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Abstract of distributed systems due to a number of factors such as

Using high level coordination primitives allows enhanced NON-determinism, asynchronous communication, race con-
expressiveness of component-based frameworks to copditions, fault occurrences, etc. Model-based developrent
with the inherent complexity of present-day systems de- such appllcla.tlons aims to ensure correctness through the us
signs. Nonetheless, their distributed implementatiosesi 29 of gxphcn model transform_atlpns. _ _
multiple issues, regarding both the correctness and the run In this paper, we focus on distributed |mplementat|0n_f0r
time performance of the final implementation. We propose a M0dels defined using the BIP framework [3]. BIP (Behavior,

novel approach for distributed implementation of multtgar ~ 'Nteraction, Priority) is based on a semantic model encom-
interactions subject to scheduling constraints exprebyed ~PaSSing composition of heterogeneous componentsb&he
priorities. We rely on new composition operators and seman- haworpf components is desprlbed asan automaton extended
tics that combine multiparty interactions with observatio by arbitrary data_ and associated f_u_nctlons written in C. BI_P
We show that this model provides a natural encoding for USES an expressive set of composition operators for ohtaini

priorities and moreover, can be used as an intermediate stefF®MPOSite components from a set of components. The oper-

towards provably correct and optimized distributed imple- 2{OrS are parameterized by a semadltiparty interactions
mentations. between the composed components angtigrities, used

to specify different scheduling mechanisms between inter-
Categories and Subject Descriptorg-.1.1 [Theory of Com- actiong.
putatiori: COMPUTATION BY ABSTRACT DEVICES; Transforming a BIP model into a distributed implemen-
C.5 [Computer Systems Organizatlo@ROMPUTER SYS-  tation consists in addressing three fundamental issues:
TEM IMPLEMENTATION; C.2.4[Coputer Systems Orga-
nizatio]: COMPUTER-COMMUNICATION NETWORKS 1. Enabling concurrency. Components and interactions
should be able to run concurrently while respecting the

Keywords multiparty interaction, priority, observation, con- semantics of the high-level model.

flict resolution, distributed systems ) ) ]
2. Conflict resolution. Interactions that share a common

1. Introduction component can potentially conflict with each other.

Correct design and implementation of computing systems 3. E_nforcing priorities. When_ two_interac@ions can execute
has been an active research topic over the past three decades Simultaneously, the one with higher priority must be exe-

This problem is significantly more challenging in the comtex cuted.
* The research leading to these results has received fundingthe Euro- We developed a general method ba_sed on _SourC_G'tO'
pean Community’s Seventh Framework Programme [FP7/2003]2un- source transformations of BIP models with multiparty in-

der grant agreement no. 248776 (PRO3D) and no 257414 (ASEEMNE  teractions leading to distributed models that can be direct

from ARTEMIS JU grant agreement ARTEMIS-2009-1-100230 E50) implemented [8, 9]. This method has been later extended to
handle priorities [10] and optimized by exploiting knowl-
edge [6]. The target model consists of components repre-
senting processes and Send/Receive interactions represen
ing asynchronous message passing. Correct coordination is

1 Although our focus is on BIP, all results in this paper can ppliad to
any model that is specified in terms of a set of componentshsgnized by
[Copyright notice will appear here once "preprint’ opti@rémoved.] interactions with priorities.
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achieved through additional components implementing con-  been fully implemented. We report some preliminary re-
flict resolution and enforcing priorities between interas. sults on benchmarks.
In particular, the conflict resolution issue has been ad-

dressed by incorporating solutions to tbemmittee coor- The.paper is organized as follows. Section 2 ir)troduces
dination problem12] for implementing multiparty interac- the main concepts.of the BIP framewc-)r.k togetherwlth the al-
tions. Bagrodia [1] proposes solutions to this problem with ternative observation-based composition semanticsiddect

different degrees of parallelism. The most distributedisol 3 recalls the principles for distributed implementatioBtf

tion is based on the drinking philosophers problem [11], and models, focusing on conflict resolution by using counter-

has inspired the approaches of Pérez et al. [18] and ParrowPased protocols. Section 4 defines the method for distdbute
implementation of BIP models with observation and in par-

et al. [17]. In the context of BIP, a transformation address- . | h A £ th i ”
ing all the three challenges through employicentralized ticular, the necessary adaptation of the conflict resatutio

scheduleris proposed in [2]. Moreover, in [8], we propose prot(_)cols. Experiments are reporte_d in Section 5. Section 6
transformations that address both the concurrency issue byProvides conclusions and perspectives for future work.
breaking the atomicity of interactions and the conflict reso

Iu_tion_ issue by err_lbedd_ing_ a solution _to the committee coor- 2 Semantic Models of BIP

dination problem in a distributed fashion.

Distributed implementation of priorities is usually con-
sidered as a separate issue, and solved using completely di
ferent approaches. For example, in [10], priorities anmeli
inated by adding explicit scheduler components and more
multiparty interactions. This transformation leads toguet
tially more complex models, having definitely more inter-
actions and conflicts than the original one. In [4, 5, 7], the
focus is on reducing the overhead for implementing prior-
ities by exploiting knowledge. Yet, these approaches make
the implicit assumption that multiparty interactions axe-e
cuted atomically and do not consider conflict resolution. In
a similar line of work, [6] aims at detecting false conflicts,
that is, statically detected but never occurring duringcexe
tion. However, this method still relies on conflict resobuti
protocols, at least for states where no false conflicts exist

In this paper, we propose a combined implementation o

In this section, we present BIP[3], a component framework
sfor building systems from a set of atomic components by us-
ing two types of composition operators: Interaction and Pri
ority. We then present an alternative model based on Obser-
vation that can express Priority. Finally we present a trans
formation from a component with Observation into a equiv-
alent component with only Interaction.

