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a  b  s t r  a  c t

New  Product  Development  (NPD) constitutes  a  challenging  problem  in the  pharmaceutical  industry,  due

to  the  characteristics  of  the  development  pipeline.  Formally,  the  NPD problem  can  be  stated  as follows:

select  a  set  of  R&D projects  from  a pool  of  candidate  projects  in  order  to satisfy  several  criteria  (economic

profitability,  time  to market)  while  coping  with  the  uncertain  nature  of  the  projects.  More  precisely,  the

recurrent  key  issues  are  to  determine  the  projects  to develop  once  target  molecules  have been  identified,

their  order  and the  level of  resources  to assign. In  this context,  the  proposed  approach  combines  discrete

event  stochastic  simulation  (Monte Carlo approach)  with  multiobjective  genetic  algorithms  (NSGAII  type,

Non-Sorted  Genetic Algorithm  II)  to  optimize  the  highly  combinatorial  portfolio  management  problem.  In

that  context,  Genetic  Algorithms  (GAs)  are  particularly  attractive  for  treating  this kind of  problem,  due  to

their  ability  to  directly  lead  to  the  so-called  Pareto  front  and  to  account  for  the  combinatorial  aspect.  This

work  is illustrated  with  a study  case  involving  nine  interdependent  new product  candidates  targeting

three  diseases.  An  analysis  is  performed for this  test  bench  on the  different  pairs  of  criteria  both for  the

bi- and tricriteria  optimization:  large  portfolios  cause  resource  queues  and  delays  time to launch  and are

eliminated  by  the  bi-  and tricriteria  optimization  strategy.  The  optimization  strategy  is thus  interesting

to  detect  the  sequence  candidates.  Time  is  an  important  criterion  to  consider  simultaneously  with  NPV

and  risk  criteria.  The order  in which  drugs  are  released in the  pipeline  is of  great  importance  as  with

scheduling  problems.

1. Introduction

Traditionally, Process Systems Engineering (PSE) is concerned

with the understanding and development of  systematic procedures

for the design and operation of  chemical process systems, ranging

from microsystems to industrial scale continuous and batch pro-

cesses. This traditional definition of PSE has been broadened by the

concept of the  “chemical supply chain”. Process Systems Engineer-

ing is now concerned with the improvement of  decision making

processes for the design and operation of  the chemical supply chain.

More precisely, it deals with the discovery, design, manufacture and

distribution of chemical products in  the context of  many conflicting

goals. The area of R&D and Process Operations has emerged among

the major challenges in the PSE area: this topics, which has a  shorter

history than process design and control, expands upstream to R&D

and downstream to  logistics and product distribution activities.

In that context, optimal planning and scheduling for New Prod-

uct Development (NPD) need increased attention to  coordinate

better product discovery, process development and plant design in
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the  agrochemical and pharmaceutical industries. For downstream

applications, areas that receive increased attention at the business

level include planning of  process networks, supply chain opti-

mization, real time scheduling, and inventory control. Due to the

pressure for reducing costs and inventories, in order to remain

competitive, enterprise-wide optimization (EWO) that might be

considered as  an  equivalent term for describing the chemical sup-

ply chain (Shapiro, 2001) has thus become a cornerstone in  process

industries.

Enterprise-wide optimization is  an  area that lies at the interface

of Process Systems Engineering and Operations Research. As out-

lined in  Grossmann (2005), a  new generation of methods and tools

that allow the full integration and large-scale solution of  the opti-

mization models, as well as the incorporation of  accurate models

for the manufacturing facilities is needed. Given the strong tradi-

tion that chemical engineers have in  process systems engineering

and in the optimization area (see Biegler &  Grossmann, 2004 for a

review), they are ideally positioned to  make significant contribu-

tions  in  EWO.

The development of decision support strategies and systems for

managing new product portfolios must be able to  provide insights

to managers on how to minimize risk while optimizing an objec-

tive or a set of objectives (e.g. maximization of  expected net present
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value, minimization of time to  market, etc.) in  the presence of  con-

straints. Moreover, the simultaneous consideration of  all candidate

projects is the key aspect in managing a  NPD pipeline. This com-

plexity has led to the common use  of  decomposition based in either

strategic or  operational strategies. Each of  the two branches can be

further subdivided according to the characteristics of  the model

used to support the decision making process.

An interesting contribution (Zapata, Varma, & Reklaitis, 2007)

proposes a recent state-of-the art of the concerned problem. The

main guidelines of their  analysis are briefly recalled to  position

our work. First, a project can be analyzed in  isolation (e.g. the net

present value (NPV) of the project), or as  performance assessment

at the portfolio level (e.g. NPV of  the portfolio), including all the

interactions between projects. The time dimension distinguishes

dynamic and static approaches. A dynamic model provides the

specific state of the systems along each point of  the time hori-

zon (e.g. number of  projects waiting for a  given resource at a  given

time), while a static one uses average values to  represent the sys-

tem (e.g.  average number of  projects waiting for a  given resource

at any time). It  is  then possible to choose between deterministic

and stochastic models. However, dynamic stochastic models can

be viewed as  either open loop or  closed loop oriented. Open loop

models only capture the response of  the system to inputs from deci-

sion makers, while  closed loop models also capture the response of

the decision makers to the outcomes from the system.

Among the investigations dedicated to  strategic decision sup-

port systems, the  different techniques available depend on the

type of  data used, namely, qualitative and quantitative. On the one

hand, the methodologies relative to  static strategies are numer-

ous in  this area: it must be emphasized that a  major drawback of

such approaches is  that they do not take into account project inter-

actions. They include scoring methods (Coldrick, Longhurst, Ivey,

& Hannis, 2005; Cooper, Edgett, & Kleinschmidt, 1999), analytical

hierarchy approaches (Calantone, Benedetto, & Schmidt, 1999; Poh,

Ang, & Bai, 2001) and fuzzy logic based approaches (Buyukozkan

& Feyzioglu, 2004; Lin & Hsieh, 2004; Lin,  Tan, & Hsieh, 2005).

On the other hand, the methodologies that are based on quanti-

tative information strive to provide a realistic simulation of the

behaviour of each individual project along the time horizon con-

sidered, in  order to determine what the possible outcomes are in

terms of rewards and risk. This group includes dynamic determin-

istic strategies such as  classical financial models (e.g. NPV, internal

rate of return, etc.) (Cooper et  al.,  1999), as well as dynamic stochas-

tic strategies, both closed loop such as  real options (Copeland &

Antikarov, 2001; Jacob & Kwak, 2003; Loch & Bode-Greuel, 2001;

Newton, Paxson, & Widdicks, 2004; Santiago & Bifano, 2005), and

open loop such as  discrete event simulation (Chapman & Ward,

2002), and neural networks (Thieme, Song, & Calantone, 2000).

Most of the approaches that capture project interactions can

be classified as dynamic stochastic open loop methodologies. An

important contribution is  the work of  Blau, Pekny, Varma, and

Bunch (2004) which  proposes the use of stochastic optimization:

the portfolio is  modelled using a discrete event simulation and the

optimization is implemented by  a  genetic algorithm; Rogers, Gupta,

and Maranas (2002) formulate a  real options decision tree  that cap-

tures technical and market uncertainty as a  stochastic MILP (Mixed

Integer Linear Programming) that relates projects through a  budget

constraint. Rajapakse, Titchener-Hooker, and Farid (2005) present

a decision support tool that  uses sensitivity and scenario analy-

sis on a discrete event model of  the development pipeline. Finally,

Ding and Eliashberg (2002) approach the problem of determining

how many projects, that are  assigned to  develop the same product,

have to be included in  the pipeline to maximize the total expected

profit. All of the techniques in  this group are mainly focused on

time independent decisions (excluding the work reported in Rogers

et al., 2002) and therefore do not require closed loop models. Some

work has been done to  accommodate the higher level of complex-

ity  required by time dependent strategic decisions such as capacity

expansion/contraction (Wan, Pekny, & Reklaitis, 2006). It  must be

yet  pointed out that the non-Markovian nature of  the associated

decision problem has yet  limited the size  of the treated problem as

expressed in  project number.

