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In the paper is derived an explicit expression for the Green’s function of this class of structures, that requires only
the knowledge of a basis for the null space of the equilibrium operator. First, some properties of the Green’s function
are recalled, then it is proved that the Green’s function is given by a linear combination ofN (L) andN (L∗), L∗ being
the adjoint operator ofL. This result is known in the literature (e.g. (Chitwood, 1973; Locker, 1977)), where attention is
mainly focused on existence and representation results in the compatible case (i.e. when the solution to the homogeneous
problem, if exists, is not unique), and fornth-order operators. Here some of the formalism used in (Chitwood, 1973;
Locker, 1977) is adopted, but the focus of the paper is to give a constructive proof of the structure of the Green’s operator for
incompatible problems, where the solution exists and is unique. The proof given in the paper allows for a direct evaluation of the
Green’s operator given a basis of the kernel of the differential problem for any assigned two-points boundary conditions. The
case of self-adjoint operators is then addressed, and it is recognized that a suitable base system is given by the fundamental shape
functions of the elements of the structure, for clamped end (homogeneous) boundary conditions, and a simplified expression
for the Green’s function is derived for this case. Subsequently, the case of general frame structures is considered. The Green’s
operator is obtained splitting the problem in two parts, the first accounting for the nodal boundary conditions, the other related
to the single element with homogeneous boundary conditions.

In the closing part of the paper the Green’s operator is determined for several beam elements, and some graphs of influence
functions computed by the proposed approach are reported as well.

2. Formulation of the problem for an operator on R

2.1. General properties of the Green’s function

Let L be a linear differential operator of order 2n in the variablev, V-elliptic in a closed subspaceV of Hn(Ω):

L
(
v(x)

)
:D(L)⊂ V → L2(Ω), (1)

wherev(x) :Ω → Rm, Ω = [x0, x1] ⊂ R. Let suppose that the differential problem

L(v)= f, f ∈ L2, v ∈ D(L) (2)

admits a solution.
Sincev is a function defined over a scalar interval, the conditionv ∈ D(L) states that the functionv has to satisfy a set of 2n

(linear) boundary conditions. Ifρ is the number of linearly independent boundary conditions then the index of compatibility of
problem (2) isµ = 2n−ρ. In the following it will be assumed thatµ = 0, i.e. the problem admits a unique solution representable
in the form (Chitwood, 1973)

v(x) =
x1∫

x0

G(x, ξ)f (ξ)dξ, (3)

G(x, ξ) :Ω ×Ω → D(L) being the Green’s function of the problem (2) with the prescribed boundary conditions.
The linear differential operatorL may always be written in normal form; i.e. a matrix differential operatorL of the first

order in the vector variableu :Ω → R2n exists, such thatLu is the system of differential equations in normal form associated
with L. The problem (2) is therefore formulated as

Lu = f, f ∈L2(
R2n), (4)

L having always the form

Lu = P(x)u,x −Q(x)u (5)

in which _,x is the derivative with respect to the independent variablex while P andQ are matrices of coefficients that, in the
more general case, are functions ofx. FurthermoreP is nonsingular on the whole domainΩ .

The matrixP in (5) can always be put, without loss of generality, in the form

P=
[

0 P10
P01 0

]
(6)

with the elements ofP10 andP01 equal to 0 or±1.
In the following it will be determined the Green’s function associated with the operatorL together with homogeneous

boundary conditions of the form

B0u(x0)+ B1u(x1)= 0, (7)
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whereB0 andB1 are 2n×2n matrices of constants. The compatibility index of the problem (4) with the boundary conditions (7)
is

µ= 2n− rank
[
B0u(x0)+ B1u(x1)

]
(8)

and therefore the condition that has to be verified in order that an unique solution exists is that rank[B0u(x0)+ B1u(x1)] = 2n.
The null space ofL is given by all and only the solutions of the homogeneous problem

Lu = 0. (9)

Before proceeding to the construction of the Green’s function for the differential problem{
Lu = f(x),
B0u(x0)+ B1u(x1) = 0,

(10)

it is useful to restate some properties of the Green’s function in the case of a linear vector differential operator defined on
a subsetΩ of R.

Theorem 1 (Properties of the Green’s function).Let C0
2n(Ω) be the space of the2n × 2n matrices whose coefficients are

continuous functions ofΩ . The Green’s functionG(x, ξ) of the problem(10) with zero compatibility index has the following
properties:

(1) G(x, ξ) is defined onΩ ×Ω and has values onR2n;
(2) G(x, ξ) considered as a function ofx, satisfies the boundary conditions(7);
(3) G(x, ξ) considered as a function ofx, belongs toC0

2n(Ω);
(4) G(x, ξ) considered as a function ofx, satisfies(4) in Ω − {ξ};
(5) limh→0 G(x, x + h)− G(x, x − h)= −P−1; P being defined in(5).

Proof. If u(x) is a solution to problem (10) then, because of the definition of Green’s function, it can be represented as

u(x)=
x1∫

x0

G(x, y) f(ξ)dξ. (11)

Let us prove then that if we consider a functionG̃ for which the properties (1)–(5) hold then the function

u(x)=
x1∫

x0

G̃(x, ξ)f(ξ)dξ (12)

is a solution of the differential boundary problem (10). Furthermore because of the uniqueness of the solution it resultsG = G̃.
In fact the boundary conditions (7) are satisfied because of property (2) and, differentiating (12) with respect tox one has

u,x =
x∫

x0

G̃,x (x, ξ)f(ξ)dξ + G̃,x (x, x
−)f(x)+

x1∫
x

G̃,x (x, ξ)f(ξ)dξ − G̃,x (x, x
+)f(x)

=
x1∫

x0

G̃,x (x, ξ)f(ξ)dξ + P−1f(x). (13)

Then the evaluation of (5) yields

Lu = P

x1∫
x0

G̃,x (x, ξ)f(ξ)dξ + PP−1f(x)− Q

x1∫
x0

G̃(x, ξ)f(ξ)dξ, (14)

that is,

Lu =
x1∫

x0

(
PG̃,x (x, ξ)− QG̃

)
f(ξ)dξ + f(x). (15)
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SinceG̃ by property (4) satisfies the homogeneous equationLG̃(x, ξ) = 0, ∀x ∈ Ω − {ξ}, it is readily obtained the result

Lu = f(x). (16)

The function (12) is therefore the solution of the problem (10).
The sufficiency of conditions (1)–(5) for a functionu given by (11) to be the solution of problem (10) can be obtained going

through the same steps in inverse order.✷
The formal adjoint operatorL∗ to L is given by

L∗ = −PT ∂

∂x
− QT, (17)

where the superscriptT denotes the transpose. The null spaces ofL , L∗ are related by the property stated in the following
theorem:

Theorem 2 (Property of the elements of the null spacesN (L ) andN (L∗)). Let u ∈ N (L ) be an arbitrary element of the
null space of the differential operatorL and w ∈ N (L∗) be an arbitrary element of the null space of the adjoint differential
operatorL∗. It results

Pu · w = const, ∀x ∈Ω. (18)

Proof. Let u andw be twoR2n-valued derivable functions defined onΩ . The standard dot product inR2n of the vectorsLu
andw yields

Lu · w = (Pu,x − Qu) · w = Pu,x · w − Qu · w = (Pu · w),x − Pu · w,x − Qu · w

= (Pu · w),x − PTw,x · u − QTw · u = (Pu · w),x + L∗w · u, (19)

therefore,

Lu · w − L∗w · u = (Pu · w),x . (20)

If u andw are respectively two arbitrary elements ofN (L ) andN (L∗), the first member of (20) is identically equal to zero
and it is

(Pu · w),x = 0 from which (21)

Pu · w = const, ∀x ∈Ω, (22)

which completes the proof.✷
Corollary 1 (Property of the bases ofN (L ) andN (L∗)). LetΦ be a2n× 2n matrix whose columnsu(i) are a basis ofN (L )
andΦ∗ be a2n× 2n matrix whose columnsw(j) are a basis ofN (L∗). The product

Λ = −Φ∗(x)TPΦ(x)
(
Λij = Pu(i) · w(j)

)
, ∀x ∈Ω, (23)

is a nonsingular matrix of constants.

