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ABSTRACT. In this paper we explore the connections between the monadic second-order theory of

one successor (MSO[<] for short) and the theories of ω-layered structures for time granularity.

We first prove that the decision problem for MSO[<] and that for a suitable first-order theory

of the upward unbounded layered structure are inter-reducible. Then, we show that a similar

result holds for suitable chain variants of the MSO theory of the totally unbounded layered

structure (this allows us to solve some decision problems about theories of time granularity left

open by Franceschet et al. [FRA 06]).

KEYWORDS: time granularity, the sequential calculus, decidability.

1. Introduction

The ability of representing the same situation and/or different situations at various

time granularities and of properly relating these different representations is a long-

standing research theme for temporal logic and a major requirement for a number of

applications in different areas of computer science, including formal methods, artifi-

cial intelligence, and temporal databases, e.g., [BET 00, DYR 95, FIA 94, LAD 86,

LAM 85]. In particular, in the area of specification and automatic verification of

complex systems [FRA 04, MON 99, MON 02, MON 96b], the addition of a notion

of time granularity makes it possible to specify in a concise way reactive systems

whose behaviour can be naturally modeled with respect to a (possibly infinite) set of

differently-grained temporal domains.

Journal of Applied Non-Classical Logics.Volume 16 – n◦ 3–4/2006
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Figure 1. The 2-refinable upward unbounded layered structure

A logical framework for time granularity has been proposed in [MON 96a] and

later extended in [FRA 01, PUP 06]. It is based on a many-level view of tempo-

ral structures that replaces the flat temporal domain of standard linear and branch-

ing temporal logics with a temporal universe consisting of a (possibly infinite) set of

differently-grained temporal domains.

The monadic second-order (MSO) theory of the n-layered (there are exactly n

temporal domains) k-refinable (each time point can be refined into k time points of

the immediately finer temporal domain, if any) temporal structure for time granularity,

with matching decidability results, has been investigated in [MON 96b]. The MSO

theory of the k-refinable upward unbounded layered structure (UULS, for short), that

is, the ω-layered structure consisting of a finest temporal domain together with an

infinite number of coarser and coarser domains (a portion of the 2-refinable UULS is

depicted in Figure 1) has been studied in [MON 99]. In the same paper, the authors

deal with the MSO theory of the k-refinable downward unbounded layered structure

(DULS), that is, the ω-layered structure consisting of a coarsest domain together with

an infinite number of finer and finer domains (a portion of the 2-refinable DULS is

depicted in Figure 2). Finally, the MSO theory of the k-refinable totally unbounded

layered structure (TULS), which can be viewed as the merging of the UULS and the

DULS (a portion of the 2-refinable TULS is depicted in Figure 3), has been studied in

[PUP 06].

The decidability of the MSO theory of the UULS can be proved by reducing the

satisfiability problem for MSO logic over the UULS to the emptiness problem for sys-

tolic tree automata, while the decidability of the MSO theories of the DULS and the

TULS can be proved by reducing the satisfiability problem for MSO logic over them

to the emptiness problem for Rabin tree automata. The structure of the decidability

proofs for the UULS and the DULS is briefly summarized in [EUZ 05]. The proof

for the TULS is an easy adaptation of the one for the DULS. The proof for the DULS

exploits an embedding technique that appends the infinite sequence of k-refinable in-

finite trees of the DULS to the rightmost branch of the (k + 1)-ary tree (and then
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interprets it into the k-ary tree). The same technique can be applied to the TULS, pro-

vided that we reverse the edges on the leftmost branch from a given node upward. In

[MON 04], Montanari and Puppis show that one can embed the UULS (resp., DULS)

into the TULS by adding a unary predicate, called layer 0 predicate, that identifies a

distinguished layer of the structure, namely, the bottom (resp., top) layer of the UULS

(resp., DULS). The decision problem for such an expanded structure has been solved

by reducing it to the acceptance problem for Rabin tree automata.
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Figure 2. The 2-refinable downward unbounded layered structure

In this paper, we establish some interesting connections between the MSO the-

ory of one successor (often called the sequential calculus), denoted by MSO[<], and

suitable fragments of (variants of) MSO theories of ω-layered structures. In particu-

lar, we take into consideration ω-layered structures expanded with the equi-level and

equi-column predicates. The equi-level predicate constrains two time points to belong

to the same layer, while the equi-column predicate constrains them to be at the same

distance from the origin of the layers they belong to. Definability and decidability is-

sues for ω-layered structures expanded with the equi-level and equi-column predicates

have been systematically investigated by Franceschet et al. in [FRA 06]1.

Here we broaden the scope of such an investigation. First, we introduce a notion

of reducibility via interpretation and we exploit it to compare the first-order (FO) and

MSO logics of the discrete linear order 〈N, <〉 with those of the 2-refinable UULS

(all results can be generalized to any k > 2). One can easily show that the FO (resp.,

MSO) logic of 〈N, <〉 can be interpreted into the FO (resp., MSO) logic of the 2-

refinable UULS, but not vice versa. We prove that the FO (resp., MSO) logic of the 2-

refinable UULS can be interpreted into the FO (resp., MSO) logic of 〈N, <〉 expanded

with the binary predicate (actually a function) flip, which expresses properties of the

binary representations of numbers [MON 00b]. Next, we introduce a relaxed notion

of reducibility, which allows us to define a mapping of formulas (and valuations) from

one logic to another one where each variable can be mapped into one or more variables

1. In [FRA 06], the authors also provide a succinct account of existing results about definability

and decidability problems for k-ary trees expanded with equi-level and equi-column predicates.
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of possibly different types (individual and set variables). More precisely, we define

(i) a function α that maps every formula φ of a logic L′ over a relational structure S ′

into a formula α(φ) of a logic L over a relational structure S and (ii) a function γ that

maps a valuation θ for the variables in φ into a valuation γ(θ) for the variables in α(φ)
such that S ′, θ |= φ if and only if S, γ(θ) |= α(φ).

As a first result, we define a mapping of formulas of MSO logic over 〈N, <〉 into

formulas of FO logic over the 2-refinable UULS, expanded with a pair of suitable

predicates Path< and D0, and a corresponding mapping of valuations, which ba-

sically encodes finite sets into natural numbers, that make it possible to reduce the

satisfiability problem for the first logic to that for the second one. We also provide

the converse reduction, thus showing that the satisfiability problems for the two log-

ics are actually inter-reducible. As a matter of fact, the latter reduction allows one

to map verification problems for the FO logic of the UULS to verification problems

for the MSO logic of 〈N, <〉, thus making it possible to exploit the wide spectrum of

verification techniques and tools available for that logic.

Then we consider the TULS equipped with the layer 0 predicate, denoted by T0,

and either the equi-level predicate, denoted by T , or the equi-column one, denoted

by D. We exploit a different encoding of (possibly infinite) chains, that is, subsets

of paths, in order to reduce the satisfiability problem for the chain fragment of MSO

logic over the 2-refinable TULS to the satisfiability problem for (full) MSO logic

over 〈N, <〉. The converse reduction is accomplished by embedding 〈N, <〉 into the

leftmost branch of the TULS.

