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An explicit formulation of the Green’s operator
for general one-dimensional structures
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Abstract

A general procedure Tor the determination of the explicit expression of the Green’s function of an ordinary differential
aperator is described in the paper, that requires only the knowledge of the null spaces of the operator and its adjoint, Although
the main results concerning the structure of the Green's function are known in the literature, the proposed approach is suitable
for symbolic mathematics systems and has been addressed in particular for frame structures including various beam models. The
general expression of all the influence functions is given and some analytical results are presented.

Kevwords Green function; Influence function: Frame; Beam

1. Introduction

As it is well known, the Green operator of a linear elliptic differential problem is the inverse operator that yields the solution
as a linear map of the data (Courant and Hilbert, 1953). OFf course, it gives a complete knowledge of the problem. In structural
mechanics it has the immediate physical meaning of the response function of a system when a unit excitation is applied at an
arbitrary point.

The use of Green's function in mechanics arises in many applications, as soil-structure and liquid-siructure interaction,
elastic—plastic problems involving the application of Colonnetti’s principle (Kenig, 1967). elasticity and steady-state heat
conduction problems in multiple connected layered bodies (Melnikoy, 1997), computation of response functions (e.g.. the
response function appearing in the Duhamel integral), etc,

Noteworthy is Fichera's theory of orthogonal invariants of the Green's operator (Fichera, 1965, 1969, 1973) that vields the
error estimate in the evaluation of eigenvalues (natural frequencics and critical loads) of an elastic system. This method has
been applied to the case of frame structures by M. Romano {Romano, 1975, 1987) and others (Cuomo et al., 1987, 1989),

Explicit expressions of the Green function are known in very few cases, and in general approximate forms have to be
evaluated. Exact expressions can always be obtained, at least in principle, for problems governed by an operator defined on
subsets of . In this case, in fact, ordinary differential equations arise, and the dimension of the null space A" of the differential
operator L is finite, so that the algebra of finite dimensional vector spaces can be applied.

In structural mechanics one-dimensional problems are related to frames and trusses, but many other problems can be
reformulated as sets of ODEs, like plane structures with axial symmetry, circular plates subjected to particular boundary
conditions, infinite strips, ete.
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In the paper is derived an explicit expression for the Green’s function of this class of structures, that requires only
the knowledge of a basis for the null space of the equilibrium operator. First, some properties of the Green’s function
are recalled, then it is proved that the Green’s function is given by a linear combinatidfi lof and A'(L*), L* being
the adjoint operator of.. This result is known in the literature (e.g. (Chitwood, 1973; Locker, 1977)), where attention is
mainly focused on existence and representation results in the compatible case (i.e. when the solution to the homogeneous
problem, if exists, is not unique), and fath-order operators. Here some of the formalism used in (Chitwood, 1973;
Locker, 1977) is adopted, but the focus of the paper is to give a constructive proof of the structure of the Green’s operator for
incompatible problems, where the solution exists and is unique. The proof given in the paper allows for a direct evaluation of the
Green’s operator given a basis of the kernel of the differential problem for any assigned two-points boundary conditions. The
case of self-adjoint operators is then addressed, and it is recognized that a suitable base system is given by the fundamental shape
functions of the elements of the structure, for clamped end (homogeneous) boundary conditions, and a simplified expression
for the Green'’s function is derived for this case. Subsequently, the case of general frame structures is considered. The Green’s
operator is obtained splitting the problem in two parts, the first accounting for the nodal boundary conditions, the other related
to the single element with homogeneous boundary conditions.

In the closing part of the paper the Green'’s operator is determined for several beam elements, and some graphs of influence
functions computed by the proposed approach are reported as well.

2. Formulation of the problem for an operator on R
2.1. General properties of the Green'’s function

Let L be a linear differential operator of ordet th the variablev, V-elliptic in a closed subspade of H" (£2):

L(v(x):D(L) CV — L2(R2), 1)
wherev(x): 2 — R™, 2 = [xg, x1] C R. Let suppose that the differential problem
Lw)=f feLl? veD(L) 2

admits a solution.

Sincev is a function defined over a scalar interval, the conditienD(L) states that the functiomhas to satisfy a set ofi2
(linear) boundary conditions. i is the number of linearly independent boundary conditions then the index of compatibility of
problem (2) isx = 2n — p. In the following it will be assumed that = 0, i.e. the problem admits a unique solution representable
in the form (Chitwood, 1973)

X1

v(x) =/G(x,$)f($)d§, (3)

X0

G(x,£):82 x 2 — D(L) being the Green'’s function of the problem (2) with the prescribed boundary conditions.

The linear differential operatat. may always be written in normal form; i.e. a matrix differential operatasf the first
order in the vector variable: 2 — R?" exists, such thatu is the system of differential equations in normal form associated
with L. The problem (2) is therefore formulated as

Lu=f, ferl?R?), 4)
L having always the form
Lu =P(x)U,y —Q(x)u ®)

in which _, x is the derivative with respect to the independent variabléhile P andQ are matrices of coefficients that, in the
more general case, are functionscofFurthermoreP is nonsingular on the whole domada.
The matrixP in (5) can always be put, without loss of generality, in the form

P= [PM 0] ®)
with the elements oP19 andPg; equal to 0 or+1.

In the following it will be determined the Green’s function associated with the opetatogether with homogeneous
boundary conditions of the form

Bou(xg) + Bgu(x1) =0, (7)



whereBg andB, are 21 x 2n matrices of constants. The compatibility index of the problem (4) with the boundary conditions (7)
is

p=2n —ranBou(xp) + B1u(x1)] )

and therefore the condition that has to be verified in order that an unique solution exists is tfBguank + Biu(xq)] = 2n.
The null space ok is given by all and only the solutions of the homogeneous problem

Lu =0. )
Before proceeding to the construction of the Green'’s function for the differential problem
Lu =f(x),
1
{ Bou(xo) +B1u(x1) =0, (10)

it is useful to restate some properties of the Green’s function in the case of a linear vector differential operator defined on
a subsef? of R.