Proof. The matrixΛ is nonsingular since it is the product of nonsingular matrices. The result is readily obtained from the
property expressed in (22) which applies to any element of the matrix.✷
2.2. Construction of the Green’s function

It will now be presented a constructive proof of the property that the Green’s function can always be expressed as a bilinear
combination of a basis for the null spaces of the direct operator and its adjoint.

Because of properties (3)–(5) the Green’s function of the differential operatorL with the boundary conditions (7) may be
written in the following form:

G(x, ξ) =
{

G1(x, ξ), x � ξ

G2(x, ξ), x � ξ
=

{
Φ(x)Γ 1(ξ), x � ξ ,
Φ(x)Γ 2(ξ), x � ξ ,

(24)
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whereΓ 1(ξ) andΓ 2(ξ) are matrices of unknown functions. In fact the functionG defined in (24) belongs toC0
2n(Ω − {ξ})

(property 3) asΦ(x) ∈ C1
2n(Ω) and the matricesΓ 1(ξ) andΓ 2(ξ) are, for fixedξ, constant matrices; moreover, as the columns

of G1 andG2 are linear combinations of the columns ofΦ, it resultsLG = 0 as requested by property (4).
The matricesΓ 1 andΓ 2 can be determined enforcing properties (2) and (5). From property (5) at the pointx = ξ it must be

G1(ξ, ξ)− G2(ξ, ξ)= −P−1 (25)

and, by substitution of definition (24),

Φ(ξ)
[
Γ 1(ξ)− Γ 2(ξ)

] = −P−1 (26)

lettingΓ (ξ)= Γ 2(ξ)− Γ 1(ξ),

Φ(ξ)Γ (ξ)= P−1, (27)(
PΦ(ξ)

)
Γ (ξ)= I , (28)

and, taking the dot product of each side byΦ∗(ξ)T,

Φ∗(ξ)T
(
PΦ(ξ)

)
Γ (ξ)= Φ∗(ξ)T, (29)

it is finally obtained, using (23):

Γ (ξ) = −Λ−1Φ∗(ξ)T. (30)

So requiring that the function defined by (24) satisfy property (5), the differenceΓ (ξ)= Γ 2(ξ)− Γ 1(ξ) has been uniquely
determined. Moreover,G, because of property (2), must fulfil the boundary conditions (7):

B0G1(x0, ξ)+ B1G2(x1, ξ)= 0, ∀ξ ∈ Ω. (31)

Substituting definition (24)

B0Φ(x0)Γ 1(ξ)+ B1Φ(x1)Γ 2(ξ) = 0, ∀ξ ∈ Ω. (32)

ExpressingΓ 2(ξ) as a function ofΓ (ξ) andΓ 1(ξ), the following linear system of equations is obtained:[
B0Φ(x0)+ B1Φ(x1)

]
Γ 1(ξ)= −B1Φ(x1)Γ (ξ). (33)

Sinceµ = 0, the matrix

H = B0Φ(x0)+ B1Φ(x1) (34)

is nonsingular, so (33) admits the unique solution

Γ 1(ξ)= −H−1B1Φ(x1)Γ (ξ) (35)

which may be written, introducing (30),

Γ 1(ξ)= H−1B1Φ(x1)Λ
−1Φ∗(ξ)T. (36)

A similar expression holds forΓ 2(ξ):

Γ 2(ξ)= −H−1B0Φ(x0)Λ
−1Φ∗(ξ)T. (37)

Introducing the constant matrices

C = H−1B1Φ(x1)Λ
−1, (38)

D = −H−1B0Φ(x0)Λ
−1, (39)

it is possible to write the Green’s function (24) in the form

G(x, ξ) =
{

Φ(x)CΦ∗(ξ)T, x � ξ ,
Φ(x)DΦ∗(ξ)T, x � ξ ,

(40)

which is a bilinear form of a basis ofN (L ) and a basis ofN (L∗).
It is observed that the evaluation of the matrixC (as well asD) may be carried out with respect to any arbitrary basis of

N (L ) and then transformed to the basis chosen to represent the Green’s function. In fact letΦ(x) andΘ(x) be two bases and
let Z be the linear transformation such that

ΦT(x) = ZΘT(x) (41)

and suppose thatCΦ is the expression ofC with respect to the basisΦ. It is readily found, by substitution, that

CΘ = ZTCΦZ. (42)
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2.3. Self-adjoint operators

In the previous section it has been treated the general case of a differential operator, and the role of its adjoint has resulted
evident. In the following the result will be particularized to the case of a self-adjoint operator. In this case, beingL = L∗, from
(17) it is obtained

P
∂

∂x
u − Qu = −PT ∂

∂x
u − QTu, ∀u, (43)(

P+ PT) ∂

∂x
u − (

Q − QT)
u = 0, ∀u; (44)

these imply

P= −PT, Q = QT, (45)

that is,P is skew-symmetric andQ is symmetric. In particular, (6) and (45) implyP01 = −PT
10. Without loss of generality it is

always possible to write the system in normal form so thatP10 = −P01 = I can be obtained.
Moreover, beingΦ∗ = Φ , from (23) it follows that the matrix of constantsΛ is skew symmetric:

ΛT = [−ΦTPΦ
]T = −ΦTPTΦ = ΦTPΦ = −Λ. (46)

In this case the Green’s function is symmetric with respect to the variablesx andξ . In fact letp andf be two arbitrary vectors
of functions generally continuous on the domainΩ . Because of existence and uniqueness of the solution

∃!u: Lu = p, ∀x ∈Ω, (47)

∃!v: Lv = f, ∀x ∈ Ω, (48)

given by

u =
∫
Ω

G(x, ξ)p(ξ)dξ, (49)

v =
∫
Ω

G(x, ξ)f(ξ)dξ. (50)

As L is self-adjoint because of the duality relation

〈Lu ,v〉 = 〈Lv ,u〉, ∀u,v, (51)

substituting Eqs. (47), (48) and (49), (50)∫
Ω×Ω

p(x) · G(x, ξ)f(ξ)dξ dx =
∫

Ω×Ω

f(x) · G(x, ξ)p(ξ)dξ dx, ∀p, f. (52)

Equation (52) implies

GT(x, ξ) = G(ξ, x), ∀{x, ξ} ∈Ω ×Ω. (53)