At  the operational level, decisions are time dependent and

mostly Markovian in  nature. This has motivated the development of

operational decision support systems exclusively based on quanti-

tative information and with a dynamic character (Honkomp, 1998;

Jain & Grossmann, 1999; Subramanian, Pekny, Reklaitis, & Blau,

2001; Varma, 2005).

This  literature review reveals that  it is  difficult to embed all the

peculiarities of  the problem in  a generic formulation and to recon-

cile all levels at the involved scales. The complexity of the problem

is  attributed to  several combined issues such as the stochastic

behaviour of  the system, the combinatorial aspect and conse-

quently the size of  industrial problems as  well as  the induced

multilevel approach. Some recent works (Colvin & Maravelias,

2008, 2009) are  trying to reconcile both strategic and operational

levels, namely, the scheduling of  clinical trials and the planning

of the resources necessary to carry these trials out. A stochas-

tic programming framework that addresses the two problems

simultaneously is proposed in  Colvin and Maravelias (2009).  The

underlying philosophy implies three levels: first,  the structure of

the problem is studied in order to reduce the number of pairs of  sce-

narios; second, a finite-horizon approximation is  developed so that

problems can be formulated using fewer stages without compro-

mising the quality of  the solution; third, the sequential nature of the

testing process is considered and modelled with a  mixed-integer

programming (MIP) formulation; a relaxation of  this formulation is

then used to  obtain feasible and most often optimal solutions over

the stages of  interest. Finally, a rolling-horizon-based approach

is implemented, where the decisions of  the relaxed problem are

used over few early periods and a  new problem is  formulated and

solved as  time evolves. This framework was recently improved

including: (i) the selection and scheduling of R&D tasks with gen-

eral precedence constraints under pass/fail uncertainty, and (ii)

resource planning decisions (expansion/contraction and outsourc-

ing). Furthermore, interdependencies between tasks in terms  of

probability of  success, resource usage and market impact are con-

sidered with risk management approaches, taking into account

conditional value at risk (Colvin & Maravelias, 2011), that was never

considered in previous works. It must be also emphasized that all

the reported approaches are based on a monoobjective optimiza-

tion formulation even if the problem is multiobjective by  nature.

This work is devoted to the development of a dynamic stochastic

open loop methodology and involves a  bi-and tricriteria opti-

mization formulation of  the NPD problem. It involves multi-stage

decisions under uncertainty. The recurrent key issues are can be

stated as  follows: what are the projects to develop once target

molecules have been identified? In what order? Which is the level

of  resources to assign? The proposed modelling approach is  based

on a  discrete event simulator which is particularly useful for deci-

sion criteria evaluation, such as  economic and risk metrics. This

work can be viewed as  an  extension of  the investigations previ-

ously dedicated to batch plant design and scheduling which are of

major importance for such industries and which can be  considered

as  part and parcel of  the more general topics of NPD manage-

ment. This kind of  involves several criteria, the Net Present Value

of a  sequence, its associated risk (measured by an  attractiveness

ratio or by the so-called positivity probability) and the makespan

that must be optimized simultaneously. Section 2  is first devoted

to the key issues involved in  New Product Development. Section

3 presents the principles of the discrete event simulation model

developed and implemented for describing the pipeline behaviour.



Fig. 1. Process for drug development.

Section 4  describes the formulation of  the multiobjective optimiza-

tion problem. The different optimization methods that may be  used

are briefly recalled with a  special emphasis to  Genetic Algorithms

(GAs), that are particularly attractive for treating this kind  of  prob-

lem, due to  their ability to directly lead to  the so-called Pareto

front. Among the various GAs, a  discussion is  then performed to

select the most appropriate variant. The selected NSGAII algorithm

is then applied to the treated case in Section 5. Sections 6  and 7  ana-

lyze and discuss the test bench examples and provide with some

guidelines for the treatment of new cases from the bi and tricriteria

viewpoints. Finally, Section 8  summarizes the major results of the

paper.

2. Key issues in New Product Development

2.1. Life cycle  of a pharmaceutical product

Basically, several stages are involved in  the life cycle of a

pharmaceutical product as  it can be summarized in  Fig. 1.  In

the Discovery stage, thousands of  molecules are applied to tar-

gets developed to simulate various disease groups. Once an active

molecule, i.e. a  molecule that  is identified to have a curative effect

on the target, is discovered, various permutations of  the structure

of the molecule are tested to see if the activity can be enhanced. The

most active molecule from these structure–activity relationships is

tested for toxicological results on  rats or  mice. If no particular wor-

risome toxic endpoints are  observed, the molecule is promoted to

the status of “lead” molecule and becomes a  candidate for devel-

opment. In  the  Development stage, enormous sums of  money and

resources are committed to  the lead molecule to first, observe its

behaviour in  healthy volunteers, secondly, in  patients smitten with

the disease and finally, in large scale clinical studies conducted in

concert with the Food and Drug Administration (FDA). Coincident

with these studies, process research and formulation work is con-

ducted to both supply the drug for testing purposes as well as  to

design and construct a  commercial plant if the product is launched.

Other parallel studies involve extensive long-term (i.e. two years)

chronic studies in  animals to identify any indication of  oncogenic-

ity at different dosage levels. If the drug is  effective in  the clinical

studies, has no unacceptable side effects and is  blessed by the FDA,

it moves to  the Commercial Stage. Target markets are identified for

a  staged launch or “ramp-up” of  the new compound. After a  few

years, a mature sales level is  usually reached and maintained until

patent coverage on the molecule expires and/or competition from

generics is realized. Once generics are available, an attempt is  usu-

ally made to get approval of  the drug for alternative markets and

perhaps in different dosage forms. Regardless, sales are  diminished

after expiration of the patent.

Some dependencies are considered for representing relation-

ship between drugs for the same disease: financial dependency;

technical dependency; manufacturing cost dependency; resources

dependency. The system parameters are summarized in  Fig. 2.  It

must be pointed out that a  relationship between activity times and

costs for specific drug candidates is  typically considered as  in  Blau

et al. (2004). This relationship is captured with a simple parameter

called the degree of  difficulty (DoD). Subjective estimates of  DoD

can be obtained from the various principal investigators, although

the values may  be different between work processes. However,

since the focus is on project selection and sequencing rather than

resource planning, the analysis can be simplified by  using a  single



Fig. 2. System parameters.

value of DoD ranging from 1  (very easy)  to 10 (very difficult). The

case study used in this work is derived from the work of Blau et  al.

(2004). It must be highlighted that we  have several fruitful discus-

sions with a French pharmaceutical company to  assess the validity

of the example that is tackled here and that serves as  a guideline

of the methodological framework. Some typical problem data are

displayed in  Table 1.  The interested reader can have all the comple-

mentary information in  Perez-Escobedo (2010). By lack of  place, all

the data will not be extensively presented here. It must be said at

that level that some slight differences exist between the example

treated by Blau et  al. (2004) and the one adopted here. They con-

cern the type  of  dependencies between products. Actually, product

development is  generally influenced by the other products con-

sidered in the pipeline and by  competitor products. It is assumed

that all  dependencies (except for technical dependency) will occur.

When considered, this kind of  dependency modifies the success

probability. On  the one hand, if the first drug in  the sequence of

drugs targeted for Disease I fails, the probability of  technical suc-

cess for all succeeding drugs decreases by  a  given percentage. On

the other hand, if the first in the sequence for testing Disease I  suc-

ceeds, the probability of  technical success for all succeeding drugs

for Disease I increases by a  given percentage. It must emphasized

that this technical dependency is  not  quite common in the pharma-

ceutical industry and is  even a  controversial issue from the fruitful

discussions with French pharmaceutical managers. This explains

why it has not been taken into account for modelling.

2.2. Classical approaches of resolution

A fundamental challenge in  managing a  pharmaceutical or

biotechnology company is  identifying the optimal allocation of

finite resources across the infinite constellation of  available invest-

ment opportunities. In that context, the optimal management of the

new product pipeline has emerged at the forefront of  all strategic

planning initiatives of a company. This issue is  traditionally iden-

tified as  a complex one since it integrates various areas such as

product development, manufacturing, accounting and marketing.

The complexity of  the problem is  mainly attributed to  the great

Table 1

Data for the 9-drug problem with resource limitations.

