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Abstract. For a finite group G, let d(G) denote the probability that a randomly
chosen pair of elements of G commute. We prove that if d(G) > 1/s for some
integer s > 1 and G splits over an abelian normal nontrivial subgroup N , then G
has a nontrivial conjugacy class inside N of size at most s− 1. We also extend two
results of Barry, MacHale, and Nı́ Shé on the commuting probability in connection
with supersolvability of finite groups. In particular, we prove that if d(G) > 5/16
then either G is supersolvable, or G isoclinic to A4, or G/Z(G) is isoclinic to A4.

1. Introduction

For a group G, let d(G) denote the probability that a randomly chosen pair of
elements of G commute. That is,

d(G) :=
1

|G|2
|{(x, y) ∈ G×G | xy = yx}|.

This quantity is often referred to as the commuting probability of G. The study of
the commuting probability of finite groups dates back to work of Gustafson in the
seventies. In [6], he showed that

d(G) =
k(G)

|G|
,

where k(G) is the number of conjugacy classes of G.
It is clear that d(G) = 1 if and only if G is abelian. Therefore, when d(G) is close

to 1, one might expect that G is close to abelian. For instance, it was proved by
Gustafson in the same paper that if d(G) > 5/8 then G must be abelian. In [12],
the first author classified all groups with commuting probability at least 1/2 – if
d(G) ≥ 1/2 then G is isoclinic to the trivial group, an extraspecial 2-group, or S3.
As a consequence, if d(G) > 1/2 then G must be nilpotent. Going further, the
first author proved in [10, 11] that G is solvable whenever d(G) > 1/12. This was
improved by Guralnick and Robinson in [5, Theorem 11] where they showed that if
d(G) > 3/40 then either G is solvable or G ∼= A5 × A for some abelian group A.
In [1], Barry, MacHale, and Ńı Shé proved that G must be supersolvable whenever
d(G) > 1/3 and pointed out that, since d(A4) = 1/3, the bound cannot be improved.

Two finite groups are said to be isoclinic if there exists isomorphisms between their
inner automorphism groups and commutator subgroups such that these isomorphisms
are compatible with the commutator map, see §3 for the detailed definition. This
concept is weaker than isomorphism and was introduced by Hall [7] in connection with
the enumeration of p-groups. It was shown by the first author [12] that the commuting
probability is invariant under isoclinism. It follows that any group isoclinic to A4 has
commuting probability exactly equal to 1/3. Our first result highlights the special
role of A4 among non-supersolvable groups with commuting probability greater than
5/16. Here and what follows, the center of G, as usual, is denoted by Z(G).
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Theorem 1. Let G be a finite group. If d(G) > 5/16, then

(i) G is supersolvable, or

(ii) G is isoclinic to A4, or

(iii) G/Z(G) is isoclinic to A4.

Theorem 1 has two consequences. The obvious one is the aforementioned result of
Barry, MacHale, and Ńı Shé. We would like to note that their proof is somewhat
more complicated and requires a large amount of computations with GAP [4]. The
second one is less obvious and shows that the groups isoclinic to A4 are the only
non-supersolvable groups of commuting probability at least 1/3.

Corollary 2. Let G be a finite group with d(G) ≥ 1/3, then G is either supersolvable

or isoclinic to A4.

We remark that, the average size of a conjugacy class of G, denoted by acs(G),
is exactly the reciprocal of d(G). Therefore, Theorem 1 is equivalent to: that if
acs(G) < 16/5 then either G is supersolvable or G is isoclinic to A4 or G/Z(G) is
isoclinic to A4. Recently, Isaacs, Loukaki, and Moretó [9] have obtained some dual
results on solvability and nilpotency in connection with average character degree of
finite groups. For instance, they showed that a finite group is supersolvable whenever
its average character degree is less than 3/2. It would be interesting if there is a dual
result of Theorem 1 for the average character degree.

For groups of odd order, it is possible to obtain better bounds. It was proved in [1]
that if G is a group of odd order with d(G) > 11/75, then G must be supersolvable.
Let Cn denote the cyclic group of order n. We notice that (C5 × C5) ⋊ C3 is the
smallest non-supersolvable group of odd order. Here we can show that the groups
isoclinic to (C5 × C5) ⋊ C3 have commuting probability ‘substantially’ larger than
that of other non-supersolvable groups of odd order.