Theorem 1 (Properties of the Green’s functior)et an((z) be the space of th@n x 2n matrices whose coefficients are

continuous functions of2. The Green'’s functiols(x, &) of the problem(10) with zero compatibility index has the following
properties

(1) G(x, &) is defined o2 x £2 and has values OVRZ";

(2) G(x, &) considered as a function af satisfies the boundary conditiofig);
(3) G(x, &) considered as a function af belongs tccgn(Q);

(4) G(x, &) considered as a function af satisfieg4) in £2 — {&};

(5) lim,_oGx,x +h) —G(x,x —h) = -pLp being defined irf5).

Proof. If u(x) is a solution to problem (10) then, because of the definition of Green'’s function, it can be represented as
X1
u = [ G i) (12)
X0
Let us prove then that if we consider a functiGrfor which the properties (1)—(5) hold then the function
x1
ut) = [ i ote s (12)
X0

is a solution of the differential boundary problem (10). Furthermore because of the uniqueness of the solution@ rehllts
In fact the boundary conditions (7) are satisfied because of property (2) and, differentiating (12) with respet ttas

X X1
Uy = /é (x, £)F(§) dg + G, x (x, x7)f(x) +/é,x (x, £)f(€) dg — G,x (x, xHf(x)
X0 X

x1
_ / Gy (v, (&) dE + P (). (13)
X0

Then the evaluation of (5) yields

X1 X1

Lu=p / &.. (x. §)() ds +PP (0 —Q / Glx. £)(E) . (14)
X0 X0
that is,
X1
Lu= / (PG.x (x,£) — QG)(§) & +f(x). (15)

X0



SinceG by property (4) satisfies the homogeneous equaliét(lx, &) =0, Vx € 2 — {&}, itis readily obtained the result
Lu =f(x). (16)

The function (12) is therefore the solution of the problem (10).
The sufficiency of conditions (1)—(5) for a functiorgiven by (11) to be the solution of problem (10) can be obtained going
through the same steps in inverse ordemn

The formal adjoint operatdc* to L is given by

ad
ax

where the superscrigt denotes the transpose. The null spacek of * are related by the property stated in the following
theorem:

Theorem 2 (Property of the elements of the null spad€sL) and A/ (L*)). Letu € N'(L) be an arbitrary element of the
null space of the differential operatdr andw € N'(L*) be an arbitrary element of the null space of the adjoint differential
operatorL *. It results

Pu-w=const Vxe . (18)

Proof. Letu andw be twoR2*-valued derivable functions defined ¢h. The standard dot product iR2" of the vectord_u
andw yields

Lu-w = (Pu,y —Qu) - w=Pu,, - w—Qu-w=(Pu-w),, —Pu-w,, —Qu-w
= (Pu-w),y —PTw,, -u—Q"w-u=(Pu-w),, +L*w-u, (19)

therefore,

Lu-w—L*w-u=(Pu-w),,. (20)

If uandw are respectively two arbitrary elements/é{L) and\/(L*), the first member of (20) is identically equal to zero

and itis

(Pu-w),, =0 from which (22)

Pu-w=const Vxe§2, (22)
which completes the proof.O
Corollary 1 (Property of the bases o (L) and A (L*)). Let® be a2n x 2z matrix whose columns®®) are a basis of\/(L)
and @* be a2n x 2n matrix whose columns(/) are a basis of\'(L*). The product

A=—0*x)TPO(x) (A;; =Pu?.w)), vxeg, (23)
is a nonsingular matrix of constants.

Proof. The matrixA is nonsingular since it is the product of nonsingular matrices. The result is readily obtained from the
property expressed in (22) which applies to any element of the matrix.

2.2. Construction of the Green’s function

It will now be presented a constructive proof of the property that the Green’s function can always be expressed as a bilinear
combination of a basis for the null spaces of the direct operator and its adjoint.

Because of properties (3)—(5) the Green'’s function of the differential opdratath the boundary conditions (7) may be
written in the following form:

Gi(x. ), x<§ {4’()6)1"1(5), x <&,

G(x,é?):{ TloraE), x>&,

Go(x,&), x=& (24)



whereI'1(&) and I'>(&) are matrices of unknown functions. In fact the functi®rdefined in (24) belongs tO‘gn(Q —{&hH
(property 3) a®p (x) € C%n(.Q) and the matricef 1 (&) andI'>(§) are, for fixedt, constant matrices; moreover, as the columns
of G1 andG, are linear combinations of the columns®f it resultsLG = 0 as requested by property (4).

The matriced™; andI'» can be determined enforcing properties (2) and (5). From property (5) at thexpsiétit must be

G1(£.£) — Ga(¢,6) = P71 (25)
and, by substitution of definition (24),

®(E)[M1(6) — Ta)]=-P1 (26)
letting I' (£) = I'»(&) — I'1(£),

PEIE) =P @7)

(P® )T =1, (28)
and, taking the dot product of each sided(¢)T,

¥ (&) (POE)I () =D* ()", (29)
it is finally obtained, using (23):

re=-A"te*@m (30)

So requiring that the function defined by (24) satisfy property (5), the differ€rigg= I'2(¢§) — I'1(¢) has been uniquely
determined. Moreovef;, because of property (2), must fulfil the boundary conditions (7):

BoG1(x0,) +B1G2a(x1,6) =0, VEe . (31)
Substituting definition (24)

Bo®(x0)I'1(5) + B1@(x))I2(5) =0, Ve . (32)
Expressingl'>(§) as a function of" (§) andI'1 (&), the following linear system of equations is obtained:

[Bo® (x0) +B1®(x1)]T'1(5) = —B1@ (x) T (5). (33)
Sinceu = 0, the matrix

H=Bo®(xg) +B1®(x1) (34)
is nonsingular, so (33) admits the unique solution

ri1§)=-H"1B10(x)r® (35)
which may be written, introducing (30),

ri§=H"'Bepate*@r. (36)
A similar expression holds faF(§):

() =—H "B (x4~ 1% (©)". (37)
Introducing the constant matrices

C = H!Bio(A~L, (38)

D = —H 1Bg# (xg)A 1L, (39)
it is possible to write the Green'’s function (24) in the form

x0T
st ={ S e 254 )

which is a bilinear form of a basis ¢ (L) and a basis al\/'(L*).

