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1090 L. CONTRAFATTO AND M. CUOMO

1. INTRODUCTION

The incremental analysis of elastic–plastic type discretized problems within the context of
displacement methods, at least for local constitutive models, is performed through a series
of constrained non-linear optimization problems, corresponding to the numerical integration of
the constitutive equations, performed at local level and to the iterative solution of the non-
linear equilibrium conditions. For a generic non-linear problem the two steps derive from
the optimality conditions of a mixed energy functional, and specifically the local iteration
corresponds to evaluate the elastic–plastic energy potential. Most of such iterative schemes
are based on the Lagrangian method whose solution is sought using a Newton’s procedure.
It is well-known that it is conditionally convergent. When the initial approximation of the
solution is close enough to the final solution, it exhibits a quadratic rate of convergence (lo-
cal convergence) [1]. However the optimal convergence properties are lost when the structure
of the problem is not ‘sufficiently convex’ in the vicinity of the solution point, or when
the predictor is not within the radius of convergence of the method. This often happens in
conjunction with involved constitutive models, or in the neighbourhood of corner points of
the constraint domain, situation often met when generalized coupled plasticity-damage mod-
els are used. Severe conditions are also encountered in many constitutive equations proposed
for concrete, either because the yield domain presents regions of sharp curvature (Mohr–
Coulomb, Ottosen models etc.) [2], or because of the introduction of energy functionals
with discontinuous second derivatives (bimodular materials) [3]. A wide number of alterna-
tives have been proposed [4–7], that employ either combined secant/tangent strategies [8] or
ad hoc switching rules between Newton’s steps and globally convergent algorithms, usually
based on line searches [4], which, however, are known to be very sensitive to the search
parameters. In most of the studies concerning convergence properties of FE algorithms, the
attention has been focused on the performance of the so-called ‘return algorithm’, that is what
we have defined as local problem, in the implicit hypothesis that failure of the procedure can
only occur if an admissible solution cannot be found. However, it appears that there are cases
when, although a locally admissible stress state is reached, the algorithm diverges in finding
an equilibrate solution. This happens when the admissible stress state, or the normal to the
plastic potential function, is quite different from the predicted values, as typically occurs near
corner points of the yield domain, or for involved plasticity conditions. In these cases, in order
to achieve convergence, it is necessary to reduce the step-size.

In this paper the Lagrangian method employed for the iterative solution of non-linear elastic–
plastic problems is firstly reviewed, and it will be shown that a proper implementation of the
method, with slight modifications with respect to the classical scheme, allows for a significant
improvement of its convergence properties. This is achieved simply substituting the inequality
constraints with equivalent equality constraints, in the form described in Section 2. In doing
that, an arbitrary real positive constant is introduced in their expression, whose value does not
affect the convergence of the problem.

Then an alternative to the Lagrangian method is proposed that falls within the class of
the so-called ‘Multiplier methods’. It allows to enlarge the convergence radius, although, at
least in principle, at the cost of a slower convergence rate [9]. The specific application of
the method and the numerical algorithm will be described in detail in the subsequent sec-
tions. Its main difference with the Lagrangian methods is that the exact fulfilment of the
constitutive equations is not enforced once an iterative equilibrated solution is reached; rather
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also the satisfaction of the admissibility equations is iterative. The method presents a linear
or super-linear convergence rate, according to its implementation, so that one should expect
some loss of efficiency of the method. However, for the class of problems described, the
possibility of increasing the step-size and the greater attitude to convergence in the proxim-
ity of points of sharp curvature, compensate for the theoretically slower rate of convergence.
Of course, an efficient strategy of solution should include a switching rule for turning from
Lagrangian to Multiplier methods only when severe convergence conditions are met. How-
ever, this coupled strategy will not be discussed in the paper, that will only concentrate on a
comparison between the methods described. Recently an application of the Multiplier method
to plasticity problems has been proposed by Pérez-Foguet and Armero [4] and Pérez-Foguet
et al. [5], who denoted it as ‘dual closed point projection method’. However, apart from
differences in the detailed implementation of the procedure, they applied the method only
to the local admissibility problem. In the present paper the Multiplier method is applied di-
rectly to the mixed Hellinger–Reissner functional governing the elastic–plastic problem, that is
it affects the entire equilibrium iterations. The originality of the proposal is clear in the descrip-
tion of its implementation given in Section 3.2. The efficiency of the proposed strategy will be
shown with reference to very simple equilibrium problems of elastic–plastic bodies. Either the
perfect plasticity and the hardening cases will be examined. Furthermore, the implementation of
the method, thanks to the use of a robust constitutive model, allows a straightforward extension
to coupled damaging models.

The outline of the paper is as follows. In Sections 2 and 3 the Lagrangian method for
elastic–plastic problems is discussed; then the implementation of the method of the multipliers
is presented and commented upon. The efficiency of the algorithm will first be discussed with
reference to the strain driven problems (local iterations) in Section 4.1.1, then the force driven
problems will be considered in Section 4.1.2, for which also the equilibrium conditions must
be imposed iteratively. Finally, in Section 4.2 the two methods illustrated in the paper will be
applied to a rather complex load process for an elastic–plastic-damaging material, comparing the
maximum step-size length that can be reached with the different methods. After the conclusions
an appendix dedicated to the use of augmented Lagrangian functions in the calculation of the
elastic–plastic potential is added for completeness.

2. OPTIMIZATION ALGORITHM FOR ONE-SIDED INEQUALITY CONSTRAINT

An inequality constrained optimization problem is defined as

minimize f (x)

subject to g(x) � 0
(1)

One possible strategy for solving the problem is the conversion of the inequality problem
into an equality constrained one, defined as

minimize f (x)

subject to ḡ(x) = 0,
ḡ = max

(
g, −�

c

)
=

⎧⎪⎨
⎪⎩

g if g � − �/c

−�

c
if g < −�/c

(2)
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1092 L. CONTRAFATTO AND M. CUOMO

where c is any positive real constant and � is the Lagrangian multiplier of the constraint ḡ. The
conversion is obtained introducing slack variables and performing a closed form minimization
of the augmented Lagrangian functional associated to problem (1) [9]

Lc(x, z, �, c) = f (x) + �[g(x) + z2] + 1
2 c[g(x) + z2]2 (3)

In fact, the optimality conditions of Lc coincide with the solution x∗ of the equality con-
strained problem

minimize f (x)

subject to g(x) + z2 = 0,
z ∈ R (4)

This is equivalent to problem (1). The minimization of (3) w.r.t. z2 yields the condition

z2 = −
[
�

c
+ g(x)

]

so that, in order for z2 to be non-negative, it must be

z2 = max

{
0, −

[
�

c
+ g(x)

]}
(5)

and, substituting (5) into the second of (4), the equivalent equality constrained problem (2)
is obtained. Note that, thanks to the conversion of the inequality constraint into an equality
one, the Lagrangian multiplier is not sign restricted. In (2) the choice of c is little sensitive
for the convergence of the solution algorithm, provided numerical ill-conditioning be avoided
for extremely large or extremely small values of the parameter. In the sequel of the paper
the inequality constrained problem (1) will be always substituted with the equivalent equality
constrained problem (2), unless explicitly declared.

Two classes of solution methods for the equality constrained optimization problems are then
examined, i.e. the Lagrangian method and the Multiplier method.

2.1. Lagrangian method

Lagrangian algorithms are formulated as optimization problems for the classical Lagrangian
functional

min
x

max
�

L(x, �), L = f (x) + �ḡ(x) (6)

obtained introducing a Lagrangian regularization of the constraint

I
(x)
K =

{
0 if x ∈ K,

+∞ if x /∈ K,
K = {x : ḡ(x) = 0}

K being the admissibility domain. It is easy to prove that I
(x)
K = sup

�
(�ḡ(x)).

The algorithm consists in evaluating a direction of descent for the unconstrained Lagrangian
function L(x, �) simultaneously updating the primal and the dual variables. It is well known
that the radius of convergence of this method is quite restricted, in the sense that it requires
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a good starting point for both x and �. The solution can be obtained using either a Newton’s
method, or a modified Newton’s method, or a quasi Newton method (DFP, BFGS, etc.), whose
general form is[

Hxx Hx�

H�x H��

]
k

[
�xk

��k

]
= −

[∇xL

∇�L

]
k

,

{
xk+1 = xk + �xk

�k+1 = �k + ��k

(7)

where [H ]k is the Hessian matrix at the generic iteration. If a Newton’s direction is used a
quadratic rate of convergence is reached once the solution is sufficiently approached.

