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Abstract
We present a method for constructing asynchronous probabilistic pro-

cesses. The asynchronous probabilistic processes thus obtained are called
invariant. They generalize the familiar independent and identically dis-
tributed sequences of random variables to an asynchronous framework.
Invariant processes are shown to be characterised by a finite family of
real numbers, their characteristic numbers. Our method provides first a
way to obtaining necessary and sufficient normalization conditions for a
finite family of real numbers to be the characteristic numbers of some
invariant asynchronous probabilistic process; and second, a procedure for
constructing new asynchronous probabilistic processes.

1 Introduction
Probability has become a widely used tool in about every scientific field, from
the most theoretical fields such as Quantum Mechanics to the most applied
fields, where probability is often used as an auxiliary device for the generation
of samples “to be trusted”. Computer Science has not escapped the probability
wave: random algorithms were introduced where deterministic algortithms were
stucked, and the emerging of network systems has opened yet another applica-
tion field to probability, since network systems are “the” place where uncertainty
dominates.

However, when it comes to the very practice of probability, not all researchers
are aware of the whole machinery from Measure theory that sustains mod-
ern Probability theory. Probability basically means: “toss a coin”, or maybe
“roll a dice” with an integer number n of possible outcomes, which amounts
in considering a finite family of non negative real numbers (pi)1≤i≤n such that
p1 + · · · + pn = 1. Independence of event is most of time understood, hence
rolling the dice k times is equivalent to rolling a bigger dice with nk possible
outcomes, and each sequence (oi, . . . , ok) ∈ {1, . . . , n}k of outcomes is given the
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probability po1 × · · · × pok . This paradigm is called an iid sequence, that is to
say, independent and identically distributed.

Would we want to make the game a bit more complicated, one could consider
Markov chains, either in discrete or in continuous time, instead if iid sequences.
And again, basic algebraic manipulations are enough to compute basic probabil-
ities, even with the more involved model of Markov chains. No need of Measure
theory so far. Of course, obtaining fine results on the asymptotic behaviour of
the process could not be done by hand; but the point to underline here is that,
without serious reasons, one usually does not bother with Measure theory to
do probability because most of the time, it comes down to the simple equation
p1 + . . .+ pn = 1.

All of this is fine as long as we stay in the sequential world. The world of
asynchronous processes is entirely different. Indeed, considering a causal model
with finitely many possible events, what is a probability is not even easy to
define. In the sequential world, each experience has n different and mutually
exclusive outcomes; whence the equation p1 + . . .+ pn = 1. On the contrary, in
the asynchronous world, some events can be concurrent and thus not exclusive
with each other. Hence the sum p1 + . . . + pn cannot be equal to 1 anymore,
when it is extended to all possible events. Furthermore, because of asynchrony,
one event can occur in parallel with an arbitrary number of other concurrent
events; how would probability take care of this feature is not obvious either.

Although in the sequential world it is possible to deal with finite probabilities
only—at least until a certain point—, the understanding of probability in the
asynchronous world requires some theoretical material from Measure theory.
We will also see that some notions borrowed form classical probabilistic process
theory prove to be useful as well.

In this paper, our goal is to finally re-obtain the comfortable feeling of a
simple equation for attaching a probabilistic behavior, but this time to an asyn-
chronous system. The point is that the equation in question is not trivial to
obtain. The paper explains a method to obtain the corresponding equation,
which replaces the familiar p1 + . . .+ pn = 1.

The model we adopt is a concrete representation of a trace model. We
call it a multi-sites model. It matches with several message passing models or
shared-memory models, and is nothing but a kind of asynchronous system in
the sense of [8], that is to say, a trace semi-group acting on a set of states. Its
mathematical treatment is specially convenient for our purpose.

After having exposed our asynchronous model, we will consider the proba-
bilistic elements that can be attached to it, defining by this way a probabilis-
tic behavior of the system. This amounts to defining a class of asynchronous
probabilistic process that we call invariant. They are the analogous, in the
asynchronous world, of iid sequences in the synchronous world. Obviously, they
deserve much interest, just as iid sequences deserve much interest since they are
basic tools in probability. It turns out that until today, it was not known how to
design such basic processes in the asynchronous world—because of the inherent
difficulties related to the mixing of probability with asynchrony.

Invariant processes are characterised by a finite collection of non negative
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real numbers, that we call the characteristic numbers of the process. On the
practical side, the characteristic numbers are the pi that we are seeking. The
main issue is to obtain necessary and sufficient normalization conditions for
these numbers to define indeed an invariant process. In the sequential world,
the condition is the usual p1 + . . .+ pn = 1 equation.

We expose our new method for desiging such asynchronous probabilistic
processes on an example. Our exposition is decomposed in two parts. A first
part is devoted to the analysis of the model, and provides necessary conditions
by means of a normalization equation on the characteric numbers. The second
part is more technical: it shows that the conditions thus obtained are sufficient
for the construction of such a process with the assigned characteristic numbers.

From the practical side, a researcher interested in the design of an invariant
probabilistic asynchronous process should simply follow the method that we in-
troduce. Doing so, she will obtain a normalization constraint and a series of
inequations. The obtained equation and inequations depend on the topology
of the system, and cannot be given a general analytical form. The remaining
work for the researcher consists then in solving both the equation and the in-
equations. The theory guarantees the existence and uniqueness of an invariant
asynchronous probabilistic process with the associated charactersitic numbers.