It is observed that the evaluation of the mat@x(as well asD) may be carried out with respect to any arbitrary basis of
N (L) and then transformed to the basis chosen to represent the Green’s function. Inde@at)lend® (x) be two bases and
let Z be the linear transformation such that

" (x)=20"(x) (41)
and suppose th&l is the expression df with respect to the basi. It is readily found, by substitution, that
Co=2"CoZ. (42)



2.3. Self-adjoint operators

In the previous section it has been treated the general case of a differential operator, and the role of its adjoint has resulted
evident. In the following the result will be particularized to the case of a self-adjoint operator. In this casd, belnf from
(17) itis obtained

P%u—Qu:—PT%u—QTu, vu, (43)
9
(P+ PT)au— (Q-QNu=0, wu (44)
these imply
P=-P", Q=Q, (45)

that is,P is skew-symmetric an@ is symmetric. In particular, (6) and (45) impBy1 = —PIO. Without loss of generality it is
always possible to write the system in normal form so fygf= —Pg, = | can be obtained.
Moreover, beingp* = @, from (23) it follows that the matrix of constanisis skew symmetric:

AT=[-0"Pe]"=—0"P o6 =0TPo = 4. (46)

In this case the Green’s function is symmetric with respect to the variakdesl . In fact letp andf be two arbitrary vectors
of functions generally continuous on the doma&mnBecause of existence and uniqueness of the solution

Ju: Lu =p, Vxeg, (47)
Av: Lv =f, Vxes, (48)
given by
u= [ewoped, (49)
2
v= [ewored. (50)
2

As L is self-adjoint because of the duality relation

(Lu,v) =(Lv,u), Vu,v, (51)
substituting Egs. (47), (48) and (49), (50)
/ p(x) - G(x, §)f(§) dé dx = / f(x) - G(x,§)p(§)ds dx, Vp.f. (52)
2x82 2x82

Equation (52) implies

GT(x.&) =G(t.x), V{x.&le2xR. (53)
Introducing (53) in (40) and being* = &, it is obtained

Gl(x,5) =Ga(5,x), Vix,£le2xQ, (54)
that is,

[@()CeT(®)] =@E)DoT(x), Vix,E)e R x 2, (55)

ECTOT(x) = (DD (x), Vix.EleR x 2. (56)

The matrixD is therefore the transpose ©f In the hypothesis that is self-adjoint the Green'’s function expressed by (40) has
then the form

P()CPT(5), x<§,

G(x’g):{rb(x)cTN(s), x>E.

(67)



2.4. Canonical bases

The matrixC can be determined, by virtue of (38), with respect to any basi§ @df). However, if some assumptions are
made in the determination of the basis the final expressi@haain be greatly simplified. In order to reach this result the concept
of canonical basis will be introduced in this section. Let

I 0 00
A basisX (x) of A/(L) will be calledcanonicalif it satisfies the boundary conditions
H=BgX(xg) +B1X(x1) =1. (59)
If the basisX (x) is partitioned into foun x n matrices as
Toox) X 10(X)]
X(x)= 60
) [Eol(x) F11(x) (60)

then X (x) will be canonical if it satisfies the following boundary conditions:
Zoolxp) =1,  Z10(x0)=0,  Zgo(x1)=0,  Zjox1)=1. (61)

In the context of solid mechanics the canonical basis is formed by the extended shape functions of the element on the interval
[x0, x1], i.e. the integral o(x) and X1 (x) of the canonical basi¥ (x),

_ | Zootx) _ | Z10(x)
sa0=| 3o | m=[ 70 ©2

satisfy the essential homogeneous boundary conditions at theceads and.x = xq, respectively, that, after introducing the
matrix

B=[l 0] (63)

can be written in a short form as

BXo(xo) =1,  BXi(xp=l, (64)
BX1(xg) = 0, BXo(x1) =0. (65)

If the differential system (5) is written in a normal form it is easy to see that the adjoint differential operator is given by the
differential operator (17) with the boundary conditions still given by (58). Therefore, using notation similar to (60) the canonical
basisX*(x) of the kernel of the adjoint operatbr* satisfies

Zoox0) =1, 10(x0) =0, 5o(x1) =0, o)) =1. (66)

If the determination of the Green'’s function is made with respect to the canonical bas&t pand A\ (L*), it is possible
to derive a simpler expression for the constant matri@emdD. To this end the expression of the Green'’s function (40) for
x < & is written introducing a suitable partition of the mat@x

Coo Cio ES(S)T]
X X
[ O(X)s 1()6)] |:C01 Cll] [zi(s)T
= Xo)[CooZ )T +C10Z5®) ]+ Z1(0)[CorZ§©) T +C11Zi(®)T]. (67)

As the Green’s function satisfies the boundary conditions, in view of the structure (58) of the boundary conditions, it is
BG(xg, &) =0, V&, BG(x1,&) =0, VE. The following results can be readily obtained using Egs. (61) and (66):

G(x,§)

BG(xg,xg) = 0 = Cpg=0, (68)
BG(xp,x1) =0 = C10=0, (69)
BG(x1,x1) =0 = Cq11=0. (70)

