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Abstract

In this article, we study the polarity detection problem using
linear supervised classifiers. We show the interest of penal-
izing the document frequencies in the regularization process
to increase the accuracy. We propose a systematic comparison
of different loss and regularization functions on this particular
task using the Amazon dataset. Then, we evaluate our models
according to three criteria: accuracy, sparsity and subjectiv-
ity. The subjectivity is measured by projecting our dictionary
and optimized weight vector on the SentiWordNet lexicon.
This original approach highlights a bias in the selection of the
relevant terms during the regularization procedure: frequent
terms are overweighted compared to their intrinsic subjec-
tivities. We show that this bias appears whatever the chosen
loss or regularization and on all datasets: it is closely link to
the gradient descent technique. Penalizing the document fre-
quency during the learning step enables us to improve signifi-
cantly our performances. A lot of sentimental markers appear
rarely and thus, are unappreciated by statistical learning algo-
rithms. Explicitly boosting their influences leads to increasing
the accuracy in the sentiment classification task.

Introduction

Opinion mining (OM) has progressively emerged as a major
application domain of text classification. Users being more
and more used to provide opinions on websites, opinionated
data represent a great opportunity for developing new appli-
cations targeting user modeling, e-reputation or recommen-
dation for e-commerce sites. Different resources have been
made available to the community, as for example corpora
in the domains of e-commerce (Blitzer, Dredze, and Pereira
2007) or movie reviews (Pang, Lee, and Vaithyanathan
2002). The application field being wide and profitable, this
explains the keen interest on the subject and the large num-
ber of references. An authoritative state of the art prior
to 2008 is (Pang and Lee 2008). In this survey, Pang and
Lee detail different tasks associated with OM, ranging from
sentiment taxonomy to emotional quantification. For many
tasks, an essential step is the development of accurate po-
larity classifiers. Further work (Blitzer, Dredze, and Pereira
2007; Ding, Liu, and Yu 2008; Pang, Lee, and Vaithyanathan
2002; Whitehead and Yaeger 2009) show that sentiment
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classification is complex and is still open to large improve-
ments. In particular, extracting relevant terms and features is
considerably more difficult than for thematic classification.
Subjectivity information is more complex and less directly
accessible than thematic information that directly relies on
the lexical field.

Several works have then focused on the description en-
richment and processing for improving polarity detection
(Das and Chen 2001; Pang and Lee 2004; Matsumoto, Taka-
mura, and Okumura 2005). They notably focus on nega-
tion coding, sentence level analysis, phrase structure coding
and part-of-speech feature selection. However, the survey
(Pang and Lee 2008) concludes that it is difficult to signif-
icantly take advantage from this enrichments (with respect
to standard unigrams). (Mejova and Srinivasan 2011) pro-
pose a systematic analysis of different variable selection ap-
proaches wrt to the size of the datasets and the chosen rep-
resentations; they point out the difficulty of establishing an
universal procedure.

In this paper, we compare two learning formulations (re-
spectively based on hinge loss and least squares) and we
rely on the unifying elastic net regularization framework
(Zou and Hastie 2005) to select the discriminative terms.
The originality of our approach resides in the evaluation
metrics: we obviously compute accuracies and sparseness
but we also provide a subjectivity analysis of our models.
We compare the optimized weights from our models with
the subjectivity of the terms in the SentiWordNet lexicon
(Esuli and Sebastiani 2006). This study highlights a clear
frequency bias in the selection of discriminative terms: in
all models, whatever the chosen representation (unigrams or
bigrams) or datasets, the terms with high document frequen-
cies are overweighted with respect to their intrinsic subjec-
tivities. As a solution to this problem, we propose a spe-
cific regularization framework, which focuses on sentimen-
tal markers. This regularizer penalizes terms during training
according to their document frequencies in a training set.
Our framework remains scalable using a standard stochastic
gradient descent and it offers a significant improvement of
the accuracy in all cases. The a posteriori analysis of the re-
sulting models shows the alignment between the new weight
vectors and SentiWordNet term subjectivities (with respect
to their frequencies). We also conclude that regularization
highly contributes to the performance even if the resulting
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models are never sparse.

Next section describes the models, the evaluation metrics
and the datasets. We then present our results in three distinct
sections: 1-we demonstrate the existence of the frequency
bias and give an in-depth description. 2-we compare the ac-
curacies of standard formulation with the performances of
specific models that contend with the frequency bias. 3-we
propose an analysis of the regularization role.

