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Via delle Scienze 206, 33100 Udine, Italy
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Abstract tree (S15%), respectively. Both the DULS and the UULS
can naturally be viewed as tree structures. The DULS can
In this paper, we address the decision problem for a sys-be viewed as an infinite sequence of infinkeary trees,
tem of monadic second-order logic interpreted over.an  while the UULS can be seen as a complgtary infinite
layered temporal structure devoid of both a finest layer and tree generated from the leaves or, equivalently, as an infi-
a coarsest one (we call such a structure totally unbounded). nite sequence of finite increasikepry trees [3]. The totally
We propose an automaton-theoretic method that solves theinboundedk-refinablew-layered structure (TULS) can be
problem in two steps: first, we reduce the considered prob-viewed as the composition of the DULS and the UULS.
lem to the problem of determining, for any given Rabin tree  In this paper we deal with the decision problem for the
automaton, whether it accepts a fixed vertex-colored tree; theory of the TULS. To some extent, the solution we pro-
then, we exploit a suitable notion of tree equivalence to pose can be viewed as an extension of Carton and Thomas'’
reduce the latter problem to the decidable case of regular solution to the decision problem for the MSO theories of
trees. residually ultimately periodic words [1]. We first provide
a tree-like characterization of the TULS. Taking advantage
of it, we define a non-trivial encoding of the TULS into
a vertex-colored tree that allows us to reduce the decision
problem for the TULS to the problem of determining, for

This paper addresses the decision problem for a systenfY 9iven Rabin tree automaton, whether it accepts such a
of monadic second-order (MSO for short) logic interpreted vertex-colqred tree. Finally, this latter problem is reduce_d
over anw-layered temporal structure devoid of both a finest t© the decidable case of regular trees by exploiting a suit-
layer and a coarsest one (we call such a structure totally?Pl€ notion of tree equivalence [7] (we call residually reg-
unbounded and we denote it by TULS). Layered structureswar _trees those vertex—colorgd trees for which such a re-
have been originally proposed by Montanari et al. in [4, 5, 6] duction works). Ngtlce that, since both the DULS and the
to model finite and infinite hierarchies of time granularities. YULS can be easily embedded into the TULS, we obtain,
They focus their attention on three distinct layered struc- @ @ by-product, a new uniform decidability proof for the
tures: then-layeredk-refinable structure, denoted byLS, ~ theories of the two structures.
which consists of a fixed finite numberof temporal layers . .
such that each time point can be refined itome points 2. Basic notions
of the immediately finer layer, if any, and the downward
(resp. upward) unboundddrefinablew-layered structure, MSO logics. MSO logics over graph structures are de-
denoted by DULS (resp. UULS), which consists of an in- fined as follows. A graph structure is defined as a tu-
finite number of arbitrarily fine (resp. coarse) layers. The pleS = (S, E4, ..., E}), whereS (also denotedom(S))
MSO theories of these structures have been shown to be exis a countable set of vertices a4, . . ., £}, are binary re-
pressive enough to capture meaningful temporal propertiedations defining the edge labels. Yertex-coloredgraph
of reactive systems (such a®‘holds at all time pointg™, is a graphS endowed with a partitionP,, ..., P, of
with n > 0”) and decidable. The decidability of the the- Dom/(S) that defines the colors of the vertices. MSO for-
ories of thek-refinablen-LS, DULS, and UULS has been mulas are built up from a set of atoms of the foAm(z;),
proved by reducing them to the MSO theories of one succes-P;(z;), P; C Pj, E;(xj,zi), by means of the stan-
sor (S1.5), of k successorsykS), and of thek-ary systolic dard connectivesA , V , and— and quantifications over

1. Introduction



first-order variables (which are denoted by lowercase let-3. Layered structures

ters, e.g.,x;,zx, and interpreted as single vertices) and

second-order variables (which are denoted by uppercase In this section we define.t)layered structures and we
letters, e.g.X;, and interpreted as sets of vertices). The se- €xplore the relationships among them. In particular, we
mantics of an MSO formula is defined in the standard show that the theories of thé-fefinable) DULS and UULS

way [9]. For a given formulap(x, ..., 2z, X1,..., X}),

with free variableszy,...,z,,X;,...,X;, we write

S F olvr,...,on, V1,..., V] whenever the MSO for-
mula ¢ holds in the structureS with the interpretation
’U1/.’L’17.../Un/(En,Vl/Xl,...,‘/z/Xl. The MSO the-
ory of a structureS, denoted byM Th(S), is the set of all
sentences that hold 8. ThusMTh(S) is said to be decid-

can be easily embedded into the theory of thegfinable)
TULS.