Organization of the paper Section 2 describes the algebraic part of the
multi-sites model. Section 3 adds a probabilistic layer. It introduces invariant
asynchronous probabilistic processes and their characteristic numbers. Section 4
explains on a non trivial example our method to obtain a normalization equation
for the characteristic numbers. Section 5 shows the sufficiency of the normaliza-
tion condition by constructing an invariant process with specified characteristic
numbers obeying the normalization condition. Section 6 discusses the amount
of generality of the method, and the computational meaning of invariance for
asynchronous probabilistic processes. Finally, the concluding Section 7 presents
perspectives for further work.

Related work The topic of this work departs from probabilistic process al-
gebra or probabilistic automata, which all rely on variants of Markov chains
models either in discrete or in continuous time. The closest models are prob-
abilistic event structures, studied by the same author and co-authors [3] and
by others authors [13, 14], and probabilistic Petri nets [4, 5]. All these models
have severe limitations however: confusion-freeness for [13], and more generally
local finiteness for [3, 4]. On the one hand, the Markov hypothesis of [4] is
more general than the invariance hypothesis that we adopt here. But on the
other hand, and much more importantly, the range of models that we cover
in the present work is much richer than the confusion-free event structures or
the locally finite event structures. To the extent of our knowledge, this work is
the first exhaustive presentation of a natural class of non trivial asynchronous
probabilistic processes.
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2 The multi-sites model
Let n ≥ 1 be an integer, that represents a number of sites. To each site
i ∈ {1, . . . , n} is attached a finite and non empty set Si. Elements of Si are
the local states of site i. It is understood that the Si may have arbitrary inter-
sections, corresponding to shared states. By definition, the family (S1, . . . , Sn)
constitutes a n-sites system.

To each local state x ∈
⋃

i S
i we associate a transition t defined as a n-tuple

t = (t1, . . . , tn) such that, for all i ∈ {1, . . . , n}:

ti =

{
x, if x ∈ Si,
∅, the empty word, otherwise.

(1)

So for instance, if x belongs to S1 and to S2 only, the associated transition
is t = (x, x, ∅, . . . , ∅). We denote by T the set of transitions. The resources of
the transition t defined by (1) are those indices i ∈ {1, . . . , n} such that ti 6= ∅.
We denote by ρ(t) the set of resources of t. A transition t is said to be private
if ρ(t) is a singleton; it is said to be shared otherwise.

Two transitions t, t′ ∈ T are said to be independent, denoted by t ‖ t′, if
ρ(t) ∩ ρ(t′) = ∅.

Transitions are concatenated component by component, with the concate-
nation of words on each component. We call finite trajectory the result of any
finite concatenation of transitions. A finite trajectory is thus given as a n-tuple,
where the ith component is a word on the alphabet Si. We denote by S the set
of finite trajectories. The concatenation of trajectories gives a structure of semi-
group to S. Observe that S is isomorphic to the semi-group with the elements
of T as generators and with the commutation relations t · t′ = t′ · t ⇐⇒ t‖ t′.

Let us examine two examples. The first example consists of a single 1-site
system (S1). The associated independence relation is empty. Transitions merely
identify with local states of S1. And finite trajectories are given by finite se-
quences of states.

Our second example is a 4-sites system with a ring structure. Let x1, x2, x3, x4
be 4 distinct symbols, and put Si = {xi−1, xi} for i ∈ {1, 2, 3, 4} with the con-
vention 0 = 4. The 4-sites system (S1, S2, S3, S4) has 4 transitions that we
depict as vertical vectors for a better readability:

t1 =


x1
x1
∅
∅

 t2 =


∅
x2
x2
∅

 t3 =


∅
∅
x3
x3

 t4 =


x4
∅
∅
x4


The associated independence relation is given by t1 ‖ t3 and t2 ‖ t4 . An ex-

ample of a finite trajectory is s = t2 · t1 · t3 · t4 , given by the following vector:

s =


∅
x2
x2
∅

 ·

x1
x1
∅
∅

 ·

∅
∅
x3
x3

 ·

x4
∅
∅
x4

 =


x1 · x4
x2 · x1
x2 · x3
x3 · x4

 .
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Observe that, since t1 ‖ t3, we may switch the two adjacent transitions t1 and t3 :
indeed, s = t2 · t3 · t1 · t4.

In passing, we observe on this example that not any tuple of finite sequences
is a trajectory! For share states might not be correctly distributed over the
adequate components in general. For instance, (x1, x2, x3, x4) is not a finite
trajectory in our example.

Resuming the study of the general case, recall that as for any semi-group,
the left divisibility relation defined on S by:

∀s, s′ ∈ S s ≤ s′ ⇐⇒ ∃r ∈ S s′ = s · r,

is a preorder on S, compatible with concatenation on the left (s ≤ s′ ⇒ u · s ≤
u · s′). In our case, the preorder is actually a partial ordering relation on S,
making thus S a partially ordered semi-group.

Denote by (Si)∗ the free semi-group generated by Si. There are n natural
projections θi : S → (Si)∗ which are semi-group homomorphisms, and thus also
homomorphisms of partial orders, equipping (Si)∗ with the prefix ordering on
words—yet another name for the left divisibility relation on (Si)∗.

We say that s′ ∈ S is a sub-trajectory of s ∈ S is s′ ≤ s. We denote by Ss the
set of sub-trajectories of s. Observe that not any prefix of s is a sub-trajectory,
since it might not be a trajectory itself.