The present version of the Lagrangian method is different from the classical Lagrangian
technique, applied directly to the inequality constrained problem, that does not employ trans-
formation (2) and seeks the optimum of the functional

L+(x, �) = f (x) + �g+(x), g+(x) = max[g(x), 0] (8)

Note that, for inequality constraints, functional (6) presents an implicit dependence on the
parameter c that appears in the definition of ḡ. This aspect will be further commented in
Section 3.

2.2. Multiplier method

The Multiplier method is based on the minimization of the augmented Lagrangian functional

Lc(x, �, c) = f (x) + �ḡ(x) + 1
2 cḡ(x)2 (9)

It is obtained by means of the addition of a penalty term to the Lagrangian functional
L(x, �), so that the special case L0 = Lc(x, �, 0) gives the Lagrangian functional defined
in (6). Usually a classical quadratic penalty function is employed: this is generally sufficient
to ensure that the augmented Lagrangian functional has a minimum for fixed values of the
pair (�, c).

The solution is found with a staggered procedure. First the value x(�k, ck) that minimizes
Lc keeping fixed the value of the multipliers is obtained; next the Lagrangian multipliers are
updated by means of a 1st order update formula [10, 11] or a 2nd order update formula [12]

�k+1 = �k + ckḡ[x(�k, ck)] 1st order iteration (10a)

�k+1 = �k + B−1
k ḡ[x(�k, ck)] 2nd order iteration, Bk = ∇ḡT

k (∇2
x,xLck

)−1∇ḡk (10b)

The penalty parameter c used in (9), in principle, could be different from the real positive
constant appearing in the definition of ḡ. However, it can be shown that the best choice is to
use the same value for both the constants. This can be easily understood with reference to the
1st order iteration update. Indeed, in the case the constraint is satisfied, it results

ḡ(x(�k, ck)) = −�k

ck

so that formula (10a) automatically annihilates the corresponding Lagrangian multiplier.
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The method of the multipliers can rationally be interpreted as an optimization procedure for
the so-called dual functional, given by

D(�) = min
x

Lc(x, �, c) = f [x(�, c)] + �ḡ[x(�, c)] + 1
2c(ḡ[x(�, c)])2 (11)

It can be shown that the optimality condition for (11) is

∇D(�) = ḡ[x(�, c)] = 0 (12)

Therefore the method of the multipliers is equivalent to find the root � of Equation (12) if
x(�, c) is the value of the primal variables that minimizes the augmented Lagrangian functional
(9) w.r.t. x. In the language of Solid Mechanics, this means that the iterative updates of the
Lagrangian multipliers tend to enforce plastic compatibility for equilibrated stress states.

A 1st order update is equivalent to perform the steepest ascent step with constant step-size c

of the dual functional D(�), while a 2nd order update is equivalent to a Newton-like iteration
on the dual functional [13].

Since it is not possible to reach the exact minimization of the primal functional Lc, the
procedure must include some tuning rule for the penalty parameter c and, eventually, for the
convergence tolerance. Therefore the problem is solved through the following steps:

min
x

Lc(x, �, c)

update �

update c

It can be demonstrated that there exists a positive constant � so that the Multiplier method
converges to the optimal value (x∗, �∗) provided the pairs (�k, ck), including the initial values
�0, c0, are chosen in the region

|�k − �∗| < ck�, � > 0, c̄ � ck � ck+1 ∀k = 0, 1 . . . (13)

c̄ being a positive scalar such that ∇2
x,xLc(x

∗, �∗, c̄) > 0.
The region of pairs (�, c) for which the Multiplier method is defined is shown in Figure 1,

where it is evident that a poor choice of �0 can be compensated by a considerably high value
of c0. In Reference [14] a strategy is proposed for the optimal selection of the initial penalty
parameter c0, based on the estimation of the ratio between the largest eigenvalue of the Hessian
matrix of the function f and of the constraint.

λ
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Figure 1. Convergence domain for pairs (�, c) in the Multiplier method.
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In order to enforce convergence, the penalty parameter c should then be increased during
the iterations. In practice, this is performed if a sufficient reduction in the constraint violation
is not reached over the previous optimization step

ck+1 = �ck if |ḡ|k+1 > �|ḡ|k
ck+1 = ck if |ḡ|k+1 � �|ḡ|k

for some � > 1 and 0 < � < 1 (14)

Typical values for the scalars � and � are � = 10 and � = 0.25. In Section 4 it will be
shown that sometimes a different choice of the c update scheme is beneficial.

An estimate for the minimum value of the scalar c̄ necessary for (13) to be met is given by
the condition that it has to be large enough to make the Hessian of the functional Lc positive
definite at the solution. It can be proved that

∇2
x,xLc(x

∗, �∗, c̄) > 0 ⇐⇒ c̄ > max{−e1, −e2, . . . , −en}
ei eigenvalue of {∇xḡ

T(x∗)[∇2
x,xLc(x

∗, �∗, c̄)]−1∇xḡ(x∗)}−1
(15)

that is, c̄ must be greater than the opposite of the minimum negative eigenvalue of the inverse
matrix of the Hessian of the dual functional D(�∗). If all the eigenvalues ei are non-negative
any positive c̄ can be used as threshold level. In Structural Mechanics this condition is met if
the problem is convex, i.e. if the internal energy and the plastic potential are convex.

2.3. An academic example: the minimization of a simple function of two variables

Let f (x, y) be the simple function of two scalar variables defined as

f (x, y) = 1

2

[
10 1

4

1
4 �

] [
x + 4

y − 5

]
·
[
x + 4
y − 5

]

where � is a real parameter that rules the convexity of the function f , as it is shown in
Figure 2. A value of � greater than 1

160 makes the function f convex. The smaller �, the
higher is the curvature of the function. If � is smaller than 1

160 , the function f is a saddle
functional in (x, y).
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Figure 2. Contour levels of function f (x, y) for different values of the
parameter �: (a) � = −2; (b) � = 20; and (c) � = 200.
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1096 L. CONTRAFATTO AND M. CUOMO

Table I. Convergence of algorithms 1,2,3 for problem (16).

Alg. 1 Alg. 2 Alg. 3

c Direct Dual Direct Dual

10−7 — — max 5–21 7 7
10−3 — — max 5–21 7 7
10−2 — — max 5–21 7 7
10−1 — — max 3–22 7 7
100 max 3 ∼ 700 max 3–22 7 7
101 max 4–679 464 max 4–21 6 7
102 max 6–89 55 max 6–15 5 7
103 max 8–30 12 max 8–15 4 7
104 max 10–21 6 max 10–15 3 7

� = 200, constant penalty parameter, starting point (−3, −1, 0).

Consider the problem

minimize f (x, y)

subject to g(x, y) � 0, g(x, y) =
√

x2 + y2 − xy − 3
(16)

It has been solved by means of the following algorithms:

1. Multiplier method with 1st order update (See Section 2.2, formula (10a)).
2. Multiplier method with 2nd order update (See Section 2.2, formula (10b)).
3. Lagrangian method applied to the functional L (See Section 2.1, formula (6)).

A Newton’s algorithm has been employed for finding the optimum value of (x, y) in the
Multiplier methods and of (x, y, �) in the Lagrangian method.

Two different values of the parameter � have been considered: � = 200 and −2.
The results are reported in Tables I–III, for an initial penalty parameter in the range

10−7 � c � 104. In them, for each of the Multiplier algorithms 1 and 2, the first column
reports the maximum number of iterations needed for finding the optimum value of the direct
variables (x, y) in a single minimization (that generally occurs at the first step) and the total
number of direct iterations; the second column reports the number of dual iterations, i.e. of
multiplier updates. For the Lagrangian algorithm 3 the number of Newton’s step is reported.