Theorem 3. Let G be a finite group of odd order. If d(G) > 35/243 < 11/75, then
G is either supersolvable or isoclinic to (C5 × C5)⋊ C3.

Our last result provides a characteristic of certain groups with ‘large’ commuting
probability and therefore can be applied to obtain the inside structure of these groups.
For an example, see §4.

Theorem 4. Let s ≥ 2 be an integer and G a finite group with d(G) > 1/s. Let

N be an abelian normal nontrivial subgroup of G and suppose that G splits over N .

Then there exists a nontrivial conjugacy class of G inside N of size at most s − 1.
In particular, we have either Z(G) 6= 1 or G has a proper subgroup of index at most

s− 1.

Theorems 1, 3 and 4 are respectively proved in Sections 2, 3, and 4. Corollary 2 is
proved at the end of Section 2.
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2. Groups with commuting probability greater than 5/16

We will prove Theorem 1 and Corollary 2 in this section. We first recall a well-
known result of Gallagher [3].

Lemma 5. If N is a normal subgroup of G, then

k(G) ≤ k(G/N)k(N)

and the equality is equivalent to

CG/N (gN) = CG(g)N/N for each g ∈ G.

This gives an immediate consequence.

Lemma 6. Let N be a normal subgroup of G. Then

(i) d(G) ≤ d(G/N)d(N),
(ii) d(G) = d(G/N) if and only if N is abelian and CG/N (gN) = CG(g)N/N for

each g ∈ G, and

(iii) if N ⊆ Z(G) and d(G) = d(G/N), then Z(G/N) = Z(G)/N .

Proof. (i) and (ii) are consequences of Lemma 5. We now prove (iii). Assume that
N ⊆ Z(G) and d(G) = d(G/N). We have CG/N(gN) = CG(g)N/N for every g ∈ G
and therefore

gN ∈ Z(G/N) ⇔ CG/N (gN) = G/N

⇔ CG(g)N = G

⇔ CG(g) = G

⇔ g ∈ Z(G)

Therefore, Z(G/N) = Z(G)/N , as desired. �

Two groups G and H are said to be isoclinic if there are isomorphisms ϕ :
G/Z(G) → H/Z(H) and φ : G′ → H ′ such that

if ϕ(g1Z(G)) = h1Z(H)

and ϕ(g2Z(G)) = h2Z(H),

then φ([g1, g2]) = [h1, h2].

This concept is weaker than isomorphism and was introduced by Hall in [7] as a
structurally motivated classification for finite groups, particularly for p-groups. It is
well-known that several characteristics of finite groups are invariant under isoclinism
and in particular supersolvability is one of those, see [2]. Furthermore, it is proved
in [12] that the commuting probability is also invariant under isoclinism.

A stem group is defined as a group whose center is contained inside its derived
subgroup. It is known that every group is isoclinic to a stem group and if we restrict
to finite groups, a stem group has the minimum order among all groups isoclinic to
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it, see [7] for more details. The following lemma plays an important role in the proof
of Theorems 1 and 3.

Lemma 7. For every finite group G, there is a finite group H isoclinic to G such

that |H| ≤ |G| and Z(H) ⊆ H ′.

The next lemma will narrow down the possibilities for the commutator subgroup
of a finite group with commuting probability greater than 5/16.

Lemma 8. Let G be an finite group with d(G) > 5/16. Then |G′| < 12.

Proof. Let Irr2(G) denote the set of nonlinear irreducible complex characters of G.
Then, as G has exactly [G : G′] linear characters, we have |Irr2(G)| = k(G)− [G : G′]
where k(G) is the number of conjugacy classes of G. We obtain

|G| = [G : G′] +
∑

χ∈Irr2(G)

χ(1)2 ≥ [G : G′] + 4(k(G)− [G : G′]).

As d(G) = k(G)/|G|, it follows that

1

|G′|
+ 4(d(G)−

1

|G′|
) ≤ 1.

