In this section
we give some precisions about it in our context of random solutions. More
precisely, we know that, almost surely, (Uε) defines a Young measure νε on
R+ × R by the formula

〈νεx,t, ϕ〉 := 〈δUε(x,t), ϕ〉 = ϕ(Uε(x, t)), ∀ϕ ∈ Cb(R+ × R). (4.1)

Our aim is to show that νε ⇀ ν (in the sense to be specified), where ν
has some specific properties. To that purpose, we will use the probabilistic
compensated compactness method developed in the Appendix of [FN08]
and some results on the convergence of probabilistic Young measures that
we introduce here.
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4.1 Young measures embedded in a space of Probability mea-
sures

Let (Q,A, λ) be a finite measure space. Without loss of generality, we will
assume λ(Q) = 1. A Young measure on Q (with state space E) is a mea-
surable map Q → P1(E), where E is a topological space endowed with the
σ-algebra of Borel sets, P1(E) is the set of probability measures on E, itself
endowed with the σ-algebra of Borel sets corresponding to the topology
defined by the weak2 convergence of measures, i.e. µn → µ in P1(E) if

〈µn, ϕ〉 → 〈µ, ϕ〉, ∀ϕ ∈ Cb(E).

As in (4.1), any measurable map w : Q → E can be viewed as a Young
measure ν defined by

〈νz, ϕ〉 = 〈δw(z), ϕ〉 = ϕ(w(z)), ∀ϕ ∈ Cb(E), ∀z ∈ Q.

A Young measure ν on Q can itself be seen as a probability measure on
Q× E defined by

〈ν, ψ〉 =

∫
Q

∫
E
ψ(p, z)dνz(p)dλ(z), ∀ψ ∈ Cb(E ×Q).

We then have, for all ψ ∈ Cb(Q) (ψ independent on p ∈ E), 〈ν, ψ〉 = 〈λ, ψ〉,
that is to say

π∗ν = λ, (4.2)

where π is the projection E ×Q→ Q and the push-forward of ν by π is de-
fined by π∗ν(A) = ν(π−1(A)), for all Borel subset A of Q. Assume now that
Q is a subset of Rs and E is a closed subset of Rm, m, s ∈ N∗, and, conversely,
let µ is a probability measure on E × Q such that π∗µ = λ: by the Slicing
Theorem (cf. Attouch, Buttazzo, Michaille [ABM06, Theorem 4.2.4]), we
have: for λ-a.e. z ∈ Q, there exists µz ∈ P1(E) such that,

z 7→ 〈µz, ϕ〉

is measurable from Q to R for every ϕ ∈ Cb(Q), and

〈µ, ψ〉 =

∫
Q

∫
E
ψ(p, z)dµz(p)dλ(z),

for all ψ ∈ Cb(E ×Q), which precisely means that µ is a Young measure on
Q. We therefore denote by

Y = {ν ∈ P1(E ×Q);π∗ν = λ}
2actually, weak convergence of probability measures, also corresponding to the tight

convergence of finite measures
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the set of Young measures on Q.

We use now the Prohorov’s Theorem, cf. Billingsley [Bil99], to give a com-
pactness criteria in Y. We assume that Q is a compact subset of Rs and E
is a closed subset of Rm. We also assume that the σ-algebra A of Q is the
σ-algebra of Borel sets of Q.

Proposition 4.1 (Bound against a Lyapunov functional). Let η : E → R+

satisfy the growth condition

lim
p∈E,|p|→+∞

η(p) = +∞.

Let C > 0 be a positive constant. Then the set

KC =

{
ν ∈ Y;

∫
Q×E

η(p)dν(z, p) ≤ C
}

(4.3)

is a compact subset of Y.

Proof. The condition π∗ν = λ being stable by weak convergence, Y is closed
in P1(E ×Q). By Prohorov’s Theorem, [Bil99], KC is relatively compact in
Y if, and only if it is tight. Besides, KC is closed since∫

Q×E
η(p)dν(z, p) ≤ lim inf

n→+∞

∫
Q×E

η(p)dνn(z, p)

if (νn) converges weakly to ν. It is therefore sufficient to prove that KC is
tight, which is classical: let ε > 0. For R ≥ 0, let

V (R) = inf
|p|>R

η(p).

Then V (R)→ +∞ as R→ +∞ by hypothesis and, setting MR = [B(0, R)∩
E]×Q, we have

V (R)ν(M c
R) ≤

∫
Q×E

η(p)dν(z, p) ≤ C,

for all ν ∈ K, whence supν∈K ν(M c
R) < ε for R large enough.

4.2 A compactness criterion for probabilistic Young mea-
sures

As above, we assume that Q is a compact subset of Rs and E is a closed
subset of Rm.

Definition 4.2. A random Young measure is a Y-valued random variable.
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Proposition 4.3. Let η : E → R+ satisfy the growth condition

lim
p∈E,|p|→+∞

η(p) = +∞.

Let M > 0 be a positive constant. If (νn) is a sequence of random Young
measures on Q satisfying the bound

E
∫
Q×E

η(p)dνn(z, p) ≤M,

then, up to a subsequence, (νn) is converging in law.

Proof. We endow P1(E×Q) with the Prohorov’s metric d. Then P1(E×Q)
is a complete, separable metric space, weak convergence coincides with d-
convergence, and a subset A is relatively compact if, and only if it is tight,
[Bil99]. Let L(νn) ∈ P1(Y) denote the law of νn. To prove that it is tight,
we use the Prohorov’s Theorem. Let ε > 0. For C > 0, let KC be the
compact set defined by (4.3). For ν ∈ Y, we have

P(ν /∈ KC) = P
(

1 <
1

C

∫
Q×E

η(p)dν(z, p)

)
≤ 1

C
E
∫
Q×E

η(p)dν(z, p),

hence

sup
n∈N
L(νn)(Y \KC) = sup

n∈N
P(νn /∈ KC) ≤ M

C
< ε,

for C large enough, which proves the result.