Tables I and II refer to � = 200. In this case the constrained minimum is located at the
point (x, y, �) = (1.24732, 3.42244, 336.791), as it is shown in Figure 3. The results obtained
keeping c fixed at its intial value c0, are illustrated in Table I. For small values of the initial
penalty parameter c0, no convergence is achieved using the Multiplier algorithm 1 (1st order
Hestenes–Powell formula). The Multiplier method with 2nd order Buys update is convergent
for a wide range of c values and for higher values of c0, a considerable reduction in the
number of iterations is observed. The Lagrangian method is always convergent; as it is evident
from the results reported in the table, the choice of c, that influences ḡ, does not affect the
rate of convergence of the Lagrangian algorithm 3.

Table II summarizes the results for � = 200 using the update formula (14) with � = 10
and � = 0.25. The column c0 reports the initial value of the penalty parameter. A considerable
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Table II. Convergence of algorithms 1,2,3 for problem (16).

Alg. 1 Alg. 2 Alg. 3

c0 Direct Dual Direct Dual

10−7 max 4–45 21 max 5–21 7 7
10−3 max 4–41 17 max 5–21 7 7
10−2 max 4–40 16 max 5–21 7 7
10−1 max 4–39 15 max 5–21 6 7
100 max 3–37 14 max 4–19 6 7
101 max 5–24 6 max 5–20 5 7
102 max 6–21 5 max 6–17 4 7
103 max 8–18 4 max 8–16 3 7
104 max 10–18 4 max 10–15 3 7

� = 200, penalty parameter update, starting point (−3, −1, 0).

Table III. Convergence of algorithms 1,2,3 for problem (16).

Alg. 1 Alg. 2 Alg. 3

c0 Direct Dual Direct Dual

10−7 max 5–29 13 n.c. — n.c.
10−3 max 5–25 9 n.c. — n.c.
10−2 max 5–23 7 n.c. — n.c.
10−1 max 5–21 6 n.c. — n.c.
100 max 5–19 5 max 5–20 5 n.c.
101 max 7–19 4 max 7–19 4 n.c.
102 max 9–21 5 max 9–17 3 23
103 max 10–17 3 max 10–16 3 23
104 max 10–15 3 max 10–14 2 23

� = −2, penalty parameter update, starting point (−10, 10, 0).
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Figure 3. Constrained minimum of the convex function f (x, y) for � = 200.
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Figure 4. Constrained minimum of the saddle function f (x, y) for � = −2.

Table IV. Convergence of algorithms 1,2,3 for problem (16).

Alg. 1 Alg. 2 Alg. 3

(x0, y0) Direct Dual Direct Dual

(−10, 10) max 10–15 3 max 10–14 2 23
(0,10) max 11–16 3 max 11–15 2 7
(10,10) max 11–16 3 max 11–15 2 46
(20,10) max 11–16 3 max 11–15 2 36
(30,10) max 11–16 3 max 11–15 2 24

� = −2, initial penalty parameter c0 = 104, different starting points (x0, y0, 0).

improvement of the convergence is obtained for the Multiplier method, especially with the 1st
order update (algorithm 1). Of course, no difference is observed for the Lagrangian algorithm.

Table III refers to � = −2. In this case the function f (x, y) presents a saddle point: it is
convex w.r.t the variable x and concave w.r.t. y. The constrained minimum is located at the
point (x, y, �) = (−2.74682, −3.20132, 27.4346), as shown in Figure 4.

The choice of the trial point strongly influences the rate of convergence. Table III reports the
results considering the penalty parameter update based on Equation (14) with � = 10, � = 0.25
and starting point (x, y, �) = (−10, 10, 0). It appears that the Multiplier method 1 is able to
reach the solution point of the problem in the entire range of investigated c with a modest
number of iterations, especially when the initial penalty parameter c0 is kept greater than 102.
Conversely, convergence is lost for low values of c0 using 2nd order algorithms, i.e. Multiplier
method with Buys update. The Lagrangian method presents in this case a slower convergence.
Furthermore, the value of the parameter c becomes more important.

This observation is strengthened by the results of Table IV, obtained solving the same
problem starting with different trial points, in which case the Lagrangian method presents a
different rate of convergence, depending on the proximity of the trial point, while the rate of
convergence of the Multiplier algorithms is insensitive to the initial choice of the predictor point.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:1089–1125



GLOBALLY CONVERGENT NUMERICAL ALGORITHM 1099

3. VARIATIONAL FORMULATION OF AN ELASTIC–PLASTIC DAMAGING
MODEL AND NUMERICAL STRATEGIES

The procedures illustrated in the previous section are now applied to solve a structural problem
in the context of a displacement formulation [15]. The constitutive behaviour is assumed to be
elastic–plastic coupled with isotropic damage and hardening. The state of the system is defined
by means of conjugated pairs of variables, posed in separating duality by bilinear forms that
represent the internal virtual work

� =

⎡
⎢⎢⎣

�

�

�

⎤
⎥⎥⎦

strain

internal dislocation

damage variable

	 =

⎡
⎢⎢⎣




�

�

⎤
⎥⎥⎦

stress

hardening forces

damage work

(17)

In the structural problem linear compatibility equations are considered

C�u = �, � = (�, �, �), C� = [C 0 0] (18)

u being the displacements and C the equilibrium operator.
Each kinematic variable is (additively) decomposed into the sum of a reversible and an

irreversible component, that enter as arguments, respectively, in the stored energy functional
e(�e, �e, �e) and in the dissipation functional d(�̇p, �̇p, �̇p). Denoting by � = (�e + �p) the
whole set of kinematic variables, and by 	 the dual static variables, under mild hypotheses of
sub-differentiability, it is

	 ∈ ��e
e, 	 ∈ ��̇p

d, �e ∈ �	e
c, �̇p ∈ �	d

c (19)

where the apex c denotes the conjugate potential in the sense of a Legendre transformation

ec(	) = sup
�e

{〈	, �e〉 − e(�e)}, dc(	) = sup
�p

{〈	, �̇p〉 − d(�̇p)}

From here on, brackets 〈 ·, ·〉 will stand for the relevant scalar product between conjugate
pairs of variables.

The stored energy functional e(�e) is non-convex for damage constitutive equations, and is
twice differentiable almost everywhere, with discontinuous 2nd derivative only on a domain of
zero measure. On the contrary, it is assumed that the dissipation potential is a convex sub-
differentiable functional. If it is an additive sub-linear function, homogeneous of degree one, a
generalized associative elastic–plastic-type constitutive model with no time scale is obtained [15]

d(�̇p) = supp K, dc(	) = ind K (20)

As a consequence, the inelastic model is associative and is based on a single dissipation
potential

�̇p ∈ �	d
c(	) = ��g(	), � ∈ �R−(g) (21)

In (21) the convex yield function g(	) has been introduced, such that

K = {	 : g(	) � 0} (22)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:1089–1125



1100 L. CONTRAFATTO AND M. CUOMO

For multiple dissipation modes, the domain K is defined by more than one yield function,
so that

g(	) = sup
i

{gi(	)} (23)

A major consequence of the above hypotheses is that the Hessian matrix of the local system
of the compatibility and admissibility equations is not always positive definite.

For the sake of simplicity, the following treatment will refer to the case of a convex internal
energy functional. However, the algorithms and the conclusions apply also to the case of non-
convex energy functionals, although it cannot be regarded as an optimization procedure. In
the hypotheses stated, the solution of the structural problem consists in optimizing the 2-fields
generalized Hellinger–Reissner functional

inf
u

sup
	

�R(u, 	)

�R(u, 	) = 〈	, C�u〉 − 〈f, u〉 − ec(	) − dc(	)�t − 〈	, �0
p〉

(24)

Therefore, at each load step the solution point for the problem has to be found

inf
u

{�ep(C�u) − 〈f, u〉}
�ep = sup

	
{〈	, C�u〉 − ec(	) − dc(	)�t − 〈	, �0

p〉}
(25)

In (25) the first problem corresponds to the equilibrium equations, �ep(C�u) being the
elastic–plastic tangent operator; the second problem enforces compatibility conditions at local
level.