All together these results enlighten the relationships between the MSO theory of

one successor and various theories of ω-layered structures. In addition, the character-

ization of the chain fragment of MSO logic over the TULS, expanded with T0 and D,

positively answers to some decision problems left open in [FRA 06], namely, the prob-

lem of establishing whether the satisfiability problem for the chain/path/first-order

fragments of MSO logic over the 2-refinable DULS, expanded with D, is decidable.

The rest of the paper is organized as follows. In Section 2 we introduce background

knowledge and notation, and we recall basic results about the MSO logics of ω-layered

structures. In Section 3 we compare FO and MSO logics interpreted over 〈N, <〉 and

the binary UULS. In Section 4 we show that the satisfiability problems for MSO logic

over 〈N, <〉 and for FO logic over the 2-refinable UULS, expanded with Path< and

D0, are inter-reducible. In Section 5 we prove that the satisfiability problems for MSO

logic over 〈N, <〉 and for the chain fragment of MSO logic over the TULS, expanded

with T0 and either T or D, are inter-reducible. Conclusions summarize the achieved

results and outline future research directions.
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Figure 3. The 2-refinable totally unbounded layered structure

2. Logics of ω-layered structures

In this section we introduce the logics and the relational structures we are inter-

ested in. Moreover, we briefly describe the logical tools that will be used to explore

their relationships.

DEFINITION 1 (THE LANGUAGE OF MSO LOGIC). — Let τ = c1, ..., cr, u1,

..., us, b1, ..., bt be a finite alphabet of relational symbols, where c1, ..., cr (resp.

u1, ..., us, b1, ..., bt) are constant symbols (resp. unary relational symbols, binary

relational symbols), and let P be an alphabet of (uninterpreted) unary relational sym-

bols. The language MSO[τ ∪ P] of MSO logic over τ and P is defined as follows:

– atomic formulas are of the forms x = y, x = ci, with 1 ≤ i ≤ r, ui(x), with

1 ≤ i ≤ s, bi(x, y), with 1 ≤ i ≤ t, x ∈ X , and P (x), where x, y are individual

variables, X is a set variable, and P ∈ P;

– formulas are built up from atomic formulas by means of the Boolean connectives

¬ and ∧, and the quantifier ∃ ranging over both individual and set variables.

In the following, we shall write MSOP [τ ] for MSO[τ ∪ P] and we shall write

MSO[τ ] when P is meant to be the empty set.

The symbols belonging to the signature τ are interpreted over a suitable rela-

tional structure, such as, for instance, the set N of natural numbers or an infinite

tree, in the obvious way. Details can be found in [THO 97]. The satisfiability

problem for MSO[τ ] (resp., MSOP [τ ]) with respect to a given relational structure

is the problem of establishing, for any given MSO[τ ]-formula (resp., MSOP [τ ]-
formula) φ(x1, ..., xm, X1, ..., Xn), whether there exists a valuation of the free vari-

ables x1, ..., xm, X1, ..., Xn (resp., of free variables x1, ..., xm, X1, ..., Xn and the

symbols in P) that satisfies φ. The MSO[τ ] (resp., MSOP [τ ]) theory of a given re-

lational structure (resp., P-labeled relational structure) is the set of all and only the

MSO[τ ]-sentences (resp., MSOP [τ ]-sentences) that hold in the structure (resp., P-

labeled structure). The decision problem for the MSO[τ ] (resp., MSOP [τ ]) theory
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of a given structure (resp., P-labeled structure) can be easily reduced to the satisfia-

bility problem for MSO[τ ] (resp., MSOP [τ ]) over such a structure (resp., P-labeled

structure). For this reason, hereafter we shall concentrate our attention on the latter

problem.

In the following, we shall also take into consideration the first-order fragment

FO[τ ] of MSO[τ ], over ω-layered structures, as well as its path (resp., chain) fragment

MPL[τ ] (resp., MCL[τ ]), which is obtained by constraining set variables to be evalu-

ated over paths (resp., chains), together with their P-variants FOP [τ ] and MCLP [τ ]
(resp., MPLP [τ ])2. It is worth pointing out that, while free set variables in the path

(resp., chain) fragments are evaluated over the set of paths (resp., chains), there are no

constraints on the valuation of symbols P in the first-order, path, and chain fragments.

As a consequence, we have that the satisfiability problem for FOP [τ ], MPLP [τ ], and

MCLP [τ ] is more difficult than that for FO[τ ], MPL[τ ], and MCL[τ ].

To compare the various logics, we take advantage of a suitable notion of reducibil-

ity. We say that (the satisfiability problem for) a logic L′ is reducible to (the satisfia-

bility problem for) a logic L, denoted L′ → L, if there exists an effective translation

of L-formulas into equi-satisfiable L′-formulas (as a general rule, the number and

types of free variables in the former formulas may not coincide with the number and

types of free variables in the latter formulas). Moreover, we say that L and L′ are

inter-reducible, denoted L ⇄ L′, if both L′ → L and L → L′. It is immediate to

see that if L′ → L and L is decidable (resp., L′ is undecidable), then L′ is decidable

(resp., L is undecidable) as well. A well-known method to reduce the satisfiability

problem for a logic L′ to the satisfiability problem for a logic L is to define an inter-

pretation of L′ into L, namely, to find (i) a mapping γ from elements in the relational

structure of L′ to elements in the relational structure of L and (ii) a mapping α from

atomic L′-formulas to L-formulas with the same free variables in such a way that an

L′-formula φ(x1, ..., xm, X1, ..., Xn) holds with a valuation (c1, ..., cm, b1, ..., bn) if

and only if the corresponding formula α(φ(x1, ..., xm, X1, ..., Xn)) holds with a val-

uation (γ(c1), ..., γ(cm), γ(b1), ..., γ(bn)) (here the mappings α and γ are extended in

the natural way to Boolean combinations and existential closures of atomic formulas

and to sets bi, respectively). It is immediate to show that if there is an interpretation of

a logic L′ into a logic L, then L′ is trivially reducible to L. If there exists also a con-

verse interpretation of L into L′, we may conclude that L to L′ are inter-reducible Let

σ be a unary (resp., binary) relational symbol. We say that σ is definable in MSO[τ ]
if there is an interpretation of MSO[τ ∪ {σ}], in particular, of atomic formulas of the

form σ(x) (resp., σ(x, y)), into MSO[τ ]. Clearly, if σ is definable in MSO[τ ], then

MSO[τ ∪ {σ}] and MSO[τ ] are inter-reducible. The notion of definability naturally

transfers to any fragment of MSO[τ ].

The considered logics will be interpreted over different relational structures. Be-

sides the discrete linear order 〈N, <〉, we shall focus our attention on the following

2. The definitions of path and chain differ from one ω-layered structure to the other and they

will be formalized later on.
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ω-layered structures for time granularity. They differ from each other in several re-

spects, but they share the notion of layer: for any i ∈ Z, we denote by Ti the set

{ai : a ∈ N} and we call it a layer of the ω-layered structure.

The upward unbounded layered structure

Let U =
⋃

i≥0 Ti. For any k ≥ 2, the k-refinable upward unbounded layered

structure (abbreviated UULS) is a triplet 〈U , (↓i)
k−1
i=0 , <〉, which intuitively represents

a complete k-ary infinite tree generated from the leaves (see Figure 1). The set U is

the domain of the structure, defined as the union of all non-negative layers, ↓i, with

i = 0, ..., k − 1, is a projection function such that ↓i (a0) = ⊥ for all a ∈ N and

↓i (ab) = cd if and only if b > 0, d = b − 1, and c = a · k + i, and < is the total

ordering of U given by the inorder (left-root-right) visit of the tree-shaped structure.