Similarly writing the Green'’s function far > & and introducing foD the same partition as in (67) it is obtained
BG(xg,xg) = 0 == Dgg=0, (71)
BG(x1,x9) = 0 = Dg1=0, (72)
BG(x1,x1) =0 = D11=0. (73)



The structures o€ andD with respect to the canonical bases\fL ) and A/ (L*) are therefore

0 O 0D
C:[cm 0], D:[O 30] (74)

and the following final expression of the Green’s function can then be given:

Z1(x)Co1Z§®)", x <&,
G(x,§&) = 75
{Eo(x)Dlozi@T, x>E. 79
Moreover, recalling (59), the following equalities hold:
_ 00 _ I 0
H 1Blz(x1)=[o l], H 1Boz(xo)=[o 0]. (76)
Partitioning the matrixA —1 as
1 [ e (4740
AT =] ek (77)
(A7)0 (47711

evaluating the matrice€ and D with respect to the canonical bases and using Egs. (38), (39) and (76), (77), the following
expressions are got:

o[ ) O[] 78

so that by virtue of (74) the matric€1 andD1g are equal to

Co1 = (A_1)01, (79)

D1o = (47 1)y (80)
while it must be

(A g0 = 0. (81)

(A_l)n = 0. (82)

In the case of self-adjoint operators ithd = C and, thereforeDI0 = Cp1, as follows from (79) and (80), since in this case

A is skew symmetric.
2.5. Computation of the constant matrices with respect to canonical bases

As shown in the previous section, the matri€gg andD1 fully define the Green’s function of a differential operator with
respect to the canonical bases\6fL ) and /(L *). Their computation can be carried out using (79) and (80) either symbolically
or numerically, evaluatingt —1 at any pointx € £2 (asA has been shown to be independent fremA simpler formula can,
however, be determined f@qp1 andD g using the properties of the canonical bases.

Recalling the structure of the matri Eqg. (6), the constant matriA can be written in the form

T _ [Z5o®T E5T[ 0 Pro][ Zook) Eio(r)
A=—EPEm= [ziomT T Pa 0 ][ Zow Fuw] (63)

Carrying out the products, computingy for x = xg and x = x1, accounting for the boundary conditions (61), (66) and
equating the results, the following equivalent expressiongifare found:

__ 0 P10Z11(x0) | _ _ 0 X510 Pos
A= [ X% (x0) P01 0 [ P10¥o1(x1) 0 ' (84)
Applying the formulas for the computation of the inverse of a partitioned matrix, it is obtained
Al _ |: 0 (Eil(xO)TPOﬂ_l] __ |: 0 (Plozol(xl))_l] ) (85)
(P10%11(x0)) 1 0 (Z3,(x1)TPop L 0 ’

the final expressions fa€g; andD1g given by Egs. (79) and (80) take the form



Co1 = —(P10Z11(x0)) L = —(Z&,(x1)TPoa) %, (86)
(2%1x0) TPo1) ™t = (ProZo1(xp) . (87)

In the common case of self-adjoint operators, recalling that it is always possible to Bhtatn—Pg1 = |, formulas (86)
and (87) simplify to

Co1=—(X11(x0)) " = (Po1(x1) ' =Dy (©%)

In solid mechanics the elements of the matrices appearing in (88) give the values of the mechanical boundary conditions at the
ends of the structural element associated with the ordinary shape functions.

D10

3. The structural problem

The results reported in the previous section can be applied to determine the expression for the Green’s function of the
equilibrium operator governing the mechanical response of a structural model. In order to match the hypotheses made in the
development of the theory, a linear structural model will be considered, described through the following equations:

Tu=c¢e, T*o = f, Ee=o, (89)

where

e u is the displacement vector, defined on the closed dominccupied by the structure; is assumed to belong to
a subspacg! of the Hilbert spacé{”, where the index depends on the order of the variational operator of the problem;

e fis the applied forces vector, an element of a subspagasually 0f£2), dual tol/, defined both on the domai2 and

on its boundary;

¢ is the deformation field, whose nature depends on the problem at hand, belonging to a linear vec®r space

o is the internal forces (stress) field, defined on the vector sfae&*.

T:U— &, T*:S — F are the adjoint operators of compatibility and equilibrium, assumed to be linear;

E is the linear symmetric operator describing the constitutive relations.

The hypotheses made, therefore, refer to the case of infinitesimal displacefmdénesaf) and linear material behavior. The
linear elastic case will be addressed, so thaeduces to a constant operator.
The structural analysis according to the standard displacement method leads to the variational problem

I, v)=(f,v), ueV,VveV, (90)

Y Cc U being the subspace of admissible displacements which satisfies the kinematical boundary conditions(-1n)(90)
indicates the scalar product aif, and!(u, v) is the bilinear form orf{", corresponding to the linear differential operator
of equilibrium

L=T*ET:U—F (91)

together with both the proper kinematical and mechanical boundary conditions.
Since the operatokL is linear, self-adjoint and continuous & all the theory developed in the previous sections can be
applied to it.

3.1. Frame structures

In this section the problem of the construction of the Green’s function for frame structures will be addressed, following the
approach introduced in (Romano, 1987).

With the symbols previously introduced, the equilibrium problem for a frame structure can be described by means of the
following differential boundary value problem

Lu=q, ueV, (92)
g being the load vector. The variational form of (92) is given by

(u,v)=(q,v), ueV, VveV, (93)



wherel is the bilinear form of the elastic strain energy ang) is the scalar product i¥?, defined by

Wﬁﬁ:z:/abm, (94)

i=1,mei

m being the number of the elements in the structure.
The normal formL (; of the restriction of the differential operator of equilibrium (92) to a single beam element is given by
the system of differential equations

{ T*s=q+ p(w),

Tu=E ls+q, (95)

whereu is the vector of the displacement functiorss the vector of the internal forces andre inelastic deformations. In the
plane case the elementsiwfinds have, respectively, the physical meaning of axial displacement, transversal displacement and
rotation, and axial force, shear force and bending moment. The gésnaccounts for reactive or inertia forces. The explicit
expressions of the differential operators for some beam models will be given in Section 4.