Formulations, Evaluation Criteria & Datasets

We consider the problem of sentiment classification, where
documents can be either positive or negative (neutral class
is removed as in (Pang, Lee, and Vaithyanathan 2002;
Blitzer, Dredze, and Pereira 2007; Whitehead and Yaeger
2009)). X,Y denote respectively a whole collection of doc-
uments and their associated labels. xi denotes document i,
xij its jth term and yi ∈ {+1,−1} its label. N denotes the
document collection size and V the dictionary size. Term
presence coding is preferred to frequency coding since it
leads to higher performance for most reported cases in the
literature (Pang and Lee 2008) and for all cases in our ex-
periments: xi ∈ {0, 1}V . All our experiments are performed

with linear classifiers: f(xi) =
∑V

j=0 xijwj ,w ∈ R
V where

wj is the weight associated to term j. For linear models, |wj |
is a measure of the jth term mean importance in solution f .
The sign of f gives the class prediction.

Unified Learning Framework

Learning a classifier can usually be formulated as the fol-
lowing optimization problem:

w
⋆ = argmin

w

C(X,Y) + λ1ΩL1
(f) + λ2ΩL2

(f) (1)

where C denotes a cost function, quantifying the error made
by f on the training data and Ω denotes a regularization
term, which prevents overfitting (elastic net includes both
L1 and L2 penalizations), w⋆ is the optimal solution, and
λ are the regularization tradeoff. We consider the following
loss and regularization functions:

Hinge loss: Ch(X,Y) =
∑N

i=0 (1− yif(xi))+ (2)

Least squares: Cls(X,Y) =
∑N

i=0 (yi − f(xi))
2

(3)

Regul. L2: Ω(L2)(f) =
∑V

j=1 w
2
j (4)

Regul. L1: Ω(L1)(f) =
∑V

j=1 |wj | (5)

This framework unifies notably: linear SVM (Boser, Guyon,
and Vapnik 1992), L1-SVM (Bradley and Mangasarian
1998), LASSO (Tibshirani 1996), Spline (Tikhonov 1963)
and Elastic net (Zou and Hastie 2005).

These baselines are representative of typical families of
classifiers with different behaviors. Hinge loss approximates
the classification error and focuses on ambiguous documents
close to the frontier, whereas least squares is a regression
criteria minimizing mean document distance to the frontier.
L2-regularization helps to prevent overfitting while preserv-
ing good regression performance. When gradient descent is

used for learning, the weight vector w is updated accord-
ing to w ← w − 2ǫw (taking into account the L2 reg-
ularization only), and never becomes zero. On the oppo-
site, L1-regularization acts as a sparsifier. During gradient
descent, the L1 term update is done according to: w ←
w − ǫ sign(w). If the sign of wj changes, the weight is set
to 0 (cf. (Friedman et al. 2007)). Each step makes wj moves
towards 0 and each small enough coefficient is set to 0. Note
that both regularizers act upon the weights uniformly. Let
us now consider the update rule for one of these classifiers,
the Spline case for example. The gradient for weight wj and
example xi is proportional to (yi − f(xi))xij − λwj . The
regularizer decreases all weights uniformly and the weight
modification is proportional to xij , which in our case is 1 if
the term is present. As a consequence, weights correspond-
ing to non-frequent terms (xij = 0 most often) will mainly
be affected by the regularization term and decrease towards
0, while weights for frequent terms (xij = 1 quite often) will
see their value increase. This observation holds for any con-
sidered classifier. We now proceed with this observation in
the following section.

Document Frequency Regularization (DFR)

Our analysis of the classifiers behavior (cf. next sections),
suggests that classical term selection or term weighting
schemes do not operate properly for sentiment classifica-
tion. As a consequence, both relevant and irrelevant but fre-
quent terms will influence the classification decision. This
is a direct consequence of the usual classification formula-
tion. Based on this observation, we propose to introduce a
prior on the regularizer, which will improve the term selec-
tion or weighting using a criterion drawn directly from the
data. This prior penalizes weights according to their doc-
ument frequencies: the more frequent a term is, the more
penalized it is. This will allow for a better compromise be-
tween the regularizer and the classification loss influence
and will help to select relevant terms. The formulation of
the new regularizer is:

Ω(f) =
V∑

j=1

νjΩj(f), νj =
#{xi|xij �= 0}

#X
∈ [0, 1] (6)

Ωj(f) denotes the component of Ω related to term j. νj cor-
responds to the document frequency of word j in the learn-
ing set.