Let XW = C
(
[0, T ];U0

)
be the path space for the Wiener process W . If (νn)

is as in Proposition 4.3, then the law of (νn,W ) is tight in Y ×XW since the
law of W is tight in XW . We obtain the following extension:

Proposition 4.4. Under the hypothesis of Proposition 4.3, there exists a
subsequence of (νn,W ) converging in law on Y × XW .

Remark 4.5 (Almost-sure convergence). Assume that (νn,W ) is conver-
ging in law on Y × XW . Then we can apply the Skorokhod Theorem [Bil99]
to (νn,W ): there exists a probability space (Ω̃, F̃ , P̃), some random Young
measures ν̃n, ν̃ : Ω̃ → Y, some random variable W̃ : Ω̃ → XW , such that
Law(ν̃n) = Law(νn), Law(ν̃) = Law(ν), Law(W̃ ) = Law(W ) and ν̃n → ν̃
a.s. in P1(E × Q). Let q > 1. If νn is issued from a sequence of random
variables bounded in Lq(Q;E) (as this will be the case in our context), say

νn = δun , un ∈ Lq(Q;E), (4.4)

then ν̃n is itself a Dirac mass.

32



The proof of the above statement is as follows: using the Jensen’s Formula,
(4.4) can be characterized by

E
∫
Q×E

ψ(p)dνn,z(p)dλ(z) = E
∫
Q
ψ

(∫
E
pdνn,z(p)

)
dλ(z),

where ψ : Rm → R is a strictly convex function satisfying the growth condi-
tion |ψ(p)| ≤ C(1 + |p|q). In other words,

Eϕ(νn) = Eθ(νn), (4.5)

where

ϕ : µ 7→
∫
Q×E

ψ(p)dµz(p)dλ(z), θ : µ 7→
∫
Q
ψ

(∫
E
pdµz(p)

)
dλ(z).

Of course, ϕ is continuous on Y and, by the Lebesgue dominated convergence
theorem, θ is continuous on the subset{

µ ∈ Y;

∫
Q×E

|p|qdµz(p)dλ(z) ≤ R
}
.

Consequently, by identity of the laws, (4.5) is satisfied by ν̃n, i.e.

ν̃n = δũn , ũn(z) :=

∫
E
pdν̃n,z

almost surely.

4.3 Convergence to a random Young measure

We apply the results of paragraphs 4.1-4.2 to the case νε := δUε , Q = QT ,
E = R+ × R. Strictly speaking we will consider a sequence (εn) decreasing
to 0 and will obtain some limits along some subsequences of (εn). However,
for the simplicity of notations we will keep the notation νε instead of νεn in
what follows.

Proposition 4.6. Let Uε
0 ∈ W 1,∞(T1) be bounded in L∞(T1). Let Uε

be a martingale solution to (3.1) satisfying (3.2) and let νε := δUε be the
associated random Young measure. Then there exists a probability space
(Ω̃, F̃ , P̃), some random variables (ν̃ε, W̃ ) and (ν̃, W̃ ) with values in Y×XW
such that

1. the law of (ν̃ε, W̃ ) under P̃ coincide with the law of (νε,W ),

2. (ν̃ε, W̃ ) converges P̃-almost surely to (ν̃, W̃ ) in the topology of Y×XW .

Proof. we apply the Proposition 4.4 to (νε,W ) taking for η the energy, i.e.
the entropy given by (2.8) with g(ξ) = |ξ|2 (which is infinite at infinity by
(3.12)). We use the estimate (3.2) for such an η.
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5 Reduction of the Young measure

Proposition 4.6 above gives the existence of a random young measure ν
such that νε := δUε converges in law in the sense of Young measures to
ν. We will now apply the compensated compactness method to prove that
a.s., for a.e. (x, t) ∈ QT , either νx,t is a Dirac mass or νx,t is concentrated
on the vacuum region {ρ = 0}. To do this, we will use the probabilistic
compensated compactness method of [FN08] to obtain a set of functional
equations satisfied by ν. Then we conclude by adapting the arguments of
[LPS96].

5.1 Compensated compactness

In this section, we fix an entropy - entropy flux couple (η,H) of the form
(2.8)-(2.10) where g ∈ C2(R) is convex, with g sub-quadratic and g′ sub-
linear.

5.1.1 Murat’s Lemma

Proposition 5.1. Assume 1 < γ ≤ 2. Then the sequence of H−1(QT )
random variables (εη(Uε)xx) is tight.

Proof. It is sufficient to show that

lim
ε→0

ε2E ‖η(Uε)x‖2L2(QT )
= 0. (5.1)

Indeed, we then have εη(Uε)xx → 0 in law on H−1(QT ) and (εη(Uε)xx)
is tight since H−1(QT ) is separable and complete. The convergence (5.1)
follows from the gradient estimates (3.3), (3.4). Indeed, g and g′ being
sub-polynomial, there exists m ≥ 0 such that

|∂ρη(U)|2 ≤ C
(

1 + |u|m + ρm(γ−1)
)
, (5.2)

and
|∂uη(U)|2 ≤ Cρ2

(
1 + |u|m + ρm(γ−1)

)
,

for a given constant C ≥ 0. The estimates (3.3), (3.4) show that all terms
in

εE
∫∫

QT

|∂ρη(Uε)|2|∂xρε|2 + |∂uη(Uε)|2|∂xuε|2 dxdt

are bounded, except possibly the contribution

εE
∫∫

QT

(1 + |uε|m)|∂xρε|2 dxdt

coming from the first terms in the right-hand side of (5.2). For this term we
use the estimate

|u|m ≤ |u|2mργ−2 + ρ2−γ .
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Then, by (3.3), εE ‖η(Uε)x‖2L2(QT )
= O(1) if 2 − γ ≥ γ − 2, that is to say

γ ≤ 2.

The next Proposition is similar to Lemma 4.20 in [FN08].

Proposition 5.2. Let

M ε(t) =

∫ t

0
∂qη(Uε)(s)Φ(Uε)(s)dW (s).

Then ∂tM
ε is tight in H−1(QT ).