3.1. Lagrangian method

The complementary dissipation functional (20) is regularized by

dc(	) = sup
�∈R+

{�g(	)} = sup
�

{�ḡ(	)}, ḡ(	) = sup
i

{ḡi (	)}

ḡi (	) = max

(
gi, −�i

c

)
, c ∈ R+

(26)

so that (25) becomes

inf
u

{�ep(C�u) − 〈f, u〉}
�ep = sup

	
inf
�

{〈	, C�u〉 − ec(	) − �ḡ(	) − 〈	, �0
p〉}

= sup
	

{〈	, C�u〉 − ec(	) − �ḡ(	) − 〈	, �0
p〉}

subject to ḡ(	) = 0

(27)

having the structure of a standard, constrained optimization problem as indicated in (2). Con-
sequently, the analysis of Section 2 can be applied. The optimization conditions for (27) yield
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the equilibrium and the compatibility equations:

∇u�ep(C�u) = C′	(u) = f

C�u = ∇	e
c(	) + �∇	ḡ(	) + �0

p

subject to ḡ(	) = 0

(28)

In the following the standard iteration is described

1. Set the new external force value f .

(a) Initialization: k = 0 and a tolerance � for the external (equilibrium) loop is fixed.
(b) Initialization: i = 0 and a tolerance � for the internal (constitutive) loop is fixed.

2. Predictor phase

(a) Starting point: �0 = 0, 	0 = ∇�e(�tot − �0
p), u = u0

�tot = (Cu, 0, 0), u0 being the displacements (solution) at the past step.
(b) Evaluate the initial residuum r = f −∇u�ep(C�u

0) = f −C′∇��ep(C�u
0) = f −C′	0

(c) Evaluate the predictor u = u0 +�u by solving the system [C′∇2
�,��ep(C�u

0)C]�u = r .

The term ∇2
�,��ep(C�u

0) represents the tangent stiffness operator. It is evaluated from

(28) assembling the local tangent operators ∇�	(u0) given by

∇�	(u
0) = G−1

	 − G−1
	 ∇	g(	0) ⊗ ∇	g(	0)G−1

	

G−1
	 ∇	g(	0) · ∇g(	0)

G	(	
0) = ∇2

	,	L(	0, �0) = ∇2
	,	e

c(	0)

L(	0, �0) = ec(	0) + 〈	0, �0
p〉 + �0ḡ(	0, �0, c) − 〈	0, C�u

0〉

(29)

Note that at the first iteration it is � = �0 = 0 and ḡ = 0. Equation (29) is the tangent
stiffness operator at the point u0.

3. Generic kth iteration. Given uk

(a) Evaluate the updated stress field 	k , the new Lagrangian multipliers �k and the tangent
stiffness operator solving the (local) system

{
C�u

k − ∇	e
c(	k) − �k∇	ḡ(	k) − �0

p = 0

−ḡ(	k) = 0
(30)

by means of Newton’s iteration[∇2
	,	e

c(	i ) + �i∇2
	,	ḡ ∇	ḡ

∇T
	 ḡ ∇�ḡ

] [
�	i

��i

]
=

[
C�u

k − ∇	e
c(	i ) − �i∇	ḡ − �0

p

−ḡ

]
(31a)

	i+1 = 	i + �	i , �i+1 = �i + ��i , ḡ = ḡ(	i , �i , c) (31b)
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where the gradients of the yield function ∇	ḡ and ∇�ḡ are given by

∇	ḡ =
{∇	g if g � − �/c,

0 if g < −�/c,
∇�ḡ =

{
0 if g � − �/c

−1/c if g < −�/c
(32)

The local tangent stiffness operator is evaluated by the inversion of system (31a) as

∇�	(u
k) = G−1

	 − G−1
	 ∇	g(	k) ⊗ ∇	g(	k)G−1

	

G−1
	 ∇	g(	k) · ∇g(	k)

G	(	
k) = ∇2

	,	L(	k, �k) = ∇2
	,	e

c(	k) + �k∇2
	,	ḡ(	k, �k, c)

L(	k, �k) = ec(	k) + 〈	k, �0
p〉 + �ḡ(	k, �k, c) − 〈	k, C�u

k〉

(33)

In the case of multiple constraints equations (31a) become⎡
⎢⎢⎢⎢⎢⎢⎣

E−1
t + ∑

i=1,l

�i∇2
	,	ḡi ∇	ḡa 0

∇T
	 ḡa 0 0

0 0 −1

c
I(p)×(p)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

�	

��a

��p

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

∇	L(	i , �i , c)

ḡa(	i , �i , c)

−�p/c

⎤
⎥⎥⎦ (34)

where the tangent elastic stiffness matrix has been indicated with Et , an index of the
active constraints set, a ∈ A = { j |gj � − �j /c} with a and the remaining inequality
(inactive) constraints indices with p.

The local Newton’s procedure is terminated when local convergence is reached

‖∇	L(	k, �k)‖ < �

(b) Evaluate the residual rk = f − C′	k

(c) Update the displacements using Newton’s step

C′∇2
�,��ep(C�u

k)C�uk = rk −→ uk+1 = uk + �uk (35)

(d) If the equilibrium residual norm meets the required tolerance �, the solution value of
the displacements uk+1 is reached, else repeat step 3.

The positive constant c utilized in the conversion of the inequality admissibility constraint
into an equality one plays an important role in the definition of the active constraint set.
Since for the inactive constraints we have ḡj = −�j /c, from the 3rd row of (34) it follows
immediately that �jk+1 = �jk

+ cḡj = 0 ∀j /∈ A. Therefore, the iteration corresponds to set
to zero the Lagrangian multipliers of the constraints that are not active, in the sense that
gj < −�j /c, and to treat the remaining active constraints in the same way as the equality
constraints.

This observation shows one of the essential differences between the present approach,
based on the substitution of the inequality constraint with an equality one and the traditional
Lagrangian method (8), where the functional has to be optimized

L+(	, �) = f (	) + �g+(	), g+(	) = max[g(	), 0] (36)
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The present approach leads also automatically to the determination of the correct Newton’s
iteration, with no need for physical, ‘intuitive’ interpretations.

3.2. Multiplier method

The Multiplier method described in Section 2 is obtained using the augmented Lagrangian
regularization of the indicator function

dc(	) = ind K = sup
�∈R

{
�ḡ(	) + 1

2 cḡ2(	)
}

(37)

so that the optimization problem becomes

inf
u

{�ep(C�u) − 〈f, u〉}
�ep(C�u) = sup

	
Lc(	, �, c) = sup

	

{
〈	, C�u〉 − ec(	) − �ḡ(	) − 1

2 cḡ2(	) − 〈	, �0
p〉

} (38)

The iterative solution of the non-linear equilibrium equations is usually performed by means
of classical Newton’s or quasi Newton schemes, possibly associated with line search techniques.
Then the Lagrangian multipliers are updated by means of formulas (10). The procedure is
described in the sequel using a 1st order multiplier update.

1. Set the new external equivalent force value f .

(a) Initialization: k = 0 and a tolerance � for the admissibility loop is fixed.
(b) Initialization: j = 0 and a tolerance � for the equilibrium loop is fixed.
(c) Initialization: i = 0 and a tolerance � for the constitutive loop is fixed.

2. Predictor phase.

(a) Starting point: �0 = 0, 	0 = ∇�e(�tot − �0
p), u = u0, �tot = (Cu, 0, 0), u0 being the

displacements (solution) at the past iteration.
First update of � : �1 = �0 + c0g(	0, c0) = 0 (since at the end of the previous step
the constraints were satisfied within the required tolerance).
Set c1 = c0.

(b) Minimize (w.r.t. u) the functional Lc(	, �
1, c1) = 〈	, C�u〉−ec(	)−�1ḡ(	)− 1

2 c1ḡ2(	)−
〈	, �0

p〉.
This can be done either using a search method or a Newton’s iterations. In the latter
case, the following steps are needed:

i. Evaluate the initial residuum r = f − C′∇��ep(C�u
0) = f − C′	0.

ii. Evaluate the predictor u = u0+�u solving the system [C′∇2
�,��ep(C�u

0)C]�u = r .

In this case (compare with (29)) the local tangent stiffness operator ∇�	(u0) is
equal to

∇�	(u
0) = [∇2

	,	Lc(	
0, �1, c1)]−1

= [∇2
	,	e

c(	0) + c1ḡ(	0)∇2
	,	ḡ(	0) + c1∇	ḡ(	0) ⊗ ∇	ḡ(	0)]−1
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iii. Iterate until equilibrium is reached: r1
j = f − C′	j � �. Then set u1 = u.