Activity Duration (days) Cost (M$) Total available

resources (M$)

Min ML Max Min ML Max

FHDP 300 400 500 72 80 88  275

Sample prep 300 400 500 1.8  2 2.2 10

Phase I  225 300 375 70 80 90  350

Phase  II  375 500 625 75 80 85  175

Phase III 575 775 975 150 200 250 250

Process  develop I  600 800 1000 7 10 13  16

Process develop II 600 800 1000 7 10 13  16

Design  plant 550 750 950 8 10 12  12

FSA 275 375 475 18 20 22  100

Prelaunch 75 100 125 45 50 55  550

Build  plant 600 750 900 52 62 72  120

Ramp  up I 250 350 450 9 12 15  25

Ramp  up II  250 350 450 19 22 25  50

Ramp  up III 250 350 450 35 40 45  100

Mature sales 250 350 450 46 53 60  150



variety of parameters and decision-making levels involved. A

strategic investment plan should simultaneously address and eval-

uate in  a  proper manner the following four main issues: product

management, clinical trials uncertainty, capacity management and

trading structure. It is  also generally viewed as a  multistage

stochastic portfolio optimization problem. The main challenge is  to

configure a  product portfolio in order to obtain the highest possible

profit, including any capacity investments, in a  rapid and reliable

way. These decisions have to be  taken in  the face of  considerable

uncertainty as demands, sales prices and outcomes of  clinical tests

that may not turn out  as expected.

This kind of problem has recently received attention from the

process systems engineering community utilizing previous works

from the  process planning and scheduling area. Various MILP opti-

mization models are proposed in Schmidt and Grossmann (1996)

for the scheduling of testing tasks with no resource constraints with

a discretization scheme in order to induce linearity in  the cost of

testing. These models are extended in Jain and Grossmann (1999) to

account for resource constraints. A simulation-optimization frame-

work (Subramanian, Pekny, Reklaitis, & Blau, 2003) takes into

account uncertainty in  duration, cost and resource requirements

as well as risk. An MILP model is  proposed in Maravelias and

Grossmann (2001) that  integrates the scheduling of tests with the

design and production planning decisions. A  literature review of

optimization approaches in the supply chain of  pharmaceutical

industries can be found in  Shah (2004).  The work of  Blau et al. (2004)

is  based on a  monoobjective Genetic Algorithm to optimize product

sequence evaluated by a  commercial discrete-event simulator.

This work lies  in  the perspective of  implementing efficient

optimization tools: the underlying idea is to use  a multiobjective

framework as already initiated by  Aguilar-Lasserre, Azzaro-Pantel,

Pibouleau, and Domenech (2007) to model both the conflicting

nature of the criteria (i.e. risk minimization and profitability maxi-

mization) and the  imprecise nature of some parameters (demand,

operating times, .  .  .).  In that context, this work aims at the develop-

ment of an  architecture that combines an  optimization procedure

and a simulation model to represent the dynamic behaviour of the

pipeline with its inherent uncertainty and to help decision-making.

The general objective is thus to  propose a general methodology

framework to support decisions and management of  pharmaceuti-

cal products involved in their  life cycle, from early stages to mature

sales.

3. Discrete event simulation for NPD  pipeline modelling

The main motivation of  this work was to  propose an  opti-

mization framework to select a set of  R&D projects from a  pool

of candidate projects in  order to maximize the expected benefits

while coping with the uncertain nature of  the projects. This is  a

challenging problem due to the characteristics of  the development

pipeline, namely, the  presence of  uncertainty, the interdependency

between projects, the limited availability of  resources, the over-

whelming number of  decisions due to the length of the time horizon

and the combinatorial nature of  a  portfolio.

In that context, discrete event simulation is a  common tool used

to understand how a  system works and how the different items

interact each other. It must be said that discrete event simula-

tion has been mostly confined to production systems (batch plant

scheduling for production debottlenecking, batch plant design,

etc.), but the trend in many industries of  moving towards an inte-

grated approach for supply chain management has expanded the

areas in which this technology can be used. The analysis also high-

lights that all the processes involved in New Product Development

are characterized by uncertainty at various levels of the pipeline:

imprecise parameters for activity cost and durations as  well as

Table 2

Terminology in BPS and NPD project problems.

Batch plant scheduling (BPS) NPD project

Product #i Project related to  a  product #i (PRP #i)

Equipment item #j Resource of  a  given step #j

Recipe #k Succession of activities #k (also called recipe)

Unit operation of  a  recipe #l Activity #l

success probabilities at Phases I, II and III of  the pipeline. In our

research group, the development of  discrete event simulators for

batch plant design and scheduling has been a  constant focus for the

past decade (Baudet, Azzaro-Pantel, Domenech, & Pibouleau, 1999;

Bérard et al., 1999; Dietz, Azzaro-Pantel, Pibouleau, & Domenech,

2005). Moreover, on the implementation side, it is not so easy to

use commercial simulators capable of interacting with optimiza-

tion  packages or user written code. A major incentive to use discrete

event simulation is that processes characterized by uncertainty and

suitable for probabilistic modelling can be easily analyzed and syn-

thesized using discrete event simulation by use of  a  Monte Carlo

approach. An object-oriented model structure previously devel-

oped for batch plant scheduling and design was then extended

to embed the case of  product management, which is  particularly

adequate for reuse of  both structure and logic. Its  detailed presen-

tation is not  the purpose of this paper which has been presented in

Perez-Escobedo (2010).

A  four layer framework was proposed in Bérard et  al. (1999)

based on the following items engine, event, object, supervisor, the

aim being the development of  a  standard library for the simula-

tor  classes that are general to any case, thus minimizing the task

of treating different study cases or the variants of  a  given one (i.e.

design or scheduling objectives). In this approach, at the lowest

level, the common engine can be found. Initially, the events in  the

next level are generic events common to all batch plant simula-

tions: in this case, the definition must be adapted since we have

to consider the whole life cycle of a project related to a  product. In

the same way, the objects taken into account present some simi-

larities but differ in their appreciation: for instance, in batch plant

scheduling problems (BPS), material resources are constituted by

equipment whereas in  NPD problems, resources may be viewed

more globally. In fact, the main differences at this step occur from

a terminology point of view and this can be easily transposed in

the NPD formulation. The core of  the simulator is  the Engine, which

has two functions: the former is  to order the Events in its Calendar

by  their occurrence date whereas the latter is to  activate them if

the necessary resources are available; if not, it reports the Event to

a next date. An Event represents a  change of the real system at a

given time. The class Event is  a  basis class from which the different

events must be defined. If resources for this activity are available,

the Event is activated; conversely, if resources are  not  available,

the activity will be scheduled later. An Event is characterized by  its

occurrence date, its action over the system and a  type that enables

to give priorities when two or more Events have the same occur-

rence date.  As a  general rule, Events which release resources have

priority over the others, and when Events have the same type, the

classical FIFO rule (First In First Out) is  applied. This will be  useful

when different projects compete for the same resources. The Event

Class previously developed was generic enough to embed the NPD

formulation (see Table 2).

We focused on developing a  simulation decision support tool

that uses probabilistic data in the form of durations of activities,

resource requirements (modelled as capital and operating costs),

clinical success probabilities and product sales, and computes a

schedule. The resulting schedules and resource allocation levels

can be  used to  infer efficient project prioritization and resource

allocation policies under uncertainty.



Fig. 3. Relative frequencies for product-project3.

Before considering a  portfolio of  products, it is interesting to

examine the behaviour of  each individual drug candidate. Using

net present value (NPV) with an internal rate of return of 15% as

the economic criterion, the behaviour of each drug can be simu-

lated by  using the discrete event simulator. A typical example is

presented in Fig. 3.  To  take into account the imprecise nature of

some parameters, NPV distribution was obtained from a sufficiently

large number of Monte Carlo trials. A two-peaked distribution is

observed which is typical of  a  new drug candidate in the pharma-

ceutical industry. The first peak corresponds to the loss of money

in those instances when the drug fails to pass all the clinical tri-

als. The second distribution corresponds to the returns following

a successful product launch. Due to  this bimodal distribution, the

economic criterion must be clearly defined and necessarily asso-

ciated with a  risk criterion to  evaluate the quality of  sequence: it

must be pointed out that the Expected Net Present Value (ENPV)

that is  commonly used for project evaluation must be considered

carefully. It corresponds to  a mean value between the positive and

negative parts of  the distribution. If  considered at the optimiza-

tion step,  it represents a  pessimistic value of the NPV but evolves

in the same direction of the ENPV. The risk is appreciated by the

computation of the positive values of NPV over the total number of

samples that have been evaluated. Moreover, the makespan that is

the time to market is also a  criterion that needs to be considered at

portfolio selection. This analysis allows to define the most impor-

tant criteria that must be taken into account to define the best drug

portfolio.