Proof. The proof is in essential the proof of Lemma 4.19 in [FN08]. However,
we will proceed slightly differently (instead of using Marchaud fractional
derivative we work directly with fractional Sobolev spaces and an Aubin-
Simon compactness lemma). Let m ≥ 2. For 0 ≤ s ≤ t ≤ T , we have the
following estimates (where the constant C may vary from line to line and is
always independent on ε): by a martingale inequality,

E‖M ε(t)−M ε(s)‖mLm(T1) ≤ C
∫
T1

E
∣∣∣∣∫ t

s
|∂qη(Uε)|2G2(Uε)dσ

∣∣∣∣m/2 dx. (5.3)

By (2.2) and since g, g′ are sub-polynomial, we have |∂qη(Uε)|2G2(Uε) ≤
R(ρε, |uε|)ρε, where R is a polynomial. In particular, by (3.2),

sup
σ∈[s,t]

∫
T1

[
|∂qη(Uε(x, σ))|2G2(Uε(x, σ))

]m/2
dx ≤ C.

Using Hölder Inequality and (5.3), we obtain

E‖M ε(t)−M ε(s)‖mLm(T1)

≤ C|t− s|
m
2
−1
∫
T1

E
∫ t

s

[
|∂qη(Uε)|2G2(Uε)

]m/2
dσdx ≤ C|t− s|

m
2 ,

and, by integration with respect to t and s,

E
∫ T

0

∫ T

0

‖M ε(t)−M ε(s)‖mLm(T1)

|t− s|1+νm
dtds ≤ C, (5.4)

as soon as ν < 1/2. The left-hand side in this inequality (5.4) is the norm
of M ε in Lm(Ω;W ν,m(0, T ;Lm(T1))). Since Lm(T1) ↪→ H−1(T1), it follows
that

E‖M ε‖W ν,m(0,T ;H−1(T1)) ≤ C. (5.5)

Besides, by the growth inequalities (2.2) and the moment estimate (3.2),
M ε also satisfies the bound

E‖M ε‖L2(QT ) ≤ C. (5.6)
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Let us assume m > 2 now. We then have the continuous injection

W ν,m(0, T ;H−1(T1)) ↪→ C0,µ([0, T ];H−1(T1))

for every 0 < µ < ν− 1
m . By the Aubin-Simon compactness Lemma (Simon,

[Sim87]), the set

AR :=
{
M ∈ L2(QT ); ‖M ε‖W ν,m(0,T ;H−1(T1)) ≤ R, ‖M‖L2(QT ) ≤ R

}
is compact in C([0, T ];H−1(T1)), hence compact in L2(0, T ;H−1(T1)). Con-
sequently (5.5) and (5.6) show that (M ε) is tight as a L2(0, T ;H−1(T1))-
random variable, and we conclude that (∂tM

ε) is tight as a H−1(QT )-
random variable.

5.1.2 Functional equation

Let us recall that a sequence of random variables (an) with values in a
normed space X is said to be stochastically bounded if, for all η > 0, there
exists M > 0 such that P(‖an‖X ≥ M) ≤ η for all n. By the Markov
inequality, E‖an‖X ≤ C implies (an) stochastically bounded.

We consider the Itô Formula (3.5). Let p > 2. By the moment estimates
(3.2), which gives bounds on η(Uε), H(Uε) in Lp(QT ), the left-hand side
of (3.5) is stochastically bounded in W−1,p(QT ). By Proposition 5.1 and
Proposition 5.2 above, the two terms εη(Uε)xx and ∂tM

ε in the right-hand
side of (3.5) are tight in H−1(QT ). The two remaining terms

εη′′(Uε) · (Uε
x,U

ε
x) and

1

2
|G(Uε)|2∂2qqη(Uε)

are stochastically bounded in measure on QT by (3.3)-(3.4) and (2.2)-(3.2)
respectively. By the stochastic version of the Murat’s Lemma, Lemma A.3
in [FN08], we deduce that the sequence of H−1(QT ) random variables

divt,x(η(Uε), H(Uε)) = η(Uε)t +H(Uε)x

is tight. Let now (η̂, Ĥ) be a second entropy - entropy flux couple associated
by (2.8)-(2.10) to a convex sub-polynomial C2 function ĝ. Similarly, the
sequence of random variables

curlt,x(−Ĥ(Uε), η̂(Uε)) = η̂(Uε)t + Ĥ(Uε)x

is tight. By Theorem A.2 in [FN08] and Proposition 4.6, we obtain, for a.e.
(x, t) ∈ QT ,

〈η̂〉〈H〉 − 〈η〉〈Ĥ〉 = 〈η̂H − ηĤ〉, (5.7)

where 〈φ〉 := 〈φ, νx,t〉 and where the identity in (5.7) is the identity between
the laws of the processes involved. To obtain an almost sure equality, we
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apply Skorokhod Theorem: by Remark 4.5, there exists a new probability
space (Ω̃, F̃ , P̃), a new C([0, T ];W 1,2(T1)) random variable Ũε, ν̃ a random
Young measure, such that Law(δŨε) = Law(δUε), Law(ν) = Law(ν̃) and,
a.s.,

δŨε → ν̃.

Then, by a slight adaptation of the probabilistic div-curl Lemma, Theorem 2
in [FN08], we obtain (5.7) almost everywhere in Ω̃, and with 〈φ〉 := 〈φ, ν̃x,t〉.

5.2 Reduction of the Young measure

We now follow [LPS96] to conclude. We switch from the variables (ρ, u) or
(ρ, q) to (w, z), where

z = u− ρθ, w = u+ ρθ.

By (5.7), we have, a.s., for a.e. (x, t) ∈ QT ,

2λ
(
〈χ(v)u〉〈χ(v′)〉 − 〈χ(v)〉〈χ(v′)u〉

)
= (v − v′)

(
〈χ(v)χ(v′)〉 − 〈χ(v)〉〈χ(v′)〉

)
, (5.8)

where

〈χ(v)〉 =

∫
χ(w, z, v) dν̃x,t(w, z), χ(w, z, v) := (v − z)λ+(w − v)λ+.

Let us fix (ω, x, t) such that (5.8) is satisfied. Let C denote the set

C = {v ∈ R ; 〈χ(v)〉 > 0} =
⋃

(w,z)∈suppν̃x,t

{v ; z < v < w}.