Computing the gradient in this new formulation is

straightforward:
∂Ω(f)
∂wj

= νj
∂Ωj(f)
∂wj

. Comparing with the

previous formulation, it is clear that this formulation will
help important but rare terms to influence the classifier de-
cision. Low frequency terms will be less impacted and will
contribute more to the solution.

Our formulation can be seen as a variant of Confident
Weighted Models (Dredze, Kulesza, and Crammer 2010;
Crammer, Kulesza, and Dredze 2009), however their ap-
proach focuses on adaptive weighting of influent factors
whereas, our approach is not adaptive, the penalization is
defined once for all, according to the document frequency.
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Evaluation Criteria

Accuracy Rate of well classified samples in test. All accu-
racies are computed using a 10-fold cross validation scheme
(90% of the datasets being used to learn the model).

Sparseness Number of non-zero coefficients wj in the
models. This criterion is closely linked with the regulariza-
tion mechanism. We will also study the values of Ω(L1) and
Ω(L2).

SentiWordNet Subjectivity For each term j in our dic-
tionary, we look for its subjectivity in the SentiWordNet
lexicon. As a consequence, we get V subjectivity scores
subjSWN

j ∈ [0, 1] cf. (Esuli and Sebastiani 2006)1. Obvi-
ously, the scores of terms that are not found in SentiWord-
Net are set to 0. This subjectivity is defined for a dictionary
(namely a couple dataset/description); it does not depend on
the models.

Model Subjectivity The absolute values of weights wj

can be seen as another measure of term subjectivity. Indeed,
given that xij ∈ {0, 1}, the weight associated to the term j
directly influences the final score: the bigger it is (in abso-
lute value), the more subjectivity it introduces. As a matter
of fact, a wj with a great absolute value moves the f(xi)
away from 0. In the following, we compare our model sub-
jectivity with the SentiWordNet subjectivity.

Datasets & Features

We perform experiments on 4 classical Amazon subsets
(Books, DVD, Electronics and Kitchen) (Blitzer, Dredze,
and Pereira 2007). The Amazon dataset includes 2 closely
related subsets (books and DVD), 1 subset on general prod-
uct sales (electronics) and 1 eccentric subset (kitchen). The
vocabulary size is different for all datasets, statistics are
given in table 1.

We use only two descriptions: unigrams (U) and unigrams
+ bigrams (UB). This choice is closely linked to the use
of SentiWordNet, which mainly indexes unigrams and bi-
grams. As already said, we use binary term encoding since
it performs better than frequency term coding in all our ex-
periments2.

Neither stemming nor lemmatization is performed. We
use a Part-Of-Speech (POS) filters to keep the following
tags: JJ JJR JJS RB RBR RBS NN NNS VB VBD VBG
VBN VBP VBZ MD. This corresponds roughly to adjec-
tives, nouns and verbs as in (Turney 2002). Rare words ap-
pearing only one time are suppressed.

1SentiWordNet offers a subjectivity measure for 117000 terms,
which reflect the human perception of their sentimental content.
This measure is homogeneous to a probability, namely included in
[0, 1]

2Presence coding, which is known to be efficient for the sen-
timent classification task (Pang and Lee 2008) can be seen as fre-
quency penalization. All terms that appear more than once in a doc-
ument have less influence using this coding.

Datasets nb docs
(N )

Review
length

Vocabulary (V )
Uni. Uni.+Bi.

Books 2000 240 10536 45750

DVD 2000 235 10392 48955

Electronics 2000 154 5611 30101

Kitchen 2000 133 5314 26156

Table 1: Description of the 4 datasets. The vocabulary size
depends on the description. Review lengths are averaged.

Gradient Descent Solver & Settings

In our experiments, parameter learning will be solved using
mini-batch gradient descent inspired from (Bottou and Le-
Cun 2004). This is a compromise between stochastic and
batch gradient procedure: it is more computationally effi-
cient than a batch approach and more robust than a stochastic
approach. Moreover the implementation is scalable, robust
and the complexity only depends on the mini-batch size,
whatever the size of the whole dataset is. In order to pre-
serve scalability in the Document Frequency Regularization
frameworks, the νj are estimated on the mini-batch.