3.1.1. Splitting of the problem
In order to evaluate the Green'’s function for a frame structure the admissible displacements gpapét into the direct
sum of two orthogonal subspaces with respect to the scalar product defined by the bilinear form of the elastic energy

v=Veao)" (96)
In this equation)’ is chosen as the space of the displacement functions satisfying homogeneous boundary conditions at the
ends, i.e. the displacement functions for the clamped beams. The subSpictnen defined as the orthogonal complement to
V' by the relation
l(u/, u”) =0, Vu' eV, Vu" eV, (97)
(Lu/, u”) =0, Vu' eV, vu" eV. (98)
The problem (93) is then divided into the following two:

W' V)y=(q.v), u'eV, 6 VeV, (P1)

l(u//, U//) — (q7 U//), M// c V//7 Vv// c V//, (P2)
where, from the definition of the spack$and)”, problem (P1) has homogeneous boundary conditions, while problem (P2)
retains the original ones.

If G’ andG” are the Green’s operators for the problems (P1) and (P2), because of the property (96), the following additive

decomposition for the Green operator is obtained:

u=u'+u"=G'q+G"q=Ggq; (99)
and, because of the linearity of the Green'’s operator,

G=G +G". (100)

The Green’s function can therefore be expressed as the sum of the Green’s fu@tiand G” of the problems (P1)
and (P2).

3.1.2. Evaluation of the Green’s functi@i

The results of Section 2 can be directly applied to problem (P1), that redugedifferential equations with homogeneous
boundary conditions, one for every element of the structur@’i is the Green'’s function for thah element of the structure
considered as clamped at both ends (homogeneous boundary conditions), then the Green’s function for the whole structure is
given by

/ H /
G’ =diad G|, ]- (101)
Because of the particular boundary conditions there is in fact no interaction between the elements of the structure. The evaluation

of the Green’s functiomB/(l.) for each single element is obtained determining a basis for the kerheg}ofin order to simplify

the expression of the Green’s functi@{ reported in the next paragraph, this evaluation can be conveniently carried out with
respect to the canonical basig;) made by theextended shape functioo§the element, that is, a basis made by the ordinary



shape functions for the displacements plus those for the internal forces. Accordingly, th&phasian be partitioned in two
groups of rows as in (60):

X = [2"] . (102)
0

The extended shape functio¥; satisfy boundary conditions of the kind (61) and the differential system is self-adjoint.
Therefore, the Green’s function is given by expression (75) and the n@&ggiis given by the formula (88).

3.1.3. Evaluation of the Green’s functi&{’

The subspac®”, as defined by the orthogonality relation (98), is generated by a basis of the homogeneous differential
systemLu” = 0, with the boundary conditions of the original problem (92). It follows that a suitable basis of this space can be
given by the sef of the shape functions of the elements.

If d is the vector of the nodal displacements in the global structure coordinate systemisatige vector of the end
displacements for all the elements in the structure in their local coordinate systems, it is possible to define a lineaRoperator
accounting for the kinematical constraints such thatRd and then write:” and the corresponding internal foreésas

M//(x) . B
[5/,(x) ] =X (x)s= X (x)Rd. (103)
The vector of the equivalent nodal loads for the structusegiven by
_pT T|a®)
f=R /E(éf) [q@)} d, (104)

whereq are the inelastic distortions dual $6. The nodal displacementscan be expressed as a linear functiorf tiirough
the flexibility matrix F of the system in the fornd = Ff. The flexibility matrix F is readily obtained from the variational
formulation (93) a& = (f,, RT ZTEZsRd&)~1, once the shape functions are known.

From (103) and (104) the following expression is obtained:

u//(x)] _/ TeT |:‘1(§):|
[5/,(x) = [ [ZWRFR'Z (5] 0t | % (105)
The Green’s functiois” is then, by definition, equal to the term in square brackets:

G’(x.&) = Z(WRFRT X T (£). (106)

Itis immediately observed that the matfix = RFRT is a “disassembled flexibility matrix” for the structure. If the structure
is made bym elements andi; is the number of the degrees of freedom at one end of the generic elemenE,tliem
2mng x 2mng matrix formed bym2 submatrices 2y x 2ny. Each submatrid, ;) is the linear operator that gives the
end displacements of the elemeénin its local coordinate system) as a function of the end forces applied to the elgment
(expressed in the local coordinate system of the elenierthe following restriction of the Green’s functi@®”’ can therefore
be considered:

Glijy (%, §) = Z i) (OF i) Z () ©)- (107)

The Green'’s matri>Gz’ij)(x,§) has dimensions; x 2n, and its elements have the physical meaning of effect (i.e.
displacement or rotation or internal force) at the absciseithe ith beam due to an action (i.e. force or couple or distortion)
applied at the abscisgaof the jth beam.

3.1.4. Evaluation of the Green’s functi@
Using the results obtained in the previous sections, the Green’s function for two elensmtg of a frame structure is
given by

i) [Feiij +5i'C(i)]27T- &), x<§,
Gijy (x, 6) = peuTrw ) (108)
2o [Feqy) +8CH] [ ®), x>¢,

whered;; is the Kronecker’s functiondf; =1 if i = j, §;; = 0 otherwise) ancCy;) is trivially obtained from Eq. (74) with
C(i)o1 given by (88).