Atomic Components. An atomic componeni3 is a la-
belled transition system represented by a tufgle P, T)
where( is a set ofcontrol locationsor states P is a set
of communication porteand7 C Q x P x Q is a set of
transitions

Interactions. In order to compose a set afatomic com-
f ponents{B; = (Qi, P;, T;)}i=1,n, We assume that their

o : . ) ) r iv f control | ions an rts ar irwi
the two coordination mechanisms, that is, multiparty iaer gs_pt_act. € Sets of co t9 ogal_to s and ports are parwise
disjoint; i.e., for any twoi # j in {1..n}, we require that

tions and priorities. We propose an appropriate interntedia ] def
model and transformations towards fully distributed medel @iNQ; = #andP;NP; = ). We define the global sét =

dealing adequately with both of them. The contribution is U1 i Of ports. Aninteractiona is a set of ports such that
wwofold: a contains at most one port from each atomic component.

We takea = {p; }icywith I C {1..n} andp; € P;. Ifaisan
. _ . _ interaction, we denote byupport(a) the set of atomic com-

mantic model for BIP. We show that this model is gen- . . : def
oo : . of interactionsy, that is, t = t(a).
eral enough to encompass priorities and multiparty inter- % support(7) Uae, support(a)

actions and, moreover, to capture knowledge-based opti-
mization as in [6]. Observation-based semantics reveals
two types of conflicts occuring between interactions, that

can be handled using different conflict resolution mecha-

nisms (see below).

Priorities. Given a sety of interactions, we define a pri-
ority as a strict partial order C v x ~v. We write awb for
(a,b) € 7 to express that has lower priority thar.

Composite Components.A composite componenty (B,

2. Second, this model is used in an intermediate step of a. .., B, ) (or simplycomponentis defined by a set of atomic
transformation leading to a distributed implementation. component§B; = (Q;, P;, T;) }i=1,,» composed by a set of
We show thabbservation conflictsthat usually follow interactionsy and a priorityr C v x ~. If 7 is the empty
from encoding of priorities, can be dealt more efficiently relation, then we omitr and simply writey(By, ..., By).
than structural conflicts due to sharing of components A global stateq of nvy(B,...,B,) is defined by a tu-
between multiparty interactions. We extend the counter- ple of control locationgy = (qu,...,¢,). The behavior of
based conflict resolution protocols of Bagrodia in order 7vy(Bi, ..., B,) is alabelled transition syste(®, v, — ).
to handle these types of conflicts. These extensions havewhere@Q = Q.._, Q; and—., — .., are the least sets of tran-
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u global state condition to be met for authorizing executibn o

rg ™ red ‘ on each interaction.
D 7T acl
. .
® ® o Observation. Given a BIP component(Bs, ..., B,), we

OTL
off m °s define an observation as a pair of functidhs= (obs, pred),

reae— that are both defined over. Leta € v be an interaction ;

ack®— . . .
onar obs(a) is a subset of By, ..., B,} including the set of
component®bservedoy the interactioru. We require that

obs(a) N support(a) = . The observed components and
the support ofe are the components visible tgq that is

Figure 1. BIP component. Initial state i&ff, dwn). V, = support(a)Uobs(a). Fora € v, pred(a) is a predicate
defined on the states of component¥jn

sitions satisfying the rules: Composite Component with ObservationA composite
component with observatio®y (B, . . ., By,) is defined by
a={pi}icr €7 acomponeny(B, ..., B,) and an observatio® over this
Viel (¢,pig) €T, Vigl g =q [INTER] component. The behavior 61y(B, ..., B,) is the labeled
Q15+ qn) =~ (Ghs- -0y d)) transition systeni@, v, —o- ), whereQ = Q,_, Q; isthe
set of global states, and— (., is the least set of transitions
g2 q Va' € v. ard' — g g/;v . satisfying the rule:
qLﬂ'vq/ (Qh---,%) L>’Y (qlla"'aq;z)
” ” _ _ pred(a) ((¢i)B,ev.)
Intuitively, transitions—, defined by rule INTER] specify a ; — [oBS]
the behavior of the component without considering priori- (1,5 an) =0y (d1s-- -5 dn)
ties. A component can execute an interactios + iff for The rule pBg] states that a transition can take place
each porp; € a, the corresponding atomic componéit  in the component with observation if it is already a valid
can execute a transition labelled py If this happensg is transition in the component( B, . .., B,) and if the pred-

said to beenabled Execution ofa modifies atomically the jcate pred(a) holds for the current state of components in
state of all interacting atomic components whereas allrsthe v/, The predicatered(a), is a boolean expression involv-
stay unghanged. Thg behavior of the component is _defineding atomic predicatest (q) for each state € U], Q;. The

by transitions— ., defined by rulerid]. This rule restricts  atomic predicatet(q) evaluates to true whenever the corre-
execution to interactions which are maximal with respect to sponding atomic component is at statand to false other-
the priority order. An enabled interactiarcan execute only  wise. The rule pBs] requires thapred(a) depends only on

if no other interaction” with higher priority is enabled. states of components that are visiblefohat ispred(a) is a

Example 1. A BIP component is depicted in Figure 1 using Poolean expression ort(q) predicates fo; € U, ¢y, Q-

a graphical notation. It consists of two atomic components Example 2. Figure 2 depicts a composite component with
named) andS. Component is a server, that may receive  observation. Each interaction is labeled by the set of ob-
requestsieq) and acknowledge them{k). Componenf\/ served components and the corresponding predicate. Here,
is a manager that may perform upgradegy) and needsto  the only interaction with additional observationris, with
reboot ¢b) the server for the upgrade to be done. Interac- obs(rb) = {S}. The predicate for executing is written

tions are represented using connectors between the ititerac between square brackets.

ing ports. There are 4 unary interactions and 2 binary inter-
actions. The component goes up and down through the bi-
nary interactionsn andoff respectively. Priorityb 7 req,

rb 7 ack is used to prevent a reboot whenever a request or
an acknowledgement are possible.