Using the hypothesis d(G) > 5/16, we deduce that |G′| < 12. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Assume that G is a finite group with d(G) > 5/16 and G is not
supersolvable. We aim to show that either G is not isoclinic to A4 or G/Z(G) is
isoclinic to A4. Since commuting probability and supersolvability are both invariant
under isoclinism, using Lemma 7, we can assume that Z(G) ⊆ G′. Indeed, if Z(G) =
G′, then G is nilpotent which violates our assumption. So we assume furthermore
that Z(G)  G′. Recall that d(G) > 5/16 and hence |G′| ≤ 11 by Lemma 8. We
note that G′ is noncyclic as G is not supersolvable.

First we remark that S3, D8 as well as D10 have a cyclic, characteristic, non-central
subgroup and hence it is well-known that they cannot arise as commutator subgroups,
see [13] for instance. Thus we are left with the following possibilities of G′.

Case G′ ∼= C2 × C2: If Z(G) ∼= C2 then the normal series 1 < Z(G) < G′ < G
implies that G is supersolvable. So we assume that Z(G) = 1. Thus G′ is a minimal
normal subgroup of G. Now, since G is not supersolvable, G′ * Φ(G), see [8] for
instance. Therefore, G′ is not contained in a maximal subgroup G, say M . We have
G = G′M . Also, as G′ is abelian, we see that G′ ∩M � G. Now the minimality of
G′ and the fact that G′ is not contained in M imply that G′ ∩M = 1. This means
G splits over G′ or equivalently G ∼= G′ ⋊M . Thus, as M ∼= G/G′ is abelian and
Z(G) = 1, we deduce that CM(G′) = 1. It follows that

M ≤ Aut(G′) ∼= Aut(C2 × C2) ∼= S3,
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and hence
M ∼= C2 or M ∼= C3.

In the former case, |G| = 8 and G would be nilpotent, a contradiction. In the latter
case, G ∼= A4 and we are done.

Case G′ ∼= C3 × C3: As in the previous case, we can assume Z(G) = 1, G′

is a minimal normal subgroup of G, and G ∼= G′ ⋊ M . Here M is an abelian
subgroup of Aut(G′) ∼= GL2(3). Consulting the list of subgroups of GL2(3) reveals:
M ∼= C2, C3, C4, C2 × C2, C6, or C8. However, it is routine to check that all these
possibilities result in either G is supersolvable or d(G) ≤ 5/16.

In the remaining cases, we let N be a minimal normal subgroup of G with N ⊆ G′.
Recall that Z(G)  G′ and so in the case Z(G) 6= 1, we can even take N ⊆ Z(G).

Case G′ ∼= Q8, C4 × C2, or C2 × C2 × C2 and N ∼= C2: If N < Z(G) then the
normal series 1 < N < Z(G) < G′ < G would imply that that G is supersolvable,
a contradiction. Thus Z(G) = N ∼= C2. Also, as G is not supersolvable, G/Z(G) is
not supersolvable as well. It follows that (G/Z(G))′ is not cyclic so that

(
G

Z(G)
)′ ∼= C2 × C2.

By Lemma 6, we know that d(G/N) ≥ d(G) > 5/16. Now we are in the first case with
G/Z(G) replacing G. Therefore, we conclude that either G/Z(G) is supersolvable, a
contradiction, or G/Z(G) is isoclinic to A4, as desired.

Case G′ ∼= C4 × C2, or C2 × C2 × C2 and N ∼= C2 × C2: Then G′/N ∼= C2 is a
normal subgroup of G/N . In particular, G′/N ⊆ Z(G/N) and as G/G′ is abelian,
we deduce that G/N is supersolvable. As in the previous case, by using the non-
supersolvability of G, we deduce that G ∼= N ⋊M where M is a maximal subgroup
of G. It then follows that C2

∼= G′ ∩ M ⊳ M and hence G′ ∩ M centralizes M ,
whence G′∩M centralizes G. This implies that Z(G) 6= 1, which in turn implies that
N = Z(G) since N ⊆ Z(G) ( G′. This violates the minimality of N .

Case N = G′ ∼= C2 × C2 × C2: Since Z(G)  G′, we obtain Z(G) = 1. As before,
we can show that G ∼= G′⋊M where M is an abelian subgroup of Aut(G′) ∼= GL3(2).
This implies that M ∼= C2, C3, C4, C2 × C2, or C7. The cases M ∼= C2, C4 or C2 × C2

would imply that G is a 2-group. The case M ∼= C7 would imply that d(G) = 1/7.
Finally, the case M ∼= C3 implies that G ∼= C2 × A4 and hence G′ ∼= C2 × C2, which
is the final contradiction. �

Now we prove Corollary 2.