Definition 1. A k-refinable layered structureis a
graph S, = (U, Lis <, (l1)iepr)), where I C Z,
L; = {(i,n) : n € N}, < is a total order ovetJ,.; L,
and, for alll € [k] and all(i,n) € U;c; Ls, 11 is a func-
tion that mapgi,n) to (i + 1,kn + 1 — 1) (if there exists

able iff there is an effective way to test whether a given sen- gych an element).

tence holds inS or not. Furthermore, we say that an
n-ary relation R is MSO-definable inS if there is a for-
mula ¢(z1,...,z,) such that(vy,...,v,) € R Iiff
SE plvr, ..., vp).

Colored trees. K-ary m-colored treesare vertex-colored

For alli € I, L; is called alayer of the structure and,
foralll € [k], |, is called the-th projection functionsince
it maps elements of a given layer to elements of the imme-
diately finer layer (if any). Botm-layered andv-layered
structures have been studied in the literature; in the follow-

(deterministic) graphs whose domain is a prefix-closed lan-ing, we restrict our attention to-layered ones. In [5], Mon-

guage ovefk], with [k] = {1,...,k}, and whose edge re-
lations are such thgw, v) € E; iff v = wi. Given a col-
ored treeS, we denote byS(v) the color of the vertex
v. Thefrontier Fr(S) of the treeS is the prefix-free lan-
guage{u € Dom(S) : Vi € [k]. ui € Dom(S)}. In this
paper, we mainly deal witfull trees, namely, those trees for
which, whenever there exists [k] such thatu, ul) € Ej,
then(u,ui) € E;, for everyi € [k]. Though the standard

tanari et al. investigate two meaningfullayered structures,
namely, thek-refinable DULS (abbreviateB;) and thek-
refinable UULS &). As already pointed outD;, can be
seen as an infinite sequence of infinite completay trees,
while U}, can be seen either as an infinitdoranching tree
generated from the leaves or as an infinite sequence of fi-
nite increasing:-trees. FormallyD;, is obtained by setting

I = N and defining< as the total order given by the pre-

notion of full tree includes both empty trees and singleton order visit (for elements of the same tree) and by the linear

trees, it is convenient to exclude such casepath of the
treeS is a (finite or infinite) wordu such that every finite
prefix of u belongs taDom(S). Given a pathu of S, we de-

order of the trees (for elements belonging to different trees),
while U, is obtained by setting = —N and defining< as
the total order given by the in-order visit of the nodes of

note byS|u the sequence of colors associated with the ver- the tree. In this paper, we focus our attention on a new class

tices ofu. A branchis a maximal path, namely, a path which
is not a proper prefix of any element8&f We denote the set
of all (finite or infinite) branches bfch(S).

Tree automata. According to [8], ak-ary Rabin tree
automatonover the alphabefm] is a quadrupleM =
([n], I, E, AP), where[n] is a finite set of stated, C [n]

is a set of initial statesf C [n] x [m] x [n]* is a tran-
sition relation, and4 P is a finite collection of accepting
pairs (L;, U;) with L;,U; C S. Given an infinite com-
plete k-ary m-colored treeS, a run of the automaton\/
on S is any infinite completé:-ary n-colored treep such
that (p(u), S(u), p(ul), ..., p(uk)) € E for everyu €
Dom(p). p is said to besuccessfylandS is said to beac-
ceptedby M, if p(e) € I and, for every branch and ev-
ery accepting paifL;, U;), we havelnf (p|u) N L; = ¢ and
Inf(plu) NU; # 0, whereZnf(a) denotes the set of ele-
ments that occur infinitely often in a sequenceThe lan-
guageZ (M) is the set of all trees accepted by. We fur-
ther denote byZmg(«) the set of elements that occur in a
sequence.

of w-layered structures, namely, theefinable TULS 7).
For anyk, 7, can be seen as the composition7ef and
Uy.. Formally, 7;, is obtained by settind = Z and defin-
ing < as a suitable total order ov®om(7}) (e.g., the total
order induced by the pre-order visit or the in-order one).