We set a maximum of 200 iterations (an iteration corre-
sponds to N samples seen), we use mini-batches of size 50
and ǫ is set to 0.001. We also use a decay policy: ǫ is mul-
tiplied by 99% at each iteration. We add an early stopping
criterion: when no more error is made on the learning set,
the algorithm is stopped.
L1 regularization tradeoff ranges from 0 to 0.005 in 8 log-

arithmic step (0, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−
3, 5e−3). L2 regularization tradeoff ranges from 0 to 0.5 in
8 logarithmic step (0, 5e− 3, 1e− 2, 2e− 2, 5e− 2, 1e−
1, 2e− 1, 5e− 1).

Frequency Bias

In this section, we propose to compare graphically two sub-
jectivity measures with respect to the document frequen-
cies of words. We aim at showing that the weights of lin-
ear models are bigger for frequent terms independently from
their intrinsic subjectivities. We also show that our dedicated
regularization framework enables us to cope with this phe-
nomenon.

Demonstration of the frequency bias

First, we compute the term distribution over the frequencies
(Zipf law): Fig. 1 shows the percentage of terms for each
number of occurrences3. Words that appear twice represent
respectively 33% and 50% of the dictionary for unigrams
and bigrams on the dataset Books (all datasets have close
behaviors). We can conclude that rare words should play a
great role in the decision.

Then, for each document frequency, we compute the av-
erage subjectivity according to SentiWordNet and according
to our models (cf. previous section for the metrics). On Fig.
2, SentiWordNet metric shows clearly that the subjectivity
distribution over the frequencies is approximatively constant

3All words appearing more than 30 times are gathered in the
last bar of the histogram
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Figure 1: Term distributions over frequencies for unigrams (first plot) and bigrams (second plot) on the dataset Books. With
unigrams, terms that appear twice represent 33% of the total; with bigrams, they represent over 50% of the dictionary. All words
that appear more than 30 times are gathered in the last bar of the histogram.

for unigrams. On the contrary, standard linear models (based
on hinge loss and least squares) lead to weight vectors, the
absolute values of which increase with the frequencies. This
observation holds whatever the dataset or model we con-
sider: this is what we call the frequency bias.

With the bigram description (Fig. 3), our conclusion is
less clear. The SentiWordNet subjectivity also increases with
the frequency. This phenomenon explanation resides in the
combinatorial process of the bigram generation: a lot of
rare bigrams are not referenced in SentiWordNet and thus,
the subjectivity curve is penalized for low frequency terms.
However, we still observe the frequency bias: all standard
weight vectors show some picks for terms that appear more
than 25 times whereas the subjectivity curve does not offer
the same behavior.

Our Document Frequency Regularization framework
(DFR) explicitly penalizes high frequencies. As a conse-
quence, it enables us to build models that are closer to the
SentiWordNet subjectivity curves. We will show in the next
section that the penalization of frequent terms also enables
us to improve the accuracies of all our models.

Qualitative analysis of the DFR framework on the
dataset books

We propose to sort our dictionary with respect to the weight
vector of our models. The greatest weights correspond to
words that contribute to positive sentiment whereas lowest
weights correspond to words that contribute to negative sen-
timent. We study here only the dataset books with SVM al-
gorithm (hinge loss and λ1 = 0), however, our general ob-
servations hold for other models and datasets.

Table 2 confirms that our dedicated regularization frame-
work boosts the weights of low frequency terms: top 100
words from DFR-SVM have a much lower frequency than
top 100 words from classical SVM.

Table 3 proposes the top 15 most influent sentimental
markers for classical SVM + unigrams, DFR-SVM + uni-
grams and DFR-SVM + bigrams. We can draw several con-
clusions from this table: the DFR framework enables us to
get rid of frequent terms that are not related to sentiment
(e.g. let, don’t, still, also...) while strong sentimental mark-
ers are preserved (e.g. disappointing, boring,... ). As far as
unigrams are concerned, it is difficult to draw another gen-

DFR SVM Classical SVM

aver. nb.
occ. +

aver. nb.
occ. −

aver. nb.
occ. +

aver. nb.
occ. −

11.85 15.04 24.46 249.17

Table 2: Average number occurrences of top 100 words in
the learning set with DFR-SVM and SVM on books (Uni-
grams)

eral conclusion; The lists of top words are not comparable
and we can not discuss their semantic relevances.