Proof of Corollary 2. Assume, to the contrary, that the statement is false and let G
be a minimal counterexample. Again we know that Z(G)  G′ and as in the proof
of Lemma 8, we also have |G′| ≤ 9. Using Theorem 1, we deduce that G/Z(G) is
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isoclinic to A4 and Z(G) is nontrivial. In particular, G′/Z(G) ∼= A′

4
∼= C2 × C2 and

hence Z(G) ∼= C2. Using Lemma 6(i), we have

1

3
= d(

G

Z(G)
) ≥ d(G) ≥

1

3
.

Therefore d(G) = d(G/Z(G)), which implies that Z(G/Z(G)) = Z(G)/Z(G) = 1 by
Lemma 6(iii). It follows that G/Z(G) ∼= A4 and as |Z(G)| = 2, we have G = C2×A4.
This violates the assumption that Z(G)  G′. �

3. Groups of odd order

We will prove Theorem 3 in this section. As in Section 2, we narrow down the
possibility for the order of the commutator subgroup of a group in consideration.

Lemma 9. Let G be an odd order finite group with d(G) > 35/243. Then |G′| < 27.

Proof. We repeat some of the arguments in the proof of Lemma 8. Recall that
Irr2(G) denotes the set of nonlinear irreducible complex characters of G and we have
|Irr2(G)| = k(G) − [G : G′]. Since |G| is odd, every character in Irr2(G) has degree
at least 3. We obtain

|G| = [G : G′] +
∑

χ∈Irr2(G)

χ(1)2 ≥ [G : G′] + 9(k(G)− [G : G′]),

and therefore
1

|G′|
+ 9(d(G)−

1

|G′|
) ≤ 1.

Since d(G) > 35/243, it follows that |G′| < 27, as wanted. �

Proof of Theorem 3. We argue by contradiction and let G be a minimal counterex-
ample. Since commuting probability and supersolvability are both invariant under
isoclinism, using Lemma 7, we can assume that Z(G) ⊆ G′. Now G is a non-
supersolvable group of odd order with d(G) > 35/243. Applying Lemma 9, we have
|G′| < 27 so that G′ is a noncyclic odd order group of order at most 25.

We choose a minimal normal subgroup N of G with N ⊆ G′. and note that N is
elementary abelian. By Lemma 6, we have d(G/N) ≥ d(G) > 35/243 so that G/N
is supersolvable or isoclinic to (C5 × C5)⋊ C3 by the minimality of G.

First we show that the case where G/N is isoclinic to (C5×C5)⋊C3 cannot happen.
Assume so. Then

G′/N = (G/N)′ ∼= ((C5 × C5)⋊ C3)
′ = C5 × C5,

which implies that |G′| is at least 50, a contradiction. We conclude that G/N is
supersolvable. In particular, if N is cyclic then G is supersolvable and we have a
contradiction. Note that, when G′ ≇ C3×C3 and C5×C5, a routine check on groups
of odd order at most 25 shows that N must be cyclic. Thus, it remains to consider
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the cases where G′ ∼= C3 ×C3 or G
′ ∼= C5 ×C5 and G′ is a minimal normal subgroup

of G.
If G′ ⊆ Φ(G) then G is nilpotent and we are done. Therefore we can assume that

G′ * Φ(G) and, as in the proof of Theorem 1, we see that G splits over G′ by a
maximal subgroup M of G:

G ∼= G′ ⋊M.

Since Z(G) ⊆ G′, we must have Z(G) = 1 and, as M ∼= G/G′ is abelian, we deduce
that CM(G′) = 1. It follows that

M ≤ Aut(G′).