A special emphasis has then been devoted to uncertainty mod-

elling in NPD. The uncertainty considered in  this work is  twofold:

it is associated to project success, which is an endogenous uncer-

tainty that can be represented by  a discrete number of  realizations

(i.e., clinical trial failed or approved) but also  with the uncer-

tainty associated with time and cost  parameters. Traditionally, two

classes of methods of  imprecision representation have become

important: probability theory and non-probabilistic uncertainty

modelling. The former class attempts to  model uncertain param-

eters as random variables: imprecise parameters are associated

with a  probability distribution within a  Monte Carlo framework.

The concept of Degree of  Difficulty was used to  reflect the more or

less difficulty to carry out a  process task. The latter class includes

interval computation and fuzzy set theory. Two approaches were

implemented, a  classical probability approach and an  interval-

based one. Both approaches have been illustrated by a  numerical

example which has shown that the tendencies obtained by the

interval-based approach may be difficult to interpret for the deci-

sion maker, due to the growing uncertainty along the pipeline.

Besides, the risk, which is  taken into account via failure proba-

bility of some stages and which is  strongly involved in the NPD

process must be part and parcel of  the modelling approach. At  this

level, it was difficult to  model this parameter by an interval and the

repetitive use of  simulation with representative sampling was the

adopted procedure to address this issue. All  these reasons explain

why there is  no need to  develop a  proper interval-based frame-

work for NPD problem with uncertainty. A more accurate analysis

of an  interval-based optimization method as an  outer loop of  the

discrete-event simulation model for NPD has thus not been devel-

oped.

However, even if it is  particularly useful for decision criteria

evaluation, such as  economic and risk metrics, the use  of discrete

event  simulation as  a  stand-alone technology considerably limits

the number of system configurations that can be considered. This

has motivated the use  of a  hybrid simulation-optimization strat-

egy that not  only accurately captures the dynamics of the system

but also  provides a  structured way to search for the optimal config-

urations according to several objective functions in  a  constrained

space. The use  of  the discrete event simulator is particularly use-

ful for criteria evaluation and will now be  embedded in an  outer

optimization loop as summarized in  Fig. 4.

4. Multiobjective optimization problem formulation

Real engineering design problems are generally characterized

by the presence of  many often conflicting objectives. This raises the

issue about how different objectives should be  combined to yield a

final solution and to search for optimal solutions to the considered

problem.



Fig. 4. SED-optimization framework.

4.1. General multiobjective optimization problem formulation

A general multiobjective design problem can be expressed as

follows:

f  (x) = (f1(x), f2(x), . . . , fk(x))T

s.t. x ∈ S

x =  (x1,  x2, . .  . , xn)T

where f1(x), f2(x), . . .,  fk(x) are the k  objective functions, (x1,  x2,  . . .,

xn) are the n  optimization parameters and S  ⊂  Rq× Nr :  q +  r = n is  the

solution or parameter space. The sub-space S  might be defined by

linear/nonlinear constraints linking both continuous and discrete

variables.

One property commonly considered as necessary for any  can-

didate solution to the multiobjective problem is  that the solution

is not dominated. The Pareto set consists of solutions that are not

dominated by any other solutions. A solution x is said to dominate

y if  x is  better or equal to  y in all attributes, and strictly better in  at

least one attribute. Considering a  minimization problem and two

solution vectors x, y ∈ S, x is  said  to dominate y,  denoted x <  y,  if:

∀i  ∈ {1, 2, . . . , k} : fi(x) ≤ fi(y) and ∃j  ∈ {1, 2, . . . , k}  : fi(x) < fi(y)

The space in (Rv × Nw : v  + w  = k) formed by  the objective vectors

of Pareto optimal solutions is known as  the Pareto optimal fron-

tier, P: any final design solution should preferably be a member

of the Pareto optimal set. Pareto optimal solutions are also known

efficient solutions when scalarization methods are used.

If the final solution is selected from the set of Pareto optimal

solutions, there would not exist any solutions that are better in

all attributes. In practice, the decision maker has to select a single

solution by  searching among the whole Pareto front, and it may

be difficult to pick one “best” solution out  of  a large set of alterna-

tives. Branke, Deb, Dierolf, and Osswald (2004) and Taboada and

Coit (2006) suggest to pick the knees in  the Pareto front, that is  to

say, solutions where a  small improvement in one objective func-

tion would lead to  a  large deterioration in at least one of  the other

objectives.

4.2. General optimization methods

A  great variety of  applications, drawn from a wide range of

investigation areas, can be formulated as  complex optimization

problems. This large number of  optimization problems arises from

models that have to enable, for industrial requirements, a truly real-

istic representation of  the system they  account for. Consequently,

these models tend to  show an  increasing sophistication degree

that derives into a  higher complexity and, thus, solution difficul-

ties. The complexity of the formulated models is basically due to

the nature of  the functions and of  the variables involved in the

optimization problem. The former ones may be not only nonlin-

ear, but moreover, they also often prove to  be nonconvex, which

is a  strongly penalizing characteristic in the typical minimization

case. Then, for a constrained problem, determining the feasible

space  turns out to be a  really difficult task. With regard to vari-

able nature, most engineering problems consider both continuous

and discrete variables, introducing discontinuities in the objective

function and in the search space: those are called mixed-integer

problems. Furthermore, the discrete variables induce an  impor-

tant combinatorial effect: this point is emphasized with NP-hard

problems, for which no algorithm leading to  polynomial solution

times is  known. In order to face these problems, a significant

investigation effort has been carried out to develop efficient and

robust optimization methods. At  the beginning, this aim was pur-

sued specially in the operational research and artificial intelligence

areas. But, this trend was subsequently followed by  the process

system engineering community, since this one provides a  wide

number of  applications formulated as  complex optimization prob-

lems. A typical reference is  constituted by  design problems: heat

or mass exchanger networks (Zamora & Grossmann, 1998), sup-

ply  chain design (Guillen, Badell, Espuna, &  Puigjaner, 2006), and

multiproduct (Ravemark & Rippin, 1998) or multipurpose (Dedieu,

Pibouleau, Azzaro-Pantel, & Domenech, 2003) batch plant design

or retrofitting (Montagna & Vecchietti, 2003). As a  consequence,

a great diversity of  optimization methods was implemented to

meet the industrial stakes and provide competitive results. But, if

they prove to be well-fitted to the particular case they  pursue, the



performance of these techniques cannot be constant whatever the

treated problem is. Actually, a  method efficiency for a  particu-

lar example is hardly predictable, and the only certainty we have

is expressed by the No Free Lunch theory (Wolpert & Macready,

1997):  there is no method that outdoes all the other ones for

any considered problem. This feature generates a  common lack of

explanation concerning the use of  a method for the solution of a  par-

ticular example, and usually, no relevant justification for its choice

is given a  priori.

Optimization methods could be divided into derivative and non-

derivative methods. The derivative or scalarization procedures aim

at transforming the multiobjective optimization problem into a

nonobjective one and solving it with classical NLP or  MINLP tools.

Non-derivative methods are particularly interesting for general

engineering design problems. One reason is that non-derivative

methods do not require any derivatives of  the objective function

in order to calculate the optimum. Therefore, they are also  known

as black box methods where numerical values of various objec-

tives and/or constraints according to a given entrance vector x, are

returned by computer codes. Another advantage of these methods

is that they are more likely to find a  global optimum, and not be

trapped on local optima as gradient methods might do insofar as

some degradations in  objective functions can be admitted during

the search.

For a  general design problem, it is  hard to express objective

functions in  terms of the design variables directly, which is par-

ticularly the case in our problem, since the performance functions

are evaluated from  a  discrete event simulator. Therefore, there is no

straightforward way of calculating the derivatives of  the different

objective functions. Another incentive to use non-derivative meth-

ods particularly Genetic Algorithms is  that they are well-suited to

tackle highly combinatorial problems.