Introducing (53) in (40) and beingΦ∗ = Φ, it is obtained

GT
1(x, ξ) = G2(ξ, x), ∀{x, ξ} ∈ Ω ×Ω, (54)

that is,[
Φ(x)CΦT(ξ)

]T = Φ(ξ)DΦT(x), ∀{x, ξ} ∈ Ω ×Ω, (55)

Φ(ξ)CTΦT(x) = Φ(ξ)DΦT(x), ∀{x, ξ} ∈ Ω ×Ω. (56)

The matrixD is therefore the transpose ofC. In the hypothesis thatL is self-adjoint the Green’s function expressed by (40) has
then the form

G(x, ξ) =
{

Φ(x)CΦT(ξ), x � ξ ,

Φ(x)CTΦT(ξ), x � ξ .
(57)
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2.4. Canonical bases

The matrixC can be determined, by virtue of (38), with respect to any basis ofN (L ). However, if some assumptions are
made in the determination of the basis the final expression ofC can be greatly simplified. In order to reach this result the concept
of canonical basis will be introduced in this section. Let

B0 =
[

I 0
0 0

]
, B1 =

[
0 0
I 0

]
. (58)

A basisΣ(x) of N (L ) will be calledcanonicalif it satisfies the boundary conditions

H = B0Σ(x0)+ B1Σ(x1) = I . (59)

If the basisΣ(x) is partitioned into fourn× n matrices as

Σ(x) =
[

Σ00(x) Σ10(x)

Σ01(x) Σ11(x)

]
(60)

thenΣ(x) will be canonical if it satisfies the following boundary conditions:

Σ00(x0)= I , Σ10(x0)= 0, Σ00(x1) = 0, Σ10(x1) = I . (61)

In the context of solid mechanics the canonical basis is formed by the extended shape functions of the element on the interval
[x0, x1], i.e. the integralsΣ0(x) andΣ1(x) of the canonical basisΣ(x),

Σ0(x) =
[

Σ00(x)

Σ01(x)

]
, Σ1(x) =

[
Σ10(x)

Σ11(x)

]
, (62)

satisfy the essential homogeneous boundary conditions at the endsx = x1 andx = x0, respectively, that, after introducing the
matrix

B = [ I 0 ] (63)

can be written in a short form as

BΣ0(x0) = I , BΣ1(x1)= I , (64)

BΣ1(x0) = 0, BΣ0(x1)= 0. (65)

If the differential system (5) is written in a normal form it is easy to see that the adjoint differential operator is given by the
differential operator (17) with the boundary conditions still given by (58). Therefore, using notation similar to (60) the canonical
basisΣ∗(x) of the kernel of the adjoint operatorL∗ satisfies

Σ∗
00(x0)= I , Σ∗

10(x0)= 0, Σ∗
00(x1) = 0, Σ∗

10(x1) = I . (66)

If the determination of the Green’s function is made with respect to the canonical bases ofN (L ) andN (L∗), it is possible
to derive a simpler expression for the constant matricesC andD. To this end the expression of the Green’s function (40) for
x � ξ is written introducing a suitable partition of the matrixC:

G(x, ξ) = [
Σ0(x),Σ1(x)

] [
C00 C10
C01 C11

][
Σ∗

0(ξ)
T

Σ∗
1(ξ)

T

]
= Σ0(x)

[
C00Σ

∗
0(ξ)

T + C10Σ
∗
1(ξ)

T] + Σ1(x)
[
C01Σ

∗
0(ξ)

T + C11Σ
∗
1(ξ)

T]
. (67)

As the Green’s function satisfies the boundary conditions, in view of the structure (58) of the boundary conditions, it is
BG(x0, ξ) = 0, ∀ξ , BG(x1, ξ) = 0, ∀ξ . The following results can be readily obtained using Eqs. (61) and (66):

BG(x0, x0) = 0 �⇒ C00 = 0, (68)

BG(x0, x1) = 0 �⇒ C10 = 0, (69)

BG(x1, x1) = 0 �⇒ C11 = 0. (70)

Similarly writing the Green’s function forx � ξ and introducing forD the same partition as in (67) it is obtained

BG(x0, x0) = 0 �⇒ D00 = 0, (71)

BG(x1, x0) = 0 �⇒ D01 = 0, (72)

BG(x1, x1) = 0 �⇒ D11 = 0. (73)
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The structures ofC andD with respect to the canonical bases ofN (L ) andN (L∗) are therefore

C =
[

0 0
C01 0

]
, D =

[
0 D10
0 0

]
(74)

and the following final expression of the Green’s function can then be given:

G(x, ξ) =
{

Σ1(x)C01Σ
∗
0(ξ)

T, x � ξ ,

Σ0(x)D10Σ
∗
1(ξ)

T, x � ξ .
(75)

Moreover, recalling (59), the following equalities hold:

H−1B1Σ(x1) =
[

0 0
0 I

]
, H−1B0Σ(x0) =

[
I 0
0 0

]
. (76)

Partitioning the matrixΛ−1 as

Λ−1 =
[(

Λ−1)
00

(
Λ−1)

10(
Λ−1)

01

(
Λ−1)

11

]
, (77)

evaluating the matricesC andD with respect to the canonical bases and using Eqs. (38), (39) and (76), (77), the following
expressions are got:

C =
[

0 0(
Λ−1)

01

(
Λ−1)

11

]
, D =

[ (
Λ−1)

00

(
Λ−1)

10
0 0

]
, (78)

so that by virtue of (74) the matricesC01 andD10 are equal to

C01 = (
Λ−1)

01, (79)

D10 = −(
Λ−1)

10, (80)

while it must be(
Λ−1)

00 = 0, (81)(
Λ−1)

11 = 0. (82)

In the case of self-adjoint operators it isDT = C and, therefore,DT
10 = C01, as follows from (79) and (80), since in this case

Λ is skew symmetric.

2.5. Computation of the constant matrices with respect to canonical bases

As shown in the previous section, the matricesC01 andD10 fully define the Green’s function of a differential operator with
respect to the canonical bases ofN (L ) andN (L∗). Their computation can be carried out using (79) and (80) either symbolically
or numerically, evaluatingΛ−1 at any pointx ∈ Ω (asΛ has been shown to be independent fromx). A simpler formula can,
however, be determined forC01 andD10 using the properties of the canonical bases.

Recalling the structure of the matrixP, Eq. (6), the constant matrixΛ can be written in the form

Λ = −Σ∗(x)TPΣ(x) = −
[

Σ∗
00(x)

T Σ∗
01(x)

T

Σ∗
10(x)

T Σ∗
11(x)

T

][
0 P10

P01 0

][
Σ00(x) Σ10(x)

Σ01(x) Σ11(x)

]
. (83)

Carrying out the products, computingΛ for x = x0 andx = x1, accounting for the boundary conditions (61), (66) and
equating the results, the following equivalent expressions forΛ are found:

Λ = −
[

0 P10Σ11(x0)

Σ∗
11(x0)

TP01 0

]
= −

[
0 Σ∗

01(x1)
TP01

P10Σ01(x1) 0

]
. (84)

Applying the formulas for the computation of the inverse of a partitioned matrix, it is obtained

Λ−1 = −
[

0 (Σ∗
11(x0)

TP01)
−1

(P10Σ11(x0))
−1 0

]
= −

[
0 (P10Σ01(x1))

−1

(Σ∗
01(x1)

TP01)
−1 0

]
; (85)

the final expressions forC01 andD10 given by Eqs. (79) and (80) take the form
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C01 = −(
P10Σ11(x0)

)−1 = −(
Σ∗

01(x1)
TP01

)−1
, (86)

D10 = (
Σ∗

11(x0)
TP01

)−1 = (
P10Σ01(x1)

)−1
. (87)

In the common case of self-adjoint operators, recalling that it is always possible to obtainP10 = −P01 = I , formulas (86)
and (87) simplify to

C01 = −(
Σ11(x0)

)−1 = (
Σ01(x1)

)−T = DT
10. (88)

In solid mechanics the elements of the matrices appearing in (88) give the values of the mechanical boundary conditions at the
ends of the structural element associated with the ordinary shape functions.