In order to systematically analyze the relationships be-
tween7;, andD;, (resplfy), we define a couple of auxiliary
relations. With a little abuse of notation, we use the unary
relational symbolL, to identify the elements of the layer
Lo = {(0,n) : n € N} (Lo is the top layer ofDy, the bot-
tom layer ofi4, and a distinguished intermediate layer of
7). Furthermore, we denote By, (resp.+() the order re-
lation (resp. the successor function) ovey, which is de-
fined as follows: for every,, n’ € N, (0,n) <q (0,n’) iff
n < n' (resp.+o((0,n)) = (0,n') iff n’ = n+ 1). (It
is well-know that<, is MSO-definable in terms of.) In
Figure 1, we depict a little part df, pointing out the el-
ements ofL, by black-colored vertices and the successor
function+q by bold arrows.

It is not difficult to show that the total ordet is MSO-
definable in terms of|;);cx both iny, and in7Z;. This is



v !
i, 2 1, 21/ !
'y y <sly o« | A
N _ N2 - -

Figure 1. The layered structure (72, Lo, +9)-

Figure 2. The colored tree (As, Dz, LT,).

not the case witlD;,, where< is MSO-definable in terms
of (11)iex) and<o, or, equivalently;+o (but notL). More-
over, the addition of one relation amoiig, <,, and+q to
7;. (it is easy to show that they are inter-definabl&in) al-
lows us to prove that the MSO logic over bath, andi/
can be embedded into the MSO logic o (it is worth

The following theorem states that MSO formu-
las interpreted over(7;,Lo,) can be turned into
equivalent MSO formulas interpreted over the col-
ored tree(Agy1, D1, L7,). In particular, we have (i)
(ITkaLO) F LO[U} iff (Ak+17DTk7LTk) F LTk[ka(v)]'
and (") (7767-[/0) F ll(uvv) iff (Alﬁ—lvDTkvLTk) F

emphasizing that the additional predicate is needed fordeaI—El(ka (u), fr,(©)) V Epp1(fr, (v), fr. (u)).

ing with bothD;, andif;, not only forD;). The details of
the proofs can be found in [7].

4. The decision problem for(7y, Lo)

Theorem 1. For any MSO formulap(z, X), there is
an MSO formulay’ such that(7, Lo) F ¢[v, V] iff
(Ak+17DTk’LTk) F @l[ka(@)aka (V)]

It is easy to see thaDy, = [k]* U {k+1} -

In [3], the decision problems for the MSO theories of the {k + 1}* - {k} - [k]* is a regular language of finite words
DULS and the UULS have been solved by reducing them to over [k + 1], and thus there exists an MSO formuléz)
the decision problems for theories of suitable (different) tree such thatA, 1 F ¢[v] iff v € Dy, thatis,D, is MSO-
structures. In the following, we deal with the decision prob- definable inAy,;. As for L, , assume, by contradiction,

lem for the MSO theory off;, extended withL,, namely,
for the theory of the relational structuf@;, Lo).

that there exists an MSO formufadefining L7, in Aj41.
This would imply thaty(X) = Vz. X(z) < ¢(z)

As a preliminary step, we show that the MSO logic over holds inAy, iff X is interpreted a7, . By Rabin’s The-
(7%, Lo) can be embedded into the MSO logic over a suit- orem [8], there would be a Rabin automatbh such that
able(k + 1)-ary vertex-colored tree, thus reducing the orig- .Z (M) is the singleton consisting of the trég, . ; colored
inal problem to the problem of deciding the theory of such a by L, . Such a tree would be non-regular since it would
colored tree. Notice that this embedding allows us to move have infinitely many non-isomorphic subtrees. Because any
from the setting of layered structures to the more standardnon-empty Rabin-recognizable set of trees contains a regu-
framework of colored tree structures. The correspondencelar tree, (M) could not be a singleton. This is a contradic-
between the two structures is established by means of a suittion and hencd.; is not MSO-definable M\ ;. It fol-

able injective functionfy,, which maps vertices of}, to
vertices of the infinite completg: + 1)-ary tree, henceforth
denoted byAy1:

fro((i,n)=(k+1)-...-(k+1)-

A times

A+ times
whereA is equal tof log,, (n+1)] —i, wheneven+1 > k',
and to0 otherwise. LetD7, = f7, (Dom (7)) andLz, =
f1.(Lo). BothD7, andL7, are (proper) subsets gf+1]*.

lows that the MSO logic of A1, L, ) is (strictly) more
expressive than the MSO logic df; ;. In the following,

we develop an automaton-based approach to the decision
problem forMTh(Ay11, Lt,).