Proposition 2.1. Let s be a finite trajectory. Then Ss is a lattice, with least
upper bound ( lub) and greatest lower bound ( glb) obtained component by com-
ponent.

Now is the time for a parenthesis in probability for motivating what fol-
lows. Even when considering simple independent and identically distributed
(iid) sequences of discrete random variables, one has to consider that the dice
is thrown potentially infinitely many times. Indeed, if one considers random
outcomes such as “the first time the dice is even”, there is no bound on the num-
ber of needed outcomes. It is therefore necessary to consider infinite sequences
of possible outcomes. Let us briefly review the usual notions for dealing with
infinite sequences before embarking to the asynchronous model.

Let (Si)∗ denote the set of sequences, either finite or infinite, of elements
in Si, and let Ωi denote the set of infinite sequences of elements in Si. The
elements of Ωi are just the missing elements for (Si)∗ to be complete with
respect to lub of increasing countable chains (no advanced Domain theory is
needed here, hence we will refrain from introducing any language elements from
Domain theory). On the one hand, the ordering relation of (Si)∗ extends in
an obvious way on its completion (Si)∗; on the other hand, the semi-group
structure on Si does not extend to a semi-group structure on (Si)∗. Instead,
one only has a left semi-group action of Si on its completion Si×(Si)∗ → (Si)∗,
(s, w) 7→ s · w corresponding to the concatenation of a finite word s on the left
with an infinite word w on the right.

These trivialities were recalled for free semi-groups in order to underline the
analogy with the more involved situation of our trace semi-group S. Since it is
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not the core of our subject, we will just briefly mention the construction of the
order completion of S, referring for instance to [1] for the details. The canonical
completion of S, with respect to the lub of increasing countable chains, is a
partial order that we denote S. There is a natural embedding of partial orders
S → S. Every element of S is obtained as the lub of an increasing sequence
(xk)k≥0 in S. Furthermore, if x = supk≥0 xk and y = supk≥0 yk with (xk)k≥0
and (yk)k≥0 two increasing sequences in S, then x ≤ y in S if and only if:

∀k ≥ 0 ∃k′ ≥ 0 xk ≤ yk′ . (2)

In particular, the equality x = y holds if and only if (2) holds, together with
the same relation with the roles of x and y inverted.

The projection mappings θi : S → (Si)∗ have natural extensions θi : S →
(Si)∗, which gives us a concrete representation for the elements of S: any ele-
ment w of S is a n-tuple (s1, . . . , sn), where each si is itself an element of (Si)∗.
In particular, there is a natural embedding of S in the infinite product:

S ⊆ (Si)N × · · · × (Sn)N ' (S1 × · · · × Sn)N . (3)

For example, in the framework of our previous example with n = 4 sites,
the regular pattern consisting of infinitely many occurrences of transition t1 in
parallel with infinitely many occurrences of transition t3 is represented by the
following vector of sequences (the order of appearance of t1 and t3 is irrelevant
since t1 ‖ t3):

sup
k→∞

t1 · . . . · t1︸ ︷︷ ︸
k times

· t3 · . . . · t3︸ ︷︷ ︸
k times

=


x1 · x1 · . . .
x1 · x1 · . . .
x3 · x3 · . . .
x3 · x3 · . . .

 .

We call trajectories the elements of S. They contain the finite trajectories.
The same observation than we did for finite trajectories holds for trajectories in
general: not any n-tuple of sequences is a trajectory (see the example above).

The notion of sub-trajectory naturally extends to arbitrary trajectories. And
Prop. 2.1 extends then as follows: the set Sv of sub-trajectories of an arbitrary
trajectory v ∈ S is a complete lattice, with lub and glb taken component by
component.

Just as for free semi-groups, the completion S comes equipped with a left
semi-group action S × S → S, which extends the semi-group concatenation S × S → S.
This action consists in the concatenation of a finite trajectory on the left with a
possibly infinite trajectory on the right. The concatenation can be characterized
as follows: for s ∈ S and w ∈ S, the element s ·w is the only element of S such
that:

∀i ∈ {1, . . . , n}, θi(s · w) = θi(s) · θi(w).

Note that the right member of the above equation refers to the semi-group
action of (Si)∗ on (Si)∗.
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3 Invariant asynchronous processes
Adding a probabilistic layer to a model classically consists in defining a mea-
surable space of samples, which will support a probability measure to be con-
structed. A sample should describe an entire history of the system. In our
case, the natural candidates for samples are infinite trajectories. But, since
trajectories have several components, we need to be more specific.

We say that a trajectory s ∈ S is a sample if all components of s are
infinite. Accepting some components to be finite would be possible without
fundamental changes; but sticking to our definition of samples brings appreciable
simplifications.

Referring to the usual notation from Probability theory, we denote by Ω the
set of samples. Since all Si are supposed to be non empty, note that Ω itself
is non empty as well. Since Ω ⊆ S, the embedding noted in (3) induces an
embedding of Ω into an infinite product of finite sets. Each finite set being
equipped with its discrete σ-algebra, the infinite product carries a product σ-al-
gebra, which induces by restriction a σ-algebra F on Ω. The σ-algebra F is
generated by the subsets of the form:

∀s ∈ S, ↑s = {ω ∈ Ω : s ≤ ω}. (4)

In reference to the analogous concept in Measure theory or in Topology, we call
the subsets of the form (4) the elementary cylinders of Ω.