3. The structural problem

The results reported in the previous section can be applied to determine the expression for the Green’s function of the
equilibrium operator governing the mechanical response of a structural model. In order to match the hypotheses made in the
development of the theory, a linear structural model will be considered, described through the following equations:

T u = ε, T ∗σ = f, Eε = σ, (89)

where

• u is the displacement vector, defined on the closed domainΩ occupied by the structure;u is assumed to belong to
a subspaceU of the Hilbert spaceHn, where the indexn depends on the order of the variational operator of the problem;

• f is the applied forces vector, an element of a subspaceF (usually ofL2), dual toU , defined both on the domainΩ and
on its boundary;

• ε is the deformation field, whose nature depends on the problem at hand, belonging to a linear vector spaceE ;
• σ is the internal forces (stress) field, defined on the vector spaceS = E∗.
• T :U → E , T ∗ :S → F are the adjoint operators of compatibility and equilibrium, assumed to be linear;
• E is the linear symmetric operator describing the constitutive relations.

The hypotheses made, therefore, refer to the case of infinitesimal displacements (T linear) and linear material behavior. The
linear elastic case will be addressed, so thatE reduces to a constant operator.

The structural analysis according to the standard displacement method leads to the variational problem

l(u, v)= (f, v), u ∈ V, ∀v ∈ V, (90)

V ⊂ U being the subspace of admissible displacements which satisfies the kinematical boundary conditions. In (90)(· , ·)
indicates the scalar product onL2, and l(u, v) is the bilinear form onHn, corresponding to the linear differential operator
of equilibrium

L= T ∗ET :U → F (91)

together with both the proper kinematical and mechanical boundary conditions.
Since the operatorL is linear, self-adjoint and continuous onU , all the theory developed in the previous sections can be

applied to it.

3.1. Frame structures

In this section the problem of the construction of the Green’s function for frame structures will be addressed, following the
approach introduced in (Romano, 1987).

With the symbols previously introduced, the equilibrium problem for a frame structure can be described by means of the
following differential boundary value problem

Lu= q, u ∈ V, (92)

q being the load vector. The variational form of (92) is given by

l(u, v)= (q, v), u ∈ V, ∀v ∈ V, (93)
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wherel is the bilinear form of the elastic strain energy and(· , ·) is the scalar product inV , defined by

(a, b) =
∑

i=1,m

∫
ei

a · bdx, (94)

m being the number of the elements in the structure.
The normal formL (i) of the restriction of the differential operator of equilibrium (92) to a single beam element is given by

the system of differential equations{
T ∗s = q + p(u),

T u = E−1s + q,
(95)

whereu is the vector of the displacement functions,s is the vector of the internal forces andq are inelastic deformations. In the
plane case the elements ofu ands have, respectively, the physical meaning of axial displacement, transversal displacement and
rotation, and axial force, shear force and bending moment. The termp(u) accounts for reactive or inertia forces. The explicit
expressions of the differential operators for some beam models will be given in Section 4.

3.1.1. Splitting of the problem
In order to evaluate the Green’s function for a frame structure the admissible displacements spaceV is split into the direct

sum of two orthogonal subspaces with respect to the scalar product defined by the bilinear form of the elastic energyl:

V = V ′ ⊕ V ′′. (96)

In this equationV ′ is chosen as the space of the displacement functions satisfying homogeneous boundary conditions at the
ends, i.e. the displacement functions for the clamped beams. The subspaceV ′′ is then defined as the orthogonal complement to
V ′ by the relation

l
(
u′, u′′) = 0, ∀u′ ∈ V, ∀u′′ ∈ V, (97)(
Lu′, u′′) = 0, ∀u′ ∈ V, ∀u′′ ∈ V. (98)

The problem (93) is then divided into the following two:

l
(
u′, v′) = (

q, v′), u′ ∈ V ′, ∀v′ ∈ V ′, (P1)

l
(
u′′, v′′) = (

q, v′′), u′′ ∈ V ′′, ∀v′′ ∈ V ′′, (P2)

where, from the definition of the spacesV ′ andV ′′, problem (P1) has homogeneous boundary conditions, while problem (P2)
retains the original ones.

If G
′ andG

′′ are the Green’s operators for the problems (P1) and (P2), because of the property (96), the following additive
decomposition for the Green operator is obtained:

u = u′ + u′′ = G
′q + G

′′q = Gq; (99)

and, because of the linearity of the Green’s operator,

G = G
′ + G

′′. (100)

The Green’s function can therefore be expressed as the sum of the Green’s functionsG′ and G′′ of the problems (P1)
and (P2).

3.1.2. Evaluation of the Green’s functionG′
The results of Section 2 can be directly applied to problem (P1), that reduces tom differential equations with homogeneous

boundary conditions, one for every element of the structure. IfG′
(i)

is the Green’s function for theith element of the structure
considered as clamped at both ends (homogeneous boundary conditions), then the Green’s function for the whole structure is
given by

G′ = diag
[
G′
(i)

]
. (101)

Because of the particular boundary conditions there is in fact no interaction between the elements of the structure. The evaluation
of the Green’s functionG′

(i)
for each single element is obtained determining a basis for the kernel ofL (i). In order to simplify

the expression of the Green’s functionG′′ reported in the next paragraph, this evaluation can be conveniently carried out with
respect to the canonical basisΣ(i) made by theextended shape functionsof the element, that is, a basis made by the ordinary
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shape functions for the displacements plus those for the internal forces. Accordingly, the basisΣ(i) can be partitioned in two
groups of rows as in (60):

Σ(i) =
[

Σu

Σs

]
(i)

. (102)

The extended shape functionsΣ(i) satisfy boundary conditions of the kind (61) and the differential system is self-adjoint.
Therefore, the Green’s function is given by expression (75) and the matrixC01 is given by the formula (88).

3.1.3. Evaluation of the Green’s functionG′′
The subspaceV ′′, as defined by the orthogonality relation (98), is generated by a basis of the homogeneous differential

systemLu′′ = 0, with the boundary conditions of the original problem (92). It follows that a suitable basis of this space can be
given by the setΣ of the shape functions of the elements.