4.3. Genetic algorithms

4.3.1. Genetic algorithm roadmap

Genetic algorithms (GAs) and the closely related evolutionary

strategies are a  class of  non-gradient methods which has grown

in popularity ever since Holland (1975) first published their in  the

early 1970s. The basic idea of GAs is  the mechanics of  natural selec-

tion. Each optimization parameter, (xi),  is  coded into a  gene as  for

example a  real number or string of bits. The corresponding genes

for all parameters, x1, . . .,  xn, form a  chromosome, which describes

each individual. A  chromosome could be an  array of  real numbers,

a binary string, a  list of components in  a database, all depending

on the specific problem. Each individual represents a possible solu-

tion, and a set of  individuals form a  population. In a  population, the

fittest are selected for mating. Mating is performed by combining

genes from different parents to produce children, called a crossover.

Finally the children are  inserted into the population where some

mutations are randomly performed, and the procedure starts over

again, thus representing an artificial Darwinian environment. The

optimization continues until the population has converged (non

evolution of  statistical parameters like means, standard deviations,

or domination ranks) or  until a maximum number of  generations

predetermined has been reached.

The popularity of  genetic algorithms has grown tremendously

under  recent years and they have been applied to a  wide range

of engineering problems (Altiparmak, Gen, Lin,  & Karaoglan, 2009;

Deb & Srinivasan, 2005; Dietz et  al., 2005; Yoshikawa & Terai, 2005).

There is also a large variety of  genetic algorithms such as simple GA,

steady state GA, GA with multiple populations, GA with crowding

and sharing techniques (see Zitzler, Deb, & Thiele, 2000 for a  com-

plete set of references). The different GAs all have different features

in order to solve various types of  problems. There are also a number

of multiobjective genetic algorithms which aim at converging the

population on the Pareto optimal front instead of  on just one  single

optimal point.

Multiobjective genetic algorithms are  generally divided in  non-

Pareto and Pareto based approaches:

1. Non-Pareto  based approaches: The first multiobjective genetic

algorithm was VEGA (Vector Evaluating Genetic Algorithm)

developed by  Schaffer (1985). VEGA uses the selection mecha-

nism of  the GA to  produce non-dominated individuals. Fourman

(1985) presents a  genetic algorithm using binary tournaments,

randomly choosing one objective to  decide each tournament.

Kurasawe (1991) further developed this scheme by  allowing

the objective selection to be random, fixed by  the user, or to

evolve with the optimization process. All  of  these non-Pareto

techniques tend to converge to a subset of  the Pareto-optimal

frontier, leaving a  large part of the unexplored Pareto set.

2. Pareto based approaches: A non-dominated sorting to rank a

search population according to Pareto optimality is introduced

in Goldberg (1989). First, non-dominated individuals in  the pop-

ulation are identified. They are given the rank 1  and are removed

from the population. Then the non-dominated individuals in the

reduced population are identified, given the rank 2,  and then

they are also removed from the population. This procedure of

identifying non-dominated sets of individuals is repeated until

the whole population has been ranked. Goldberg also discusses

using niching methods and speciation to  promote diversity so

that the entire Pareto frontier is  covered.

In the multiobjective GA (MOGA) presented by  Fonseca and

Fleming (1995, 1998) each individual is  ranked according to a

degree of  dominance. The rankings are then scaled to  score indi-

viduals in  the population. In MOGA both sharing and mating

restrictions are used in  order to  maintain population diversity.

The niched Pareto GA (NPGA) by Horn and Nafpliotis (1993)

is Pareto-based but does not use ranking methods. Rather, Pareto

domination binary tournaments are used to select individuals for

the next generation. Zitzler and Thiele (1999) developed a  multiob-

jective genetic algorithm called the strengthen Pareto evolutionary

algorithm (SPEA)which uses two populations.

The non-dominated sorting GA (NSGA) of  Srinivas and Deb

(1995) implements Goldberg’s concepts about the application of

niching methods. In NSGA, non-dominated individuals in the pop-

ulation are identified, given a  high initial individual score and are

then removed from the population. These individuals are  con-

sidered to be of  the same rank. The score is  then reduced using

sharing techniques between individuals with the same ranking.

Over the years, the main criticisms of  the NSGA approach have

been as  follows: high computational complexity of  non dominated

sorting; lack of elitism; need for specifying the sharing param-

eter. All of  these issues have been addressed in  the improved

version of  NSGA, called NSGA-II. From the simulation results on a

number of difficult test problems, it has been found that that NSGA-

II  outperforms two  other contemporary MOEAs: Pareto-archived

evolution strategy (PAES) (Connor & Tilley, 1998) and strength-

Pareto EA (SPEA) (Goldberg, 1989) in  terms of  finding a  diverse

set of  solutions and in converging near the true Pareto-optimal

set. The way constraints are  treated is briefly recalled in  what fol-

lows.

4.3.2. Constraint handling

Constrained multiobjective optimization is the most common

kind of problem in  engineering applications. In general, three kinds



of constraints are considered: simple inequality (≤),  strict inequal-

ity (<), and equality:

g(x) ≤  c1

r(x) <  c2

h(x) = c3

}

⇔

{
constr1(x) =  c1  − g(x) ≥ 0

constr2(x) =  c2  − r(x) > 0

constr3(x) =  c3  − h(x) =  0

where (g, r, h) are real-valued functions of a decision variable x = (x1,

. . ., xn)  on an n-dimension decisional search space U, and (c1, c2,  c3)

are constant values. In the more general case, these constraints are

written as  vectors of the type:

constr1(x) = (constr1(x)1, .  . . , constr1(x)n1) ≥ 0

constr2(x) = (constr2(x)1, .  . . , constr2(x)n2) >  0

constr3(x) = (constr3(x)1, .  . . , constr3(x)n3) = 0

where n1,  n2,  and n3 are respectively, the number or inequality,

strict inequality and equality constraints. This constraint formu-

lation implies that each constraint value will be negative if and

only if this constraint is violated. In practice, due to round-off error

on real numbers, the equality constraint constr3 is replaced by

contr3(x)  + �.  In this expression, � is called a  “precision vector” of

the equality vector, and takes low values (less than 10−6 for exam-

ple). This approximation is  not  necessary when equality constraint

involves only  integer or  binary variables.

The  constraint satisfaction implies the maximization of  violated

constraints in  vectors constr1, constr2, and constr3. According to

Fonseca and Fleming (1998), the satisfaction of  a number of  violated

inequality constraints is  a  multiobjective maximization problem. A

more simple solution consists in  comparing the sum of values of

violated constraints only, as  in  NSGA II  algorithm of Deb, Pratap,

Agarwal, and Meyarivan (2002),  which implies there are no priority

rules between constraints. This step is  performed first, before the

second one, which concerns the comparison of  the objective func-

tion vectors. On four problems chosen from the literature (Deb et  al.,

2002), NSGA-II has  been compared with another recently suggested

constraint-handling strategy and proved to be more efficient. These

results lead us to apply NSGA-II to  the NPD problem.

4.4. Combinatorial aspects of the NPD problem and search space

definitions

As above mentioned, evolutionary procedures, and particularly

GAs, are well-suited for handling highly combinatorial problems.

One of the  objectives of  the NPD optimization being the deter-

mination of  the  best  sequence of  products, this item introduces

a very high combinatorial aspect in  the problem. For example, as  it

is shown below, for a  simple problem involving three  diseases, two

drugs for disease I, two for disease II and one for disease III, it exists

240 possible sequences, and this number grows up to  951,744 for

the problem under consideration.

Given a problem involving MD diseases. For  each disease dii(i =

1, MD), ndi
therapeutic axis involving ndi

drugs  can  be considered.