Observation-based semantics violates the component en-
capsulation principle as it needs access to inner states of
components. We use components with observation as an
intermediate model towards a distributed implementation
where we exploit the locality of observation: observingyonl
2.1 Replacing Priority by Observation the components visible to an interaction is sufficient to de-

According to BIP semantics, a low priority interaction is cide whether the interaction can take place.

executed only if all higher priority interactions are not en Priority vs. observation. In Figure 2, we presented an ex-
abled. In general, detecting such situations requireg-info ample of composite components with observation. Note that
mation about components that are not involved in the low the predicate associated tb actually encodes the priority
priority interaction. We propose here an alternative seman rule of Figure 1, since it guarantees that neq neitherack

tics of BIP parameterized b@bservation This semantics  are enabled when executinly We show that given a priority
makes explicit the sets of components to be observed and ther one can obtain an observatiéh. such that the behaviors
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rb  [-at(lst) A nat(srv)]

Figure 2. Example of a component with observation.

of the components with priority and observation are identi-
cal.

Using at(q) predicates, we define the predicaigV,
stating whether the interaction is enabled. First, we de-
fine the predicateEN;;i characterizing enabledness of port
pi in a componentB; = (Q;, P;, T;), that is EN;,
V(i pi.—yer, at(@:). Then, the predicaté&N, can be de-
fined by: EN, = A, o, EN;,. Note that this predicate de-
pends only of components kupport(a).

Definition 1 (Priority Observation) Given a prioritized BIP
componenty(By,. .., B,), we define theriority observa-
tion O, = (obs, pred) for the componeny(By, ..., B,),
for each interaction € ~:

* obs(a) contains all components involved in an higher pri-
ority interactiond that do not participate in. Formally:
obs(a) = (U, support(b)) \ support(a).

¢ pred(a) ensures that each higher priority interaction
is not enabled. Formallyred(a) = A, ., "ENs. Ob-
viously, this predicate depends only on components in
support(a) U obs(a).

For the example in Figure 1, the only low-priority inter-
action isrb. For all other interactionsibs(a) andpred(a)
are respectively) andTrue. The component with observa-
tion obtained from the component with priority is exactly
the one depicted in Figure 2. Indeed, observes the com-
ponentS and the predicate on this interactionHat(Ist) A
—at(srv) = 7ENypeq A 7 ENgek.

Proposition 1. Given a component with priorityry (B,
.., By) and the component with observatid®,~ (B,
.., By), whereO, is constructed fromr as specified in

Definition 1, we have—,, = — 0, .

Proof. For each interactioru, the predicatepred(a)

Norp "ENsy is equivalent tovh € v amb = ¢ —l/’»v.
Thus the rulesgri0] and [oBS] define exactly the same set
of transitions. O

In [6], we provided a heuristic to reduce the scope of ob-
servation while preserving behavior equivalence. More pre
cisely, this heuristic takes an observatiOn = (obs, pred)
and returns another observati6i = (obs’, pred’), such
that

® Va € v |obs'(a)| < |obs(a)l, the scope of the observa-
tion is reduced, and

¢ — 0 ,C—0,.~ the obtained behavior using observa-
tion O’ is correct with respect to the original one.

Furthermore, the heuristics ensures that if the inclusson i
strict, no deadlocks are introduced. Otherwise, the obthin
component has precisely the same behavior as the original
one.

2.2

We start from a component with observatiéh (B, ...,

B,,) and translate it into an equivalent observable BIP com-
ponenty’(Bj, ..., B.). In order to implement observation,
each atomic component has to make explicit its current,state
both for interactions where it is involved and for interaats
where it is observed. Observation is therefore encoded by
extending interactions to observed components.

Implementing Observation with Interactions

Transforming Atomic Components.Given an atomic com-
ponentB = (Q, P,T), we define the corresponding atomic
observable component as a labeled transition sygtérs
(Q', P, T"), where:

e () = (@' the states are the same than in the original
component.

e P = (P U{obs}) x Q: we add a new port denoteds,
that will be used for observation. All ports contain the
information of the current state. We denotefiy) the
port(p,q) € P'.

¢ For each transitiofig, p, ¢’) € T', T’ contains the transi-
tion (¢, p(q), ¢') where the current state of the component
is explicit in the offered port. Fof € Q, T’ contains the
loop transition(q, obs(gq), ¢) that is used when the com-
ponent is observed.

Transforming Interactions. Given a sety of interac-

tions and an observatio® = (obs, pred), we define the
new set of interactiong’ as follows. For each interac-
tion a € v, wherea = {p;};c1, We extend its support to

the componentsupport(a) U obs(a) = {Bj,,...,Bj,},
and we denote by the set of indices{j,...,jx}. For
each state of this set of componerits, ,...,q; ) such

that pred(a)(q;, - ..,q;,) holds,~’ contains the interac-
tion a(g;,, - -, ¢;.) = {Pj(a;)};es, Wherep; = obs; if
Bj € obs(a), that is B; is observed by:, andp; = p;
otherwise. This transformation associates to any intenact
a of Oy(By, ..., By,) a set of interactions(g;, , . . . g;,, ) of
~'(Bi, .., B,), each interaction of’ being enabled by states
(¢jy, - - -+ 45, ) satisfyingpred(a).

Proposition 2. We have—.,,=— -, by mapping the in-
teractionsa(g;j, , - - -, q;,) of ¥ toa.

Proof. The states oDv(By,...,By,) and~/'(By,...,B},)
are the same. The transitian —~0, ¢’ can be fired if
and only if the components visible tg namely{B;} c;,

2013/10/29



arein a statéq,, , . . ., ¢;, ) satisfying the predicatered(a). tifications so that the distributed execution is correcthwit

In that casey’ contains an interactioa(q;, , . . ., ¢;, ). This respect to the original semantics.
interaction only changes the state of participants,ithus Distributed conflict resolution boils down to solving the
we haveg ./ ¢'. O committee coordination probleft2], where a set of profes-

Note that the duplication of interactions can be avoided sors organize themselves in different committees, a mgetin
by using models extended with variables and guards onrequires the presence of all professors to take place and two
interactions, In that case, instead of creating a new;qit committees that have a professor in common cannot meet
for any pair inP x @, each port exports a state variagle simultaneously. Different solutions have been provided, u
Thenpred(a) is the guard associated with the interaction  ing managers [1, 12, 17, 18], circulating tokens [15], orran
and depends only on variables exported by the ports involveddomized algorithms without managers [14] to implement the
in a. conflict resolution.