If d is the vector of the nodal displacements in the global structure coordinate system ands is the vector of the end
displacements for all the elements in the structure in their local coordinate systems, it is possible to define a linear operatorR
accounting for the kinematical constraints such thats= Rd and then writeu′′ and the corresponding internal forcess′′ as[

u′′(x)
s′′(x)

]
= Σ(x)s= Σ(x)Rd. (103)

The vector of the equivalent nodal loads for the structuref is given by

f = RT
∫

Σ(ξ)T
[
q(ξ)

q(ξ)

]
dξ, (104)

whereq are the inelastic distortions dual tos′′. The nodal displacementsd can be expressed as a linear function off through
the flexibility matrix F of the system in the formd = Ff. The flexibility matrix F is readily obtained from the variational
formulation (93) asF = (

∫
0,li

RTΣT
sEΣsRdξ)−1, once the shape functions are known.

From (103) and (104) the following expression is obtained:[
u′′(x)
s′′(x)

]
=

∫ [
Σ(x)RFRTΣT(ξ)

] [
q(ξ)

q(ξ)

]
dξ. (105)

The Green’s functionG′′ is then, by definition, equal to the term in square brackets:

G′′(x, ξ) = Σ(x)RFRTΣT(ξ). (106)

It is immediately observed that the matrixFe = RFRT is a “disassembled flexibility matrix” for the structure. If the structure
is made bym elements andnd is the number of the degrees of freedom at one end of the generic element, thenFe is a
2mnd × 2mnd matrix formed bym2 submatrices 2nd × 2nd . Each submatrixFe(ij) is the linear operator that gives the
end displacements of the elementi (in its local coordinate system) as a function of the end forces applied to the elementj

(expressed in the local coordinate system of the elementj ). The following restriction of the Green’s functionG′′ can therefore
be considered:

G′′
(ij)(x, ξ) = Σ(i)(x)Fe(ij)Σ

T
(j)(ξ). (107)

The Green’s matrixG′′
(ij)

(x, ξ) has dimensions 2nd × 2nd and its elements have the physical meaning of effect (i.e.
displacement or rotation or internal force) at the abscissax of the ith beam due to an action (i.e. force or couple or distortion)
applied at the abscissaξ of thej th beam.

3.1.4. Evaluation of the Green’s functionG
Using the results obtained in the previous sections, the Green’s function for two elementsi andj of a frame structure is

given by

G(ij)(x, ξ) =
Σ(i)(x)

[
Fe(ij) + δijC(i)

]
ΣT

(j)
(ξ), x � ξ ,

Σ(i)(x)
[
Fe(ij) + δijCT

(i)

]
ΣT

(j)
(ξ), x � ξ ,

(108)

whereδij is the Kronecker’s function (δij = 1 if i = j , δij = 0 otherwise) andC(i) is trivially obtained from Eq. (74) with
C(i)01 given by (88).

It is noted in (108) that the termG′ is added only wheni = j as the “clamped beam effects” are of course present only
if the action and the effect are in the same element, as it was pointed out in the determination ofG′. In the plane case, if
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w,v,ϕ,N,T ,M are respectively the influence functions of the axial displacement, transversal displacement, rotation, axial
force, shear and bending moment due to an axial forcea, a transversal forcet , a couplem, an inelastic axial distortionλ, an
inelastic shear distortionθ and an inelastic curvatureµ, then the elements ofG are

G(x, ξ) =


wa wt wm wλ wθ wµ

va vt vm vλ vθ vµ
ϕa ϕt ϕm ϕλ ϕθ ϕµ
Na Nt Nm Nλ Nθ Nµ

Ta Tt Tm Tλ Tθ Tµ
Ma Mt Mm Mλ Mθ Mµ

 , (109)

where the indexes represent the moving actions.

4. Evaluation of the Green’s function for some beam models

In the previous sections it has been shown that the computation of the Green’s function for a frame structure requires only
the knowledge of a basis for the kernel of the equilibrium operator. This allows either to evaluate the flexibility matrix of the
system (and henceG′′) and to compute the matrixC necessary to defineG′ through one of the previously given formulas (38)
or (88), depending on the basis being used.

As the computation ofG′′ is trivial, here some results regarding the clamped beam are given. It is also explicitly calculated
the value of the linear invariant of the Green’s operator. It represents the sum of the eigenvalues of the operatorL (i) in V ′, and
allows to bound the approximation error in the estimate of eigenperiods for the whole structure through the formula (Romano,
1975)

ω+
k

= ω−
k

+ trΞG′, (110)

whereω−
k , ω+

k are the lower and upper bound to theith vibration period andΞ is the matrix of the mass distribution of the
system. Ifρi(x) is the mass per unit length pertaining to theith member andJpi (x) the corresponding polar inertia moment, it
is (in the plane case)Ξ(x) = diag[ρi(x), ρi (x), Jpi (x),0,0,0]. The trace appearing in (110) is equal to

trΞG′ =
m∑
i=1

li∫
0

trΞi(x)G
′
i (x, x)dx. (111)

Introducing the explicit expression forG′
i
, the following expression for the linear invariant is obtained:

trΞG′ =
m∑
i=1

trCi

li∫
0

ΣT
u(i)(x)Ξ̃i (x)Σu(i) (x)dx =

m∑
i=1

trCiM i =
m∑
i=1

trC01iM10i , (112)

having indicated bỹΞ the matrix formed by the first three rows and columns ofΞ . In this formulaM i has the meaning of the
consistent mass matrix for the element, and a partition similar to (60) has been introduced for it.

For a plane straight beam the flexural part of the homogeneous differential problem, written in the normal form (5), is
(disregarding inertia forces and Eulerian instability effects)

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




v,x
ϕ,x
T,x
M,x

 +

k(x) 0 0 0

0 0 −1 0
0 −1 −χ(x)/(GA) 0
0 0 0 −1/(EJ )




v

ϕ

T

M

 =


0
0
0
0

 , (113)

so that

P=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , Q = −

k(x) 0 0 0

0 0 −1 0
0 −1 −χ(x)/(GA) 0
0 0 0 −1/(EJ )

 , (114)

wherev andϕ are the transversal displacement and the rotation of the cross section,T andM are the shear force and the
bending moment. In the matrixQ the bending and shear deformabilities appear as well as the Winkler constantk and they can
be functions ofx. From this equation various particular cases can be obtained.



M. Cuomo, G. Ventura / European Journal of Mechanics A/Solids 21 (2002) 493–512 505

Some particular examples are reported in the following and have been obtained by means of a symbolic mathematics
system as follows. Given the homogeneous differential problem (113) a basisΦ for the kernel of the differential operator
is determined. The basis can always be transformed into a canonical basis by the transformation (41), i.e. solving a system
of linear equations. In the following examples it is made reference to canonical bases, and consequently the Green’s function
is given by expression (75) that requires only the knowledge of the matrixC01 computed using Eq. (88). In this section the
expressions of the matrixC01, together with the first invariant of the Green’s operator, are reported for some beam models. The
matrices of the shape functions are listed in the appendix.

4.1. Beam with shear deformability and constant cross section

C01 =
[

χl
GA

− l3

6EJ
l2

2EJ

− l2

2EJ
l

E J

]
.

If ρ(x) = ρ is constant along the beam, the following expression for the linear invariant is obtained:

trΞG′ = l4

(1+ 12k)

1

420EJ

[
ρ
(
840k2 + 84k + 1

) + Jp(840k + 28)
]
, where k = χEJ

GAl2
.