It is noted in (108) that the ter®’ is added only wheri = j as the “clamped beam effects” are of course present only
if the action and the effect are in the same element, as it was pointed out in the determinaBionrothe plane case, if



w,v, ¢, N, T, M are respectively the influence functions of the axial displacement, transversal displacement, rotation, axial
force, shear and bending moment due to an axial faraetransversal force, a couplem, an inelastic axial distortion, an
inelastic shear distortiofi and an inelastic curvatuge, then the elements @ are

Wg Wy Wy W)y We Wy
Vg VUt Um vy Vg v n
_| Ya Ot POm Or  Po Pu 1
G(x, &) Noe N; Nm Ni Np N |’ (109)
T, Ty T 7). Ty T/,,
Mg My My, M, My M, I

where the indexes represent the moving actions.

4. Evaluation of the Green'’s function for some beam models

In the previous sections it has been shown that the computation of the Green’s function for a frame structure requires only
the knowledge of a basis for the kernel of the equilibrium operator. This allows either to evaluate the flexibility matrix of the
system (and hend8”) and to compute the matri@ necessary to defin®’ through one of the previously given formulas (38)
or (88), depending on the basis being used.

As the computation 06" is trivial, here some results regarding the clamped beam are given. It is also explicitly calculated
the value of the linear invariant of the Green’s operator. It represents the sum of the eigenvalues of theLo(p;e'ratvI‘, and
allows to bound the approximation error in the estimate of eigenperiods for the whole structure through the formula (Romano,
1975)

of =w; +r5G, (110)

wherew,, w,j are the lower and upper bound to tih vibration period ancE is the matrix of the mass distribution of the
system. Ifp; (x) is the mass per unit length pertaining to ttie member and/,, (x) the corresponding polar inertia moment, it
is (in the plane case¥ (x) = diad p; (x), p; (x), Jp; (x), 0,0, 0]. The trace appearing in (110) is equal to

li
m
trEG’:Z/trE,-(x)G; (x, x) dx. (111)

Introducing the explicit expression fG’?, the following expression for the linear invariant is obtained:

li
m m m
trG' =) trC; / zl(l.)(x)é,- () Zug (x)dr =Y trC;M; =Y "trCoy,M1q,. (112)
i=1 0 i=1 i=1

having indicated byZ the matrix formed by the first three rows and columnsgofin this formulaM; has the meaning of the
consistent mass matrix for the element, and a partition similar to (60) has been introduced for it.

For a plane straight beam the flexural part of the homogeneous differential problem, written in the normal form (5), is
(disregarding inertia forces and Eulerian instability effects)

00 -1 07[vx k(x) © 0 0 v 0

00 0 —1|| ¢x ) -1 0 o] |o

100 of|l7|T| 0 -1 —xw/Ga 0 7|0l (113)

01 0 odlm, 0 0 0 —1yEHd Lm 0

so that

00 -1 0 k(x) O 0 0
00 0 -1 0 o 1 0

P=l10 0 o 97| 0 -1 —xw/Ga o | (114)
01 0 0 0o o 0 —1/(EJ)

wherev and ¢ are the transversal displacement and the rotation of the cross settemd M are the shear force and the
bending moment. In the matri@ the bending and shear deformabilities appear as well as the Winkler cohstadthey can
be functions ofc. From this equation various particular cases can be obtained.



Some particular examples are reported in the following and have been obtained by means of a symbolic mathematics
system as follows. Given the homogeneous differential problem (113) a #éafis the kernel of the differential operator
is determined. The basis can always be transformed into a canonical basis by the transformation (41), i.e. solving a system
of linear equations. In the following examples it is made reference to canonical bases, and consequently the Green’s function
is given by expression (75) that requires only the knowledge of the m@gixcomputed using Eq. (88). In this section the
expressions of the matriq1, together with the first invariant of the Green’s operator, are reported for some beam models. The
matrices of the shape functions are listed in the appendix.

4.1. Beam with shear deformability and constant cross section

X B 2
—| GATBET 2EJ
Cor=| "7 A
2E7 EJ
If p(x) = p is constant along the beam, the following expression for the linear invariant is obtained:
4 1 XEJ
tr5G = —— —— [p(840k? + 84k + 1) + J,(840k + 28)], where k=2—".
7 120 22087 ! + 84+ 1) + /(840 +28)] GAI2

4.2. Beam with zero shear deformability and variable cross section

Let J(x) = Jo(1 + 9x/1)3 and p(x) = pg(1+ 6x/1). These laws of variation are typical of the rectangular cross section
beam with linearly variable height. The computation yields

, [ha+o 0+2 1
! 03  202(0+1) 20+1)
CoL=Fnl 1 _0+2
216 + 1)2 202(6 + 1)2
trEG’—polz 1

~ EJo 75500 +2)In(1+6) — 20]
x {p12[26(12+ 120 — 50%) + 302+ 0) IN(L + 6) (62 + 20 + 2) — 36(1 + 6)%In?(1 4 6)]
+Jp[28%2 — 180932+ 6) In(1 +6) + 3692(62 + 20 + 2) In?(1+ 6) ]}

4.3. Beam with constant cross section and zero shear deformability resting on a Winkler soil

Let ,84 =k/(4EJ), c =cogBl), s = sin(Bl), ch=cosh(Bl), sh=sinh(Bl). Then

1 csh—sch 2Bs sh
T 43EJ | —2Bssh  2p%(sch+csh |’

,_i{i[Z—Fﬂl(ChSh—cs)—Ch2—Shz—cz+sz] J_p|:2,Bl(ChSh+cs)—Chz—sf?+cz—sz]}
T 4EJ | p4 2 —s2 4 chP4she -2 B2 2 — 52 chP4shf -2 '

4.4, Bernoulli's beam with constant cross section

Co1

tr&

This is the limit case toward which tend all the previous examples. The following results are obtained:

1 [-36 122 56 — pl* N Jpl?
EJ| =122 1 | =Y T 420E7 T 15EJC

Cor=

4.5, Circular arch

The homogeneous differential problem for a curved beam with constant cross section is given by
000-1 0 O Ug, x