Let
V = {(ρ, u) ∈ R+ × R|ρ = 0} = {(w, z) ∈ R2|w = z}

denote the vacuum region. If C is empty, then ν̃x,t is concentrated on V .
Assume C not empty. By Lemma I.2 in [LPS96] then, C is an open interval
in R, say C =]a, b[, where −∞ ≤ a < b ≤ +∞ (we use here the french
notation for open intervals to avoid the confusion with the point (a, b) of
R2). Furthermore all the computations of [LPS96] apply here, and thus, as
in Section I.6 of [LPS96], we obtain

〈ρ2λθ〈χ ◦ πi〉φ ◦ πi〉 = 0, (5.9)

for any continuous function φ with compact support in C, where πi : R2 → R
denote the projection on the first coordinate w if i = 1, and the projection
on the second coordinate z if i = 2. If we assume that there exists Q ∈ R2

satisfying
Q ∈ supp(ν̃x,t) \ V, πi(Q) ∈ C, (5.10)
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for i ∈ {1, 2}, then there exists a neighbourhood K of Q such that K∩V = ∅,
νx,t(K) > 0, πi(K) ⊂ C. But then 〈χ ◦ πi〉 > 0 on K, ρ > 0 on K and,
choosing a continuous function φ compactly supported in C such that φ > 0
on K we obtain a contradiction to (5.9). Consequently (5.10) cannot be
satisfied. This implies that there cannot exists two distinct points P,Q
in supp(ν̃x,t) \ V . Indeed, if two such points exists, then either π1(Q) <
π1(P ), and then Q satisfies (5.10) with i = 1, or π1(Q) = π1(P ) and, say,
π2(P ) < π2(Q) and then Q also satisfies (5.10). The other cases are similar
by symmetry of P and Q.
Therefore if C 6= ∅, then the support of the restriction of ν̃x,t to C is reduced
to a point. In particular, a and b are finite. Then, by Lemma I.2 in [LPS96],
P := (a, b) ∈ supp(νx,t) and ν̃x,t = µ̃x,t+αδŨ(x,t), where µ̃x,t = ν̃x,t|V . Using

(5.8), we obtain

0 = (v − v′)χ(b, a, v)χ(b, a, v′)(α− α2),

and thus α = 0 or 1. We have therefore proved the following result.

Proposition 5.3 (Reduction of the Young measure). Either ν̃x,t is concen-
trated on the vacuum region V , or ν̃x,t is reduced to a Dirac mass δŨ(x,t).

5.3 Martingale solution

By Proposition 5.3, we have∫∫
QT

S(Ũε(x, t))ϕ(x, t)dxdt→
∫∫

QT

S(Ũ(x, t))ϕ(x, t)dxdt (5.11)

almost surely for every continuous and bounded function S on R+×R which
vanishes on the vacuum region {0}×R and every ϕ ∈ L1(QT ). There is also
strong convergence of S(Ũε) to S(Ũ) in L2(QT ), almost-surely. This can be
deduced from (5.11), which gives directly the weak convergence in L2(QT )
by taking ϕ ∈ L2(QT ), but also the convergence of the norms by taking S2

instead of S and ϕ ≡ 1.

For the moment we have only supposed that Uε
0 ∈W 1,∞(T1) and that (Uε

0)
is bounded in L∞(T1). Assume furthermore

Uε
0 → U0 in L1(T1). (5.12)

The entropy and entropy flux as defined in (2.11), (2.12) are examples of
functions S as above: we can therefore pass to the limit in (3.5). We will pro-
ceed as follows (along the lines of the proof of Theorem 3.4.12 in [Hof13b]):
let ϕ ∈ C1(T1) be fixed. Since η(Ũε) → η(Ũ) in L1(Ω × QT ) we have, for
possibly a further subsequence,

〈η(Ũε), ϕ〉(t)→ 〈η(Ũ), ϕ〉(t), ∀t ∈ D, almost surely, (5.13)
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where D is a set of full measure in [0, T ] which contains the point t = 0. Set

eε = εη′′(Uε) · (Uε
x,U

ε
x), ẽε = εη′′(Ũε) · (Ũε

x, Ũ
ε
x).

LetMb(QT ) denote the set of bounded Borel measures on QT andM+
b (QT )

denote the subset of nonnegative measures. By Remark 3.18, there exists a
random variable

ẽ ∈ L2
w(Ω̃;Mb(QT )), ẽ ∈M+

b (QT ) P̃-almost surely,

such that, for all ψ ∈ C(QT ), for all Y ∈ L2(Ω̃), and up to a subsequence,

Ẽ
(
〈ẽε, ψ〉Y

)
→ Ẽ

(
〈ẽ, ψ〉Y

)
. (5.14)

In (5.14), 〈·, ·〉 denotes the duality pairing between Mb(QT ) and C(QT )
(which we extend below in the right-hand side of (5.15) to the pairing be-
tween Mb(QT ) and Bb(QT ), the set of Borel bounded functions over QT ).
The subscript w in L2

w(Ω̃;Mb(QT )) indicates that we consider weak-star
measurable mappings e from Ω̃ into Mb(QT ), i.e. maps e such that 〈e, ψ〉
is F̃-measurable for every ψ ∈ C(QT ). Then L2

w(Ω̃;Mb(QT )) is the dual of
the space L2(Ω̃;C(QT )) (Edwards [Edw65, Theorem 8.20.3]), hence (5.14)
follows from the Banach-Alaoglu Theorem and from the estimate (3.52) with
I = (0, T ). Besides (3.52) with arbitrary I implies that, almost surely, ẽ has
no atom in time, i.e.

E ẽ(T1 × {t}) = 0, ∀t ∈ [0, T ].

This shows in particular that (5.14) holds true when ψ = 1[0,t)ϕ where

ϕ ∈ C(T1): for all Y ∈ L2(Ω̃),

Ẽ
(∫ t

0
〈ẽε, ϕ〉dsY

)
→ Ẽ

(
〈ẽ,1[0,t)ϕ〉Y

)
. (5.15)

Let now (F̃t) be the P̃-augmented canonical filtration of the process (Ũ, W̃ ),
i.e.