A sequence is  thus constituted by  the union of  sub-sequences of

drugs, each devoted to a  disease. A drug  related to a disease dii(i = 1,

MD) is denoted with p = 1, . . . , ndi
. An integer value p  is allocated

to each drug in a partial sequence ranging from 1  to ndi
. The drugs

can be arranged as  follows:

[1, . . . , nd1
]

︸ ︷︷ ︸

M1

[1, .  . . , nd2
]

︸ ︷︷ ︸

M2

[1, . . . , ndMD
]

︸ ︷︷  ︸

MD

Let us consider the set S of  all the possible sequences in which the

number of  products can vary between MD (at  least one drug per

disease) and nd1
+  nd2

+ ndMD
and in which all the permutations

can be considered:

NTOT =  nd1
+  nd2

+ ·  ·  ·  +  ndMD

Card(S) =  NTOT !  +

NTOT−MD∑

p=1

(NTOT −  p)! ×




∑

i,j,...,k

C i
ndi

C
j
ndj

. . . Ck
ndk



 ,

i + j  + ·  ·  ·  + k = NTOT − p;  i ≤ nd1
, j ≤ nd2

,  . . . , k  ≤ ndMD

This can be applied to  the example which serves as  a  test bench

involving three diseases (four drugs for d1; four drugs for d2; one

drug for d3).

Card(S) = (9)! + (8)!(2C3
4 C4

4 C1
1 ) + (7)!(2C4

4 C2
4 C1

1 + 2C3
4 C3

4 C1
1 )

+  (6)!(2C3
4 C2

4 C1
1 )+(5)!(2C2

4 C2
4 C1

1 )+(4)!(2C1
4 C2

4 C1
1 )+(3)!(2C1

4 C1
4 C1

1 )

The total number of possibilities for this example is 951,744. This

means that 951,744 possible portfolio drugs can be considered,

taking into account that portfolios with less than 3  drugs are not

possible due to the constraints defined for the model, at least one

drug per disease.

5. Implementation of the NSGA II key procedures for NPD

modelling

The methodology used for solving the NPD problems involves

a two-step approach: at the lower level, the previously developed

discrete event simulator is  used to evaluate the product develop-

ment sequences, according to  different criteria: Net Present Value,

risk metrics and makespan; at the upper level, a  multiobjective pro-

cedure based on NSGAII principles is used to determine both the

number of  drug products in  the sequence and the order in  which

the drugs are  released in the pipeline.

5.1. Coding, crossover and mutation

A  sequence is  modelled by  use of  two types of chromosomes

with an  identical number of genes, equal to the number of  products

to consider in  the global portfolio. To  each product P1 corresponds

an  index i which is  the chromosome position i.  The first chromo-

some Chrom1 is related to the product order in  a  sequence. Genes

are integer variables, ranging from 1 to  the total number of  prod-

ucts in  a sequence. The value of each gene may occur only once in

the chromosome. For a position i of a gene, its value corresponds

to  the product position i in the sequence. The second chromosome

Chrom2 is  only constituted by  binary variables, the unity value of

a gene in position i (respectively 0) corresponding to the presence

(respectively absence) of  a  product.

The chromosome corresponding to each sequence is then

obtained by multiplying each gene of  Chrom1 with the correspond-

ing one of  Chrom2, locus by  locus. It  must be highlighted that this

coding is  not unique which may introduce some bias in  the search.

Yet, a more attractive alternative would be to directly code the chro-

mosomes representing a  sequence with variable length in  function

of the product number in the sequence. Yet, this approach may

lead to  unfeasible individuals in the crossover phase, with a  larger

size than the one corresponding to the effective number of  prod-

ucts in  the sequence. The efficiency of the former procedure has

been tested successfully through several examples and has thus

been selected in  this work. Fig. 5 illustrates the used coding rep-

resenting a solution that is then evaluated by the simulator for 9

products. Crossover and mutation have been carried out  by specific

procedures for each type of chromosome.

Chromosomes dedicated to product order are haploid, yet, all

the integer genes must be different, ranging from 1  to  the total num-

ber of  products in a  sequence. For this purpose, a  crossover operator



Fig. 5.  Coding for generating a  sequence.

with respect to  genotype constraints without clone generation in

the offspring genetic code has been carried out, the so-call MPX

operator (Maximal Preservative X) (Andersson, 1999). This under-

lying idea is  to insert a  segment of  a parent chromosome in  the

chromosome of  the other parent so that the resulting crossover is

closer to his  parents. It is  a two-point crossover and the two sons are

obtained in  a symmetrical manner. Concerning mutation, a  classical

mutation operator that randomly permutes two genes of  a chro-

mosome is  used. This operator is  applied to the individuals derived

from crossover with an  adapted rate (preferably 0.5). Then, the new

offspring is placed in a  new population.

5.2. Optimization parameters

The optimization parameters are presented in Table 3.

5.3. Optimization criteria

The optimization criteria are evaluated by use  of  the previously

developed discrete event simulator. They involve the global Net

Present Value of a  sequence, classically computed from the average

value of net present values of the samples. An actualization rate of

15% has been chosen:

f1 :

n∑

j=1

[
W∑

i=1

NPV

]

j

n

Another criterion is  the risk, corresponding to  the number of  times

a negative value of  NPV is observed among the total number of

samples. Note that risk  f2 is the complementary risk relative to the

already mentioned positivity probability:

f2 :

n∑

j=1

[
W∑

i=1

NPV

]

j

< 0

n

Table 3

Optimization parameters.

Optimization parameters

Number of  generations 200

Number of  individuals per generation 80

Number of  simulations per individual 300

Then, finally, the makespan of a sequence is  computed from the

average makespan of the samples:

f3 :

n∑

j=1

(dur)j

n

where W → number of  drugs in  the sequence; n → number of runs

by  sequence; dur → makespan for a sequence.

5.4. Constraints

It must be  emphasized that the resource constraints have

already been taken into account in  the capacity requirements of

each task in the pipeline within the discrete event simulator. The

constraints that are considered here are related to the presence of at

least one drug targeting a  therapeutic axis. They can be formulated

as follows:
∑

m
p

di
≥ 1 with p =  1, . . . , ndi

Let us recall that for the example, 3  diseases and 9  molecules have

been considered: Disease 1: Products P2, P3, P6, P7; Disease 2:

Products P4, P5, P8, P9; Disease M3:  Product P1. These constraints

involve at least one gene value equal to 1 for chromosome Chrom2

in  the loci corresponding to the genes of  the products of  the given

disease gi,  that is:

g2 +  g3 +  g6 +  g7 ≥ 1

g4 +  g5 +  g8 +  g9 ≥ 1

g1 >  1

6.  Result presentation and discussion

The case study results are now discussed in the following

sections, focusing on analyzing the Pareto front generated and

identifying trends concerning portfolio composition. In all the opti-

mization runs, unless explicitly mentioned, the initial population

was generated randomly.

6.1. Introduction

Optimization runs were first carried out  in a  bicriteria way  and

then analyzed from a  tricriteria viewpoint. To take into account the

stochastic nature of the Genetic Algorithm, each optimization run is

repeated 5  times (at  least). The CPU time of each optimization run is



Table  4

Net Present Value and Risk for 4-drug sequences (9 drug-portfolio optimization).

Solutions NPV (M$) Risk (%) Makespan by

simulation

(days)

Release order

1,3,4 1546–1730 14–20 3721 P2 P7 P5 P1

2 1683 17 4055 P7 P5 P2 P1

5 1507 13 3604 P5 P7 P2 P1

6 1472 12 3721 P5 P2 P7 P1

difficult to  evaluate, due to  combined effects: first, it depends on the

number of products in  the sequence, second, the stochastic aspect

of the Monte-Carlo approach used through simulation may lead to

premature stop  of the evaluation of a  candidate. An optimization

run takes around 36 h for this study with 9  drugs for 3  diseases.