000 0 -1 0 |[|uy
000 0 0 —1]a,
100 0 0 Of|Ny
010 0 0 Of|Ty
001 0 o odlm,



0o 0 O 0 Yr 0 s 0
0o 0 0 -1r 0 0 Uy 0
0o 0 O 0 -1 0 | |0

Tl o —1r 0 —1/(EA 0 1/(EAr) N|T|ol
1r 0 -1 0 —x(x)/(GA) 0 T 0
0 0 0 1(EAr) 0 —1/(EJ)—1/(EArS 1 Lm 0

wherex is the curvilinear abscissa along the beam apd:, are the tangential (axial) and radial displacements respectively.
In the case of constant curvature radiygotal lengthl = ro and no shear deformabilityy(x) = 0), the matrixCg1 wr.t. the
shape functions of the element is

1+ k) + <2+ g)ac— <2+ %)s (2+ g)as @i dFRe-@+hs

r

001=Er—A (2+k)(1—c)—<2+§)as %(4+k)(ac—s) %(Z—I—k)(l—c) ,
}[(1+k)a—(2+k)s] —}(2—|—k)(1—c) iz(l+k)a
r r r

wherec =cogl/r), s =sin(l/r), k = EArZ/EJ. The linear invariant of the Green'’s function for this particular case is not
reported because of the excessive length of the algebraic expression, but it can be easily evaluated numerically from Eqg. (112).

5. Influence lines for a circular arch

The method proposed for the evaluation of the Green’s operator in frame structures has been implemented into a software
for two-dimensional frame analysis. As a nonstandard application an arch clamped at both ends and made by 3 circular beam
segments is considered, Fig. 1. The arch segments have a curvature radius equal to 15 and the nodal coordinates, form left to
right are(0, 0), (5,5), (15,5), (20,0). The influence lines constructed by the present approach and reported in Figs. 2-8 have
been verified through the application of the Betti's theorem.

Fig. 1. Geometry of the circular arch.

Fig. 2. Influence line of the vertical displacement at the midspan for a vertical moving force.



Fig. 4. Influence line of the shear stress at the midspan for a vertical moving force.

Fig. 6. Influence line of the bending moment at the left clamp for a vertical moving force.

The influence lines have been computed assuming a travelling vertical force and considering the effects at the midspan of

the arch and at the left clamp. More precisely they are:

vertical displacement at the midspan, Fig. 2;
bending moment at the midspan, Fig. 3;
shear force at the midspan, Fig. 4;

normal force at the midspan, Fig. 5;
bending moment at the left clamp, Fig. 6;



Fig. 7. Influence line of the shear stress at the left clamp for a vertical moving force.

Fig. 8. Influence line of the normal stress at the left clamp for a vertical moving force.

e shear force at the left clamp, Fig. 7;
e normal force at the left clamp, Fig. 8.

The method proposed for the computation of the influence lines appears of very simple introduction in any frame element
code. In fact these softwares compute the stiffness matrix of the structure and represent the deformed geometry through the
element shape functions. Therefore, according to Eq. (108), only the computation of the constanCgmafdk a given
element is to be added.

6. Conclusions

Starting from the general properties of the Green’s function of a differential boundary value probi®nibhas been
shown that it can be always expressed as a bilinear combination of bases for the null spaces of the operator and of its adjoint.
The proof given is constructive, in the sense that an explicit formula for the evaluation of the Green’s function with arbitrary
boundary conditions has been given.

The particular case in which the differential operator is self-adjoint has been examined in detail with reference to arbitrary
complex frames of one-dimensional structural elements (beams). Here the components of the Green’s operator have the
immediate physical meaning of influence functions. These functions are expressed as the sum of two parts, one accounting
for the nodal flexibility of the frame, and the other accounting for the clamped—clamped beam displacement fields.

The explicit expression of the Green’s functions and of the first orthogonal invariant for the Green’s operator are reported
in the paper for Timoshenko'’s and variable cross section beams, as well as for beams resting on a Winkler’s elastic soil and for
circular arches.

Appendix A

In this section the shape functions for the beam models considered in Section 4 are reported. They, together with @e matrix
already given, allow the evaluation of all the influence functions. The physical meaning of the elements of the shape function
matrices is briefly recalled. For straight beams, the flexural part of shape function matsixdsadd

the first row represent the transversal displacement;
the second row is the rotation;

the third row is the shear stress;

the fourth row is the bending moment;



e the first column represents the shape function having unit displacement at the left end, null rotation at both ends, null
displacement at the right end;

e the second column represents the shape function having unit rotation at the left end, null displacement at both ends, null
rotation at the right end;

e the third column represents the shape function having unit displacement at the right end, null rotation at both ends, null
displacement at the left end;

e the fourth column represents the shape function having unit rotation at the left end, null displacement at both ends, null
rotation at the right end.

In a similar way in the circular arch, where the axial and flexural behavior are coupled, the shape function matré is 6
the rows having the meaning (from the 1st to the 6th) of tangential displacement, radial displacement, rotation, normal stress,
shear stress, bending moment. In the same order the columns are the shape functions for

unit tangential displacement at the left end, zero being all remaining boundary conditions;
unit radial displacement at the left end;

unit rotation at the left end,;

unit tangential displacement at the right end;

unit radial displacement at the right end;

unit rotation at the right end.

A.1. Beam with shear deformability

Letk = x EJ/GAI2. Itis found:
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A.2. Bernoulli's beam with variable section
With the notations of Section 4, it is found:
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A.3. Beam on a Winkler soil
Let us define the following quantities in order to shorten the final algebraic expressions:

¢ = cogBl), cx = CcogBx), co = c02B1), co¢ = COY2Bx), c1x =coq B — x)),
cox = cogB(2 —x)), ch=coshpi), ch, = cosh(8x), chy = cosh(281), chp, = cosh2Bx),
chy = cosh(B(l —x)), chy =cosh(B(2 — x)). s = sin(gl), sy = sin(Bx), 52 = Sin(2p1),
s2¢ = SiN(2Bx), six =sin(B( — x)), so1x = Sin(B(2 — x)), sh=sinh(Bl), shy = sinh(Bx),
shy = sinh(281), shp, = sinh(28x), sh, =sinh(B( — x)), shy, = sinh(B(2 — x)).