F̃t = σ
(
σ
(
%tŨ, %tW̃

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ],

where the restriction operator %t is defined in (3.48). Then the sextuplet(
Ω̃, F̃ , (F̃t), P̃, W̃ , Ũ

)
is a weak martingale solution to (1.1). To show this, we use a reasoning
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analogous to the one followed in Section 3.1.7. Let ϕ ∈ C1(T1). Define

M ε(t) =
〈
η(Uε)(t), ϕ

〉
−
〈
η(Uε

0), ϕ
〉

+

∫ t

0

〈
∂xH(Uε)− ε∂2xη(Uε), ϕ

〉
ds

−
∫ t

0
〈eε(s), ϕ〉ds,

M̃ ε(t) =
〈
η(Ũε)(t), ϕ

〉
−
〈
η(Uε

0), ϕ
〉

+

∫ t

0

〈
∂xH(Ũε)− ε∂2xη(Ũε), ϕ

〉
ds

−
∫ t

0
〈ẽε(s), ϕ〉ds,

M̃(t) =
〈
η(Ũ)(t), ϕ

〉
−
〈
η(U0), ϕ

〉
+

∫ t

0

〈
∂xH(Ũ), ϕ

〉
ds− 〈ẽ,1[0,t)ϕ〉.

Then M ε and M̃ ε have same laws. By the convergence (5.11), (5.13) and
(5.15) we show, as in Section 3.1.7 that the processes

M̃, M̃2 −
∑
k≥1

∫ ·
0

〈
σk(Ũ)∂qη(Ũ), ϕ

〉2
dr, M̃ β̃k −

∫ ·
0

〈
σk(Ũ)∂qη(Ũ), ϕ

〉
dr

(5.16)
are (F̃t)-martingales. There is however a notable difference between the
result of Lemma 3.17 and the result (5.16) here, in the fact that the martin-
gales in (5.16) are indexed by D ⊂ [0, T ] since we have used the convergence
(5.13). If all the processes in (5.16) were continuous martingales indexed by
[0, T ], we would infer, as in the proof of Proposition 3.15, that

〈
η(Ũ)(t), ϕ

〉
−
〈
η(U0), ϕ

〉
−
∫ t

0

〈
H(Ũ), ∂xϕ

〉
ds

= −〈ẽ,1[0,t)ϕ〉+
∑
k≥1

∫ t

0

〈
σk(Ũ)∂qη(Ũ), ϕ

〉
dβ̃k(s), (5.17)

for all t ∈ [0, T ], P̃-almost surely. Nevertheless, D contains 0 and is dense
in [0, T ] since it is of full measure, and it turns out, by the Proposition A.1
in [Hof13b] on densely defined martingales, that this is sufficient to obtain
(5.17) for all t ∈ D, P̃-almost surely. Then we conclude as in the proof of
Theorem 4.13 of [Hof13b]: let N(t) denote the continuous semi-martingale
defined by

N(t) =

∫ t

0

〈
H(Ũ), ∂xϕ

〉
ds+

∑
k≥1

∫ t

0

〈
σk(Ũ)∂qη(Ũ), ϕ

〉
dβ̃k(s).

Let t ∈ (0, T ] be fixed and let α ∈ C1
c ([0, t)). By the Itô Formula we compute
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the stochastic differential of N(s)α(s) to get

0 =

∫ t

0
N(s)α′(s)ds+

∫ t

0

〈
H(Ũ), ∂xϕ

〉
α(s) ds

+
∑
k≥1

∫ t

0

〈
σk(Ũ)∂qη(Ũ), ϕ

〉
α(s) dβ̃k(s). (5.18)

By (5.17), we have

N(t) =
〈
η(Ũ)(t), ϕ

〉
−
〈
η(U0), ϕ

〉
+ 〈ẽ,1[0,t)ϕ〉,

for all t ∈ D, P̃-almost surely. In particular, by the Fubini Theorem,∫ t

0
N(s)α′(s)ds =

∫ t

0

〈
η(Ũ)(s), ϕ

〉
α′(s) ds

+
〈
η(U0), ϕ

〉
α(0)−

∫ t

0
α(σ)dρ̃(σ), (5.19)

P̃-almost surely, where we have defined the measure ρ̃ by ρ̃(B) = 〈ẽ,1Bϕ〉,
for B a Borel subset of [0, T ]. If α,ϕ ≥ 0, then∫ t

0
α(σ)dρ̃(σ) ≥ 0, P̃− almost surely

and (2.15) follows from (5.18), (5.19). This concludes the proof of Theo-
rem 2.7.

6 Conclusion

We want to discuss in this concluding section some open questions related to
the qualitative behaviour of solutions to (1.1). The first one is the question of
uniqueness. Uniqueness of weak entropy solutions is an unsolved question
in the deterministic setting. For the stochastic problem (1.1), one may
consider the question of uniqueness of martingale solutions, i.e. uniqueness
in law. Is it a promising question? Would it be easier to answer than
the question of uniqueness in the deterministic setting, as, for example,
uniqueness in law manifests itself in stochastic differential equations with
continuous coefficients, which represent therefore stochastic perturbations
of o.d.e’s displaying some indeterminacy [SV79]?

An other problem concerns the long-time behaviour of solutions to (1.1). It
is known that for scalar stochastic conservation laws with additive noise,
and for non-degenerate fluxes, there is a unique ergodic invariant measure,
cf. [EKMS00, DV13]. Since both fields of (1.1) are genuinely non-linear,
a form of non-degeneracy condition is clearly satisfied in (1.1). Actually,
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in the deterministic case Φ ≡ 0, the solution converges to the constant
state determined by the conservation of mass [CF99, Theorem 5.4], which
indicates that some kind of dissipation effects (via interaction of waves, cf.
also [GL70]) occur in the Euler system for isentropic gas dynamics. However,
in a system there is in a way more room for waves to evolve than in a scalar
conservation law, and the long-time behaviour in (1.1) may be different from
the one described in [EKMS00, DV13]. The only thing we want to emphasize
here is that we observe on numerical simulations that the value of the initial
datum get forgotten by the system, which seems to indicate the existence of
an invariant measure with ergodic (even mixing) properties.