We first describe how atomic components are modified to
3. Decentralized Implementation of BIP send offers and _receive notifications. Then, we focus on the
Bagrodia’s solutions from [1], that use managers and coun-

We provide here the principle of the method for distributed ters to implement conflict resolution. Finally, we recaltiho

implementation of BIP presented in [8, 9]. This method re- these protocols are used for building a 3-layer distributed
lies on a systematic transformation from arbitrary BIP com- component.

ponentd into distributed BIP components with Send/Recei-
ve interactions. These are binary point-to-pointand dé@c 3.1 Distributed Atomic Components

interactions from one sender component (port), t0 0Ne re-tpq yransformation of atomic components consists in split-
ceiver component (port) |mplement|ng message paSSIng'ting each transition into two consecutive transitions:afi)
from the sender to the receiver. The transformation guar- offer that publishes the current state of the component, and
antees that the receive port is always enabled when the; 5 hoificationthat triggers the transition corresponding
corresponding send port becomes enabled, and thereforg, yne chosen interaction. The offer transition publishes |

Send/Receive interactions can be safely implemented US-anabled ports through a set of special ports, labeleff)
ing any asynchronous message passing primitives (e.g., MPIWhereOﬁ is the subset of enabled ports.
send/receive communication, TCP/IP network communica-

tion, etc...). Definition 2 (Distributed atomic components) et B =

In a distributed setting, each atomic component exe- (Q,P,T) be an atomic component. The corresponding
cutes independently and thus has to communicate with otheri,ansformed atomic component B+ = (Q*, P+, T)

atomic components in order to ensure correct execution with g ,ch that:
respect to the original semantics. Thus, a reasonable @gssum

tion is that each component will publish its offer, thatisth ¢ 9L = QU {1, l¢ € Q} is the union ofstablestates)

list of its enabled ports, and then wait for a notification in- andbusystates{ L, |¢ € Q}.
dicating which interaction has been chosen for execution. o p1 _ p | {o(Off)|Off C P}, whereo(Off) is a port
This is achieved by splitting each transition in atomic com- indicating that ports ir()ﬁ_c P are enabled.

ponents: one part sends the offer, the other part is triggere
by the notification and executes the chosen interaction.

The main difficulty when transforming a BIP component
into a distributed Send/Receive BIP componentis to resolve

e the set of transitiong™* include, for every transition
T=(¢,p,q) €T
1. an offer transition (Lq, o({plg =1}, q) that goes

conflicts between simultaneously enabled interactions. In from a busy to a stable state and publishes the offer.
centralized execution, only one entity is responsible f@-e 2. anotificationtransitionqg —» 1, that goes from a
cuting interactions, and has exclusive access to all compo- stable to a busy state and executes the transition from
nents. In contrast, in a distributed setting, several iestit the original component.

may be responsible for executing interactions. A confliet oc

curs if two different entities try to execute two interacto Notice that we introduced a new port for each possible

involving a common component. If both entities send a no- offer. This allows us to using the same model as for non-

tification to this component, then the original semantics is distributed atomic components. However, as the notation

jeopardized, since a component cannot participate in two suggests, we can use a single powtith exported variables

concurrently enabled interactions. For conflict resohutia as described in [9].

protocol must be used in order to ensure that conflicting in- i . )

teractions are not executed concurrently. This protodeida 32 Bagrodia’s Counter-based Conflict Resolution

into account the offers from components and sends back no-In Bagrodia’s solutions, the protocol is made of one or sev-
eral managers that receive offers from the atomic compo-

2with or without priorities nents and reply with notifications.
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Centralized (Single) Manager. The first solution consists

of a single manager. In order to ensure mutual exclusion of
conflicting interactions, the protocol maintains two carat

for each atomic componef;:

e Theoffer-count:; which counts the number of offers sent
by the component. This counter is initially set to 0 and is
incremented each time an offer fraB) is received.

e The participation-countN; which counts the number
of times the component participated in an interaction.
This counter is initially set to 0 and is incremented each
time the manager selects an interaction involvisgfor
execution.

Intuitively, the offer-count:; associated to an offer from
a componen3; correspond to a time stamp. The manager
maintains the last used time stam;} for each component.
If the time stamp(;) of an offer is greater than the last used
time stamp {V;), then the offer fromB; has not been con-

sumed yet. Otherwise, some interaction has taken place and,

the manager has to wait for a new offer from this component.
Furthermore, the manager recalls the last offer sent by

each component. Thus in order to schedule an interaction,

it must check that (1) the interaction is enabled according
to the last offers received and (2) these offers are stiltdval
according to then; and N; counters. We define formally
the behavior of the centralized protocol as a composition
operator over distributed atomic components.

Definition 3 (Centralized Counter-based Implementation)
Given a BIP component(By, ..., B,) we define the be-
havior of the counter-based centralized implementation as
an infinite state LT§Q~, v+, T+) where:

* The set of state§) is the product of the states of the
atomic components with the state of the protocol:

Ql:éQiLxé(NxNxfji)
i=1 i=1

The state of the manager is defined byriplets m; =
(ni, N;, Off ;), one for each compone#;, wheren; and
N, are the values of the corresponding counters@ffg

is the last offer fromB;. We denote by(q,m) a state
of Q1, q[i] andm[i] represent théth component of the
tuplesq andm.