5. The automaton-based approach

In this section, we outline an automaton-based proof
method that generalizes the method advocated by Carton
and Thomas in [1], where noticeable propertiesredid-
ually ultimately periodic wordsre exploited to prove the

Let us assign them the status of vertex-coloring relations decidability of the MSO theories of labelled linear order-

overAy.1. In Figure2, we represent the relatiodsr, and

ings (a detailed presentation of the proposed method can be

L7, for the (portion of the) layered structure depicted in found in [7]).
Figurel. Shaded nodes represent the vertices of the domain As a first step, we show how to reduce the decision prob-
of (73, Ly) and black-colored nodes represent the verticeslem for MSO theories of colored trees to the acceptance

belonging to the layek,.

problem for Rabin tree automata. It is well-known that any



tupleV = (Vi,...,V;,), with V; C [k]*, can be naturally
encoded by a suitable infinite completeary 2™-colored
tree, called thecanonical representation of . Let us de-
note bySy; the canonical representation'éf Rabin’s The-

Definition 2. Given an automatod! = ([n],I, E, AP)
over the alphabdin], and two fullm-colored treesS; and
S2, &1 =p S holds iff, for every computatiop; of M on
&1, there is a computatiop, of M on S» (and vice versa)

orem [8] establishes a strong correspondence between MSGQuch that

formulas satisfied byA, V) and Rabin tree automata ac-
ceptingSy: for every formulap(X), we can compute a Ra-
bin tree automaton/ (and, conversely, for every Rabin tree
automaton)/, we can compute a formula(X)) such that
Ay F o[V]iff Sy € £(M). Let us denote bylcc(Sy) the

problem of deciding whether a given Rabin tree automaton 3.

recognizesSy,. We have that
MTh(Ag, V) is decidable iff Acc(Sy) is decidable

The problemAce(Sy) is known to be decidable for any
regular colored treeSy (this follows from the decidabil-

1. (Si(e),p1(e)) = (Sa2(g),p2()), namely, the colors
and the states at the roots of the trees are the same;
{Inf(p1lu) : u € Beh(S1)} = {Inf(pzlv) : v €
Bch(S2)}, namely, the states occurring infinitely often
in the branches of the trees are the same;
{(Si(u), pr(u), Zmg(p1lu)) : w € Fr(S)}
{(S2(0), p2(v), Tmg(palv)) : v € Fr(Ss)}, namely,
for every finite branch: of Sy, there is a finite branch
v of Sy (and vice versa) such that (u) = S2(v),
p1(u) = p2(v), andZmg(p:|u) = Img(pz|v).

2.

It is possible to show that,, is acongruencedf finite

ity of the emptiness problem for Rabin tree automata andindexthat groups together those trees which mistin-

from their closure under intersection [8]). In the following,
we will extend the class of colored trees for which the ac-

guishableby the automatod/ (namely,S; =, S; implies
S € Z(M)iff So € L(M)) [7].

ceptance problem turns out to be decidable. We introduce By exploiting the indistinguishability of equivalent trees,

the class ofesidually regular treesnd we solve the accep-

tance problem for such a class by reducing residually regu-

we will reduce the acceptance problem for a large class
of colored trees (that we will call residually regular trees)

lar trees to equivalent regular colored trees (according to ato the acceptance problem for regular colored trees. Intu-

suitable notion of tree equivalence).