Specifically, we consider the case γ = 2. For such a value the system of
Euler equations for isentropic gas dynamics is equivalent to the following
Saint-Venant system of equations for shallow water:

ht + (hu)xdt = 0, in QT , (6.1a)

(hu)t + (hu2 + g
h2

2
)x + ghZx = 0, in QT , (6.1b)

with Z(x, t) = Φ∗(x)dWdt and QT = T1 × (0, T ). When Z = Z(x), (6.1) is a
model for the one-dimensional flow of a fluid of height h and speed u over a
ground described by the curve z = Z(x) (u(x) is the speed of the column of
water over the abscissa x)3. For a random Z as in (6.1b), the system (6.1)
describes the evolution of the fluid in terms of (h, u) when its behaviour is
forced by the moving topography, the question being thus to determine if
an equilibrium in law (and which kind of equilibrium) for such a random
process can be reached when time goes to +∞. An hint for the existence of
an invariant measure and convergence towards it is the “loss of memory in
the system” which seems to occur as time goes by, as we illustrate it on the
following pictures. Let

E :=

∫
T1

1

2
hu2 +

1

2
gh2 dx, Etot = E +

∫
T1

ghZ dx

denote respectively the total energy and the full total energy for (6.1). Fig-
ure 1 is a drawing4 of the evolution in time t ∈ [0, 10] (for a given path
{W (t); 0 ≤ t ≤ 10}) of E(t) with the following data:

g = 2, Φ∗(x) = 10

5∑
k=1

− 1

2πk
cos(2πkx), W (t) = (βk(t))k=1,...,5, (6.2)

3the fact that u is independent on the altitude z is admissible as long as h is small
compared to the longitudinal length L of the channel, L = 1 here, cf. [GP01]

4the numerical simulations use the kinetic scheme for Saint Venant equations derived
in [ABP00]
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and for three kind of initial data, respectively called Test 1,2,3, correspond-
ing to the values(

h1
u1

)
=

(
1

1−H(x)

)
,

(
h2
u2

)
=

(
1

0.5

)
,

(
h3
u3

)
=

(
0.5 +H(x)

0.5

)
, (6.3)

at time t = 0, where H(x) is the Heaviside function with origin at x = 0.5
(H = 1x>0.5). The “loss of memory” effect which we are investigating seems

Figure 1: Evolution of the energy

indeed to be displayed on Figure 1 and it seems that there is existence
of an invariant measure µ for (6.1). The interpretation of Figure 1 has
however to be made with care. Indeed, if an invariant measure shall exist,
it would certainly depend on a parameter λ ∈ R2. Indeed, in the scalar case
[EKMS00, DV13], say for the equation

dv + (A(v))x = ∂xφ(x)dW (t), x ∈ T1, t > 0,

there is a unique invariant measure µλ indexed by the constant parameter

λ =

∫
T1

v(x)dx ∈ R.
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For (6.1), the entropy solution is evolving on the manifold∫
T1

h(x)dx = cst.

There should be a second quantity preserved in the evolution. For smooth
solutions to (6.1), the quantity ∫

T1

u(x)dx (6.4)

is preserved, and note that in all three cases considered in (6.3), we have
taken the same value for (6.4). However, (6.4) is not the right quantity to
be considered. It may be not conserved in the evolution of (6.1) (as soon as
shocks occur), and in that case different behaviour for the total energy (as
well as for the full total energy actually) are obtained. Below in Figure 2
is such an example: after the first time of relaxation, the evolution of the
total energy in Test 2 differs from the one in Tests 1 and 3. Therefore

Figure 2: Evolution of the energy - 2

a first interesting problem is to find what quantities do parametrize the
invariant measure for (6.1). This question and the other ones described in
this concluding section (uniqueness in law, large-time behaviour) will be
addressed in a future work.
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A A parabolic uniformization effect

The following result, a phenomenon of uniformization from below for a non-
negative solution for a parabolic equation with a drift-term with quite low
regularity, will be proved with techniques similar to those used in [MV09].

Theorem A.1 (Positivity). Let ρ, u ∈ L2(0, T ;H1(T1)) satisfy

ρ|∂xu|2 ∈ L1(T1 × (0, T )), ∂tρ ∈ L2(0, T ;H−1(T1)). (A.1)

Assume that ρ is a non-negative solution to the equation

∂tρ+ ∂x(ρu)− ∂2xρ = 0 (A.2)

and that ρ0 := ρ(0) satisfy 1
ρ0
∈ L2(T1). Then, for all τ ∈ (0, T ], there exists

a constant c > 0 depending on ρ0, T , τ and∫∫
QT

ρ|∂xu|2dxdt

only, such that ρ ≥ c a.e. in T1 × [τ, T ].

Proof. Note first that the L2
tH

1
x regularity of ρ, together with the L2

tH
−1
x

regularity of ∂tρ implies the existence of a representative still denoted ρ
which is continuous in time with values in L2. This is the value of this
representative at time t = 0 which is denoted by ρ0. Now, to prove the
result, we will show a bound from above on w = 1

ρ . Actually, w is not
yet well-defined and we shall more rigorously prove a bound from above on
wε = 1

ρ+ε that is uniform with respect to the parameter ε > 0. For simplicity
we will work directly on w, the main lines of the proof are easily adapted for
wε. By a chain-rule formula (cf. Lemma 1.4 in Carrillo, Wittbold [CW99]
for example) we derive the following equation for w:

∂tw − ∂2xw = −2w−1|∂xw|2 + w∂xu− u∂xw. (A.3)

For M > 0 to be fixed later and k ≥ 0, let us set

Mk = M(1− 2−k−1), τk = τ(1− 2−k), wk = (w −Mk)
+,

where s+ = max(s, 0) denote the positive part of s. Let us also set

Uk = sup
τk≤t≤T

∫
T1

|wk|2dx+ 2

∫∫
Qτk,T

|∂xwk|2dxdt, (A.4)

where Qτk,T = T1 × (τk, T ). Multiplying (A.3) by wk, we obtain

1

2

d

dt

∫
T1

|wk|2dx+

∫
T1

|∂xwk|2dx ≤
∫
T1

wwk∂xu−
u

2
∂xw

2
k dx

≤ 3

2

∫
T1

w2
k|∂xu|dx+Mk

∫
T1

wk|∂xu|dx.
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Then we sum the result over [s, τ ′], with any s ∈ (τk−1, τk) and any τ ′ ∈
[τk, T ]. This gives∫

T1

|wk|2(τ ′)dx+ 2

∫ τ ′

s

∫
T1

|∂xwk|2dxdt

≤3

∫ τ ′

s

∫
T1

w2
k|∂xu|dxdt+ 2M

∫ τ ′

s

∫
T1

wk|∂xu|dxdt+

∫
T1

|wk|2(s)dx.