Each iteration requires the evaluation of the updated internal forces 	j and of the
tangent stiffness operator, obtained solving the system:

[∇2
	,	e

c(	i ) + c1ḡ(	i )∇2
	,	ḡ(	i ) + c1∇	ḡ(	i ) ⊗ ∇	ḡ(	i )][�	i]

= [�tot − ∇	e
c(	i ) − c1ḡ(	i )∇	ḡ(	i ) − �0

p] (39)

Note that, since �1 = 0, ḡ ≡ g+.

3. Generic iteration. Start with estimates uk, �k;

(a) Update �, update c.

1st order multiplier update (10a) : �k+1 = �k + ckḡ(	k)

Penalty parameter update: ck → ck+1

(b) Minimize the functional �ep(C�u) − 〈f, u〉 keeping the Lagrangian multipliers fixed.
Each iteration requires the evaluation of the updated internal forces and of the tangent
stiffness operator, obtained solving the system

�tot − ∇	e
c(	i ) − (�k+1 + ck+1ḡ(	i ))∇	ḡ(	i ) − �0

p = 0 (40)

eventually by means of a Newton’s procedure

	i+1 = 	i + [∇2
	,	e

c(	i ) + (�k+1 + ck+1ḡ(	i ))∇2
	,	ḡ(	i ) + ck+1∇	ḡ(	i ) ⊗ ∇	ḡ(	i )]−1

·[�tot − ∇	e
c(	i ) − (�k+1 + ck+1ḡ(	i ))∇	ḡ(	i ) − �0

p] (41)

The local Newton’s procedure is terminated when local convergence is reached

‖∇	Lc(	
k+1, �k+1, ck+1)‖ < �

In this case the algorithmic tangent stiffness operator is given by

∇�	(u
k) =

⎡
⎣∇2

	,	e
c(	k+1) + (�k+1 + ck+1ḡ(	k+1))∇2

	,	ḡ(	k+1)

+ck+1∇	ḡ(	k+1) ⊗ ∇	ḡ(	k+1)

⎤
⎦

−1

(c) When the equilibrium residual norm meets the required tolerance

‖[∇u�R]‖ < � (42)

the new value of the displacements uk+1 is reached.

4. Check the admissibility convergence. If the total number of control points is ncp, using
condition (12), the convergence test is

max
n=1,ncp

|ḡ(	k+1)|n < � (43)

If it is not satisfied go to 3.
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In the Multiplier algorithm the converged stresses at each equilibrium iteration (step 3(b)
in the above scheme) do not satisfy the admissibility conditions, since they are obtained from
(41) keeping the Lagrangian multipliers fixed. In this sense the constraint is ‘relaxed’ at each
iteration. Furthermore, since the Lagrangian multipliers are fixed, the inelastic deformation rates
keep a constant magnitude during the equilibrium iteration, still changing their direction, that
is orthogonal to the gradient of the plastic potential ∇	ḡ(	i ).

Each equilibrium iteration requires in both methods the evaluation of the updated internal
forces and of the tangent stiffness operator, obtained solving the local systems of stationarity
conditions (see (30) and (40)), eventually by means of a Newton’s procedure.

In the case of damaging models, additional constraints may appear in this local process of
estimation of the elastic–plastic tangent operator �ep(C�u). In fact it is well known that in the
case of isotropic damage the elastic damage variable �e has to satisfy the two-sided inequality
−1 ��e � 0 that leads to the inequality constraints h1 = −(1+�e) � 0, h2 = �e � 0, converted,
similarly to the constraint g(	) � 0, into the equality ones by means of the following functions:

h̄1 = max(h1, −�1/c1), h̄2 = max(h2, −�2/c2), �1, �2 ∈ R, c1, c2 ∈ R+

Because of the presence of these constraints and of the non-convex nature of the internal
energy, the elastic constitutive equations cannot be inverted in close form, so a numerical
procedure is adopted. The elastic–plastic tangent operator is evaluated through the following
expression, related to the case of the Multiplier method:

�ep(C�u) = sup
	

inf
�

inf
�e

stat
(�1,�2)

⎧⎨
⎩

〈	, C�u〉 − [〈	, �e〉 − e(�e) − �1h̄1 − �2h̄2]
−�ḡ(	) − 1

2 cḡ2(	) − 〈	, �0
p〉

⎫⎬
⎭

whose stationarity equations are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C�u − �e − (� + cḡ(	))∇	ḡ(	) − �0
p = 0

−	 + ∇�e
e(�e) + �1∇�e

h̄1 + �2∇�e
h̄2 = 0

h̄1 = 0

h̄2 = 0

(44)

A Newton’s scheme is adopted for the solution of the non-linear system given by the 1st,
the 3rd and the 4th of (44) in the unknowns (	, �1, �2), after a condensation w.r.t the variables
�e. The update of the kinematic variables is given by

�ei+1
= �ei

+ ��ei
, ��ei

= −[∇2
�e�e

e(�e)]−1
i [R�e

− �	 + ��1∇�e
h̄1 + ��2∇�e

h̄2]i
R�e

= −	 + ∇�e
e(�e) + �1∇�e

h̄1 + �2∇�e
h̄2

(45)

The use of the iterative update (45) for the elastic internal variables also avoids problems
in points of non-definiteness of the internal energy functional, which occurs for instance in
relation to the form introduced by the authors in Reference [15] and that will be used in the
numerical applications of the subsequent section. An identical procedure can be developed in
the case of the Lagrangian method.
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4. NUMERICAL APPLICATIONS

The algorithms described in Section 3 will now be applied to specific elastic–plastic problems
characterized by strong coupling between plasticity, hardening and damage.

A material model is employed for which the reversible behaviour of the material is ruled
by the following elastic potential:

e(�e) = 1
2 E�e · �e(1 + �e)

n + 1
2 H�e · �e(1 + �e)

n (46)

E and H being, respectively, the tangent elastic and hardening operators, �e the elastic strain,
�e the elastic hardening variable and �e the internal scalar damage variable. The exponent n

rules the isotropic damage law.
The irreversible behaviour is ruled by the yield function g, which, as early specified, defines

the conjugated dissipation functional. A different form of the elastic domain will be considered,
depending on the numerical test performed. However, in each case, the following general
expression of the yield function has been considered:

g(
, �, �) = f (I1, J2, J3, w)

It depends on the invariants of the stress tensor 
 and of the deviator of stresses 
′

I1 = tr(
)

J2 = 1
2
′ · 
′,

J3 = det 
′

′

ij = 
ij − 1
3 
qq�ij

and on the limit elastic resistance w = k0 + � − k�, k0 and k being material constitutive
parameters.

The algorithms presented in Section 3 have been implemented into a FORTRAN code,
namely multi surfaces damage model (MSDM), implemented on the skeleton of the FEAP
code [16]. A 1st order update scheme has been employed in the multiplier method throughout
the following applications.

4.1. An elastic–plastic model based on Ottosen criterion

In this section an elastic–plastic problem with an elastic domain that presents regions of
sharp curvature is studied. Specifically, the behaviour of the numerical algorithms proposed in
Section 3 has been tested with a generalized Ottosen criterion, including isotropic hardening
and damage [17].

The yield function has the form

g = a

yc + � − k�
J2 + �(cos 3(
))

√
J2 + bI1 − (yc + � − k�)

a, b, yc, k ∈ R+, cos 3(
) = 3

2

3
√

J3

J2
√

J2

�(cos 3(
)) =
⎧⎨
⎩

k1 cos[ 1
3 arccos(k2 cos 3(
))], cos 3 � 0, k1 > 0

k1 cos[� − 1
3 arccos(−k2 cos 3(
))], cos 3 < 0, 0 � k2 < 1

(47)
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The parameters a and b rule the shape of the meridian sections, and k1 and k2 control,
respectively, the size and the shape of the deviatoric section, varying from circular (k2 = 0) to
triangular (k2 = 1). In (47) yc is the limit elastic resistance in uniaxial compression, while the
corresponding resistance in tension will be denoted by yt .