A (full) path over an UULS is a subset of the domain whose elements can be written

as an (infinite) sequence x0, x1, ... such that, for every i > 0, there exists 0 ≤ j < k

such that xi−1 =↓j (xi). Notice that every pair of infinite paths over an UULS may

differ on a finite prefix only. A chain is any subset of a path.

The downward unbounded layered structure

Let D =
⋃

i≤0 Ti. For any k ≥ 2, the k-refinable downward unbounded layered

structure (DULS for short) is a triplet 〈D, (↓i)
k−1
i=0 , <〉, which can be viewed as an

infinite sequence of complete k-ary infinite trees (see Figure 2). The set D is the

domain of the structure, defined as the union of all non-positive layers, ↓i, with i =
0, ..., k − 1, is a projection function such that ↓i (ab) = cd if and only if d = b − 1
and c = a · k + i, and < is the total ordering of D induced by the natural ordering on

the top layer T0 (i.e. 00 < 10 < 20 < ...) and by the preorder (root-left-right) visit of

the elements belonging to the same tree. A (full) path over a DULS is a subset of the

domain D whose elements can be written as an (infinite) sequence x0, x−1, ... such

that, for every i ≤ 0, there exists 0 ≤ j < k such that xi−1 =↓j (xi). A chain is any

subset of a path.

The totally unbounded layered structure

Let T =
⋃

i∈Z
Ti. For any k ≥ 2, the k-refinable totally unbounded layered

structure (TULS for short) is the merging of the k-refinable DULS and the k-refinable

UULS (see Figure 3). It can be formally defined as the triplet 〈T , (↓i)
k−1
i=0 , <〉, where

↓i, with i = 0, ..., k − 1, is a projection function such that ↓i (ab) = cd if and

only if d = b − 1 and c = a · k + i, and < is the total ordering of T given by

the inorder (left-root-right) visit of the tree-shaped structure. A (full) path over the

TULS is a subset of the domain whose elements can be written as a (bi-infinite) se-
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quence ..., x−1, x0, x1, ... such that, for every i ∈ Z, there exists 0 ≤ j < k such that

xi−1 =↓j (xi). A chain is any subset of a path.

A P-labeled UULS (resp., DULS, TULS) is obtained by expanding the UULS (resp.,

DULS, TULS) with a set P ⊆ U (resp., P ⊆ D, P ⊆ T ) for each predicate in P ,

which represents all elements where the predicate holds.

The MSO theory of the UULS (resp., DULS, TULS), denoted MSO[<, (↓i)
k−1
i=0 ],

is an MSO theory with equality and the binary relational symbols <, ↓0, ..., and ↓k−1.

In fact, the ordering relation < can be removed from the theories of the UULS and

the TULS, because it can be defined in both structures by suitable MSO[(↓i)
k−1
i=0 ]-

formulas which use the projection functions only. On the contrary, the theory of the

DULS devoid of the ordering relation < is strictly less expressive than the original

theory, because the ordering on the top layer T0 cannot be defined in terms of the pro-

jection functions. Moreover, the theories of the UULS and the DULS are embeddable

into the theory of the TULS expanded with the unary predicate T0. The decidability

of the MSO theories of the UULS, DULS, and TULS, possibly expanded with the

predicate T0, has been proved by reducing the underlying relational structures to suit-

able ‘collapsed’ structures. In particular, the MSO theory of the k-refinable UULS is

embeddable into the MSO theory of the k-ary systolic tree, while the MSO theories of

the k-refinable DULS and TULS are embeddable into the MSO theory of the infinite

complete k-ary tree [MON 99, MON 00a, MON 02, MON 04].

THEOREM 2. — The satisfiability problem for MSO[<, (↓i)
k−1
i=0 ] (which coincides

with MSOP [<, (↓i)
k−1
i=0 ]) over the k-refinable DULS, UULS, and TULS is (nonele-

mentarily) decidable.

Figure 4 summarizes the relationships between the considered MSO logics and their

fragments induced by reducibility (an arrow from L′ to L stands for L′ → L). From

Theorem 2 it follows that the satisfiability problem for all logics in Figure 4, when

interpreted over the UULS, DULS, and TULS, are decidable.

MSOP [<, (↓i)
k−1

i=0
]

MSO[<, (↓i)
k−1

i=0
] MCLP [<, (↓i)

k−1

i=0
]

MCL[<, (↓i)
k−1

i=0
] MPLP [<, (↓i)

k−1

i=0
]

MPL[<, (↓i)
k−1

i=0
] FOP [<, (↓i)

k−1

i=0
]

FO[<, (↓i)
k−1

i=0
]

Figure 4. A hierarchy of logics over ω-layered structures induced by reducibility
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3. On the relationships between MSO[<], MSO[<, ↓0, ↓1], and MSO[<, flip]

In this section, we discuss reducibility relationships between logics over (an ex-

pansion of) 〈N, <〉 and logics over the ULLS, focussing our attention on reductions

obtained via interpretation.

It is immediate to define an interpretation of MSO[<] over 〈N, <〉 into MSO[<,
↓0, ↓1] over the binary ULLS. Here, we show that MSO[<, ↓0, ↓1] is reducible (via

interpretation) to MSO[<, flip], which is the proper extension of MSO[<] with the

binary relation symbol flip [MON 99, MON 00b].

In [MON 00a], Montanari et al. describe in detail how the basic temporal opera-

tors for time granularity, namely, the displacement, contextualization, and projection

operators, can be defined in MSO[<, ↓0, ↓1] over the UULS. As an example, we re-

port the definition of the unary predicate ∆0 which holds at the origin of each layer.

The predicate ∆0 is interpreted as the set of all and only the elements belonging to the

leftmost branch of an ULLS, which is defined as the least set containing the element

00 and all its ancestors 01, 02, . . .. This predicate can be defined in MSO[<, ↓0, ↓1] as

follows. Given an MSO formula φ(X), with a free set variable X , let µ(φ(X))(x) be

the following formula, with a free individual variable x:

∃X (x ∈ X ∧ φ(X) ∧ ∀Y (φ(Y ) → ∀y(y ∈ X → y ∈ Y ))).

µ(φ(X))(x) evaluates to true if and only if the valuation for x belongs to the smallest

valuation for X for which φ(X) holds true. Using the operator µ, ∆0(x) can be

expressed as follows:

µ (00 ∈ X ∧ ∀y, z ((z ∈ X ∧ ↓0 (y) = z) → y ∈ X)) (x),

where 00 ∈ X is a shorthand for ∃y (y ∈ X ∧ ∀z (y ≤ z)). It is easy to verify

that such a formula captures the smallest valuation for X which contains 00 and it is

closed parent-wise. This shows that ∆0 is definable in MSO[<, ↓0, ↓1].

r r r r r r r r r r r r r r r r r

������������������

# # # # 

' $ ' $

' $

' $

. . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5. The structure of the function flip

The language of MSO[<, flip] is defined in the standard way. The domain of the

underlying relational structure is the set of natural numbers N; moreover, the relational
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symbol < is interpreted as the usual ordering over N, while the relational symbol flip

is interpreted as a unary function, which, for any natural number x > 0, returns the

natural number x − x′, where x′ is the least power of 2, with a non-null coefficient,

that occurs in the binary representation of x.