6.2. Bicriteria optimization Net Present Value-Risk

6.2.1. Optimization NPV-Risk with random initialization

A first study concerns the Net Present Value and Risk to opti-

mize simultaneously. As might be expected, random initialization

of the population has resulted in  a  dispersion of  the various solu-

tions. The optimization procedure was considered to be converged

when general progression of  the Pareto front was insignificant. It

can be observed that the risk variation lies between 10  and 40%. No

solution exists for risk values greater than 40%. An  interesting result

concerns the number of drugs in the portfolio. For risk values com-

prised between 12 and 20%, the number of drugs in  the sequences

is equal to 4 and the drugs that can be systematically found are

[P1 ∧  P2 ∧ P5 ∧ P7] with an NPV value comprised between 1400 and

1700 M$. For risk values between 27% and 39% the number of drugs

in the portfolio is equal to 6  and the products that can  be  system-

atically observed are [P1 ∧ P2 ∧ P3 ∧ P5 ∧ P6 ∧  P7] with an  NPV value

comprised between 1800 and 2000 M$. The results are  also  pre-

sented in Tables 4  (4 drugs) and 5  (6 drugs). As it can be  seen in

Fig. 6, a first comment concerns the Pareto front solution. For all of

them, the higher the risk, the higher the Net Present Value. Second,

it can be highlighted that several solutions (solutions 1,  3, 4) are

found several times (P2 ∧ P7 ∧ P5 ∧  P1) and (P2 ∧ P7 ∧ P5 ∧  P1 ∧ P1).

Furthermore in  the coding of the GA, a  sequence is  not represented

by a unique chromosome. Although some significant differences are

observed above all for the risk criterion, these solutions can be con-

sidered as particularly attractive since the procedure has identified

them several times as Pareto candidates.

The union of  the Pareto fronts obtained from the optimization

runs, can be  visualized in Fig. 6  due to both the stochastic nature of

the NPD model (a sequence is evaluated 300 times) and to  the GA.

This figure displays the non-dominated individuals obtained from

5 optimizations and are  relative to sequences of  4  drugs (P1, P2, P5,

P7)  and (P1, P3, P5, P9).

For  these two  distinct behaviours, the solutions can be  distin-

guished by the product order in  the sequence. A closer look  at these

solutions indicate that the optimization strategy tends to eliminate

long sequences, reproducing the so-called attrition phenomenon

occurring in  NPD problems. This is  due to  the complexity that is

inherent in  the model of the pharmaceutical drug development

pathway and of  the interactions between the various drugs. It is

difficult to predict this behaviour without the use of  a numeri-

cal tool. For  the 12 sequences evaluated by  simulation, the same

behaviour as in the present section for sequences with four and six

drugs, was already observed. The NPV  varied from 80  to 685  M$

and the risk was in the range (0.77–0.38). However, the efficiency

of the genetic algorithm improves considerably the performances.

Another important observation is that strategies with differences

in either drug selection, timing, can compete with similar reward

versus risk profiles. Hence it is useful for the decision maker to

identify and closely examine the different options that  can yield

the desired return and acceptable risk.

6.2.2. Optimization with 9-drug sequences in the first generation

An optimization run was then performed in order to study the

influence of  the number of products in  the first generation. The idea

is to initialize the AG with sequences containing exactly 9  drugs, in

order to examine how the number of  products evolves naturally

along the generations. The results are presented in Table 6  for gen-

erations 1, 40, 80, 120, 160 and 200. It can be  clearly observed that

the sequences with a  low number of  products are favoured in the

optimization process.

Fig. 7 displays the Pareto front in  which sequences with 4,  6

and 7  products can be found. It  must be emphasized that 7-drug

sequences were not found in  the previous optimization runs: this

may be due to the fact that the number of generations needs to be

increased. Table 7  presents the numerical values of NPV and risk

as  well as  the release order. Finally, the main result here is  that

the natural evolution of  the algorithm is towards the elimination

of long sequences.

Table 5

Net Present Value and Risk for 6-drug sequences (9 drug-portfolio optimization).

Solutions NPV (M$) Risk (%) Makespan by

simulation

(days)

Release order

1 2206 39 5155 P6 P1 P3 P2 P7 P5

2 2203 37 4878 P6 P2 P1 P7 P5 P3

3  2097 36 4914 P2 P6 P1 P7 P5 P3

5  1900 28 4928 P7 P6 P3 P2 P5 P1

4,6  1887–2077 27–29 4869 P3 P6 P7 P2 P5 P1

Table 6

Evolution of the number of  drugs by  sequence.

Generation Number of  drugs in the sequence

1 2 3 4 5 6 7 8 9

1 0  0  0  0 0 0  0 0 80

40  0  0  0  0 0 11  69 0 0

80  0  0  0  0 0 30  50  0 0

120 0  0  0  0 0 45  35 0 0

160  0  0  0  24 0 31  25 0 0

200 0 0  0  21 0 35  24 0 0



          

Fig. 6. Pareto Front. Net Present Value/Risk.

Table  7

Results of Net Present Value and Risk  for 9-drug initialized portfolio (Pareto front

solutions).

Solutions NPV(M$)  Risk (%) Release order

1  798 22 P7 P1 P3 P5

2 783 21 P7 P3 P5 P1

3  690 18 P7 P1 P5 P3

4 782  19.5  P7 P3 P5 P1

5  700  19 P7 P3 P5 P1

6  992 23 P7 P1 P3 P5

7  1857 30 P7 P3 P6 P5 P2 P1

8 1592 26.5  P7 P3 P6 P5 P2 P1

9 1722 28.5  P1 P7  P6 P5 P2 P3

10 1696 28 P7 P1 P6 P5 P2 P3

11 1355 24.5  P6 P7 P1 P5 P9 P2 P3

12  1379 26 P7 P1 P6 P5 P9 P2 P3

13  1343 24 P7 P1 P6 P5 P9 P2 P3

6.2.3. Optimization with 9-drug sequences in the optimized

portfolio

To confirm once more that long sequences are not interest-

ing, an optimization is performed under the constraint of a  9-drug

portfolio along the algorithm evolution. Here, the first population

was generated randomly (without taking into account the con-

straint).

This is  confirmed by  the Pareto front (Fig. 8) only  constituted

of  3  sequences with an NPV between 1171 and 1313 M$ and a  risk

value between 35  and 44%. The numerical values of  NPV and Risk

for each non-dominated individual as  well as  the release order are

presented in  Table 8. As  a  conclusion, the results indicate that  long

sequences are not representative of  attractive values both for NPV

and risk. This explains why 9-drug individuals are eliminated from

the Pareto front in the previous bicriteria optimization.

Fig. 7. Pareto  front  for the optimization Net Present Value/Risk for 9-drug initialized portfolio.



Fig. 8.  Pareto front for the optimization Net Present Value/Risk for 9-drug optimized portfolio.

Fig. 9. Pareto Front. Net Present Value/Makespan.

6.3. Bicriteria optimization Net Present Value-Makespan

The second optimization study is based on Net  Present Value-

Makespan (expressed in days). The results relative to this pair

of criteria are presented in Fig. 9. Solutions with negative val-

ues for net present values are found, which correspond to very

low values of the  time horizon, that obviously will not be

Table 8

Results of Net Present Value and Risk for 9-drug optimized portfolio (Pareto front

solutions).

Solutions NPV (M$) Risk (%) Release order

1 1314 44 P9 P2 P3 P6 P4 P7 P5 P1 P8

2 1305 37 P9 P2 P3 P6 P4 P7 P5 P1 P8

3 1172 35 P9 P2 P3 P6 P4 P7 P5 P1 P8

considered by the decision maker. It  can be highlighted that an

important number of  sequences with 3  or 4 products are found

again. Among the 3-product sequence, the corresponding drugs

are [P1 ∧ (P2 ∨ P6)  ∧ (P5 ∨ P8)]. The 4-product portfolio involves

the drugs [P1 ∧ P2 ∧ P5 ∧ P7], that have been already identified as

potential candidates for net present value-risk optimization (see

Tables 9  and 10).

6.4. Bicriteria optimization makespan-risk

The results of the bicriteria optimization makespan-risk are

presented in Fig. 10. From these results, it can be seen that

a decrease in risk has a strong impact in  the pipeline dura-

tion, that can be quantified. Risk ranges from 13% to around

70% when the duration decreases from 11.5 to  7.7 years. The



Fig. 10. Pareto Front Makespan/Risk.

Fig. 11. Tricriteria solutions projection for NPV  Risk.

sequences for which risk lies between 13 and 18% are exclu-

sively composed of 3 products [P1 ∧ (P2 ∨ P7) ∧ (P5 ∨ P8)]. The

sequences for which risk is  comprised between 21  and 73%

involve 4  products [P1  ∧ P2 ∧ P5 ∧ P7]. There is a  small overlap-

ping zone from 18 to 21% with mixed sequences of 3  and

Table 9

Net Present Value and  makespan for 3-drug sequences.