A clear representation of the surface and of the stress paths is obtained using the Haigh–
Westergaard co-ordinates: the hydrostatic component � = I1/

√
3, the deviatoric component

r = √
2J2 and the Lode angle . The following expression is obtained:

g(�, r, , �, �) = a
r2

2(yc + � − �)
+ �(cos 3)

r√
2

+ b
√

3� − (yc + � − k�) (48)

The constitutive parameters have been deduced by means of a data fitting procedure, using two
sets of data.

From the experimental data of Van Mier [18] the following values have been obtained:
yc = 16.40 N/mm2, yt = 2.95 N/mm2, k1 = 7.044261, k2 = 0.8999994, a = 0.00023861,
b = 1.53818, initial elastic modulus E = 27000 N/mm2, Poisson ratio � = 0.3. These have
been used in the applications in perfect or hardening plasticity.

A coupled damage model has been tuned on the experimental data of Kupfer [19], obtaining
yc = 7.29 N/mm2, yt = 1.29 N/mm2, k1 = 6.9377, k2 = 0.9043, a = 0.471514, b = 1.65913,
initial elastic modulus E = 20 000 N/mm2, Poisson ratio � = 0.2, damage parameters k = 30,
n = 2.

Both sets of parameters are such that the surface presents a nearly triangular deviatoric
section for positive values of the hydrostatic stress. Several different values for the hardening
modulus have been adopted, as will be specified.

4.1.1. Gauss point convergence. A first set of analyses concerns the convergence properties of
the (local) compatibility system (30) obtained in the implementation of the Lagrangian method
described in Section 3.1. This is the convergence check that is usually addressed in numerical
studies [4, 5, 8]. It is stressed once more that algorithm (31a) stemming out from (30) differs
from the standard Lagrangian method for the introduction of the equivalent equality constraint
ḡ that requires the introduction of a constant real augmentation parameter c.

The local convergence properties (at a single Gauss point) have been investigated in a
deformation driven process. Starting from an initial elastic state located on the limit surface, a
total strain increment (ε1, ε2, ε3) has been assigned and it has been characterized by the initial
elastic trial stress state. Because the initial state is virgin, the accumulated plastic strains ε0

p
are null and the assigned total strain increment coincides with an elastic increment. It is such
that the corresponding elastic predictor satisfies prescribed values of (�, r, ). Specifically, the
stress components have been evaluated solving numerically the non-linear system

(
1, 
2, 
3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rtrial = √
2J2(
1, 
2, 
3)

�trial = I1(
1, 
2, 
3)√
3

trial = 1

3
cos−1

⎡
⎢⎣3

√
3

2

J3(
1, 
2, 
3)√
J 3

2 (
1, 
2, 
3)

⎤
⎥⎦
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A wide range of trial states has been investigated, considering two different trial values
for the hydrostatic stress �trial, one greater than zero denoted by T 1, the other smaller than
zero denoted by T 3. For each value of �trial, several values of the Lode angle in the range
0◦ �  � 60◦ and of the radial distance r have been considered. The absolute values of the trial
� are taken equal to the value of the radial measure r0 of the Ottosen domain for � = 0 and
 = 30◦, so that T 1 = −r0, T 3 = r0 (Figure 5(a)). From the limit elastic value rel, the trial
radius is iteratively incremented for each angle  of a constant �r (see Figures 5(b) and (c)),
such as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rtrial = rel + n�r, n = 1, . . . , 50 (49)

rel � rtrial � rel + 50�r, �r = 0.2 if � = T 1
Perfect plasticity (50)

rel � rtrial � rel + 50�r, �r = 0.1 if � = T 3

{
rtrial = rel + n�r, n = 1, . . . , 60 (51)

rel � rtrial � rel + 60�r, �r = 0.1, � = T 1, � = T 3 Damaging plasticity (52)

For the Lode angle a step � = 1◦ has been adopted, so that the simulations have been
performed over a grid of 3000 trial states in the case of perfect plasticity and over a grid of
3600 trial states in the presence of damage.

The number of Newton’s iterations needed for convergence to the solution of the constitutive
equations are reported in Figure 6 in the case of perfect plasticity and in Figure 7 for damaging
plasticity, for both the trial values of �.

It is obtained that, for any trial state and for all the Lode angles, even with rather large
increments of the deviatoric component, convergence is reached in a very limited number of
steps. Apparently the loss of convergence claimed by other authors for angles close to 0◦
and 60◦ is not observed in this case, even for a positive trace, in which case the criterion
shows a very strong triangular-like deviatoric section (see Figure 5(b)). This is possibly due
to the regularization adopted for the dissipation functional, that avoids discontinuities around
zero [15].
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Figure 5. Definition of the trial state maps: (a) trial values of the hydrostatic components on the
meridian plane for  = 30◦; (b) deviatoric section in the tension region, � = T 1; and (c) deviatoric

section in the compression region, � = T 3.
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Figure 6. Number of Newton’s iterations for the convergence at Gauss point. Lagrangian method.
Perfect plasticity: (a) � = T 1; and (b) � = T 3.

Figure 7. Number of Newton’s iterations for the convergence at Gauss point. Lagrangian method.
Damaging plasticity: (a) � = T 1; and (b) � = T 3.

Since the tests have been carried out at imposed deformation, it is important to evaluate at
what point of the yield surface the stresses converge.

The contour level maps of Figure 8 refer to the case � = T 1 for perfect plasticity. Plots 8(a)
and 8(b), shows, respectively, the contour level of the ratio rconv/rel and of the Lode angle at
convergence conv, rconv being the value assumed by the deviatoric component at the solution,
and rel the radius of the elastic domain for the assigned . Both plots suggest that the solution
stress state migrates towards the region with higher curvature, especially for trial states having
a Lode angle greater than 30◦. Indeed a vertical level in Figure 8(b) indicates that stresses
return to the limit surface at the same angle of the trial initial state. Simultaneously, from
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Figure 8. Iso-value maps of stress convergence. � = T 1. Lagrangian method. Perfect plasticity:
(a) deviatoric component; (b) Lode angle; (c) hydrostatic component; and (d) stress vector norm.

plot 8(c), where the difference �conv − �trial is reported, �conv being the hydrostatic stresses at
solution, it is observed that the solution point moves in the stress space towards stress vectors
with a smaller hydrostatic component, going faraway from the apex. In picture 8(d) the contour

levels of the ratio (‖
‖conv − ‖
‖el)/‖
‖el are represented, ‖
‖ =
√

r2() + �2() being the
amplitude of the stress vector. Similar considerations can be made analysing the contour level
maps of Figure 9 in the case � = T 1 for damaging plasticity.

In the case � = T 3, corresponding to a region with compressive hydrostatic component, the
curvature of the meridian section is less severe than in the previous situations, but a similar
trend for the convergence properties is revealed. It is important to observe that in this case
the stress returns to points not far from the initial trial state. The results are summarized in
Figure 10 for perfect plasticity and in Figure 11 for damaging plasticity.

4.1.2. Equilibrium convergence. The results of the previous section have shown that, even if
convergence at Gauss point appears to be always reached, the converged stresses can be quite
different from the trial ones. Therefore, the question arises about convergence of the equilibrium
problem. Indeed, the numerical calculations often show lack of convergence in the fulfilment of
the non-linear equilibrium equations. Since the equilibrium problem involves the optimization
of functional (25) Lagrangian method or Multiplier method can be used.

In order to analyse this point, a very simple test problem has been studied, namely nodal
forces have been assigned in such a way as to generate a homogeneous state of stress, and
hardening has been added to the elastic–plastic behaviour of the material. Starting from a limit
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Figure 9. Iso-value maps of stress convergence. � = T 1. Lagrangian method. Damaging plasticity:
(a) deviatoric component; (b) Lode angle; (c) hydrostatic component; and (d) stress vector norm.
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Figure 10. Iso-value maps of stress convergence. � = T 3. Lagrangian method. Perfect plasticity:
(a) deviatoric component; (b) Lode angle; (c) hydrostatic component; and (d) stress vector norm.
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Figure 11. Iso-value maps of stress convergence. � = T 3. Lagrangian method. Damaging plasticity:
(a) deviatoric component; (b) Lode angle; (c) hydrostatic component; and (d) stress vector norm.
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Figure 12. Monotonic loading. Pre-peak region. � = T 3. Damaging plasticity.

elastic state, the increments of nodal forces have been assigned such that the corresponding
elastic strains coincide with the increments used in the local analysis at the Gauss point
level of the previous section. In this way, all the elastic predictors constitute a subset of
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Figure 13. Number of global equilibrium iterations. Lagrangian method.
� = T 3. Hardening plasticity. Various H .

the trial states investigated in Section 4.1.1. It is important to note that all the trial states
lie in the ascending branch of the monotonic loading curve, even for damaging plasticity
(Figure 12).