DEFINITION 3 (THE FUNCTION flip). — The function flip : N
+ → N is defined

as follows: for all x ∈ N
+,

flip(x) = y iff x =
∑n

j=0 2ij , with in > in−1 > . . . > i0 ≥ 0, and y = x− 2i0 .

The function flip is not defined for x = 0; however, totality can be recovered

by extending it with flip(0) = 0. (Notice that flip(x) < x, for all x ∈ N
+, and

flip(x) ≤ x, for all x ∈ N. Later, we will often use these properties of flip to

simplify definitions.) Furthermore, it is useful to add a maximum element ∞ to N,

with flip(∞) = 0. A graphical representation of the function flip is given in Figure

5.

r��������
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Figure 6. The concrete 2-refinable UULS

An interpretation of MSO[<, ↓0, ↓1] into MSO[<, flip] can be defined as follows

[MON 99]. First, it is possible to rename each node ab of the 2-refinable UULS by

a positive natural number γ(ab) = 2b + a2b+1. The resulting structure is called

concrete 2-refinable UULS and it can be viewed as the (discrete) linear order 〈N+, <〉
expanded with two functions ↓0 and ↓1 such that, for every x = 2b + a2b+1 ∈ N

+,

↓0 (x) = x − 2b−1 and ↓1 (x) = x + 2b−1. A fragment of this concrete structure is

depicted in Figure 6. Notice that all odd numbers are associated with layer T0, while

even numbers are distributed over the remaining layers. Notice also that the labeling

of the concrete structure does not include the number 0. For the sake of convenience,

we will consider 0 as the image of the first node of an imaginary additional finest layer,

whose remaining nodes have no corresponding number in N (notice that in such a way

the node corresponding to 0 turns out to be the left son of the node corresponding

to 1). Since the addition/removal of a (definable) node in a structure preserves the

expressive power of the corresponding logic, we do not need to explicitly care about

such an element in the following proofs.
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The binary relations ↓0 and ↓1 of the concrete 2-refinable UULS can be defined

neither in FO[<] nor in MSO[<] (this can be proved by showing that the relation ↓0

restricted to the elements of the leftmost branch coincides with the relation {(2x, x) :
x ∈ N

+}). This implies that MSO[<, ↓0, ↓1] (resp. FO[<, ↓0, ↓1]) is strictly more

expressive than MSO[<] (resp. FO[<]). However, both relations ↓0 and ↓1 can be

defined in terms of the function flip as shown by Theorem 4 below. As a preliminary

step, notice that for every even natural number x, we have:

↓0 (x) = max{y : y < x, flip(y) = flip(x)} and ↓1 (x) = max{y : flip(y) = x}.

Such a correspondence can be translated into suitable first-order logical formulas, thus

implying that both relations ↓0 and ↓1 are definable in FO[<, flip].

THEOREM 4. — MSO[<, ↓0, ↓1] (resp. FO[<, ↓0, ↓1]) over the (concrete) UULS

can be reduced via interpretation to MSO[<, flip] (resp. FO[<, flip]) over 〈N, <〉
expanded with flip.

PROOF. — In order to prove the claim it suffices to provide a mapping α of the

two atomic formulas ↓0 (x, y) and ↓1 (x, y) into suitable FO[<, flip]-formulas α(↓0

(x, y)) and α(↓1 (x, y)). Such a mapping is defined as follows:

α(↓0 (x, y)) := y < x ∧ flip(y) = flip(x) ∧

∀z ((z < x ∧ flip(z) = flip(x)) → (z = y ∨ z < y));

α(↓1 (x, y)) := flip(y) = x ∧ ∀z (flip(z) = x → (z = y ∨ z < y)).

n

In [MON 00b], Monti and Peron show that the satisfiability problem for MSO[<,
flip] is (non-elementarily) decidable. By Theorem 4, from such a result it immedi-

ately follows that the satisfiability problem for MSO[<, ↓0, ↓1] is decidable. The same

argument can be applied to the FO fragments of the considered logics.

We conclude the section by providing an interpretation of MSO[<, flip] (resp.

FO[<, flip]) into the MSO (resp. FO) logic of a suitable expansion of the 2-refinable

(concrete) UULS. To this end, we consider the reflexive and transitive closure of ↓0,

denoted by ↓∗0. The relation flip can be defined in terms of ↓∗0 and ↓1 as follows:

flip(x) = y iff (↓1 (y), x) ∈↓∗0 or (y = 0 ∧ (x, 0) ∈↓∗0).

From this, it immediately follows that the relation flip is definable in FO[<, ↓∗0, ↓1].

THEOREM 5. — MSO[<, flip] (resp. FO[<, flip]) over 〈N, <〉 expanded with the

flip can be reduced via interpretation to MSO[<, ↓∗0, ↓1] (resp. FO[<, ↓∗0, ↓1]) over

the (concrete) UULS.

PROOF. — We simply need to translate the atomic FO[<, flip]-formula flip(x, y)
(which holds if and only if y = flip(x)) into an equivalent FO[<, ↓∗0, ↓1]-formula

β(flip(x, y)). This can be done by defining the mapping β as follows:

β(flip(x, y)) := ∃z (↓1 (y, z) ∧ ↓∗0 (z, x)) ∨ (y = 0 ∧ ↓∗0 (x, y)),
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where y = 0 is a shorthand for ∀z (y = z ∨ y < z). n

As for the relationships between ↓0 and ↓∗0, we have that ↓0 can be defined in

FO[<, ↓∗0, ↓1]:

↓0 (x) = y iff ↓∗0 (x, y) ∧ ¬∃z (y < z ∧ ↓∗0 (x, z)).

This allows us to conclude that FO[<, ↓0, ↓1] (resp. MSO[<, ↓0, ↓1]) can be reduced

via interpretation to FO[<, ↓∗0, ↓1] (resp. MSO[<, ↓∗0, ↓1]). Moreover, one can easily

show that FO[<, ↓∗0, ↓1] cannot be reduced to FO[<, ↓0, ↓1] (the unary predicate {2n :
n ∈ N} is definable in FO[<, ↓∗0, ↓1] but not in FO[<, ↓0, ↓1]). On the other hand,

since the reflexive and transitive closure of a binary predicate is always definable in

MSO logic, we have that MSO[<, ↓∗0, ↓1] and MSO[<, ↓0, ↓1] are inter-reducible.

The reducibility relationships among the various FO and MSO logics over (an

expansion of) 〈N, <〉 and (an expansion of) the ULLS are summarized in Figure 7,

where a bold arrow from a logic L′ to a logic L means that L′ can be reduced via

interpretation to L.