Alternatively, the σ-algebra F on Ω can be defined as the restriction to Ω of
the Borel σ-algebra associated with the Scott topology on S: both definitions
are equivalent (since the compact elements of S are precisely the elements of S).

We define an asynchronous probabilistic process (APP) as a probability mea-
sure P defined on the space (Ω,F) of samples associated with some n-sites sys-
tem. We derive from classical theorems the following:

Proposition 3.1. Two APP that coincide on elementary cylinders are equal.

Hence, constructing an APP consists in defining an adequate countable col-
lection of non negative real numbers for the probability P( ↑s) of all elementary
cylinders.

Just as in sequential systems, we pay a special attention to certain proba-
bility measures, not to arbitrary ones, we will restrict the class of APP that we
plan to deal with. For this, let us introduce the notion of probabilistic future,
which is a sort of local shift in the sample space Ω.

Let s be a finite trajectory. The concatenation of s with arbitrary trajectories
(see § 2) defines a mapping Φs : Ω →↑ s given by Φs(ω) = s · ω which is a
bimeasurable bijection. Assume furthermore that P( ↑s) > 0. The elementary
cylinder ↑ s is then equipped with the conditional probability P( · | ↑ s) =

1
P(↑s)P( · ). The image of this conditional probability by the measurable mapping
Φ−1s defines a probability measure Ps on Ω, which we call the probabilistic future
of s with respect to P. The APP Ps is characterized by its values on elementary
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cylinders:

∀s′ ∈ S Ps( ↑s′) =
1

P( ↑s)
P
(
↑(s · s′)

)
.

Definition 3.2. An APP P is said to be invariant whenever the two following
conditions are fulfilled:

∀s ∈ S P( ↑s) > 0 , (5)
∀s ∈ S Ps = P . (6)

Condition (5) will bring appreciable technical simplifications without re-
stricting the generality; see the comment after Lemma 3.7.

We claim that invariant APP are the analogous, in the asynchronous frame-
work, of iid sequences in the sequential framework. The following proposition
supports this claim; recall that if n = 1 the transitions of (S1) are given by the
local states of S1.

Proposition 3.3. An APP P defined on a 1-site system (S1) is invariant if
and only if P is the law of a sequence of iid random variables with values in S1,
and assigning a positive probability to every state.

Our target is now twofold: firstly, effectively construct invariant APP; and
secondly, characterize invariant APP defined on a given multi-sites system through
a finite family of real numbers, very much as the finite family of individual prob-
abilities (pi)i characterize a whole sequence of iid random variables distributed
according to the family (pi)i . Observe that we proceed backward compared to
the usual way in the sequential framework: instead of starting from the finite
family (pi)i, and then constructing the associated probability measure on the
space of samples, we start from the probability measure on the space of samples,
and then we derive the finite family of numbers.

Characterizing invariant APP is the job of characteristic numbers that we
introduce now.

Definition 3.4. The characteristic numbers associated with an invariant APP
P are defined as follows:

∀t ∈ T , pt = P( ↑ t) , (7)

where transitions are identifed in the obvious way with finite trajectories.

The next definition follows naturally:

Definition 3.5. An invariant APP is said to be symmetric if all its character-
istic numbers are equal.

Although (7) makes sense for any APP, the family (pt)t∈T really character-
izes the process only in case it is invariant. Indeed:

Proposition 3.6. Two invariant APP with the same characteristic numbers
are equal.
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The proposition is based on the following lemma, which is of interest per se:

Lemma 3.7. If P is an invariant APP, then we have for any transitions
t1, . . . , tk:

P
(
↑(t1 · . . . · tk)

)
= pt1 · . . . · ptk .

In view of Lemma 3.7, the condition (5) that appears in Def. 3.2 implies no
loss of generality. Indeed, if some s ∈ S satisfies P( ↑ s) = 0, then it means
that pt = 0 for some t ∈ T . Removing all transitions t with pt = 0 defines an
isomorphic process, now complying with Def. 3.2.

What really matters next is to find adequate conditions for a given collec-
tion (qt)t∈T of non negative real numbers to coincide with the collection of
characteristic numbers of some invariant APP.

Before that, we briefly examine the case where there is n = 1 site only. In
that case, the characteristic numbers are just the individual probabilities px
attached to the local states x ∈ S1 . The normalization condition is well known:∑

x∈S1 px = 1. In particular, symmetric invariant APP correspond to uniformly
distributed iid sequences of random variables.

4 Analysis of the ring example
In this section we thoroughly analyze the example with n = 4 sites on a ring
structure introduced above, and derive a necessary normalization condition for
the characteristic numbers of associated invariant APP. Showing the sufficiency
of the normalization condition for the existence of an invariant APP with the
specified characteristic numbers is the topic of next section. The amount of
generality of our method is discussed in § 6.

We assume thus given some invariant APP P on the 4-sites system (S1, S2, S3, S4)
with 4 transitions t1, t2, t3, t4 described above. For i ∈ {1, 2, 3, 4}, let pi = P( ↑ ti)
be the characteristic number of P corresponding to transition ti .