4.2. Beam with zero shear deformability and variable cross section

Let J (x) = J0(1 + θx/l)3 andρ(x) = ρ0(1 + θx/l). These laws of variation are typical of the rectangular cross section
beam with linearly variable height. The computation yields

C01 = l3

E J0


ln(1+ θ)

θ3
− θ + 2

2θ2(θ + 1)

1

2l(θ + 1)

− 1

2l(θ + 1)2
θ + 2

2l2(θ + 1)2

 ,

trΞG′ = ρ0l
2

E J0

1

75θ5[(θ + 2) ln(1+ θ)− 2θ]
× {

ρl2
[
2θ2(

12+ 12θ − 5θ2) + 3θ(2 + θ) ln(1+ θ)
(
θ2 + 2θ + 2

) − 36(1 + θ)2 ln2(1+ θ)
]

+ Jp
[
288θ2 − 180θ3(2+ θ) ln(1+ θ)+ 36θ2(

θ2 + 2θ + 2
)
ln2(1+ θ)

]}
.

4.3. Beam with constant cross section and zero shear deformability resting on a Winkler soil

Let β4 = k/(4EJ), c = cos(βl), s = sin(βl), ch= cosh(βl), sh= sinh(βl). Then

C01 = 1

4β3EJ

[
c sh−s ch 2βs sh
−2βs sh 2β2(s ch+c sh)

]
,

trΞG′ = 1

4EJ

{
ρ

β4

[
2+ βl(ch sh−cs) − ch2 −sh2 −c2 + s2

c2 − s2 + ch2 +sh2 −2

]
+ Jp

β2

[
2βl(ch sh+cs) − ch2 −sh2 +c2 − s2

c2 − s2 + ch2 +sh2 −2

]}
.

4.4. Bernoulli’s beam with constant cross section

This is the limit case toward which tend all the previous examples. The following results are obtained:

C01 = 1

EJ

[−l3/6 l2/2
−l2/2 l

]
, trΞG′ = ρl4

420EJ
+ Jpl

2

15EJ
.

4.5. Circular arch

The homogeneous differential problem for a curved beam with constant cross section is given by
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




us,x
ur,x
α,x
N,x

T,x
M,x


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+


0 0 0 0 1/r 0
0 0 0 −1/r 0 0
0 0 0 0 −1 0
0 −1/r 0 −1/(EA) 0 1/(EAr)

1/r 0 −1 0 −χ(x)/(GA) 0
0 0 0 1/(EAr) 0 −1/(EJ )− 1/(EAr2)




us
ur
α

N

T

M

 =


0
0
0
0
0
0

 ,

wherex is the curvilinear abscissa along the beam andus , ur are the tangential (axial) and radial displacements respectively.
In the case of constant curvature radiusr , total lengthl = rα and no shear deformability (χ(x) = 0), the matrixC01 w r.t. the
shape functions of the element is

C01 = r

EA


(1+ k)α +

(
2+ k

2

)
αc −

(
2+ 3k

2

)
s

(
2+ k

2

)
αs − (2+ k)(1− c)

(1+ k)α − (2+ k)s

r

(2+ k)(1− c)−
(

2+ k

2

)
αs

1

2
(4+ k)(αc − s)

1

r
(2+ k)(1− c)

1

r

[
(1+ k)α − (2+ k)s

] −1

r
(2+ k)(1− c)

1

r2
(1+ k)α

 ,

wherec = cos(l/r), s = sin(l/r), k = EAr2/EJ . The linear invariant of the Green’s function for this particular case is not
reported because of the excessive length of the algebraic expression, but it can be easily evaluated numerically from Eq. (112).

5. Influence lines for a circular arch

The method proposed for the evaluation of the Green’s operator in frame structures has been implemented into a software
for two-dimensional frame analysis. As a nonstandard application an arch clamped at both ends and made by 3 circular beam
segments is considered, Fig. 1. The arch segments have a curvature radius equal to 15 and the nodal coordinates, form left to
right are(0,0), (5,5), (15,5), (20,0). The influence lines constructed by the present approach and reported in Figs. 2–8 have
been verified through the application of the Betti’s theorem.

Fig. 1. Geometry of the circular arch.

Fig. 2. Influence line of the vertical displacement at the midspan for a vertical moving force.
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Fig. 3. Influence line of the bending moment at the midspan for a vertical moving force.

Fig. 4. Influence line of the shear stress at the midspan for a vertical moving force.

Fig. 5. Influence line of the normal stress at the midspan for a vertical moving force.

Fig. 6. Influence line of the bending moment at the left clamp for a vertical moving force.

The influence lines have been computed assuming a travelling vertical force and considering the effects at the midspan of
the arch and at the left clamp. More precisely they are:

• vertical displacement at the midspan, Fig. 2;
• bending moment at the midspan, Fig. 3;
• shear force at the midspan, Fig. 4;
• normal force at the midspan, Fig. 5;
• bending moment at the left clamp, Fig. 6;
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Fig. 7. Influence line of the shear stress at the left clamp for a vertical moving force.

Fig. 8. Influence line of the normal stress at the left clamp for a vertical moving force.

• shear force at the left clamp, Fig. 7;
• normal force at the left clamp, Fig. 8.

The method proposed for the computation of the influence lines appears of very simple introduction in any frame element
code. In fact these softwares compute the stiffness matrix of the structure and represent the deformed geometry through the
element shape functions. Therefore, according to Eq. (108), only the computation of the constant matrixC01 for a given
element is to be added.

6. Conclusions

Starting from the general properties of the Green’s function of a differential boundary value problem onR, it has been
shown that it can be always expressed as a bilinear combination of bases for the null spaces of the operator and of its adjoint.
The proof given is constructive, in the sense that an explicit formula for the evaluation of the Green’s function with arbitrary
boundary conditions has been given.

The particular case in which the differential operator is self-adjoint has been examined in detail with reference to arbitrary
complex frames of one-dimensional structural elements (beams). Here the components of the Green’s operator have the
immediate physical meaning of influence functions. These functions are expressed as the sum of two parts, one accounting
for the nodal flexibility of the frame, and the other accounting for the clamped–clamped beam displacement fields.

The explicit expression of the Green’s functions and of the first orthogonal invariant for the Green’s operator are reported
in the paper for Timoshenko’s and variable cross section beams, as well as for beams resting on a Winkler’s elastic soil and for
circular arches.

Appendix A

In this section the shape functions for the beam models considered in Section 4 are reported. They, together with the matrixC
already given, allow the evaluation of all the influence functions. The physical meaning of the elements of the shape function
matrices is briefly recalled. For straight beams, the flexural part of shape function matrix is 4× 4 and

• the first row represent the transversal displacement;
• the second row is the rotation;
• the third row is the shear stress;
• the fourth row is the bending moment;
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• the first column represents the shape function having unit displacement at the left end, null rotation at both ends, null
displacement at the right end;

• the second column represents the shape function having unit rotation at the left end, null displacement at both ends, null
rotation at the right end;

• the third column represents the shape function having unit displacement at the right end, null rotation at both ends, null
displacement at the left end;

• the fourth column represents the shape function having unit rotation at the left end, null displacement at both ends, null
rotation at the right end.