FO[<, ↓∗0, ↓1]

FO[<, flip]

FO[<, ↓0, ↓1]

FO[<]

MSO[<, ↓∗0, ↓1]

MSO[<, flip]

MSO[<, ↓0, ↓1]

MSO[<]

×

× ×

Figure 7. Reducibility relationships between FO and MSO logics over (an expansion

of) 〈N, <〉 and (an expansion of) the binary ULLS

4. On the relationships between FO[<, ↓0, ↓1, Path
<, D0] and MSO[<]

In this section, we show that the MSO logic of 〈N, <〉 (abbreviated MSO[<])
and the FO logic of the expanded 2-refinable UULS (U , <, ↓0, ↓1, Path

<, D0) are

inter-reducible. The predicate Path< subsumes both the equi-level predicate T and

the ancestor predicate ↓⋆, while D0 holds at all and only the elements belonging

to the leftmost branch of the tree. Such a result defines the precise relationship

that holds between the logic MSO[<] over the flat structure of natural numbers and

the logic FO[<, ↓0, ↓1, Path
<, D0] over the UULS, showing the rather surprising

fact that the satisfiability problem for MSO[<] is reducible to the satisfiability prob-

lem for a suitable FO logic over the UULS. Moreover, the opposite reduction from

FO[<, ↓0, ↓1, Path
<, D0] to MSO[<] has a nontrivial impact from a practical point
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of view, since it allows one to map verification problems for the UULS to verifica-

tion problems for MSO[<], thus making it possible to exploit the wide spectrum of

techniques available for that logic.

We start by defining the predicate Path<. We have that Path<(x, y, z, w) holds

if and only if T (x, z) (x and z belong to the same layer), T (y, w) (y and w belong to

the same layer), and there exist two finite downward paths, one from x to y and the

other from z to w, such that, for each right projection in the path from x to y, there

exists a right projection in the path from z to w. More formally, we require that

– T (x, z) and T (y, w);

– there are two paths c0, . . . , cn and b0, . . . , bn such that x = c0, y = cn, z = b0,

w = bn, ci+1 =↓ic
(ci), and bi+1 =↓ib

(bi), with ib, ic ∈ {0, 1} for 0 ≤ i ≤ n− 1;

– for all 0 ≤ i ≤ n− 1, ↓ic
=↓1 implies ↓ib

=↓1.

The predicate Path<(x, y, z, w) subsumes the equi-level predicate T (x, y), since

T (x, y) is equivalent to Path<(x, x, y, y). Moreover, it also subsumes the ances-

tor predicate ↓⋆ (x, y). By definition, ↓⋆ (x, y) holds true if and only if either x is

equal to y or x is an ancestor of y, that is, there exists a finite path c0, . . . , cn such that

c0 = x, cn = y, and ci+1 =↓i (ci), for 0 ≤ i ≤ n−1, and thus ↓⋆ (x, y) is equivalent

to Path<(x, y, x, y) (in the following we will often use ↓⋆ (x, y) as a shorthand for

Path<(x, y, x, y)).

THEOREM 6. — FO[<, ↓0, ↓1, Path
<, D0] over the expanded 2-refinable UULS and

MSO[<] over 〈N, <〉 are inter-reducible.

PROOF. — We first prove that MSO[<] can be reduced to FO[<, ↓0, ↓1, Path
<, D0].

As a first step, we replace MSO[<] with Weak MSO[<] (WMSO[<] for short), where

second-order quantification refers to finite sets only. By the well-known McNaughton

Theorem (see, for instance, [?]), MSO[<] and WMSO[<] have the same expressive

power, and thus such a replacement is legitimate. Moreover, we replace WMSO[<]
with the simpler, but equivalent, formalism WMSO0[⊆, Succ] where only second-

order variables occur and atomic formulas are of the forms X ⊆ Y (X is a subset

of Y ) and Succ(X,Y ) (X and Y are the singletons {x} and {y}, respectively, and

y = x+ 1).

The reduction is based on a suitable encoding of (finite) sets of natural num-

bers into elements of the concrete 2-refinable UULS. More precisely, any second-

order variable X of WMSO0[⊆, Succ] is replaced with a first-order variable x of

FO[<, ↓0, ↓1, Path
<, D0] and any interpretation ν(X) of X is mapped into an inter-

pretation µν(x) of x as follows:

– if ν(X) = ∅, then µν(x) is the origin of the UULS, that is, the lowest element

to the left;

– if ν(X) = {n0, n1, . . . , ns}, then µν(x) is the element ab of the UULS such

that 2b + a2b+1 = 2ns + . . .+ 2n1 + 2n0 .
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Since in WMSO0[⊆, Succ] the interpretation ν(X) of any second-order variable X is

finite, we have that rule 2 is effective. An intuitive account of the mapping ν can be

given in terms of the concrete 2-refinable UULS depicted in Figure 6: the set ν(X) is

the set of positions of the non-zero coefficients of the binary representation of µν(x).

Later in the proof, we will take advantage of the following interpretation of the set

ν(X) as a path over the concrete UULS. First of all, since in WMSO0[⊆, Succ] the in-

terpretation of any set variable is finite, ν(X) has not only a least elementmin(ν(X)),
but also a greatest elementmax(ν(X)). We associate ν(X) with the path from the ori-

gin of the layer Tmax(ν(X)) to the element µν(x), belonging to the layer Tmin(ν(X)).

Such a path provides an encoding of the elements of ν(X) as follows: max(ν(X)),
that is, the index of the layer of the first element in the path, and min(ν(X)), that

is, the index of the layer of the last element in the path, belong to ν(X); moreover,

if the element ab of the UULS, with min(ν(X)) < b ≤ max(ν(X)), belongs to the

path, then ↓1 (ab−1) belongs to the path if (and only if) b− 1 ∈ ν(X) and ↓0 (ab−1)
belongs to the path if (and only if) b− 1 6∈ ν(X).

On the ground of the above-defined correspondence, we can translate every of

WMSO0[⊆, Succ]-formula φ into an FO[<, ↓0, ↓1, Path
<, D0]-formula α(φ), where

the mapping α is inductively defined as follows:

α(Succ(X,Y )) := D0(x) ∧D0(y)∧ ↓0 (y) = x;

α(X ⊆ Y ) := x = y ∨ (x < y ∧ ∃z, w (D0(z) ∧ (Path<(z, x, w, y) ∨

∃h, k (Path<(z, x, w, k) ∧ h =↓1 (k)∧ ↓⋆ (h, y)))));

α(φ ∧ ψ) := α(φ) ∧ α(ψ);

α(¬φ) := ¬α(φ);

α(∃X φ) := ∃xα(φ).

The rules for atomic formulas can be explained by taking into account the relation-

ship that holds between interpretations of set variables in WMSO0[⊆, Succ] and in-

terpretations of the corresponding individual variables in FO[<, ↓0, ↓1, Path
<, D0] as

well as the structure of the concrete 2-refinable UULS. As for the formula Succ(X,Y ),
it suffices to notice that singletons are mapped into elements which are powers of two,

and thus belong to the leftmost branch of the concrete UULS, and that the successor

relation can be directly captured by the left projection. The translation of the formula

X ⊆ Y is more involved. The case in whichX = Y is trivial, and thus we concentrate

our attention on the case X ⊂ Y . As anticipated, we take advantage of the interpre-

tation of ν(X) and ν(Y ) as paths over the concrete UULS. In order to guarantee that

X ⊂ Y we have to check that at every layer Ti, with min(ν(X)) < i ≤ max(ν(X)),
if the path associated with ν(X) follows a right projection, then the path associated

with ν(Y ) follows a right projection as well (notice that, in general, the path asso-

ciated with ν(Y ) may be longer than the one associated with ν(X)). This can be

ensured by exploiting predicate Path<.
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From the given translation of WMSO0[⊆, Succ] into FO[<, ↓0, ↓1, Path
<, D0],

and the correspondence between the interpretation of set variables in WMSO0[⊆,
Succ] and the interpretation of the corresponding individual variables in FO[<, ↓0, ↓1,

Path<, D0], it is easy to show that a WMSO0[⊆, Succ]-formula φ is satisfiable, with

an interpretation ν, if and only if α(φ) is satisfiable, with the interpretation µν .