The interactions/ consists of interactions of the origi-
nal component and the offers:

vr=quld U alof)
=1 Offe2Fi
There are two types of transitionsin*:
(1) offer transitionsFrom statgq, m) € Q-+, there is an
offer transition inT* if for some componenB; an offer
is enablediq[i], 0;(Off),q!) € T;-. ThenT~ contains

the transition(q, m) *“*Y’ (¢, m"), where :

" q'[i] = q;,
*m/[i] = (n; + 1, Ny, Off), with m[i] = (n;, N;
Off i),
= forall j # 4, ¢'[5] = q[j] andm/[j] = ml[j].
(2) execute transitionsErom state(q, m) € Q-+, there
is an execute transition iff'+- if for some interaction
a = {pi}icr, we have, for alli € I (with m][i]
(niv Ni, Oﬁl))
» p;, € Off,: the interaction is enabled according to the
last offers,
» n; > N;: the last offers are still valid.
Then, the transitiolig, m) — (¢, m’) is in T+, with:
Vi € I, ¢'[i] is the state such théd[i], p;, ¢'[i]) € T},
Vi € I, m'[i] = (n;, N; + 1, Off,;): counters of
participants are incremented.
=) & 1,¢'[j] = qlj) Am'[j] = mlj)

We show that the componentBy, .. ., B,,) and the cor-
sponding counter-based implementation are observation
ally equivalent in the sense of Milner [16]. We first prove
the following lemma.

Lemmal. If n; > N;, then the componer;- is in a stable
stateg; and Off ; = {p|q; —:}.

Proof. The construction of3;- implies that it alternates offer
and execute transitions. Initially,, = N; and BZ-L isin a
busy state. The only possible transition is an offer, which
brings the system to a state whete= N; +1 > N; is
true and the offer transition ensures the property to prove.
Next possible step iB;- is an execute action, after which
againn; = N; andB;- is a busy state. This behavior repeats
forever. O

In order to show observational equivalence, we have to
define the observable actions of both systems. For the com-
ponenty(B;, ..., B,) the observable actions are the inter-
actionsy. For the counter-based implementation, the visible
actions are the execute actiopnsWe denote by the offer
actions.

We define a relation between statgsf the centralized
component and statég" of its distributed implementation.
To each statg™ € Q* of the distributed implementation,
we associate a statg¢q) € @ of the original component.
For each componem;-, ¢*-[i] is either a stable statg or a
busy statel ,,. In both cases, we takéq")[i] = ¢;. We say
that a statey € @ andg™ € Q' are equivalent, denoted by
gt ~q,if g =e(qh).

Proposition 3 (Correctness of Centralized Counter-based
Implementation) Given a componeny(By, ..., B,), the
labeled transitions systen{§), v, 7) and (Q+, v+, T+) of

its distributed implementation are observationally eguiv
lent.

Proof. We have to prove that:
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1. If gt By thenvg ~ gt r ~ g*. 3.3 3-layer Distributed Architecture

2. 1f gt S ri thenVg~ g, Ire Q ¢, rAr~ The obtained distributed components must meet the follow-
rt. ing three properties: (1) preserve the behavior of eachiatom

3. If ¢ -% r, thenVg: ~ ¢, Irt € QL ¢+ B8 Ay component, (2) preserve the behavior of interactions, and
L (3) resolve conflicts in a distributed manner. To ensuregthes

properties, we structure distributed components accgitdin

1. This is a consequence of the definition-af a hierarchical architecture with three layers. The lowgefa

2. The transitior{(¢*, a, ) is possible at statg- € Q- if includes the transformed atomic components. The second

for each participanB; in the interaction, the counters verify ~layer deals with distributed interaction execution by ienpl

n; > N;, and for each porp; € a, we havep; € Off,. menting interaction protocols (IP). The third layer deailshw

The Lemma 1 ensures that in the equivalent sjate(), we conflict resolution. Since several distributed algoritherist

have as well; —* r. The construction of distributed atomic ~ for conflict resolution, this layer is generic with apprae

components ensures that- 7. interfaces. An example of 3-layer architecture obtainethfr

3.1f ¢ - r, then for each staig ~ ¢, each participanB; the component presented in Figure 1 is depicted in Figure 3.

in a is either in a busy or in a stable state. In the first case, it

can perform an offer transition, labelgdand reach a stable CRP
state. By point 1., the stable state” such thag LN g+ I T T T T I T T
is also equivalent tg. At stateq’L, all offers transitions for A Tgv s e A
* o o (o]
a have been executed and we have " ¢/~ —% -, with P 1Py IPs
r o~ O Mupg My, OM OM Moon Toff OS 05 Treq Mack
L . L. Yy v ¢ * * v v
In Definition 3, the enabling of offer transitions depends | l—‘ ‘—l |
exclusively on the state of the component sending the offer.  — *—o o—o oo
S . .. . . upg rb OM onpnoff 3 off g ons 0s req gk
Similarly, the enabling of execute transitions is decidgd b
the manager alone. Thus we can assume an asynchronous M+ S+

execution where an offer transition is executed first by the Figure 3. 3-layer distributed implementation of component
atomic component, by sending a message and then by thefrom Figure 1

manager when receiving the message. Similarly, the execute

transitions are performed after the manager sends messages ] ] o
to components involved in the interaction. Components Layer. This layer contains the distributed

version of the atomic components, as described in section
Decentralized (Multiple) Manager(s). In [1], Bagrodia 3.1. In Figure 3, it corresponds to componehfs andS+.
decentralizes the manager into a set of distributed masager
also relying on counters to ensure correct execution of the
interactions. The correctness is guaranteed as long as eac
manager can check and modify atomically all tNgcoun-
ters corresponding to an interaction. Bagrodia proposes tw
protocols guaranteeing this atomicity:

Interaction Protocol. This layer consists of a set of inter-
ﬁction protocols each hosting a set of interactions from the
original BIP component. Conflicts between interactions in-
cluded in the same interaction protocol are resolved by that
componentlocally. On Figure 3P, handles interactionpg
andrb, I P, handleson andoff, andI P; handlesreq and
¢ The token ring protocol, where a token circulates through ack. : . .

all managers. This token stores the counters for the '_I'he interaction protocol evaluates_the guqrd of e_ach mte_r—

action and executes the code associated with an interaction

whole system, which guarantees atomic access for each : .
manager. that is selected locally or by the upper layer. The interface

e . . . between this layer and the component layer provides ports
¢ The dining philosophers protocol, where two interactions o
) . for receiving offers from each component (through ports
that involve a common component share a fork with a . .
. such a®,,) and notifying the components on permitted port
copy of the N; counter on it. In order to execute an K
. ! : for execution (through ports such as,,). Sender ports are
interaction, the manager needs to acquire all forks and

: denoted by triangles and receiver ports by bullets. Interac
can then check and update if necessaryNallvalues . . : :
; tions with one sender and multiple receivers means that the
simultaneously.

sender sequentially sends a message to each receiver.