First we assume that G′ ∼= C3 × C3, then M is an abelian subgroup of odd order of
Aut(C3 × C3) = GL2(3). This forces M ∼= C3, which implies that |G| = |G′||M | =
9·3 = 27 and henceG is nilpotent, a contradiction. Next we assume thatG′ ∼= C5×C5.
Arguing similarly, we see that M is an abelian subgroup of odd order of GL2(5). This
forces M ∼= C3, C5 or C15. The case M ∼= C5 would imply that G is nilpotent whereas
the case M ∼= C15 would imply that d(G) = 23/375, which is a contradiction. We
conclude that M ∼= C3 so that G ∼= (C5 × C5)⋊ C3. �

4. A conjugacy class size theorem

In this section, we prove Theorem 4 and then give an example showing how one
can obtain some properties of certain groups with ‘large’ commuting probability.

Proof of Theorem 4. Assume, to the contrary, that all the nontrivial orbits of the
conjugacy action of G on N have size at least s. Since G splits over N , let G = HN
where H ∩ N = 1. We denote C = CH(N) and clearly C �H . Every element of G
can be written uniquely as ha where h ∈ H and a ∈ N . We now examine the class
sizes in G.

First, let g = ha with a 6= 1. Sine a is in an orbit of H on N of size greater than or
equal to 3, we can find s− 1 other elements a2, a3, ..., as in the orbit of a. Therefore
there exist t2, t3, ..., ts ∈ H such that ati = ai for 2 ≤ i ≤ s. Thus

g = ha, gt2 = ht2a2, g
t3 = ht3a3, ..., g

ts = htsas

are s different elements in the conjugacy class of g. We now have

(4.1) every conjugacy class of an element outside H has size at least s.

It remains to consider the conjugacy classes of elements of H . Let g = h1 for some
h1 ∈ H . If h1 6∈ C, then there exits some a ∈ N which is not fixed by h1. Thus

ah1a
−1 = h1h

−1
1 ah1a

−1 = h1a1, where a1 = h−1
1 ah1a

−1 6= 1.

By the previous paragraph, we know that there are t2, t3, ..., ts ∈ H such that

g = h1, h1a1, h
t2
1 a2, h

t3
1 a3, ..., h

ts
1 as
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are s+ 1 different elements in the conjugacy class of g, where ai’s are nontrivial and
distinct. Thus g is in a conjugacy class of size at least s+ 1.

If h1 6= h2, h1, h2 ∈ H\C, and h1, h2 are in the same conjugacy class, then we know
that

h1, h1a1, h
t2
1 a2, h

t3
1 a3, ..., h

ts
1 as, h2

are s + 2 distinct elements in the same conjugacy class. This implies in general
that if h1, h2, . . . , ht are distinct elements in H\C and h1, h2, . . . , ht are in the same
conjugacy class, then the size of the conjugacy class is greater than or equals to

s+ t.

Denote k = |H|/|C|, then there are (k − 1)|C| elements in H\C. We consider
all the conjugacy classes of G which contain some elements in H . Suppose all the
elements in H\C belong to n different conjugacy classes and each conjugacy class
contains t1, . . . , tn elements in H\C respectively. Then

n∑

i=1

ti = |H\C| = (k − 1)|C|

and the sum of sizes of these n classes is at least
n∑

i=1

(s+ ti) = ns +
n∑

i=1

ti.

Therefore, the average size of a conjugacy class of an element in H is at least

ns+
∑n

i=1 ti + |C|

n+ |C|
=

ns+ k|C|

n+ |C|
.

Since C acts trivially on N and |H/C| = k, the conjugacy action of G on N has
orbit of size at most k. Since N is nontrivial and every nontrivial orbit of G on N
has size at least s, we deduce that k ≥ s. It follows that

ns+ k|C|

n+ |C|
≥

ns+ s|C|

n+ |C|
= s

and hence

(4.2) the average size of a class of an element in H is at least s.

Combining (4.1) and (4.2), we conclude that the average class size of G is at least s,
which violates the hypothesis that d(G) > 1/s. �

The following is an application of Theorem 4 to the study of finite groups with
commuting probability greater than 1/3.

Corollary 10. Let G = (C2 × C2) ⋊ H and assume that d(G) > 1/3. Then there

exists a nontrivial element of C2 × C2 that is fixed under the conjugation action of

H. In particular, Z(G) 6= 1.
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Proof. By Theorem 4, the group H has a nontrivial orbit of size at most 2 on C2×C2.
If this orbit has size 1 then we are done. Otherwise, it has size 2 and hence the other
orbit must have size 1, as wanted. �
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