Our analysis involves the notion of asynchronous stopping time, that we
introduce in all generality:

Definition 4.1. An asynchronous stopping time, or stopping time for short, is
a mapping T : Ω → S, denoted ω 7→ ωT , such that ωT ≤ ω for all ω ∈ Ω, and
satisfying furthermore the following property:

∀ω, ω′ ∈ Ω ω′ ≥ ωT ⇒ ω′T = ωT . (8)

Stopping times are a fundamental notion in classical probabilistic processes
theory introduced in the 1950’s [9]. For a sequential process, a typical example
of stopping time is the first instant the process hits a given state. Clearly, is
has the property that, at each instant, an observer can determine whether the
given state has been hit or not, only based on the history of the process.

Our definition of asynchronous stopping times has the same meaning. In-
deed, the trajectory ωT is a sub-trajectory of the sample ω. In the asynchronous
framework, we believe that sub-trajectories can be seen as time instants; whence
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the temporal interpretation of ωT ≤ ω in Def. 4.1. Property (8) expresses that
the value ωT does not depend on the queue of ω after ωT , and expresses it with-
out reference to any time index, which was the challenging point. We let the
interested reader refer to the definitions found in classical textbooks and check
that, in case of n = 1 site, asynchronous stopping times correspond exactly to
the usual stopping times (associated to the canonical filtration).

One stopping time in particular will have our attention. We define it in all
generality as follows. For any ω ∈ Ω, let N(ω) be the following set of sub-
trajectories of ω:

N(ω) = {s ∈ Sω : θ1(ω) 6= ∅ } .
N(ω) is non empty since, by definition, all components of the sample ω are in-
finite, and in particular the first component. Furthermore, N(ω) contains finite
trajectories. Since we have seen that Sω is a complete lattice, it is legitimate to
put:

ωU = inf N(ω) . (9)

This defines a finite subtrajectory ωU of ω, with the property that θ1(ωU ) has
exactly one element. The fact that ωU satisfies (8) is the matter of a simple
verification. And since ωU ≤ ω by construction, ωU is indeed a stopping time,
corresponding to the “first instant” where the first coordinate has been put in
motion.

If n = 1, ωU identifies with the prefix of length 1 of ω. It correspond thus
to the constant time 1. As soon as n > 1 however, ωU is of unbounded size in
general. For an example on the ring structure with n = 4 sites, consider some
sample ω ∈↑ s, where s = t2 · t1 · t3 · t4 is the finite trajectory defined earlier.
Then it is easy to check that ωU = t2 · t1 = (x1, x2 · x1, x2, ∅). Observe that, by
property (8) of Def. 4.1, the remaining part of ω is not needed to determine ωU .
Actually, for any ω ∈↑(t2 · t1) one has ωU = t2 · t1 .

We now generalize this example in order to obtain a general form for ωU

for the ring structure with 4 sites. Let X1 denote the first element of the
first coordinate of ω, which is thus a random variable with values in {x1, x4}.
Assume that X1 = x1. The first coordinate of ωU is then necessarily x1 . The
second coordinate of ωU ends thus with x1, but carries an arbitrary number K
of x2’s. We keep turning and arrive now at the third coordinate of ωU , which
must carry the same number K of occurrences of x2. Between two occurrences
of x2, and prior to the first occurrence of x2 , the third coordinate of ωU is free
to carry an arbitrary number of occurrences of x3 ; whence J1, . . . , JK arbitrary
integers corresponding to the successive numbers of occurrences of x3 in the
third coordinate. The last coordinate must carry as many occurrences of x3 as
the third coordinate, which is J1 + · · ·+JK . But it cannot carry any occurrence
of x4 , otherwise the first coordinate should have as many occurrences of x4 as
well, which is not. We arrive to the following form for ωU :

ωU =


x1

(x2)K · x1
(x3)J1 · x2 · . . . · (x3)JK · x2

(x3)J1+···+JK

 . (10)

10



In the previous example with ω ∈↑(t2 · t1), we had K = 1 and J1 = 0.
This concerned the case whereX1 = x1. In the case whereX1 = x4, a similar

analysis turning in the other way around yields the following form for ωU :

ωU =


x4

(x2)J
′
1+···+J′

K′

(x2)J
′
1 · x3 · . . . (x2)J

′
K′ · x3

(x3)K
′ · x4

 , (11)

where K ′ and J ′1, . . . , J ′K′ are arbitrary integers.
The above analysis allows us to derive precise informations on the proba-

bilistic side, which we gather in the following result.

Proposition 4.2. In the framework of the 4-sites system with a ring structure,
we put r1 = P(X1 = x1) and r4 = P(X1 = x4). Then:

1. The following inequalities hold:

p2 + p3 < 1 p1, p2, p3, p4 < 1. (12)

2. The law of X1 is given by:

r1 =
p1(1− p3)

1− p2 − p3
, r4 =

p4(1− p2)

1− p2 − p3
. (13)

3. Conditionaly on X1 = x1 , the integer K follows a geometric distribution:

P(K = k|X1 = x1) =
1− p2 − p3

1− p3

( p2
1− p3

)k
.

4. Conditionally on X1 = x4 , the integer K ′ follows a geometric distribution:

P(K ′ = k|X1 = x4) =
1− p2 − p3

1− p2

( p3
1− p2

)k
.

5. For all integers k ≥ 1, conditionally on X1 = x1 and on K = k, the
integers J1, . . . , Jk are iid with a geometric distribution:

P(J1 = m|X1 = x1 ∧K = k) = (1− p3)pm3 .

6. For all integers k ≥ 1, conditionally on X1 = x4 and on K ′ = k, the
integers J ′1, . . . , J ′k are iid with a geometric distribution:

P(J ′1 = m|X1 = x4 ∧K ′ = k) = (1− p2)pm2 .