Using this notation the elements of the shape function matrix are given by

cx Chpyy +(corx — 2cx) Chy +sx Shpy, —sp7, Shy

cl —chy) — S
i = ’ Elzzsx( oy sx W) — 557 She

co+chp—2 Bea +chp =2 ’
Sm = 2chs(cx Shy —chy sy) + 2shsh (cex + 2ssx) — cChy sy S 2ssy (chy sh—chsh,) — 2shsh sy,
3= co+chp—2 ’ 1= Bco +chp -2 ’
sx(chy — ChZIx) — 2s shy Six Cx Cthx +chy (cox — 2cx) — 5x S|’Q]x +521x shy
X =28 , Xop= ,
co+chp -2 co+chp -2
ssx (chy sh—chsh) + shsh sy, she(chy sy + Shy ¢x) + 25 shsy shy — chs(chy sy + shy ¢y)
Yo3 = 48 , Yosa=2 )
¢y +Cchp -2 c2+chp -2
Fa = —8EJ/33 clx Chy s + cx chyy Sh’ o= —2EJ/32 cx Chpyx —copx Chy +2s5 Shy +s27, Shy +sx Shpy, ’
c2+chp—2 cp+chp—2
Fas = 8EJ/33 chyy cxs + ¢y Chy Sh’ Fau= —4EJ/32 chs(chy sy — ¢y shy) + shch (2cxs — ¢sy) + Sheey she ’
co+chp—2 co+chp—2
Fa1 = 2EJB2 c21x €y —cx Chpry +x Shprx +521x She +25x Shy 7 Far=A4EJB Clx Che s —cx chyy Sh7
co2+chp—2 co2+chy—2
Faa = 4E]'8251x sh, —chchy ssy — ccx shsh +cchy sy sh—cy chs shy
43 = co+chp—2 ’
Faa = 4EJ shey, chy +cxs(shsh —chchy)
44 = co+chp -2 ’

A.4. Bernoulli's beam with constant cross section
The shape functions are obtained from the first case lettianish.
A.5. Circular arch
The explicit expressions of the shape functions are very long, so they are expressed in tiefor®, whereZ is the

matrix of the constant of integration, a® is a basis for the equilibrium operator of the arch, given in Section 5. Introducing
the guantities

k

EArZ/EJ, a=l/r, c=coqa), c1=coqw/2), cp = CcoY2x), s =sin(a),

sin(a/2), 52 = sin(2a),

s1

the matriceZ, @ are given by the following expressions:
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C3s rtk+3)(ax—s)A ’ Cas @+ rtk+3) (o —s)A ’
41+ k)2s? k(k + a(s + ac) — 2(1 + k) 252
Cs5 = ————, Ces=— - ,
rA ra—s)A
co k= Ds—(+3)
16 = A s
_ b 7 a2 _ 202 02 (22 ey
Cop = T34 ((7 — das)k” + (16 — Ldas)k + 2c(k“(a” — 4) k= + (3a“ — 8)k — 4)
+ (k2 = 1)cp — 6as +9),
c (20c(k? + 4k + 3) + 25(2?k? — k2 + 3%k + 1) — (14 k) (2ka 4 6 — ksp + 52))
36 = ’

(k+3)(@—s)A
(202 — 1)k? + 602k + 1) + (1 + k) ((k — 1) cO(3xr/2) — 2(3+ k)awsy)

Cag = 2(1+k)sq1 k+3)(a—s5)A

B+ka —(k—1s

Csg = —(1+k) A ,
o _ (ac(k® + 4k + 3) + 5(a?k? — k? + 302k + 1) — (1 + k) /2(2kar + 6 — ksp + 52))
66 = (a—s)A '
References

Chitwood, H., 1973. Generalized Green matrices for linear differential systems. SIAM J. Math. Anal. 4 (1).

Courant, R., Hilbert, D., 1953. Methods of Mathemathical Physics. Interscience, New York.

Cuomo, M., Greco, A., Romano, M., 1987. Eigenfrequencies Estimate for Structures with Non-Prismatic Elements, Internat. Series Numer.
Math., Vol. 83. Birkhauser, Basel.

Cuomo, M., Greco, A., Romano, M., 1989. Error bounds for eigenfrequencies of general frame structures — Parts i and ii. Technical report,
University of Catania, Catania.

Fichera, G., 1965. Linear Elliptic Differential Systems and Eigenvalue Problems, Lecture Notes in Math., Vol. 8. Springer-Verlag, Berlin.

Fichera, G., 1969. Lezioni sulla Teoria Spettrale degli Operatori. Istituto Matematico G. Castelnuovo, Rome.

Fichera, G., 1973. Abstract and numerical aspects of eigenvalue theory. Report of the Dept. of Math. Univ. of Alberta, Edmonton.

Kgnig, J.A., 1967. Shakedown of Elastic—Plastic Structures. Elsevier.

Locker, J., 1977. The generalized Green’s function for#morder linear differential operator. Trans. Amer. Math. Soc. 228 (1977).

Melnikov, Y.A., 1997. Some applications of the Greens’ function method in mechanics. Internat. J. Solids Structures 13, 1045-1058.

Romano, M., 1975. Upper and lower bounds to eigenfrequencies of elastic frames. Meccanica 10 (3), 203-209.

Romano, M., 1987. Eigenvectors Estimates and Application to some Problems of Structural Engineering, Internat. Series Numer. Math., Vol. 69.
Birkhauser, Basel.