Figure 13 reports the number of global equilibrium iterations needed for convergence in
the case � = T 3 in hardening plasticity using the Lagrangian method. It is seen that in this
case, even if the local problem always converges, as it is shown in Figure 6, there is lack of
convergence of the global equilibrium equations. The dimension of the brown non-convergence
region is strongly influenced by the value of the hardening modulus. For the increasing value
of H it tends to disappear, vanishing for H → ∞, when perfect elasticity is attained. For the
subsequent applications in hardening plasticity the value H = 2700 has been used.

Next, a comparison with the Multiplier method is presented. An enlargement of the region
of convergence with respect to the Lagrangian method in the sector around  = 30◦, with a
not great increase in the number of iterations, is observed when the method of the multipliers
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Figure 14. Number of global equilibrium iterations. � = T 1. Hardening plasticity. H = 2700:
(a) Lagrangian method; (b) Multiplier method, c0 = 10−1; and (c) Multiplier method, c0 = 103.

is used. Two values of the initial penalty parameter c0 = 10−1 and 103 are used. The cases
� = T 1 and T 3 are illustrated in Figures 14 and 15, respectively. Generally, the Multiplier
method requires two or three multiplier updates. The penalty parameter c plays an important
role in abating the number of iterations. If an initial penalty parameter c0 = 103 is adopted,
an evident reduction in the computational effort is obtained.

Similar considerations are applicable in the case of damaging plasticity, as it is shown in
Figures 16 and 17, where a polar representation is utilized. In such cases using the Lagrangian
method there is a large region of predictors, close to ϑ = 60◦, where convergence is not reached
for a small values of the hardening modulus, i.e. H = 20 000, either in the tension region
(� = T 1) and in the compression region (� = T 3). The performance of the Multiplier method
depends strongly on the value of the penalty parameter c. In order to enforce convergence, in the
numerical applications of the Multiplier method the penalty parameter c has been updated each
time the equilibrium convergence is reached, except the first, from the initial value according
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Figure 15. Number of global equilibrium iterations. � = T 3. Hardening plasticity. H = 2700:
(a) Lagrangian method; (b) Multiplier method, c0 = 10−1; and (c) Multiplier method, c0 = 103.

to equation

ck+1 = 10ck (53)

until the maximum value c = 106 is reached. Using this kind of c update, different from
scheme (14), the Multiplier method results converge for almost all the investigated predictors,
as shown in Figures 16(c) and 17(c).

4.2. Multi-surface yield domain

A second set of results concerns the convergence analysis of an elastic–plastic problem charac-
terized by a yield domain defined as the convex hull of a generalized Drucker–Prager criterion
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Figure 16. Number of global equilibrium iterations. � = T 1. Damaging plasticity.
H = 20 000: (a) Lagrangian method; (b) Multiplier method, update formula (53),

c0 = 10−3; and (c) Multiplier method, update formula (53) c0 = 10−5.

g1 and a pure damage criterion g2, i.e. using a combination of the criteria listed below

g1 = √
3J2 + �

3
I1 − (k0 + � − k�), �, k0, k ∈ R+ (54a)

� = 3
� − 1

� + 1
+ 3

kn

2E0

|yc|
�

(�2 − 1)

(� + 1)
, k0 = 2

|yc|
(� + 1)

+ kn

2E0

y2
c

�
, � = |yc|

yt

g2 = � − �0, �0 ∈ R+ (54b)

Six constitutive parameters completely define the model. They are

yc compressive strength
yt tensile strength
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Figure 17. Number of global equilibrium iterations. � = T 3. Damaging plasticity.
H = 20 000: (a) Lagrangian method; (b) Multiplier method, update formula (53),

c0 = 10−3; and (c) Multiplier method, update formula (53), c0 = 10−5.

E0 undamaged elastic modulus
k damage rate
n damage exponent
�0 fracture energy

Note that also g1 depends explicitly on the damage energy �.
In this situation the intersection between the two surfaces generates curves where the yield

function becomes non-differentiable and numerical troubles arise in the solution of the problem.
The example is only meant as a check of the rate of convergence of the numerical procedures.

Therefore, all the problems concerned with the onset of strain localization are out of our
considerations.

A homogeneous deformation driven uniaxial compression process is considered, with a con-
stant step-size. The stress–strain curve obtained is represented with a solid line in Figure 18.
The evolution of the representative point of the system is sketched in Figure 19 in the plane
g1, g2. In region A the sample is elastic, then in region B the Drucker–Prager plasticity
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criterion (54a) coupled with hardening and damage is activated. Region C corresponds to a
corner point, that is the system evolves while both the plasticity and the damage constraints
are active. Finally, region D corresponds to pure damage dissipation mode (54b). Figure 18
also reports the largest step for which convergence is reached, using either the Lagrangian
method and the Multiplier method with different step amplitude. It is important to note that
convergence of the Lagrangian algorithm is always obtained but a very small step is needed in
the descending branch, especially in the region D. Specifically, a step not greater than 10−5 is
required if the Lagrangian method is used in order to follow the entire curve till a nearly van-
ishing value of the stress, while if the Multiplier method is adopted, the step can be 100 times
greater.

5. CONCLUSIONS

An analysis of the convergence properties of the non-linear constrained equilibrium problem
has been presented that is met in elastic–plastic structural models. With the aim of enlarging
the radius of convergence of the standard Lagrangian method, he so-called Multiplier method
has been proposed, as an alternative, which is a staggered procedure that has been applied
directly to the governing equilibrium equations of the problem. The implementation of the
algorithm has been described in Section 3.2; it is quite similar to standard algorithms used
in F.E. codes, so that they can be adapted with minor modifications. An efficient version
of the Lagrangian method has also been introduced, which turns the inequality admissibil-
ity constraint into an equivalent equality one. Through a series of tests it has been found
that the Lagrangian method so implemented appears to be able to reach convergence for the
local admissibility problem always, even near the region of sharp curvature of the yield func-
tion. However, in these cases, the equilibrium equations may diverge, unless a very small
step-size is adopted. The Multiplier method substantially enlarges the region of convergence
of the equilibrium problem, as it has been shown in Section 4.1.2. It is stressed that the
solutions of the equilibrium and compatibility optimization problems were in any case ob-
tained using Newton’s method, so that a quadratic rate of convergence was achieved for
them, with no apparent need, at least for the cases considered, of introducing line search
techniques.

A direct comparison of the two methods, performed through the structural example of
Section 4.2, has shown that the Multiplier method allows to use a step-size 100 times greater
than the Lagrangian method. Even if the Multiplier method has a linear or super-linear rate of
convergence, i.e. it requires more iterations to converge w.r.t. the Lagrangian method, this is
more than compensated by the possibility of large step-sizes.