In particular, it implies∫
T1

|wk|2(τ ′)dx (A.5)

≤3

∫ T

τk−1

∫
T 1

w2
k|∂xu|dxdt+ 2M

∫ T

τk−1

∫
T1

wk|∂xu|dxdt+

∫
T1

|wk|2(s)dx

and also

2

∫ τ ′

τk

∫
T1

|∂xwk|2dxdt ≤ 2

∫ τ ′

s

∫
T1

|∂xwk|2dxdt

≤3

∫ T

τk−1

∫
T 1

w2
k|∂xu|dxdt+ 2M

∫ T

τk−1

∫
T1

wk|∂xu|dxdt+

∫
T1

|wk|2(s)dx,

which gives, by taking the sup with respect to τ ′ ∈ [τk, T ],

2

∫ T

τk

∫
T1

|∂xwk|2dxdt (A.6)

≤3

∫ T

τk−1

∫
T 1

w2
k|∂xu|dxdt+ 2M

∫ T

τk−1

∫
T1

wk|∂xu|dxdt+

∫
T1

|wk|2(s)dx.

Thus, by (A.5) and (A.6), we obtain

Uk ≤ 6

∫∫
Qτk−1,T

w2
k |∂xu| dxdt+ 4M

∫∫
Qτk−1,T

wk|∂xu|dxdt+ 2

∫
T1

w2
k(s)dx.

(A.7)
Eventually, we take the average over s ∈ (τk−1, τk) of the previous inequality
to derive the estimate

Uk ≤6

∫∫
Qτk−1,T

w2
k |∂xu| dxdt+ 4M

∫∫
Qτk−1,T

wk|∂xu|dxdt

+
2k+1

τ

∫∫
Qτk−1,T

w2
kdxdt. (A.8)

To obtain an estimate on the right-hand side of (A.8), we set

Ak = {(x, t) ∈ Qτk−1,T ;wk > 0},
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and note that, on Ak, wk−1 > Mk −Mk−1 = 2−k−1M , hence

1Ak ≤
( wk−1

2−k−1M

)β
, ∀β ≥ 0. (A.9)

We will also use the estimate

‖wk‖2L6(Qτk−1,T
) ≤ Uk, (A.10)

which is a direct consequence of the inequality

‖w‖L6(Qτk−1,T
) ≤

(
sup

t∈[τk−1,T ]
‖w(t)‖L2(T1)

)2/3

‖w‖1/3
L2(τk−1,T ;H1(T1))

. (A.11)

To prove (A.11), we use the injection Hδ(T1) ⊂ Lr(T1), δ ∈ [0, 1/2), 1
r :=

1
2 − δ and an interpolation inequality to obtain

‖w(t)‖rLr(T1) ≤ ‖w(t)‖r(1−δ)
L2(T1)

‖w(t)‖rδH1(T1). (A.12)

Then we sum (A.12) over t ∈ [τk−1, τ ]. For rδ = 2, an equation which sets
the value of (δ, r) to (1/3, 6), we obtain (A.11).
Using (A.9) with β = 4 and (A.10) (and also the estimate wk ≤ wk−1), we
obtain ∫∫

Qτk−1,T

w2
kdxdt ≤

24(k+1)

M4
U3
k−1. (A.13)

Besides, we have∫∫
Qτk−1,T

w2
k|∂xu|dxdt =

∫∫
Qτk−1,T

w2
kw

1/2ρ1/2|∂xu|dxdt

≤

[∫∫
Qτk−1,T

ρ|∂xu|2dxdt

]1/2 [∫∫
Qτk−1,T

w4
kwdxdt

]1/2
.

Since w ≤ wk + M , ωk ≤ ωk−1, using (A.9) with respectively β = 1, 2 and
also (A.10), we deduce that∫∫

Qτk−1,T

w2
k|∂xu|dxdt

≤
[∫∫

QT

ρ|∂xu|2dxdt
]1/2(2k+1

M
+M

22(k+1)

M2

)1/2

U
3/2
k−1. (A.14)

Similarly, we have∫∫
Qτk−1,T

wk|∂xu|dxdt

≤
[∫∫

QT

ρ|∂xu|2dxdt
]1/2(23(k+1)

M3
+M

24(k+1)

M4

)1/2

U
3/2
k−1. (A.15)
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Eventually, assuming with no loss of generality that M ≥ 1, we conclude
from (A.8), (A.14), (A.15) and (A.13) that

Uk ≤ 25(k+1)C(U3
k−1 + U

3/2
k−1), C :=

[∫∫
QT

ρ|∂xu|2dxdt
]1/2

+
1

τ
. (A.16)

for every k ≥ 1. It follows from (A.16) that there exists ε > 0 depending on
C only such that

U0 < ε =⇒ lim
k→+∞

Uk = 0.

The last statement is equivalent to ρ ≥ M−1 a.e. on Qτ,T . By an energy
estimate (cf. (A.7) with s = 0) and also an estimate similar to (A.14), we
have

U0 ≤ 3

∫∫
QT

w2
0|∂xu|dxdt+

∫
T1

w2
0(0)dx

≤ ηU3/2
0 +

∫
T1

|(ρ−10 −
M

2
)+|2dx, η =

3

M1/2

[∫∫
QT

ρ|∂xu|2dxdt
]1/2

.