Consider now the opposite reduction from the logic FO[<, ↓0, ↓1, Path
<, D0] to

the logic MSO[<]. As before, we define an injective function that maps each individ-

ual variable x of FO[<, ↓0, ↓1, Path
<, D0] into a set variable X of MSO[<]. The en-

coding of the elements of the UULS into natural numbers is exactly the reverse of the

previously-defined encoding, which induces, for an interpretation µ over the UULS, an

interpretation νµ over the natural numbers. A formula φ of FO[<, ↓0, ↓1, Path
<, D0]

is mapped into a formula β(φ) of FO[<] by a function β inductively defined as fol-

lows:
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β(x = y) := X = Y ;

β(D0(x)) := ∃z (z ∈ X ∧ ∀h (h ∈ X → h = z));

β(x < y) := ∃z (z ∈ Y ∧ z 6∈ X ∧

∀w ((w ∈ X ∧ w 6∈ Y ) → w < z));

β(Path<(x, y, z, w)) := ¬∃z (z ∈ X ∨ z ∈ Y ∨ z ∈ Z ∨ z ∈W ) ∨

∃h, k (h ∈ X ∧ h ∈ Z ∧ k ∈ Y ∧ k ∈W ∧

∀v (v ∈ X → h ≤ v ∧ v ∈ Z → h ≤ v) ∧

∀v (v ∈ Y → k ≤ v ∧ v ∈W → k ≤ v) ∧

∀v ((v ∈ X ∧ v > h) → v ∈ Y ∧

(v ∈ Y ∧ v > h) → v ∈ X) ∧

∀v ((v ∈ Z ∧ v > k) → v ∈W ∧

(v ∈W ∧ v > k) → v ∈ Z) ∧

∀v ((v < h ∧ k ≤ v ∧ v ∈ Y ) → v ∈W ));

β(↓0 (x) = y) := ∃z (z ∈ X ∧ z 6∈ Y ∧

∀w (w ∈ X → z ≤ w) ∧

∀w ((w ∈ X ∧ z < w) → w ∈ Y ∧

(w ∈ Y ∧ z ≤ w) → w ∈ X ∧

(w ∈ Y ∧ w < z) → z = w + 1) ∧

∃w (w ∈ Y ∧ w < z));

β(↓1 (x) = y) := ∃z (z ∈ X ∧

∀w (w ∈ X → z ≤ w) ∧

∀w ((w ∈ X ∧ z ≤ w) → w ∈ Y ∧

(w ∈ Y ∧ z ≤ w) → w ∈ X ∧

(w ∈ Y ∧ w < z) → z = w + 1) ∧

∃w (w ∈ Y ∧ w < z));

β(φ ∧ ψ) := β(φ) ∧ β(ψ);

β(¬φ) := ¬β(φ);

β(∃x φ) := ∃X β(φ).
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The translation β can be explained by referring to the concrete UULS structure over

natural numbers. The predicate D0(x) holds if x is interpreted over a power of two,

that is, if µν(X) is a singleton. As for the predicate Path<, we have that the elements

x and z (resp. y and w) belong to the same layer if the corresponding sets X and

Z (resp. Y and W ) have the same least element. Moreover, the predicate ↓⋆ (x, y)
holds if the path from the leftmost branch to x, described by the set X , is a prefix of

the path from the leftmost branch to y, described by Y . Finally, the translation of the

projection functions ↓0 and ↓1 exploits the fact that, if x = 2kn + 2kn−1 + . . .+ 2k0 ,

with kn > kn−1 > . . . > k0 > 0, then ↓0 (x) = y, with y = x − 2k0 + 2k0−1, and

↓1 (x) = y, with y = x+ 2k0 + 2k0−1. n

5. On the relationships between MCL[<, ↓0, ↓1, T0, T ], MCL[<, ↓0, ↓1, T0, D],
and MSO[<]

In this section, we explore the relationships between MSO[<] and chain fragments

of MSO logics interpreted over the TULS expanded with T0 (layer 0 predicate) and

either T (equi-level predicate) or D (equi-column predicate). As already pointed out,

T allows one to check whether two given elements of the TULS belong to the same

layer, while D allows one to check whether two given elements are at the same dis-

tance from the origin of the layer they belong to. Formally, we can define T and D as

follows:

T := {(ab, cb) : a ∈ N, c ∈ N, b ∈ Z};
D := {(ab, ad) : a ∈ N, b ∈ Z, d ∈ Z}.

The reductions we are going to describe will allow us to conclude that the satis-

fiability problem for the chain fragment of MSO logic interpreted over the expanded

TULS 〈T , (↓i)
k−1
i=0 , <, T0, T 〉 (resp., 〈T , (↓i)

k−1
i=0 , <, T0, D〉) is decidable. Such re-

sults have been originally provided in [PUP 06] and they are partly based on a proof

method introduced by Thomas in [?], which makes it possible to reduce the chain frag-

ment of an MSO logic interpreted over a tree-shaped structure into an MSO logic over

the discrete linear structure 〈N, <〉. As usual, for the sake of simplicity, we restrict

our attention to the 2-refinable TULS.

THEOREM 7. — MCL[<, ↓0, ↓1, T0, T ] over the TULS and MSO[<] over 〈N, <〉 are

inter-reducible.

PROOF. — We show that the logic MSO[<] over the natural numbers is reducible

to the logic MCL[<, ↓0, ↓1, T0, T ] over the TULS. We first replace MSO[<] with

the equivalent logic MSO0[⊆, Succ], where only second-order variables occur and

atomic formulas are of the forms X ⊆ Y and Succ(X,Y ). We denote by D0 the

unary predicate that consists of all and only the elements belonging to the leftmost

upward branch, that is, the portion of the leftmost branch from level 0 upward, of

the 2-refinable TULS. Such a predicate can be easily defined by a formula in the chain

fragment of MSO logic over the TULS. We can translate any MSO0[⊆, Succ]-formula
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φ into an equi-satisfiable MCL[<, ↓0, ↓1, T0, T ]-formula α(φ) by constraining every

second-order variable to be interpreted with elements fromD0. Formally, the mapping

α is inductively defined as follows:

α(X ⊆ Y ) := Y ⊆ D0 ∧X ⊆ Y ;
α(Succ(X,Y )) := X ⊆ D0 ∧ ∀x, y(x ∈ X ∧ y ∈ Y → x =↓0 (y));

α(φ ∧ ψ) := α(φ) ∧ α(ψ);
α(¬φ) := ¬α(φ);

α(∃Xφ) := ∃X α(φ).

Since D0 is definable in MCL[<, ↓0, ↓1, T0, T ], we have that MSO0[⊆, Succ] (and

hence MSO[<]) is reducible to MCL[<, ↓0, ↓1, T0, T ].