We preliminarily introduce some tools for manipulating
colored trees. For every pair of full-ary m-colored trees
81 andS; and for every coloe € [m], the concatenation
S1 - Ss is the tree resulting from the simultaneous substitu-
tion of all thec-colored leaves af; by S,. The operator,.

itively, we say that a sequence of finite full colored trees is
1-residually regular if, for every congruence of finite index,

it is congruent to an ultimately periodical sequence of finite
trees (and this sequence can effectively be constructed). We
call residually regular trees those trees that are obtained by
concatenating the trees in a residually regular sequence. We

is not associative; thus, we assume that it associates to théurther extend the notion to level by no longer consider-

left. We note that by concatenating a full treeSpwe al-
ways obtain a tre€’ that extendsS. Hence, we can easily

generalize the definition to the case of infinite concatena-

tions. We callfactorizationany finite or infinite concatena-
tion of the formSy -, S1 ¢, - - . (We denote infinite concate-
nations by[[,.x(S:).,). A factorization is said to beegu-
lar if eachS,, is either a finite or a regular full tree and there
are two positive integers andq (called respectivelyre-
fix andperiod) such that, for every, > p, ¢, = ¢,44 and
Sy, = Sp44. Itis easy to prove that a full colored tree is reg-
ular iff it enjoys a regular factorization. This implies that
the MSO theory of any infinite complete colored tree gen-
erated by a regular factorization is decidable.

Now, given an automatoh/, we define a suitable equiv-
alence relation=,, between full colored trees such that

(i) = is a congruence (that is, it respects factorizations)
and (ii) it groups together those trees which are indistin-

guishable byM. We preliminarily introduce the notion
of computation of M. A computationof the automaton
M = ([n],I,E, AP) on a full m-colored treeS is a full
n-colored treep such that (i)Dom(p) = Dom(S) and
(i) (p(u),S(u),p(ul),...,p(uk)) € E for everyu €
Dom(p) \ Fr(p).

ing finite trees but leveh — 1 residually regular trees. Let
us formalize such an idea. We denote [by, eitheri or
((¢ = 1) mod r) 4 {, depending on whethér< [ or not.

Definition 3. Givenn > 1, a factorizationSy -, S1 ¢, - - -
is ann-residually regular factorizatiorif

1. foreveryi, eitherS; is a finite full tree om > 1 and we
can provide arfn. — 1)-residually regular factorization
of S;,

2. for any congruences of finite index, there exist two
positive integerg and g (called prefix and pattern of
the factorization with respect te) such that; = ¢}, ,
ands; = S[i]p,q'

An n-residually regular treeis a tree enjoying am-
residually regular factorization.

Given a congruences of finite index, we inductively
define regular formsof residually regular factorizations.
The =-regular form of al-residually regular factorization
[Lien(Si)e; isthe tree] [,y (S;)c,, WhereS; = S, ., and
p and g are respectively a prefix and a period of the fac-
torization with respect tes. Forn > 1, a=-regular form
of ann-residually regular factorizatiof[, . (S:)., is atree
[Lien(S))e., whereS] is eitherSy; - or a=-regular form



of an(n — 1)-residually regular factorization &y; _, de-
pending on whethes; is finite or not, wherep andq are
respectively a prefix and a period pf, (Si)., with re- ’
spect to=. It is easy to verify that a=-regular form of a .
residually regular tree is a regulartree equivalent tas, \\v’
and hence the following theorem trivially follows. The up- *
shot of such a result is that infinite complete residually reg-
ular trees enjoy a decidable MSO theory.

Figure 3. The tree Sz, embedding (7, Lo).

Theorem 2. Let M be an automaton over the alphabet
[m], [ [;en(Si)e, be ann-residually regular factorization of
an infinite completen-colored treeS, and S’ be its=,,-
regular form. We have thaf € (M) iff &’ € £ (M)
(and thusAcc(S) is decidable).

structures. The proposed method uses well-known re-

sults from automata-theory to reduce the decision problem

for the considered MSO theory to the acceptance prob-

lem for Rabin tree automata. It further introduces the class

of residually regular trees, which extends that of regu-

lar trees, and for which the acceptance problem turns out to
We conclude the paper by exploiting Theorem 2 to de- be solvable by exploiting a suitable notion of tree equiva-

cide the MSO theory of7;, Ly) (the proof can be easily lence. As a matter of fact, in [7] we exploited the proposed

generalized to any > 2). By Theorem 1, such a problem automaton-based approach to solve the decision prob-

can be reduced to the decidability&fT'h(As, L, ). Figure lem for a large set of meaningful relational structures,

3 shows the corresponding colored t@g, where black- including, for instance, the deterministic trees in the Cau-

colored nodes represent the elements of the layeSuch cal hierarchy [2].
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