In a similar way in the circular arch, where the axial and flexural behavior are coupled, the shape function matrix is 6× 6,
the rows having the meaning (from the 1st to the 6th) of tangential displacement, radial displacement, rotation, normal stress,
shear stress, bending moment. In the same order the columns are the shape functions for

• unit tangential displacement at the left end, zero being all remaining boundary conditions;
• unit radial displacement at the left end;
• unit rotation at the left end;
• unit tangential displacement at the right end;
• unit radial displacement at the right end;
• unit rotation at the right end.

A.1. Beam with shear deformability

Let k = χEJ/GAl2. It is found:

Σ11 = (1− ξ)(1+ ξ − 2ξ2 + 12k)

1+ 12k
, Σ12 = (1− ξ)ξ l(1− ξ + 6k)

1+ 12k
, Σ13 = ξ(3ξ − 2ξ2 + 12k)

1+ 12k
,

Σ14 = − (1− ξ)ξ l(ξ + 6k)

1+ 12k
, Σ21 = 1

l

6(ξ − 1)ξ

1+ 12k
, Σ22 = (1− ξ)(1− 3ξ + 12k)

1+ 12k
, Σ23 = 1

l

6(1− ξ)ξ

1+ 12k
,

Σ24 = ξ(3ξ − 2+ 12k)

1+ 12k
, Σ31 = − 12EJ

l3(1+ 12k)
, Σ32 = − 6EJ

l2(1+ 12k)
, Σ33 = 12EJ

l3(1+ 12k)
,

Σ34 = − 6EJ

l2(1+ 12k)
, Σ41 = −6EJ(1− 2ξ)

l2(1+ 12k)
, Σ42 = −2EJ(2− 3ξ + 6k)

l(1+ 12k)
, Σ43 = 6EJ(1− 2ξ)

l2(1+ 12k)
,

Σ44 = 2EJ(6k − 1+ 3ξ)

l(1+ 12k)
.

A.2. Bernoulli’s beam with variable section

With the notations of Section 4, it is found:

Σ11 = (2+ θ)(1+ θξ)(ln(1+ θ)− ln(1+ θξ))− θ(1 − ξ)(2+ θξ)

(1+ θξ)((2+ θ) ln(1+ θ)− 2θ)
,

Σ12 = l
(ξθ + 2ξ − ξ2) ln(1+ θ)− (ξθ + 1) ln(1+ θξ)− ξθ(1− ξ)

(1+ θξ)((2+ θ) ln(1+ θ)− 2θ)
,

Σ13 = (2+ θ)(1+ ξ) ln(1+ θξ)− θξ(θ + θξ + 2)

(1+ θξ)((2+ θ) ln(1+ θ)− 2θ)
,

Σ14 = l(1+ θ)
ξ2(1+ θ) ln(1+ θ)+ ξθ(1− ξ)− (1+ ξθ) ln(1+ θξ)

(1+ θξ)((2+ θ) ln(1+ θ)− 2θ)
,

Σ21 = − θ3(1− ξ)ξ

l((1+ θξ)2((2+ θ) ln(1+ θ)− 2θ))
, Σ22 = (ξ − 1)((2+ θξ)θ − (2+ θ + θξ) ln(1+ θ))

(1+ θξ)2((2+ θ) ln(1+ θ)− 2θ)
,

Σ23 = θ3(1− ξ)ξ

l((1+ θξ)2((2+ θ) ln(1+ θ)− 2θ))
, Σ24 = ξ(1+ θ)((1+ θ)(2+ θξ) ln(1+ θ)− θ(2+ θ + θξ))

(1+ θξ)2((2+ θ) ln(1+ θ)− 2θ)
,

Σ31 = −EJ0

l3

(2+ θ)θ3

(2+ θ) ln(1+ θ)− 2θ
, Σ32 = −EJ0

l2

θ3

(2+ θ) ln(1+ θ)− 2θ
,
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Σ33 = EJ0

l3
(2+ θ)θ3

(2+ θ) ln(1+ θ)− 2θ
, Σ34 = −EJ0

l2
(1+ θ)θ3

(2+ θ) ln(1+ θ)− 2θ
,

Σ41 = EJ0

l2

θ3(2ξ + θξ − 1)

(2+ θ) ln(1+ θ)− 2θ
, Σ42 = EJ0

l

2θ + θ2(3+ θξ)− 2(1+ θ)2 ln(1+ θ)

(2+ θ) ln(1+ θ)− 2θ
,

Σ43 = EJ0

l2
θ3(1− 2ξ − θξ)

(2+ θ) ln(1+ θ)− 2θ
, Σ44 = EJ0

l
(1+ θ)

2(1+ θ) ln(1+ θ)− 2θ − θ2(1− θξ)

(2+ θ) ln(1+ θ)− 2θ
,

A.3. Beam on a Winkler soil

Let us define the following quantities in order to shorten the final algebraic expressions:

c = cos(βl), cx = cos(βx), c2 = cos(2βl), c2x = cos(2βx), clx = cos
(
β(l − x)

)
,

c2lx = cos
(
β(2l − x)

)
, ch= cosh(βl), chx = cosh(βx), ch2 = cosh(2βl), ch2x = cosh(2βx),

chlx = cosh
(
β(l − x)

)
, ch2lx = cosh

(
β(2l − x)

)
, s = sin(βl), sx = sin(βx), s2 = sin(2βl),

s2x = sin(2βx), slx = sin
(
β(l − x)

)
, s2lx = sin

(
β(2l − x)

)
, sh= sinh(βl), shx = sinh(βx),

sh2 = sinh(2βl), sh2x = sinh(2βx), shlx = sinh
(
β(l − x)

)
, sh2lx = sinh

(
β(2l − x)

)
.

Using this notation the elements of the shape function matrix are given by

Σ11 = cx ch2lx +(c2lx − 2cx)chx +sx sh2lx −s2lx shx
c2 + ch2 −2

, Σ12 = sx(ch2lx sx − chx)− sslx shx
βc2 + ch2 −2

,

Σ13 = 2chs(cx shx −chx sx)+ 2sh shx(ccx + 2ssx )− c chx sx
c2 + ch2 −2

, Σ14 = 2ssx (chx sh−ch shx)− 2sh shx slx
βc2 + ch2 −2

,

Σ21 = 2β
sx(chx −ch2lx)− 2s shx slx

c2 + ch2 −2
, Σ22 = cx ch2lx +chx(c2lx − 2cx)− sx sh2lx +s2lx shx

c2 + ch2 −2
,

Σ23 = 4β
ssx(chx sh−ch shx)+ sh shx slx

c2 + ch2 −2
, Σ24 = 2

shc(chx sx + shx cx)+ 2s shsx shx −chs(chx sx + shx cx)

c2 + ch2 −2
,

Σ31 = −8EJβ3 clx chx s + cx chlx sh

c2 + ch2 −2
, Σ32 = −2EJβ2 cx ch2lx −c2lx chx +2sx shx +s2lx shx +sx sh2lx

c2 + ch2 −2
,

Σ33 = 8EJβ3 chlx cxs + clx chx sh

c2 + ch2 −2
, Σ34 = −4EJβ2 chs(chx sx − cx shx)+ sh chx(2cxs − csx)+ shccx shx

c2 + ch2 −2
,

Σ41 = 2EJβ2c2lx chx −cx ch2lx +sx sh2lx +s2lx shx +2sx shx
c2 + ch2 −2

, Σ42 = 4EJβ
clx chx s − cx chlx sh

c2 + ch2 −2
,

Σ43 = 4EJβ2 slx shlx −ch chx ssx − ccx sh shx +c chx sx sh−cx chs shx
c2 + ch2 −2

,

Σ44 = 4EJβ
shclx chx +cxs(sh shx −ch chx)

c2 + ch2 −2
.