Note that the inequalities (12) stated in the very first point of Prop. 4.2
justify the existence of all quotients occuring in Prop. 4.2 and the existence of
the geometric laws involved.
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To establish Prop. 4.2, there are three basic ingredients: firstly, the decom-
positions (10)(11) established above for ωU ; secondly, the property that ωU is
a stopping time; and finally Lemma 3.7 for the computation of probabilities.

Our efforts are rewarded by the seeked normalization relation, necessarily
satisfied by the characteristic numbers of P:

p1 + p2 + p3 + p4 = 1 + p1p3 + p2p4 . (14)

To establish (14), just write down the equation P(X1 = x1)+P(X1 = x4) = 1
and replace the probabilities with the results obtained in Prop. 4.2, point 2.

Our forthcoming task is now to establish a converse result, by showing the
existence and uniqueness of an invariant APP with characteristic numbers given
by arbitrary numbers pi ∈ (0, 1) satisfying (14).

5 Construction of an invariant process
We keep our 4-sites example on a ring structure to expose the construction of
invariant APP. We gather both the already obtained necessary condition and
the positive construction result in the following theorem.

Theorem 5.1. Let P be an invariant APP on the 4-sites ring structure (S1, S2, S3, S4).
Then the characteristic numbers p1, p2, p3, p4 of P satisfy the following condi-
tions:

∀i ∈ {1, 2, 3, 4} pi ∈ (0, 1) (15)
p1 + p2 + p3 + p4 = 1 + p1p3 + p2p4 . (16)

Conversely, for any tuple (p1, p2, p3, p4) of real numbers satisfying (15)(16),
there is a unique APP on the 4-sites ring structure with p1, p2, p3, p4 as charac-
teristic numbers.

In particular, there is a unique symmetric invariant APP on the 4-sites ring
structure, and its characteristic number is p = 1− 1

2

√
2 ' 0.293.

The remaining of this section is devoted to the proof of Th. 5.1. The necessity
of (15)(16) has already been seen in Prop. 4.2, point 1, and in (14). The last
statement about symmetric APP is a consequence of the previous statement in
the theorem, since p = 1 −

√
2
2 is the only non negative root of the polynomial

4p = 1 + 2p2, obtained from (16) with pi = p for all i. What remains to be
proved is the second paragraph on the existence and uniqueness of invariant APP
with assigned characteristic numbers. Uniqueness is a consequence of Prop. 3.6,
hence the sole existence remains to be proved.

We decompose the existence proof in three steps. The first step exposes
the construction. The second step states a general result that guarantees that
our construction is invariant. The last step shows that it has the expected
characteristic numbers.

12



5.1 First step: construction of P
Let p1, p2, p3, p4 be real numbers satisfying (15)(16). The idea is to simulate
the probabilistic behaviour of ωU , based on the results of Prop. 4.2. Simple
algebraic manipulations based on (16) first yield the following relation:

p1 + p2 + p3 < 1 + p1p3 , (17)

implying in particular:
p2 + p3 < 1 . (18)

It is thus legitimate to define, in view of (13):

ρ1 =
p1(1− p3)

1− p2 − p3
. (19)

Based on (16), it is then readily seen that:

1− ρ1 =
p4(1− p2)

1− p2 − p3
. (20)

Furthermore, (17) implies that ρ1 ∈ (0, 1). It is thus legitimate to consider
a random variable X defined on some external probability space (Ξ,G, Q) with
values in {x1, x4}, and such that:

Q(X = x1) = ρ1, Q(X = x4) = 1− ρ1 . (21)

We will freely use the usual technique of defining as many fresh random
variables as we want, extending the probability space (Ξ,G, Q) as needed.

We start by considering an integer random variable K such that, condition-
ally on {X = x1}, K has the geometric distribution given in point 3 of Prop. 4.2.
This is legitimate, thanks to (18) and since p2 > 0. In the same fashion, we
introduce an integer random variable K ′ such that, conditionally on {X = x4},
K ′ has the geometric distribution stated in point 4 of Prop. 4.2. Again, this
is legitimate, thanks to (18) and p3 > 0. Finally, we introduce the iid random
variables J1, . . . , Jk and J ′1, . . . , J ′k , conditionally on {X = x1 ∧K = k} and on
{X = x4 ∧K ′ = k} respectively, and with the conditional laws given in points 5
and 6 of Prop. 4.2 respectively. This is legitimate since p3 ∈ (0, 1) and since
p2 ∈ (0, 1), respectively.

All these random variables being properly defined, we now consider a random
finite trajectory S which mimics ωU : we define S as the right member of (10) if
X = x1 , and as the right member of (11) if X = x4 .

Finally, we define a probability measure P on (Ω,F) as follows. Consider an
infinite iid sequence (Si)i≥0 of finite trajectories, all with the same distribution
as S just constructed. We claim that the concatenation S0 · S1 · · · , which always
exists in S, is actually an element of Ω with Q-probability 1. Indeed, since each
Sn has a positive Q-probability of having all its components non empty, and
since (Si)i≥0 is an iid sequence, the Borel-Cantelli lemma implies our claim.
Hence the mapping Φ : Ξ→ S defined by the infinite concatenation of the Si’s,
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can actually be considered up to a set of zero probability as a mapping Φ : Ξ→
Ω.