The DFR framework also enables us to extract very rele-
vant bigrams. Bag of words is certainly not an adequate rep-
resentation for sentiment classification. Enriched represen-
tations have been proposed by different authors, but higher
dimensionality requires efficient selection and complexity
control methods. For this, one needs efficient regularization
strategies, and DFR might represent an interesting solution.
In the table, terms selected with bigrams are more relevant
than those selected with unigrams. Bigrams make it possible
to use efficiently quantifiers, punctuation and even negation
to make our decision.

Accuracies

Table 4 offers a comparison between all our models with re-
spect to the two representations that we used (unigrams and
bigrams). It clearly shows that combining rich term encod-
ing (UB) together with an efficient regularization scheme al-
lows us to bypass the baseline performances on all datasets.
For a given standard classifier, using enriched features wrt
unigrams enables us to gain between 0.3% and 2.3% of ac-
curacy. Combining these feature representations with DFR
offers improvements ranging from 2.2% to 4.8% when com-
pared with the unigrams + classical framework. This series
of experiments shows the interest of the DFR framework in
term of performances. The DFR version of an algorithm sys-
tematically overcomes the standard version (with the same
representation). This systematic advantage is all the more
significant that the four datasets are very different: their vo-
cabulary sizes and their sentimental markers are known to
change a lot.

With our settings, least squares slightly overcome hinge
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Figure 2: Subjectivities (SentiWordNet & Models) wrt to the word frequencies using unigram description. Datasets from top
left to bottom right: books, electronics, DVD, kitchen. For each dataset, we consider the weight vector of the best model in term
of accuracy (evaluated in cross-validation). The DFR subjectivity curves (with squares and plus) are systematically closer to
the SentiWordNet curve. In the legends, LS stands for least squares and hinge for hinge loss.

loss on all datasets: it is probably due to the high dimen-
sionality of the data. Indeed, we have much more variables
than samples (cf. Table 1); it makes our problem very noisy.
In this kind of context, least squares, that update models on
a correlation criterion, are known to be (slightly) more effi-
cient than L1 cost functions such as hinge loss.

Regularization
In this section, we discuss the interest of the regularization
process as well as the statistical properties of our optimal
solutions. We first study the sparseness of our solutions and
then we discuss the performances of our models with respect
to the regularization.

Sparseness

As we already said, our two regularization processes have
not the same behaviors: the L2 regularization decreases the
wj coefficients without vanishing whereas L1 regularization
acts as a sparsifier. This result is illustrated on Fig. 4: the
number of non-zero coefficients decreases quickly when the
L1 regularization tradeoff increases. On the contrary, we ob-
serve no sparseness over the whole range of L2 regulariza-
tion tradeoff: there is always 100% of non-zeros coefficients
when λ1 = 0. Combining the two regularizations increases
the sparsity: L2 process weakens the coefficients and L1 set
them to 0.

Our best results are never sparse, we always get more than
99% of non-zero coefficients in our optimal solutions (opti-
mal tradeoffs belongs to the red part of Fig.4). In spite of the

proved interest of the regularization (cf. following subsec-
tions), we fail at completely vanishing useless coefficients.

Regularization levels in Classical vs DFR
Frameworks

The regularization operates differently in the classical
framework as in the DFR one. The Fig. 5 shows the L2

(
∑

j w
2
j ) and L1 (

∑
j |wj |) criteria for all the models and

datasets. We notice that in all cases, DFR optimal models
are less regularized (namely, have higher criteria) than clas-
sical models. We can conclude roughly that DFR uses more
terms than classical models: the DFR process does not elim-
inate the frequent words; it prevents the elimination of rare
terms. Finally, the improvement of the sentiment classifica-
tion accuracy is closely linked to the contribution of terms
that were previously eliminated by the standard approaches.
The DFR process acts as a relaxation of the regularization
constraints.

We also see that both regularizations of the optimal mod-
els are higher with least squares than with hinge loss in all
cases.

Accuracies with Bi-Regularization vs

Mono-Regularization

First, we notice that regularized models perform always bet-
ter than non-regularized ones in our experiments. In table 4,
the given accuracies overcome non-regularized approaches
by 0.5% to 2%.
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Figure 3: Subjectivities (SentiWordNet & Models) wrt to the word frequencies using bigram description. This curves show
a slightly different behaviors from the unigrams (cf Fig. 2). Datasets from top left to bottom right: books, electronics, DVD,
kitchen. For each dataset, we consider the weight vector of the best model in term of accuracy (evaluated in cross-validation).
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Figure 4: Percentage of non-zero coefficients with respect to
L2 (axis x) and L1 (axis y) regularization processes on the
dataset books (bigrams). x and y axis use logarithmic scale
ranging respectively from 0 to 0.5 and from 0 to 0.005.