As for the opposite reduction, we must show how to transform any MCL[<, ↓0, ↓1,

T0, T ]-formula into an equi-satisfiable MSO[<]-formula. We define such a transla-

tion in two steps. We first translate any MCL[<, ↓0, ↓1, T0, T ]-formula into an equi-

satisfiable MSO[<]-formula interpreted over the bi-infinite linear structure 〈Z, <〉.
Then, we exploit standard logical constructions to map the latter formula into an equi-

satisfiable MSO[<]-formula over 〈N, <〉. As for the first step, we encode chain vari-

ables with suitable pairs of second-order variables and then we give rules to rewrite

atomic formulas. Notice that the ordering < of the TULS can be easily defined by a

formula in the chain fragment of its MSO logic. Moreover, we can assume, without

loss of generality, that second-order variables of MCL[<, ↓0, ↓1, T0, T ]-formulas are

interpreted by non-empty chains. Therefore, we can restrict ourselves to the equiva-

lent setup of MCL[<, ↓0, ↓1, T0, T ] where second-order variables are instantiated by

non-empty chains and atomic formulas are of the forms X ⊆ Y (chain X is included

in chain Y ), ↓i (X,Y ) (X and Y are the singletons {x} and {y}, respectively, and

y =↓i (x)), T0(X) (X is the singleton {x}, with x ∈ T0), and T (X,Y ) (X and Y are

the singletons {x} and {y}, respectively, and x and y belong to the same layer).

The treatment of chain variables is based on the observation that, for every non-

empty chain C over the TULS and for every b ∈ Z, there exists at most one a ∈ N

such that ab is an element of C. Accordingly, any non-empty chain C can be encoded

into two subsets ZC and WC of Z as follows. We say that P ⊆ T is a cover of a

non-empty chain C if P is a maximal path including C, namely, if C ⊆ P and for

every b ∈ Z, there exists exactly one a ∈ N such that ab ∈ P . We denote by PC the

leftmost cover of C, that is, the (unique) cover PC such that, whenever b is the least

integer for which there is a ∈ N satisfying ab ∈ C, then every descendant of ab along

PC is of the form cd, with c = 2b−da and d ≤ b. Then, we define ZC and WC in such

a way that, for every b ∈ Z,

– b ∈ ZC iff there is a (unique) odd index a ∈ N such that ab ∈ PC (namely, ab is

a ↓1-successor in the path PC);

– b ∈ WC iff there is a (unique) index a ∈ N such that ab ∈ C (namely, C

intersects the layer Tb).
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Intuitively, ZC represents those layers which are reached by right-hand side projec-

tions along the path PC , while WC selects only those layers which intersect the chain

C. Notice that the encoding (ZC ,WC) determines in an unambiguous way the non-

empty chain C. An encoding of the above construction in the logic can be obtained as

follows. First of all, for every chain variableX , we introduce two set variablesZX and

WX (to be instantiated by sets of integers). Then, we map any MCL[<, ↓0, ↓1, T0, T ]-
formula φ into an equi-satisfiable MSO[<]-formula β(φ) by means of the following

sequence of steps. As a preliminary step, we replace MCL[<, ↓0, ↓1, T0, T ] with the

equivalent logic MCL0[⊆, ↓0, ↓1, T0, T ]. Moreover, without loss of generality, we ex-

istentially close every free set variable occurring in the formula φ in such a way that

we may restrict our attention to sentences. The mapping β is inductively defined as

follows (for the sake of readability, we take advantage of various obvious shorthands):

β(X ⊆ Y ) := WX ⊆WY ∧ (ZX = ZY ∨
∃w (w ∈WX ∧ ∀w′ (w′ ∈WX → w′ ≥ w) ∧

∀z (z ≥ w → (z ∈ ZX ↔ z ∈ Zy))));
β(↓0 (X,Y )) := ∃w (ZX = ZY ∧WX = {w} ∧WY = {w − 1});
β(↓1 (X,Y )) := ∃w (ZX ∪ {w − 1} = ZY ∧WX = {w} ∧WY = {w − 1});

β(T0(X)) := WX = {0};
β(T (X,Y )) := ∃w (WX = WY = {w});
β(φ ∧ ψ) := β(φ) ∧ β(ψ);

β(¬φ) := ¬β(φ);
β(∃X φ) := ∃ZX ,WX (β(φ) ∧ WX 6= ∅ ∧ ∀w (w ∈WX →

(∀w′(w′ 6∈WX ∨ w′ ≥ w) → ∀z(z 6∈ ZX ∨ z ≥ w)))).

It is routine to check that the MCL[<, ↓0, ↓1, T0, T ]-sentence φ holds in 〈T , ↓0, ↓1, <,

T0, T 〉 if and only if β(φ) holds in 〈Z, <〉.

To complete the proof it suffices to show that MSO[<] over 〈Z, <〉 is reducible to

MSO[<] over 〈N, <〉. To this end, let us denote by even and odd the (definable) unary

predicates {2n : n ∈ N} and {2n+ 1 : n ∈ N}, respectively. Then, we translate any

given formula over 〈Z, <〉 into an equi-satisfiable formula over 〈N, <〉 by replacing

every atomic formula of the form x < y with the formula (odd(x) ∧ even(y)) ∨
(even(x) ∧ even(y) ∧ x < y) ∨ (odd(x) ∧ odd(y) ∧ y < x). By composing the two

translations, we have that MCL[<, ↓0, ↓1, T0, T ] is reducible to MSO[<]. n

The following theorem shows that a similar result holds for the expansion of the

TULS with the level 0 predicate T0 and the equi-column predicate D.

THEOREM 8. — MCL[<, ↓0, ↓1, T0, D] over the TULS and MSO[<] over 〈N, <〉 are

inter-reducible.

PROOF. — We first show that MSO[<] over 〈N, <〉 is reducible to MCL[<, ↓0, ↓1,

T0, D] over the expanded TULS. In a way similar to the proof of Theorem 7, we

replace MSO[<] with the equivalent logic MSO0[⊆, Succ] where only second-order
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variables occur and atomic subformulas are of the forms X ⊆ Y and Succ(X,Y ).
Then, we denote by D0 the leftmost upward branch of the 2-refinable TULS. Such a

predicate can be defined by a suitable formula in the chain fragment of MSO logic over

the TULS. Finally, we translate any MSO0[⊆, Succ]-formula φ into an equi-satisfiable

MCL[<, ↓0, ↓1, T0, D]-formula α(φ), by following the same construction of Theorem

7. Since D0 is definable in MCL[<, ↓0, ↓1, T0, D], we have that MSO0[⊆, Succ] (and

hence MSO[<]) is reducible to MCL[<, ↓0, ↓1, T0, D].

As for the opposite reduction, in order to make it possible to check whether two el-

ements of the TULS lie on the same column, we need to encode non-empty chains by

suitable elements and sets of elements over 〈N, <〉. Since the ordering < of the TULS

can be easily defined by a formula in the chain fragment of MSO logic, we can restrict

ourselves to the equivalent setup of MCL[<, ↓0, ↓1, T0, D] where variables are instan-

tiated with non-empty chains over the 2-refinable TULS and atomic formulas are of

the formsX ⊆ Y (chainX is included in chain Y ), ↓i (X,Y ) (X and Y are the single-

tons {x} and {y}, respectively, and y =↓i (x)), T0(X) (X is the singleton {x}, with

x ∈ T0), and D(X,Y ) (X and Y are the singletons {x} and {y}, respectively, and x

and y belong to the same column). As in the proof of Theorem 7, we existentially close

any MCL[<, ↓0, ↓1, T0, D]-formula to be interpreted over 〈T , (↓i)
k−1
i=0 , <, T0, D〉 and

we translate the resulting sentence φ into an MSO[<,neg]-sentence β(φ) over the

structure 〈Z ∪ {∞}, <, neg〉, where ∞ denotes a special element not belonging to

Z and neg denotes the binary relation {(z,−z) : z ∈ Z}. We shall later show that

MSO[<,neg] over 〈Z∪{∞}, <, neg〉 is in its turn reducible to MSO[<] over 〈N, <〉.