It can be shown that these protocols are trace equivalentConflict Resolution Protocol. This algorithm embeds one
with the centralized implementation [9]. However, they are of the Bagrodia’s counter-based protocols as presentbein t
not observationally equivalent with the centralized imple previous section. The protocols have been slightly modified
mentation, since the position of the token or of the forks may since managers do not receive offers one by one from com-
prevent some choices to be made (see [9] for details). ponents but instead receive the set of offers correspording
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an interaction sent by one of the interaction protocols. The a(qi,q,...) b(g,q2,...)
protocol can either be centralized, or distributed e.getok

ring or dining philosophers. The interface between thigfay

and the Interaction Protocol involves ports for receiviag r p1(q1) o) p3(qs)
guests taeservean interaction (labelledsv) and respond- B, o(a) o Bs
ing by either success (labelled) or failure (labelledf). P(.q) By

C

4. Distributed Implementation of
Observational Semantics

Applying the transformation presented in Subsection 2-2 fo
lowed by the distribution method presented in 3 allows to
obtain a distributed model from a component with obser- the model depicted in the Figure 5. The observation is im-
vation. This method leads toraultiparty-basedmplemen-  plemented by adding a new pe#ts(¢) and extending inter-
tation. We show here that a multiparty-based implementa- actionsa andb to that new port. In this model3; becomes
tion is costly, as it treats all observation conflicts asctru @ participant in the interactionsandb by executing a loop
tural conflicts. We propose an optimized version of Bagro- transition. This results in a structural conflict betweeand
dia’s counter-based protocol presented in the previous sec b-

tion, that allows us to build anbservation-awarenplemen-
tation.

Figure 5. Observable model obtained from the model with
observation in Figure 4.

The 3-layer distributed implementation generated from
a component obtained with the transformation presented in
Subsection 2.2 involves an unnecessarily high number of
4.1 Observation Conflicts exchanged messages. Consider the model presented in Fig-
Using the transformation presented in 2.2, we can transformure 5. Execution of interactioa followed by interactiorb
a component with observation into a observable component.requires at least 4 messages between the compdheand
This transformation implements observation of components the protocol. Indeed, each interaction requires at least on

through new ports denoteds. However, it introduces new
structural conflicts between interactions on the obsesuati
portsobs.

aat(q)] blat(q)]
{B2}] [(B:}
D1 b3
By p? pBZ Bs

Figure 4. Model with observation.

As an example, consider the model depicted in Figure 4.

It contains three atomic components and three fragments of

interaction. Interactiong andb observe the atomic compo-
nentBs. Execution ofa or b will not change the state g8,
since none of its transitions is involved. Intuitivelyandb
can be executed in parallel, they do not really conflict. How-
ever, execution of changes the state of the atomic compo-
nent B, and may disable the predicate associated ¢o b.
Thusa andc cannot be executed simultaneously. They are
conflicting.

This type of conflicts also appears in transactional memo-
ries [13]. In this context, different transactions (intrans)
can simultaneously read (observe) a variable (an atomic
component), but writing on a variable (executing a transi-
tion) requires exclusive access to the variable.

When we transform such a model with observation into a

offer and one notification. These four messages could be re-
placed by a single one, indicating thas is at state; to the
protocol, since the componeRt, does not need to be noti-
fied when it is observed.

4.2 Counter-based Conflict Resolution for Observation

The transformation from a component with observation to
an observable component adds new conflicts and results in a
message-inefficient distributed implementation. In order
avoid this, we modify the conflict resolution protocol to ¢éak
observation into account. The particularity of observatio
is checking that a component is at a particular state, with-
out state change. This differs from multiparty interactipn
where observation is combined with state change.

The proposed adaptation of the counter-based protocol
presented in Definition 3 can be reused in the 3-layer BIP
model to encompass observation and thus priority.

This adaptation relies on the following key facts:

¢ Observation of a component does not imply state change
Freshness of the offer from a component (the observa-
tion) is still validated by checking; > N;. However,
upon execution of an interaction, th€; counters cor-
responding to the observed components are not incre-
mented. Thus; > N; still holds and another interaction
observing the same component can still take place.

The state predicates need to be checkius assumes
that every component sends its local state with its offer
and that the manager knows the state predicate for each
interaction.

observable model, as described in subsection 2.2, we obtain
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Definition 4. Given a BIP component with observation The proof has the same structure as for the Proposition 3,

O~(By, ...,B,) we define the behavior of the adapted and uses the same equivalence relation. The only difference
counter-based centralized implementation as an infirdte st is in points 2. and 3. where we have to take into account
LTS (Q*,~*, T+) where: the additional enabling condition. More precisely, we have

to show that the truth value of the enabling condition is pre-
served by the equivalence relation restrictedtablestates.
This is obtained by considering the counters of observed

e The set of state§) is the product of the states of the
atomic components with the state of the protocol:

" n components.
Q" = Q) Qi x Q) (N x N x 2" x Q) The correctness is guaranteed through the fact that check-
i=1 i=1 ing the freshness of offers sent by visible components and

incrementing the counters of participant components is an
atomic action. Thus as for Bagrodia’s original version, the
manager can be distributed provided this atomicity is en-
sured, either by the token ring or by the dining philosophers
solutions.

The state of the manager is defined hyguadruples
m; = (ns, N;, Off;,qi), one for each componer®;,
wheren; and N; are the values of the corresponding
counters,Off,; is the last offer fromB; andg; is the last
known state fronB3;. We denote byg, m) a state of)+,
q[i] andm/[i] represent théth element of the tuplegand
m.