The double regularization process usually called Elas-
tic Net enables us to overcome the bests results obtained
with mono-regularized models as shown on Fig. 6. In ta-
ble 4, approximatively 75% of the scores come from bi-
regularization (the remaining 25% are obtained with one
null λ: sometimes λ1, sometimes λ2). The gains related to
double regularization range from 0 to 1%.

This figure illustrates another classical phenomenon: the
L1 regularization is more sensitive than L2 regularization.
As soon as λ1 becomes greater, the sparsity increases rapidly
and the accuracy falls. Finding the optimal λ2 value is easier,
the parameter is less sensitive.

Conclusion

We have demonstrated the existence of a frequency bias in
the optimization process of sentimental classifiers: frequent
terms are overweighted even if they are not subjective. On
the contrary, a lot of rare terms are eliminated during the reg-
ularization process whereas they contain valuable piece of
information. This phenomenon occurs with all models and
on all datasets.

First, we show that rare terms contain as much subjectiv-
ity as frequent ones according to SentiWordNet. Then, we
introduce an explicit penalization of the frequent terms to
prevent the overweighting. Finally, we obtain a new reg-
ularization framework that makes an efficient use of rare
terms: the performances of all models benefit from DFR
(on all datasets). Although the presence coding is well
adapted to sentiment classification, it could be interest-

319



Classical Model DFR Framework

Unigrams Unigrams Bigrams

top − top + top − top + top − top +

waste
unfortunately
boring
worst
nothing
disappointing
bad
terrible
money
don’t
better
poorly
let
disappointed
instead

excellent
introduction
wonderful
enjoyed
informative
amazing
still
favorite
heart
stories
great
familiar
also
thorough
definitely

disappointing
useless
valuation
outdated
shallow
poorly
wasted
unrealistic
norm
hype
incorrect
burn
boring
york
hated

summer
terrific
bible
displayed
editions
refreshing
concise
profession
bike
shines
coping
blended
humorous
lighten
amazed

not recommend
best answer
save your
too much
skip this
reference
disappointing
shallow
unless you
way too
was looking
nothing new
your money
very disappointing
first trip

a must
I sure
really enjoyed
read from
excellent book
wow
loved this
gift
good reference
enjoyed this
very pleased
it helped
terrific
great !
all ages

Table 3: Compared top 15 words (positive and negative) with classical SVM + unigrams, DFR-SVM + unigrams and DFR-SVM
+ bigrams on the dataset Books.

DFR Baselines
Loss Hinge Least squares Hinge Least squares

Features U UB U UB U UB U UB

D
at

as
et

s Books 83.1 86.0 83.5 86.9 82.1 84.3 82.9 83.7
DVD 82.8 83.9 83.6 84.4 82.2 82.9 83.3 83.8

Electronics 84.4 88.4 86.1 88.7 84.0 86.3 85.2 86.3
Kitchen 86.4 87.5 87.0 87.5 85.2 86.5 85.7 86.3

Table 4: Best accuracies obtained with respect to the features and the loss function. All accuracies are computed using 10 folds
cross-validation. Overall best performances are bolded for each dataset.

ing to (re-)test some alternatives like term-presence-inverse-
document-frequency.

In order to study systematically both L1 and L2 regular-
ization processes, we relied on the Elastic Net framework:
this is original for the sentiment classification problem and
we show that this approach is interesting in term of accuracy.
Given the dimensionality of the representations, the regular-
ization has a role to play: our main contribution is to make
the regularization process more efficient on this task. It en-
ables us to take advantage of larger description and we will
try to use richer descriptors in our future experiments. In-
deed, this study clearly shows the weaknesses of unigram
representations: the fact that unigrams are sometimes pre-
ferred to advanced representations is due to computational
and optimization problems rather than to objective choices.
Finally, our regularization process is efficient but not sparse;
we still have to improve this formulation to be able to elim-
inate useless features.
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Figure 5: L2 and L1 regularization criteria values for optimal unigram and bigram models (cf equations (4) and (5)). As
previously, LS stands for least squares and Hinge for hinge loss.
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