Solutions NPV (M$) Makespan (days) Risk by

simulation

Release order

1 1312 3739 54  P1 P5 P2

2,3,5  57–713 2850–3402 33  P5 P2 P1

4 136  3043 50 P8 P2 P1

6 11  2848 69  P1 P8 P2

6  2 2846 55  P5 P1 P2

7 -35  2827 73  P2 P1 P8

4  products (the same ones as those previously found). Once

more, the higher number of  solutions presented relative to the

combinatorial aspect of the problem is  due to slight variations

for clones, due to the stochastic aspects of  the problems (see

Tables 11  and 12).

Table 10

Net Present Value and makespan for 4-drug sequences.

Solutions NPV (M$) Makespan

(days)

Risk  by

simulation

Release order

1 1752 4017 39  P5 P7 P2 P1

2  1357 3845 22  P2 P5 P7 P1

3,7 413–1253 3241–3691 39  P5 P1 P2 P7

4,5  856–1423 3587–3878 47  P7 P5 P2 P1

6 152 3107 45  P2 P1 P5 P7



          

Fig. 12. Tricriteria solutions projection for NPV Duration.

Fig. 13. Tricriteria solutions projection for Risk Duration.

As a partial conclusion of  this bicriteria study involving time as

a criterion, it  can be said that decisions on timing are an important

constituent of the portfolio development strategy as  they are used

to favourably organize cash flows. This is particularly important

when having to consider the probability that a project will succeed,

i.e. the  financial impact of  failed projects.

Table 11

Risk and duration for 3-drug sequences.

Solutions Risk (%) Makespan

(days)

NPV by

simulation

Release order

1 40  3389 628 P7 P5 P1

2 35 3458 603 P7 P1 P5

3 30  3608 461 P1 P5 P2

4 25  3757 532 P2 P1 P5

5 21 3906 554 P5 P2 P1

6 18  3973 474 P1 P2 P5

7.  Tricriteria optimization NPV-Duration-Risk

7.1. Study presentation

In  this study, the tricriteria optimization is  performed NPV-

Duration-Risk. To make the interpretation easier, the results

Table 12

Risk and duration for 4-drug sequences.

Solutions Risk  (%) Makespan

(days)

NPV by

simulation

Release order

1,2,3 17–21  3889–4090 1375 P2 P5 P7 P1

4,5 16–17 4101–4105 1379 P7 P5 P2 P1

6,7,10,12,13 14–19 4038–4204 769 P5 P7 P2 P1

8  16–20 3922–4110 953 P5 P2 P7 P1

11 15 4150.48 584 P7 P2 P5 P1



Fig. 14.  Frequency and behaviour for non-dominated tricriteria optimization.



Fig. 15.  Frequency and behaviour for non-dominated tricriteria optimization.

relative to a  given pair of  criteria are presented as a  projection

on a 2D-axis (see Figs. 11–13). Globally, it can be said  that the

same trends as the bicriteria approaches are observed, that is  a

small number of products in the portfolio favours the best  compro-

mise between the criteria. A closer examination at the evolution of

NPV vs. risk needs some additional comments. Fig. 11  shows that

for risk values corresponding to a  15–35% range, it seems that an

increase in  risk leads to an increase in  NPV. This trend is  no more

observed when exploring risk values between 35  and 70%, where

the higher the  risk, the lower the NPV. This phenomenon can be

now attributed to a strong decrease in makespan which is  opti-

mized simultaneously in  this case. Since the bicriteria study has

shown that the solution set is different according to the pair of  cri-

teria considered, the tricriteria analysis seems more consistent to

find the most interesting solutions.

From the solutions obtained from the 3-criteria Pareto front, the

decision maker can select a  sequence, from a risk level that seems

acceptable for him. The results presented in  Table 13  all constitute

potential candidates.

A closer examination of the solutions presented in Table 13

is  presented in  Figs. 14 and 15  where relative frequency is  plot-

ted vs. net present value. This kind of  representation is  more

meaningful since the analysis of  simulation results of some

sequences has shown that they  exhibit a bimodal behaviour. The

mean net present value is interesting from an  optimization view-

point since the objective is  to shift towards positive values for NPV:

the interpretation is consistent here since mean NPV is combined

with a  risk criterion as  measured by  the ratio of the number of pos-

itive values for NPV to the total number of NPV evaluations. This

two-peaked phenomenon is  still observed for these 5 sequences,

with more dispersed values for the 3-drug portfolio.

Solutions 1  and 2 are equivalent from the makespan criteria,

but differ significantly from the risk and NPV criterion. Solution

Table 13

Some interesting solutions from tricriteria optimization.

Solutions Risk (%) Net Present

Value (M$)

Duration (days) Release order

1 16 1316.29  4141.52  P7 P2 P5 P1

2 20  1620.7  4110.4  P2 P5 P7 P1

3 25  1280.99 3952.73  P5 P2 P7 P1

4  30 721.11 3709.74 P5 P2 P1

5 35  850.35 3645.91  P5 P7 P2 P1



          

2 exhibits some peaks higher than 9000 M$. The decision maker

has to  decide if the higher risk induced by Solution 2  is justified.

Solution 3  must be investigated if the time criterion is important

to consider at that level, even if risk and NPV are  lower than for

solutions 1  and 2. Solutions 4  and 5 show the same order of magni-

tude for mean NPV and durations (risk is  higher for solution 4). Yet,

Solution 3 concerning the 3-drug sequence has poor performances

(no peak higher than 3600 M$) and may be finally discarded by the

decision maker. At this level of discussion, it is difficult to say more

since the example has just a didactic value.

7.2. Conclusion of the bi- and tricriteria study

As a conclusion of this bicriteria analysis performed on the

different pairs  of  criteria and of  the tricriteria optimization, it

can be highlighted that among the constellation of  potential can-

didates, the  optimization strategy seems efficient to  detect the

sequences which can be considered by the decision makers. Only a

few sequences are detected. Among theses sequences, large port-

folios cause resource queues and delays time to  launch and are

eliminated by the  bicriteria optimization strategy. Small portfolio

reduces queuing and time to  launch appear as good candidates.

The optimization strategy, based on NSGAII, that is particularly eli-

tist, is interesting to detect the sequence candidates. Time  is  an

important criterion to consider simultaneously with NPV and risk

criteria. The order in  which drugs are  released in  the pipeline is  of

great importance as  with scheduling problems. The use of  a  deci-

sion analysis method (Pirdashti, Ghadi, Mohammadi, & Shojatalab,

2009) as TOPSIS will allow to select a  sequences according to the

decision maker preferences. The basic concept of this method is that

the selected alternative should have the shortest distance from the

negative ideal solution in geometrical sense (Pirdashti et  al.,  2009).

A thorough analysis is proposed in Morales-Mendoza. et  al. (2011).

8. Conclusions

The development of  a multiobjective Genetic Algorithm opti-

mization framework coupled with a discrete event simulator has

been presented that addresses two key decisions simultaneously:

portfolio management and scheduling of  drug development and

manufacturing. Two case studies were used to  illustrate the capa-

bilities of the framework and also highlighted that the scope of

decisions that a drug developer may be  confronted with can be

vast and complex.

Our analysis on both case studies suggests that optimizing

project priorities taking into account resource allocations yields a

significantly improved portfolio performance, rather than a simple

use of a bubble chart that cannot take into account the interdepen-

dencies between projects. Due to  the complexity of this problem, a

contribution of this work is  in  demonstrating a  formulation based

on techniques from  evolutionary computation employed for an effi-

cient search of  the decision space and of  the objective space. All

the results tend to  highlight that pharmaceutical product devel-

opment strategies in the real world may be better analyzed when

considering the impact of  decisions holistically rather than only

individually.

One important issue in  this kind  of  problems is the decision

flexibility that management can exercise during the course of  the

development path. Given the high  failure rate and large potential

investment loss, a  perspective of  this work could be to  take into

account for the valuation of product portfolios not only the uncer-

tainties and risks but also the decision flexibility. The sequence of

projects, as proposed in  this work, is  fixed during the whole hori-

zon. It  would be interesting to consider the possibility of  a  dynamic

evolution of  the sequence along the simulation path embedded in

the optimization loop.
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