Let P be the probability law of the infinite concatenation S0 · S1 · · · . It is
formally given as the image

P = Φ∗Q . (22)

As a probability measure on (Ω,F), P defines an APP. We claim that: 1) P is
an invariant APP, and 2) the characteristic numbers of P are the pi’s. These
two points are the topic of the next two steps of the proof.

5.2 Second step: using an invariance result
We state below a result that should be used when dealing with other examples
than the specific 4-sites ring structure. The 4-sites ring structure will serve as
an example of its application.

Let us first introduce some notations and another definition. If U is a stop-
ping time and u is a finite trajectory, we conventionnaly write u < U if there
exists ω ∈ Ω such that u < ωU . We also write u ∈ U if there exists ω ∈ Ω
such that u = ωU . Definition 5.2 and Th. 5.3 below apply to general multi-sites
systems. In the first point of Def. 5.2 below, we recognize a repetition of the
trick used in (22) to define a probability measure on (Ω,F).

Definition 5.2. Let U be a stopping time with values in S. We assume that
ωU is equipped with a probabilty law Q, which defines the pair (U,Q) as a ran-
domized stopping time.

1. The pair (U,Q) is said to be exhaustive if: a) Q(U = u) > 0 for every
u ∈ U , and b) for every s ∈ S, there exists u1, . . . , uk ∈ U such that
s ≤ u1 ·. . .·uk, and c) the infinite concatenation of an iid sequence (Ui)i≥0,
each Ui being distributed according to Q, belongs to Ω with probability 1,
which defines a probability law P on (Ω,F) induced by the pair (U,Q).

2. The pair (U,Q) is said to be invariant if the following property is satisfied
for all u, v ∈ S:

(u < U) ∧ (v ∈ U)⇒


u · v ∈ U, and
Q(ωU = u · v) =

Q(ωU ≥ u) ·Q(ωU = v).

Our general result is then the following.

Theorem 5.3. Let (U,Q) be an exhaustive randomized stopping time, and let
P be the probability measure on (Ω,F) induced by (U,Q). If (U,Q) is invariant,
then P is an invariant APP.

We now come back to the study of the 4-sites ring structure, and we exploit
Th. 5.3 in this framework. If U denotes as in § 4 the stopping time defined by (9),
it is readily seen that ωU = S0 , an obvious consequence of the construction of S.

14



The probability law Q defined in the first step of the proof (§ 5.1) is thus also
a probability law for ωU . With the language of Def. 5.2, the pair (U,Q) is
exhaustive, and the probability P defined by (22) is the APP induced by the
pair (U,Q).

The well known memoryless property of the geometric distributions involved
in the construction of Q is the key to invariamce, stated in the following result.

Lemma 5.4. The pair (U,Q) constructed in § 5.1 is an exhaustive and invariant
randomized stopping time.

In view of Th. 5.3, Lemma 5.4 has the following consequence.

Corollary 5.5. The APP P is invariant.

5.3 Last step: computation of the characteristic numbers
Now that we know by Corollary 5.5 that P is indeed an invariant APP, it re-
mains to compute its characteristic numbers. For i ∈ {1, 2, 3, 4}, let p′i be the
characteristic number of P associated with transition ti . Our proof of Th. 5.1
will be complete if we show that p′i = pi for all i.

We base our analysis on the forms (10)(11) that we found for ωU . Recall
that, by construction, ωU = S0 .

Let us start with p′1 = P( ↑ t1) . A single look at (10) shows that:

↑ t1 = {X = x1 ∧K = 0}. (23)

The probabilistic event (23) is thus entirely determined by the sole value
of S0 . Its probability is computed accordingly:

p′1 = Q(X = x1) ·Q(K = 0|X = x1) .

By construction of the random variables X and K, we have thus, using (19):

p′1 = ρ1
1− p2 − p3

1− p3
= p1 , as expected.

The computation of p′4 is analogous: p′4 = P( ↑ t4) and ↑ t4 = {X = x4∧K ′ =
0}, referring to (11) this time. Again, ↑ t4 is entirely determined by the value
of S0 , and its probability is computed accordingly:

p′4 = Q(X = x4) ·Q(K ′ = 0|X = x4)

= (1− ρ1)
1− p2 − p3

1− p2
.

Thanks to (20), we obtain p′4 = p4, as expected.
The computation of p′2 = P( ↑ t2) is more involved, since the probabilistic

event ↑ t2 may depend on an arbitrary number of Si’s. Let us introduce a
game interpretation: the goal is to detect Success, where Success means that at
stage i, the event ↑ t2 has been detected. Both forms (10)(11) are involved. The
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probabilistic event Success is equivalent to the following disjunction of disjoint
probabilistic events:

(X = x1) ∧ (K ≥ 1) ∧ (J1 = 0), or
(X = x4) ∧ (K ′ ≥ 1) ∧ (J ′1 ≥ 1), or
(X = x4) ∧ (K ′ = 0) ∧ (Success at next stage).

(24)

By invariance, the probability of Success at next stage is the same than the
probability of Success, that is p′2. Referring to the specified distributions of
the various random variables involved in (24), we obtain that p′2 satifies the
following equation:

p′2 =
p1(1− p2)

1− p2 − p3

(
1− 1− p2 − p3

1− p3

)
(1− p3)

+
p4(1− p3)

1− p2 − p3

(
1− 1− p2 − p3

1− p2

)
p2

+
p4(1− p3)

1− p2 − p3
1− p2 − p3

1− p2
p′2 .