The interactions ofi* include the interactions from the
original component and the offers:

7 =qU Lnj U a(or)

=1 Off e2Fi
. Multiparty-based Observation-aware
e There are two types of transitionsn*: implementation implementation
(1) offer transitionsFrom statgq, m) € Q-+, there is an _
offer transition inT"* if for some componenB; an offer Figure 6. Exchanges of messages to execute the sequence

is enabled(q[i], 0:(Off), ¢}) € T;-. Thatis, T contains a, b, cin the model of Figure 4, for the two implementations.
the transition(q, m) *“ Y’ (¢, m’), where:

"¢l = g,
«m'[i] = (n; + 1, Ny, Off, qli]) (with m[i] = (n;, N;, Example 3. To illustrate the behavior of this new protocol,
Off i, a), consider again the model depicted in Figure 4. We obtain a

multiparty-based implementation by transforming it irte t
model of Figure 5 and then using the original protocol from
Bagrodia. The modified protocol presented here allows to
obtain an observation-aware implementation directly from
the model in Figure 4. In Figure 6, we compare the behavior
of the two approaches, when executing the interaction se-
qguencez, b, c. On the left, we show the messages exchanged
in the multiparty-based implementation. On the right we
show the messages exchanged in the observation-aware im-

= forall j # 4, ¢'[j] = g[j] andm/[j] = m[j].
(2) execute transitionsErom state(q, m) € Q+, there
is an execute transition i+ if for some interaction
a = {pi}icr, we have, for alli € I (with m[i] =
(ni, Ni, Off 1, 4i)):
* p; € Off,;: the interaction is enabled according to the
last offers,
» n; > N;: the last offers are still valid.

Furthermore, we require thffed(“)((ql‘)BieVa) holds. plementation. For each process (the distributed compsnent
Then, the transitiofg, m) — (¢’,m’) is in T, with: B, and the protocoP) Figure 6 presents the sequence of
" Vi € I,q'[i] is the state such thég[i], p;, ¢'[i]) € T}, messages received and sent. The black circles indicate that
*Vi € I, m'[i] = (ni, N; + 1, Off;,q;): counters of  an interaction is scheduled by the Protocol. Note that the
participants are incremented. componenf3; is observed by: andb and is participant ir.
Vi ¢ 1,45 = qli] A m'[j] = m[j] With the multiparty-based implementation, the observatio

is treated as a participation. Both executioruandb trig-

ger the emission of a notificatiomi(s) to B> followed by

a new offer ¢()). With the observation-aware implementa-
tion, the first offer sent by, is observed but not consumed
Proposition 4 (Correctness of adapted Counter-based Im- by a andb. So, there is no need to send notifications and wait
plementation) Given a componer@®v(By, ..., B,), the la- for corresponding offers. Only the executioncodfonsumes
beled transitions systent€), v, T') and (Q+, v+, T+) of its the offer. For this particular configuration, the new pratoc
distributed implementation are observationally equivele spares 4 messages and increases parallelism siand ¢

As for the counter-based implementation, we prove the
correctness of the adapted version using Milner’s observa-
tional equivalence.
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E; 5.1 Dining Philosophers

cat; o1 eat; Lffu?,] We consider a variation of the dining philosophers prob-
ol P, oo Firt . lem, denoted by Phily whereV' is the number of philoso-
D) Chinking> D) phers. A fragment of this composite component is presente
h Af tofth t t ted
cin ! cat cln,. .! ;at cdn (] eat in Figure 7. In this component, an “eat” interactiest; in-
Qsed C sedd volves a philosopher and the two adjacent forks. After eat-
cln clny cénr cln ing, philosopher?; cleans_the forks one by oneléa_nlefti
q p thencleanright,;). We consider that eaclut, interaction has
,,,,, w o higher priority than anycleanleft; or cleanright; interac-
cleanright; | cleanleft; cleanright;  cleanleft, tion.
Ied Citt This example has a particularly strong priority rule. In-

deed, executing onecfean” interaction requires to check
Figure 7. Fragment of the dining philosopher component. thatall “eqt” interactions are disabled, that is to observe all
Braces indicate how interactions are grouped into int&act  components. This example allows to compare both imple-
protocols. mentations under strong priority constraints.

As explained in Section 3.3, the construction of our dis-
tributed implementation is structured in 3 layers. The sdco
layer is parameterized by a partition of the interactiors. F
this example, the partition is built as follows. There is ane
teraction protocoE; for everyeat; interaction and one inter-

The observation-aware implementation is more message-action protocolC; for every paircleanright,_,, cleanleft;.
efficient than the multiparty-based implementation. Ifrthe  Only the latter deals with low priority interactions thateuke
is no observation, both implementations behave exactly theto observe additional atomic components.
same. If there is an observation, executing the observingin ~ We compare multiparty-based and observation-aware im-
teraction results in the emission of a notification to each ob plementations. For both, once we have built the distributed
served component in the multiparty-based implementation. components, we use a code generator that generates a stan-
This notification is not generated in the observation-aware dalone C++ program for each atomic component. These pro-
implementation. Moreover, in the observation-aware imple grams communicate by using Unix sockets.
mentation, an offer may be shared between several interac-
tions observing the same component, reducing further the 18000
overall number of messages.

can be launched directly after without waiting for a new
offer.

Il\/Iultip.’:\rlty-baseclj ’"i

16000 |  Observation-aware tz22272 4

] 14000 B E
5. Experiments

We compare the execution time and the number of ex-
changed messages for several distributed implementations
of a component with priority. The first step involves trans-
formation of this component into a component with obser-
vation. Then we consider the two following sequences of
transformations.

12000 | | 4
10000 [ | | -

8000 |- | | :

6000 L m

Number of interactions during 60s

philo3 philo4 philo5 philo6 philo7 philo8 philo9
¢ Transform the component with observation into an ob- Example
servable componentas explained in Subsection 2.2. Thengigyre 8. Number of interactions executed in 60s for the
generate a 3-layer distributed model embedding Bagro- dining philosophers example.
dia’s conflict resolution protocol described in Subsec-
tion 3.2. This method results in a multiparty-based im-
plementation.