(A.17)

To conclude we choose M0 such that∫
T1

|(ρ−10 −
M

2
)+|2dx < ε1 := ε/3,

for M ≥M0. For M large enough, i.e. η small enough, (A.17) implies that
U0 is bounded by the first root of the equation

X = ηX3/2 + ε1, (A.18)

(the second root tending to +∞ with M); in particular U0 is smaller than
the root 3ε1 with multiplicity 2 of (A.18), which is obtained for the critical
value η = 2

3
√
3ε1

. Therefore U0 < 3ε1 = ε.

Remark A.2. The condition on ρ0 in Theorem A.1 can be relaxed, we
may assume for example ln(ρ0) ∈ L1(T1) (and then start the proof with the
equation satisfied by w = ln(ρ) instead of w = 1/ρ).

Corollary A.3 (Positivity). Let ρ, u ∈ L2(0, T ;H1(T1)) satisfy

ρ|∂xu|2 ∈ L1(T1 × (0, T )), ∂tρ ∈ L2(0, T ;H−1(T1)). (A.19)

Assume that ρ is a non-negative solution to the equation

∂tρ+ ∂x(ρu)− ∂2xρ = 0 (A.20)

and that there exists c0 > 0 such that ρ0 := ρ(0) ≥ c0 a.e. in T1. Then,
there exists c > 0 depending on c0, T and∫∫

QT

ρ|∂xu|2dxdt

only, such that ρ ≥ c a.e. in T1 × [0, T ].
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Proof. We apply the Theorem A.1 with τ = 1 to the solution ρ̃ of

∂tρ̃+ ∂x(ρ̃ũ)− ∂2xρ̃ = 0 in QT+1,

with initial datum ρ̃(0) = c0, where ũ(x, t) = u(x, t− 1) if t ∈ [1, T + 1], and
0 otherwise.

B Regularizing effects of the one-dimensional heat
equation

Let T > 0, let z ∈ C([0, T ];L2(T1)) satisfy

z(t) = S(t)z0 +

∫ t

0
S(t− s)f(s)ds, (B.1)

for some given data z0 and f , where S(t) is the semi-group associated to the
heat operator ∂t − ∂2x on T1. The function z is a mild solution to the heat
equation

(∂t − ∂2x)z = f in QT ,

with initial condition z(0) = z0. If f ∈ Lp(QT ), p > 6
5 and z0 ∈ L2(T1)

then, by the regularizing properties of S(t), (B.1) gives a z which is indeed
in C([0, T ];L2(T1)). More precisely, we have

‖S(t)‖Lpx→Lqx ≤ Ct
− 1

2

(
1
p
− 1
q

)
, (B.2)

for 1 < p ≤ q ≤ +∞, for a given constant C and therefore, for possibly a
different constant C,

‖S(t− s)f(s)‖L2(T1) ≤ C(t− s)−µ‖f(s)‖Lp(T1), µ :=
1

2

(
1

p
− 1

2

)
.

By the Young inequality for the convolutions of functions, Lp
′ ∗ Lp embeds

in the space of continuous functions (here p′ is the conjugate exponent to p),
hence z defined by (B.1) is indeed continuous in time with values in L2(T1)
if t 7→ t−µ is in Lp

′
, which is equivalent to the condition p > 6

5 . Using more
generally the regularizing properties

‖∂jxS(t)‖Lpx→Lqx ≤ Ct
− 1

2

(
1
p
− 1
q

)
− j

2 (B.3)

for j ∈ N, we obtain that, for a given constant C > 0,∥∥∥∥∂x ∫ t

0
S(t− s)f(s)ds

∥∥∥∥
Lq(QT )

≤ C‖f‖Lp(QT ) if
1

q
>

1

p
− 1

3
, (B.4a)

∥∥∂xS(t)z0
∥∥
Lq(QT )

≤ C‖z0‖Lp(T1) if
1

q
>

3

p
. (B.4b)
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Remark B.1 (Time regularity). Let ν > 0, m ≥ 1. If t 7→ t−ν is in
Lm(0, T ) then it is also in W σ,m(0, T ) for a certain σ > 0. This shows that
we have actually∥∥∥∥∂x ∫ t

0
S(t−s)f(s)ds

∥∥∥∥
Wσ,q(0,T ;Lq(T1))

≤ C‖f‖Lp(QT ) if
1

q
>

1

p
−1

3
, (B.5)

for a given σ > 0 depending on p and q.

We end this section with a variation over (B.4a) for the solution of a split
evolution equation (this is used in Section 3.1.5): let τ > 0, set tn = nτ ,
n ∈ N, set

t] := min(2t− t2n, t2n+2), t[ :=
t+ t2n

2
, t2n ≤ t ≤ t2n+2,

and let

z(t) =

∫ t]

0
S(t] − s)f(s[)ds.

The function z is the solution to

1

2
∂tz − ∂2xz = f, in T1 × (t2n, t2n+1), ∂tz = 0, in T1 × (t2n+1, t2n+2),

for n = 0, 1, . . .. If T = t2K , K ∈ N∗, we have, for h ∈ L1(0, T ),∫ T

0
h(t])dt =

1

2

∫ T

0
h(t)dt+

K−1∑
n=0

τh(t2n+2)

=

∫ T

0
h(t)dt+

1

2

K−1∑
n=0

∫ t2n+2

t2n

(h(t2n+2)− h(t))dt. (B.6)

If there exists a σ ∈ (0, 1) such that h ∈ W σ,1(0, T ), we can estimate the
remainder in (B.6) and obtain∣∣∣∣ ∫ T

0
h(t])dt−

∫ T

0
h(t)dt

∣∣∣∣ ≤ C‖h‖Wσ,1(0,T )τ
σ.

By Remark B.1, we deduce in particular for τ ≤ 1 that∥∥∥∥∂x ∫ t]

0
S(t] − s)f(s[)ds

∥∥∥∥
Lq(QT )

≤ C‖f̃‖Lp(QT ) if
1

q
>

1

p
− 1

3
, (B.7)

where f̃ is the extension by 0 of f to the strips T1 × (t2n+1, t2n+2), n =
0, . . . ,K − 1.
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