In order to map sentences of MCL[<, ↓0, ↓1, T0, D] into sentences of

MSO[<,neg], we encode any non-empty chain C by an integer sC and three sub-

sets ZC ,WC , and QC of N. We denote by PC the rightmost cover of C, namely, the

superset of C that, for each b ∈ Z, contains exactly one element ab of the TULS and

such that, whenever b is the least integer for which there is a satisfying ab ∈ C, every

descendant of ab along PC is of the form cd, with c = 2b−d(a+1)− 1 and d ≤ b. We

must distinguish between two cases: either PC coincides with the leftmost branch of

the TULS (this happens whenC is a downward infinite chain lying entirely on the left-

most branch) or there is a minimum index i ∈ Z such that 0i ∈ PC . In the former case,

we set sC = ∞, ZC = ∅, WC = {i ≥ 0 : 0−i ∈ C}, and QC = {i > 0 : 0i ∈ C}. In

the latter case, we define sC as the minimum i ∈ Z such that 0i ∈ PC and we define

ZC ,WC , QC ⊆ N as follows:

– b ∈ ZC iff there is a (unique) odd index a ∈ N such that asC−b ∈ PC (namely,

asC−b is a ↓1-successor in the path PC);

– b ∈ WC iff there is a (unique) index a ∈ N such that asC−b ∈ C (namely, C

intersects the layer TsC−b);

– b ∈ QC iff b > 0 and 0sC+b ∈ C (namely, C intersects the layer TsC+b).

In both cases, the encoding (sC , ZC ,WC , QC) uniquely determines the non-empty

chain C. Switching to logic, we introduce, for each chain variable X , a first-order

variable sX and three second-order variables ZX , WX , and QX . The translation of
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any MCL[<, ↓0, ↓1, T0, D]-sentence φ into the corresponding MSO[<,neg]-sentence

β(φ) is inductively as follows:

β(X ⊆ Y ) := WX ⊆WY ∧ QX ⊆ QY ∧ (sX = sY = ∞ ∨
(sX = sY 6= ∞∧ ZX = ZY ) ∨ (sX = sY 6= ∞∧
∃w (w ∈WX ∧ ∀w′(w′ ∈WX → w ≤ w′)∧

∀z(z ≥ w → (z ∈ ZX ↔ z ∈ ZY )))));
β(↓0 (X,Y )) := (sY = sX − 1 ∧ ZX = ZY ∧

WX = WY = {0} ∧ QX = QY = ∅) ∨
∃w (sX = sY 6= ∞ ∧ ZX = ZY ∪ {w − 1} ∧

WX = {w} ∧ WY = {w − 1} ∧ QX = QY = ∅);
β(↓1 (X,Y )) := sX = sY 6= ∞ ∧ ZX = ZY ∧

∃w (WX = {w} ∧ WY = {w − 1}) ∧QX = QY = ∅;
β(T0(X)) := WX = {neg(sX)} ∧ QX = ∅;

β(D(X,Y )) := sX 6= ∞ ∧ sY 6= ∞ ∧ ZX = ZY ∧
∃w (WX = WY = {w}) ∧ QX = QY = ∅;

β(φ ∧ ψ) := β(φ) ∧ β(ψ);
β(¬φ) := ¬β(φ);

β(∃X φ) := ∃sX , ZX ,WX , QX(β(φ) ∧ ZX ∪WX ∪QX ⊆ N ∧
WX ∪QX 6= ∅ ∧ ((sX = ∞∧ ZC = ∅)∨
(sX 6= ∞∧ ∀w((w ∈Wx ∧ ∀w′(w′ ∈WX → w ≥ w′)) →

∀z(z > w → z ∈ ZX)))).

It is routine to check that for every sentence φ, φ holds in the TULS expanded with

the predicates T0 and D if and only if β(φ) holds in the structure 〈Z ∪ {∞}, <, neg〉.

To complete the proof, it remains to show that MSO[<,neg] over 〈Z ∪ {∞}, <,
neg〉 is reducible to MSO[<] over 〈N, <〉. First of all, we observe that the structure

〈Z ∪ {∞}, <, neg〉 can be embedded in 〈N, <〉. Then, let us denote by even and odd

the (definable) unary predicates {2n : n ∈ N} and {2n+1 : n ∈ N}, respectively. We

can translate any MSO[<,neg]-formulaψ into an MSO[<]-formula ρ(ψ) by replacing

every atomic formula of the form x < y with the formula (x = 1∧y = 2)∨(odd(x)∧
odd(y) ∧ x < y) ∨ (x 6= 0 ∧ even(x) ∧ even(y) ∧ y < x) and every atomic formula

of the form neg(x, y) with the formula (x = y = 1) ∨ (odd(x) ∧ x = y + 1) ∨ (x 6=
0 ∧ even(x) ∧ y = x+ 1). By composing the two translations, we can conclude that

MCL[<, ↓0, ↓1, T0, D] is reducible to MSO[<]. n

In [FRA 06] Franceschet et al. show that the satisfiability problems for the MSO

logic over the DULS and the UULS expanded with either the equi-level or the equi-

column predicates are not decidable. These undecidability results are proved by reduc-

ing several undecidable problems, e.g., the tiling problem over the two-dimensional

infinite grid, to satisfiability problems for the corresponding structures. On the posi-

tive side, they prove the decidability of the satisfiability problem for the chain fragment

(and thus for the path and FO fragments as well) of MSO logic interpreted over the
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DULS and the UULS expanded with the equi-level predicate and over the UULS ex-

panded with the equi-column predicate, but they leave open the problem for the DULS

expanded with the equi-column predicate. Since the MSO-definability of the DULS

and the UULS in terms of the TULS, equipped with the predicate T0, holds even if

we restrict ourselves to interpretations with chain quantifiers only, Theorems 7 and 8

allow us to positively solve such a decision problem3.

COROLLARY 9. — The satisfiability problem for MCL[<, ↓0, ↓1, D] (and thus for

MPL[<, ↓0, ↓1, D] and FO[<, ↓0, ↓1, D] as well) over the DULS is decidable.

6. Conclusions

In this paper we explored the relationships between the MSO theory of one suc-

cessor (the so-called sequential calculus) and various theories of ω-layered structures

for time granularity. By taking advantage of logical interpretation as well as of some

relaxed variants of it, we reduced the decision/satisfiability problem for MSO logic

over 〈N, <〉 to that for FO/chain logics over ω-layered structures, and vice versa. On

the one hand, these reductions establish interesting links between the sequential calcu-

lus and proper fragments of MSO theories of ω-layered structures; on the other hand,

they provide an effective solution to the decision/satisfiability problem for expressive

theories of time granularity. We intend to compare such a translation-based solution

with alternative direct ones in future research work.
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