The obtained code has been run on a UltraSparc T1 that
. ) o allows parallel execution of 24 threads. For each run, we
* Directly transform the component with observation into ¢ nt the number of interactions executed and messages
a 3-layer distributed model embedding the modified con- gy hanged in 60 seconds, not including the initialization
flict resolution p_rotocoldescr]bed in Suk_)sectlon 4.2._Th|s phase. For each instance we consider the average values
method results in a observation-aware implementation.  gpiained over 10 runs. The number of interactions executed
by each implementation is presented in Figure 8. The total
For both implementations, we used the centralized ver- number of messages exchanged for the execution of each
sion of the conflict resolution protocol. implementation is presented in Figure 9.
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Multiparty-based m—
Observation-aware £222222

1.5e+06

1e+06

500000

Number of messages during 60s

philo3 philo4 philo5 philo6 philo7 philo8 philo9
Example

Figure 9. Number of messages exchanged in 60s for the
dining philosophers example.

The comparison of the two implementations shows a
huge difference both in performance (humber of interac-

tions executed) and communications needed (total number
of messages exchanged). The observation-aware implemen-
tation is fastest and needs fewer messages than multiparty-

based implementation. This can be explained as follows. In
both caseseat; interactions can execute in parallel, pro-
vided they do not involve a common fork. However, re-
solving priority conflicts requires to observe all compotsen
for executing acleanleft; or a cleanright; interaction. In
the multiparty-based implementation, observed companent
must synchronize to execute some interactitsanleft; or
cleanright;. Between two ¢lean” executions, each compo-
nent has to receive a notification and to send a new offer.
This strongly restricts the parallelism. In the observatio
aware implementation, a component offer is still valid afte
execution of an interaction observing that component. For
a “clean” interaction, only two components will need to
send a new offer before anothet/éan” interaction can be
executed. This explains the speedup.

5.2 Jukebox

The second example is a jukebox depicted in Figure 10. It
represents a system, where a set of reafters . R4 access
data located onV disks D; ... Dy. Readers may need to
access any disk. We denote by jukebbthe jukebox com-
ponent with NV disks. Access to disks is managed by juke-
boxesJi, J, that can load any disk to make it available to
the connected readers. The interactiond; ;, (respectively
unload; 1) allows loading (respectively unloading) the disk
D; in the jukeboxJ;. Each reader?; is connected to a
jukebox through the-ead; interaction. Once a jukebox has
loaded a disk, it can either take part in a “read” or “unload”
interaction. Each jukebox repeatedly loads/dlidisks in a
random order.

If unload interactions are always chosen immediately af-

all 4,7, k. This ensures that “read” interactions will take
place before corresponding disks are unloaded. Furthermor
we assume that readers connected/{oneed more often
disk 1 and that readers connected o need more often
disk 2. Therefore, loading these disks in the corresponding
jukeboxes is assigned higher priorityiad; 1 7 load; ; for

i € {2,3} andload; 2 mloads 2 for i € {1, 3}. Each interac-
tion is handled by a dedicated interaction protocol.

R Rs R3 Ry
read read read read
data data
Ji Jo
lo.ad unload 10;1d unload

//’kt::r\s\\\ fi;;;7.
LSTX
y //<. S
load unload load unload load unload
Dy Do Ds

Figure 10. Jukebox component with 3 discs.

Compared to the Dining Philosopher example, this one
has more localized priorities, in the sense that they do not
require to observe the global state of the system. Here a
priority rule is used to express a scheduling policy thatsaaim
to improve the efficiency of the system, in terms ofdd”
interactions. Generating the same example without taking
priority into account results in an implementation thatsloe
less “read” interactions.

8000

300000

Muitiparty-bas'ed —

T T
Multiparty-based  m—
Observation-aware 227273

Observation-aware twzzzs | [ Observation-aware

7000

T

250000
6000

T

200000
5000

T

150000

T

4000

3000

T

100000
2000

T

Number of interactions during 60s
Number of messages during 60s

50000

T

1000

T

0

! !
jukebox3  jukebox4
Example

p
jukebox3  jukebox4
Example

Figure 11. Number of inter-Figure 12. Number of mes-
action executed in 60s for theages exchanged in 60s for
jukebox example. the jukebox example.

We performed the same measurements, in the same con-
ditions as for the previous example. The number of interac-
tions executed in 60s is presented in Figure 11. Here per-
formance of both versions is the same. The main reason
is that no or few parallelism is allowed between low pri-
ority interactions, i.e. two {inload” interactions from the
same jukebox cannot be launched sequentially and run in

ter a disk is loaded, then readers may never be able to reacparallel since they involve the same jukebox. However, Fig-
data. Therefore, we add the priority:load; , wread;, for ure 12 shows that fewer messages are exchanged, with the
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observation-aware implementation. Intuitively, thisfelif party interactions and priorities. FIMOODS/FORTEpages
ence corresponds to the notifications and subsequent offers ~ 118-134, 2012.
to and from observed components, that are not necessary [7] Saddek Bensalem, Doron Peled, and Joseph Sifakis. knowl

with the observation-aware implementation. edge based scheduling of distributed systemsEsdmays in
Memory of Amir Pnuelipages 26-41, 2010.

6. Conclusion [8] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and

We proposed different methods of generating a distributed ~ J- Sifakis. From high-level component-based models to dis-

implementation for multiparty interactions with obsergat tributed implementations. IBMSOFT 2010.

The proposed model ensures enhanced expressiveness as thi] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and

enabling conditions of an interaction can be strengthened  J. Sifakis. A framework for automated distributed implemen

by state predicates of components non participating in that ~ tation of component-based modelBistributed Computing
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which are essential for modeling scheduling policies. We [10] B. Bonakdarpour, M. Bozga, and J. Quilbeuf. ~Automated
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