A.4. Bernoulli’s beam with constant cross section

The shape functions are obtained from the first case lettingk vanish.

A.5. Circular arch

The explicit expressions of the shape functions are very long, so they are expressed in the formΣ = ZΘ , whereZ is the
matrix of the constant of integration, andΘ is a basis for the equilibrium operator of the arch, given in Section 5. Introducing
the quantities

k = EAr2/EJ, α = l/r, c = cos(α), c1 = cos(α/2), c2 = cos(2α), s = sin(α),

s1 = sin(α/2), s2 = sin(2α),

the matricesZ,Θ are given by the following expressions:
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Θ =



kx
k − 1

2
r sin

(x
r

)
− 3+ k

2
x cos

(x
r

) 1− k

2
r cos

(x
r

)
− 3+ k

2
x sin

(x
r

)
r r sin

(x
r

)
−r cos

(x
r

)
(1+ k)r

3+ k

2
x sin

(x
r

)
−3+ k

2
x cos

(x
r

)
0 r cos

(x
r

)
r sin

(x
r

)
k
x

r
(1+ k)sin

(x
r

)
−(1+ k)cos

(x
r

)
1 0 0

0 −EAcos
(x
r

)
−EAsin

(x
r

)
0 0 0

0 EAsin
(x
r

)
−EAcos

(x
r

)
0 0 0

EAr EAr cos
(x
r

)
EAr sin

(x
r

)
0 0 0


,

Z =


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66


with

∆ = (
α2 − 4

)
k2 + (

3α2 − 8
)
k + (k + 3)kαs + 4(k + 1)2c − 4,

C11 = −2(1 + k)s

r∆
, C21 = (2α2 − αss + 6)k2 + (12+ 3αs2 − 6α2)k + 2(1+ k)2(c2 − 4c) + 6

r(k + 3)(α − s)∆
,

C31 = 8c1s
2
1(2(1+ k)2s1 − k(k + 3)αc1)

r(k + 3)(α − s)∆
, C41 = 8(1+ k)c1s

2
1(−2(1+ k)2s16+ k(k + 3)αc1)

r(k + 3)(α − s)∆
,

C51 = 2(1+ k)2s

r∆
, C61 = (4α − α3 + s2)k

2 + (2s2 + 8α − 3α3)k − 2(1+ k)2(s − 2c)+ 4α + s2

r(α − s)∆
,

C12 = −4(1 + k)s2
1

r∆
, C22 = −2s(2(c − 1)(1+ k)2 + k(k + 3)αs)

r(k + 3)(α − s)∆
,

C32 = 2k2(α2 − 1)+ k(6α2 − 4)+ k(k + 3)αs2 + 2(1+ k)2c2 − 2

r(k + 3)(α − s)∆
,

C42 = (1+ k)
2k2(α2 − 1)+ k(6α2 − 4)+ k(k + 3)αs2 + 2(1+ k)2c2 − 2

r(k + 3)(α − s)∆
,

C52 = (α2 − 2)k2 + (3α2 − 4)k + (k + 3)kαs + 2(k + 1)2c − 2

r∆
,

C62 = (2α2 − 2)k2 + (6α2 − 4)k + (k + 3)kαs2 + 2(k + 1)2c2 − 2

2r(α − s)∆
, C13 = (k − 1)s − (k + 3)α

∆
,

C23 = 1

(k + 3)(α − s)∆

((
5− 2α2 + 2αs + αs2

)
k2 + (

8− 6α2 + 8αs + 3αs2
)
k

− 8(1 + k)2c + (
3k2 + 8k + 5

)
c2 + 3

)
,

C33 = 4s2
1
(2k2 + 7k + 3)α + k(k + 3)αc − (3k2 + 8k + 5)s

(k + 3)(α − s)∆
,

C43 = 1

(k + 3)(α − s)∆

(
k3(α3 − 3/2α + s2 + αc2/2

) + k2(
6α3 − 9α − 2s + s2 + αc2

)
+ k

(
9α3 − 31/2α − 3/2αc2 + 2s − s2

) − 6α + 2(1+K)2(3+ k)αc+ 2s − s2
)
,

C53 = (1+ k)
(3+ k)α − (k − 1)s

∆
,

C63 = (k + 3)2kα3 − (6k + 8)kα + 2(3k2 + 4k + 1)αc − 2α + 2s(k2 − 1)+ (1− k2)s2

2(α − s)∆
,
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C14 = 2(1+ k)s

r∆
, C24 = −2

(3− αs)k2 + (6− 3αs)k + ((α2 − 4)k2 + (3α2 − 8)k − 4)c + (1+ k)2c2 + 3

r(k + 3)(α − s)∆
,

C34 = −2s
(α2 − 2)k2 + (3α2 − 4)k + 2(1+ k)2c − 2

r(k + 3)(α − s)∆
,

C44 = −2(1 + k)s
(α2 − 2)k2 + (3α2 − 4)k + 2(1+ k)2c − 2

r(k + 3)(α − s)∆
, C54 = −2(1 + k)2s

r∆
,

C64 = −s
(α2 − 2)k2 + (3α2 − 4)k + 2(1+ k)2c − 2

r(α − s)∆
,

C15 = −4(1 + k)s2
1

r∆
, C25 = 2s

(α2 − 2)k2 + (3α2 − 4)k + 2c(1 + k)2 − 2

r(k + 3)(α − s)∆
,

C35 = −2
k(k + 3)α(s + αc)− 2(1 + k)2s2

r(k + 3)(α − s)∆
, C45 = −2(1+ k)

k(k + 3)α(s + αc)− 2(1+ k)2s2

r(k + 3)(α − s)∆
,

C55 = 4(1+ k)2s2
1

r∆
, C65 = −k(k + 3)α(s + αc)− 2(1+ k)2s2

r(α − s)∆
,

C16 = − (k − 1)s − (k + 3)α

∆
,

C26 = 1

(k + 3)(α − s)∆

(
(7− 4αs)k2 + (16− 14αs)k + 2c

(
k2(

α2 − 4
)
k2 + (

3α2 − 8
)
k − 4

)
+ (

k2 − 1
)
c2 − 6αs + 9

)
,

C36 = (2αc(k2 + 4k + 3)+ 2s(α2k2 − k2 + 3α2k + 1)− (1+ k)(2kα + 6α − ks2 + s2))

(k + 3)(α − s)∆
,

C46 = 2(1+ k)s1
((2α2 − 1)k2 + 6α2k + 1)+ (1+ k)((k − 1)cos(3α/2) − 2(3 + k)αs1)

(k + 3)(α − s)∆
,

C56 = −(1+ k)
(3+ k)α − (k − 1)s

∆
,

C66 = (αc(k2 + 4k + 3)+ s(α2k2 − k2 + 3α2k + 1)− (1+ k)/2(2kα + 6α − ks2 + s2))

(α − s)∆
.
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