Once the effectiveness of the Multiplier method has been proved, it must be acknowledged
that, of course, an optimal strategy would require to combine the two methods, so that one
starts with the faster Lagrangian method and switches to the Multiplier method only when
convergence is not reached after a reasonable number of iterations; next a switch back to the
Lagrangian method, once the trial point has been brought back inside the convergence radius
of the Newton’s method, could be considered. Such a combined strategy and the switching
rules will be considered in a future work.
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APPENDIX A

A.1. Notes on the use of an augmented Lagrangian functional for the elastic–plastic potential

It has been pointed out in Section 3 that either the Lagrangian or the augmented Lagrangian
terms in the functional (25) can be interpreted as regularization of the complementary dissipation
potential, equal to the convex indicator function of the yield domain (see formulas (26) and
(37)). In other words, the solution (	∗, �∗) of either problems

min
	

L(	, �) = min
	

{〈	, �〉 − ec(	) − 〈	, �0
p〉 − 〈�, ḡ(	)〉} sub. to ḡ(	) = 0

min
	

L(	, �) = min
	

{〈	, �〉 − ec(	) − 〈	, �0
p〉 − 〈�, ḡ(	)〉

− 1
2 c〈ḡ(	), ḡ(	)〉} sub. to ḡ(	) = 0, c ∈ R

coincide.
The systematic use of augmented Lagrangian functionals in Structural Mechanics was perhaps

first introduced in the treatment of unilateral contact problems, with the intent of overcoming
the inefficiency of the traditional penalty method in strictly enforcing the one-sided constraints
[20–22]. The Lagrangian term, indeed, is effective when the iterative solution point gets closer
to the boundary of the constraint, while the penalty term avoids that the tentative solution
gets too far from the admissible domain. More recently it has also been used for enforcing
boundary conditions in PU methods [14].

Since the augmented Lagrangian functional introduces a real constant c, it is the starting point
of the Multiplier method, for which the real constant is the step-size of the multiplier update,
as it has been pointed out in Section 2.2. It was also noted that the Multiplier method consists
in an optimization for the dual functional of Lc. One might be tempted then to directly
use a Newton’s iteration simultaneously on both direct variables and Lagrange multipliers,
for optimizing the augmented Lagrangian functional. In Reference [4] the authors called this
procedure ‘Augmented primal closest projection point method’.

We are now going to examine in detail a Newton’s iteration for the functional Lc, in the case
of inequality constraint, thus substituting to the function g the equality constraint ḡ defined by
(2). For simplicity of notation it is considered the case of a single constraint (see Section 3.1 for
the case of multiple constraints). The ith iteration is obtained solving the system (all variables
have to be intended as ith estimates)

[
F̄ ∇	ḡ

∇T
	 ḡ ∇�ḡ

] [
�	

��

]
=

[∇	Lc

−ḡ

]
,

F̄ = E−1
t + (� + cḡ)∇2

	,	ḡ + c∇	ḡ ⊗ ∇	ḡ

E−1
t = ∇2

	,	e
c(	)

∇	Lc = � − ∇	e
c(	) − �0

p − (� + cḡ)∇	ḡ

(A1)

The derivatives of the function ḡ are given by (32) where the if-conditions has to be intended
evaluated at the ith iterate, i.e. whether g(	i ) > −�i/c or vice versa. Solving for �	 from the
first row of (A1) and substituting into the second it is found

�� = [∇T
	 ḡF̄−1∇	ḡ − ∇�ḡ]−1[ḡ + ∇T

	 ḡF̄−1∇	Lc] (A2)
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Inserting the expression of the gradient of Lc given in (A1) it is found

�� = [∇T
	 ḡF̄−1∇	ḡ − ∇�ḡ]−1[(ḡ + ∇T

	 ḡF̄−1�̇p) − (� + cḡ)(∇T
	 ḡF̄−1∇	ḡ)] (A3)

having indicated with �̇p = � − �0
p − ∇	e

c(	).
The first row of (A1) becomes then

�	 = F̄−1[� − �0
p − ∇	e

c(	) − (� + cḡ + ��)∇	ḡ] = F̄−1∇	Lc(	i , �i+1, c) (A4)

We now evaluate explicitly expression (A4). Using (A3) and rearranging one gets

�	 = [F̄−1 − F̄−1∇	ḡ[∇T
	 ḡF̄−1∇	ḡ − ∇�ḡ]−1∇T

	 ḡF̄−1][�̇p − (� + cḡ)∇	ḡ]

−F̄−1∇	ḡ[∇T
	 ḡF̄−1∇	ḡ − ∇�ḡ]−1ḡ (A5)

Recalling that

ḡ =

⎧⎪⎨
⎪⎩

g

−�

c

, ∇	ḡ =
{∇	g

0
, ∇�ḡ =

⎧⎪⎨
⎪⎩

0

−1

c

, ∇2ḡ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[∇2
	,	g 0

0 0

]
if g � − �

c[
0 0
0 0

]
if g < −�

c

expressions (A3) and (A5) specialize, for the cases of active or deactivating constraints, as

�� =

⎧⎪⎪⎨
⎪⎪⎩

−(� + cg) + [∇T
	 gF−1∇	g]−1[g + ∇T

	 gF−1�̇p] if g � − �

c

−� if g < −�

c

(A6)

�	 =

⎧⎪⎪⎨
⎪⎪⎩

[
F−1 − F−1∇	g ⊗ ∇	gF−1

F−1∇	g · ∇	g

]
�̇p − F−1∇	g

F−1∇	g · ∇	g
g if g � − �

c

E−1
t �̇p if g < −�

c

(A7)

Note that in (A6) and (A7) the matrix F = E−1
t + (� + cg)∇2

	,	g + c∇	g ⊗ ∇	g appears.
Several observations can now be made.
The first term in expression (A7) represents the algorithmic tangent stiffness matrix that has

to be compared with the exact one and with the one that is yielded by the classical Lagrangian
method (i.e. without the augmentation in the functional). The latter has the same form as (A7),
provided the matrix F is substituted with the matrix G = E−1

t + �∇2
	,	g.

This implies that the two methods, while yielding the same result as far as the constrained
constitutive problem is concerned, may have different performances in the solution of the
equilibrium problem. Note that the matrix F is obtained adding to G a positive definite term.
This is one theoretical advantage of the augmentation, since a good choice of the parameter c

may make the matrix G always positive definite.
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Figure A1. Number of Newton’s iterations for the convergence at Gauss point. Perfect
plasticity. � = T 1: (a) Lagrangian method c = 10−4; (b) augmented Lagrangian method

c = 10−4; and (c) augmented Lagrangian method c = 10−1.

According to (A2) and (A4), the iteration can be obtained in two steps:

�i+1 = �i + �� = U(	i , �i )

	i+1 = 	i + �	 = T (	i , �i+1)
(A8)

U and T being two updating formulas given, respectively, by (A6) and (A4).
Update (A8) has the structure of what Tapia defines as diagonalized Multiplier method, which,

deriving from a Newton’s iteration, presents a locally quadratic rate of converg-
ence [13].

In order to test the effectiveness of the method described, it has been compared with the
performance of the Lagrangian method as presented in Section 3.1.
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Figure A2. Number of Newton’s iterations for the convergence at Gauss point. Damaging
plasticity. � = T 1: (a) Lagrangian method c = 10−4; (b) augmented Lagrangian method

c = 10−4; and (c) augmented Lagrangian method c = 103.

First, the case of perfect plasticity has been considered. The local constitutive problem has
been analysed with the same methodology described in Section 4.1.1, for predictors having
hydrostatic component � = T 1. The results are reported in Figure A1. Figure A1(a) is the same
as Figure 6(a), and refers to the Lagrangian method (c = 10−4). Figures A1(b) and A1(c) report
the number of iterations needed for convergence using the augmented Lagrangian functional
with c = 10−4 and 10−1, respectively. While convergence is always reached, it appears that
the number of Newton’s iterations increases.

Similar results are obtained using a damaging elastic–plastic criterion (introduced in
Section 4.1) as shown in Figure A2, where Figure A2(a) coincides with Figure 7(a). These re-
sults show the dramatic influence of the value of c on the rate of convergence of the augmented
Lagrangian functional.
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Figure A3. Number of global equilibrium iterations. � = T 1. Damaging plasticity.
H = 20 000: (a) Lagrangian method c = 10−3; (b) augmented Lagrangian method

c = 10−3; and (c) augmented Lagrangian method c = 102.

Figure A3 presents the number of equilibrium iterations needed for convergence using a
damaging criterion, with the same methodology used in Section 4.1.2. Again, the performance
of the Lagrangian method is compared with that of the augmented Lagrangian method with
two different values of c. Apparently, the augmented Lagrangian method performs worse for
all the trial states, except for a limited area around the value of the Lode angle  = 60◦.

The results presented have motivated the fact that the method described in this appendix has
not been proposed in the work, since no significant benefit is obtained using the augmented
Lagrangian functional in conjunction with primal methods.
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