Regrouping the different terms yields:

p′2(1− p4) =
p2

1− p2 − p3
(p1 − p1p3 + p3p4) . (25)

It is readily checked that (16) is equivalent to:

1− p4 =
p1 − p1p3 + p3p4

1− p2 − p3
. (26)

Comparing (25)(26) we obtain p′2 = p2, as expected.
The computation of p′3 follows a pattern similar to the computation of p′2 ,

and yields indeed p′3 = p3 , which completes the proof of Th. 5.1.

6 Discussion
Range of application Our method applies to any multi-sites system. How-
ever, the construction step must still be done on a case-by-case basis. In particu-
lar, the inequalities that legitimate the construction of random variables should
be properly checked. The 4-sites ring structure is specially pleasant since all the
needed inequalities already derive from the basic normalization condition, but
this is not the case in general. For instance, the case of a invariant and sym-
metric 5-sites ring structure yields the normalization condition 5p = 1 + 5p2,
with two roots p = 1

2 ±
√
5

10 , both in (0, 1). But only 5−
√
5

10 satisfies the ad-
ditional inequalities gathered on the analysis part. For the record, the n-sites
ring structure, even in the symmetric case, yields as normalization condition a
polynomial of degree bn2 c, which does not seem to have a simple analytical form
but is rather obtained by induction.
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Legitimacy of the invariance hypothesis The invariance hypothesis (Def. 3.2)
makes full sense from the distributed systems point of view, since it implies a
modular property which takes on two forms.

Firstly, the probability of executing a transition t with ρ(t) as resources,
is not affected by the parallel execution of transitions depending on resources
disjoint from ρ(t); since the probability remains equal to the characteristic num-
ber pt .

And secondly, consider the following graph associated with a n-sites system:
the vertices are the sites {1, . . . , n}, and two sites are connected if they share a
common state. Assume that this graph has several connected components, cor-
responding to non communicating sub-systems. Then the global asynchronous
process decomposes in a natural way as a free product of sub-processes de-
fined on each connected components of the graph and that do not synchronize
with each other. The invariance hypothesis implies that the sub-processes are
independent in the probabilistic sense, a rather natural and expected property.

7 Conclusion
We have introduced and characterized invariant asynchronous probabilistic pro-
cesses. In a nutshell, they are asynchronous versions of the geometric probability
distribution. Invariance is indeed a memoryless property, expressed in an asyn-
chronous framework.

Further analysis of the method presented here should provide thorougher
understanding of invariant APP. A simple question such as “Is there always a
unique symmetric and invariant APP on a multi-sites system?” could then be
answered. Although the answer seems intuitively to be “Yes”, it is not obvious
based on the present work only.

Studying additional structures on the class of invariant APP is worth con-
sidering: restriction of an APP to a sub-system, and composition of APP.

Candidates for more general classes of processes than invariant APP are
Markov asynchronous processes, introduced in [2] but for which the construction
step was restricted to n = 2 sites only.

We expect that this work might have applications in the field of random
distributed algorithms, since it introduces new paradigms for the construction of
asynchronous probabilistic processes. References [6,7,12] are examples showing
the diversity of this field; hence it is hard to be more specific at this stage.
What can be noted though, is that the topology of the asynchronous process
is directly taken into account in our method. Although simple topologies will
obviously lead to simpler results, we make no restrictive assumption that would
narrow the application range to particular structures, such as tree structures
for instance [10].

Applications in the analysis of network systems, such as network dimension-
ning, are distant targets that might become reachable once further work on the
asymptotic analysis of invariant APP is done. In this respect, comparison with
other methods for obtaining asymptotics related to trace semi-groups [11] might
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be of interest.

A Omitted proofs

A.1 Proofs for Sections 3 and 4
Proofs of the results of § 3 depend on Lemma 3.7, which we prove first.

Proof of Lemma 3.7. By induction on the integer k ≥ 0. The result is trivial for
k = 0 with the convention that an empty product is 1, and for k = 1 this is just
the definition of characteristic numbers. Assume the result is true for any k ≥ 1.
Let t1, . . . , tk+1 be any transitions. Put s = t1 · . . . · tk and s′ = t1 · . . . · tk+1.
On the one hand, we have ↑ s′ ⊆↑ s since s ≤ s′. On the other hand, we have
P( ↑s) > 0 by (5), and therefore:

P( ↑s′) = P( ↑s) · P( ↑(s · tk+1)| ↑s)
= P( ↑s) · Ps( ↑ tk+1) .

By the induction hypothesis, P( ↑ s) = pt1 · . . . · ptk . Since P is assumed to
be invariant, Ps = P and therefore Ps( ↑ tk+1) = P( ↑ tk+1) = ptk+1

. Finally,
P( ↑s′) = pt1 · . . . · ptk+1

, which was to be proved.

Proof of Prop. 3.3. Let P be an invariant APP defined on the 1-site system (S1).
Then for any x1, . . . , xk ∈ S1, we have according to Lemma 3.7:

P( ↑x1 · . . . · xk) = px1 · . . . · pxk
. (27)

This implies that the sequence (xk)k≥0 that constitues a sample ω = (x0, x1, . . .)
is an iid sequence where each stat x ∈ S1 is assigned probability px . Since the
members of (27) are positive by (5), all px are positive.

Conversally, assume that (Xk)k≥0 is an iid sequence of random variables
with values in S1, distributed according to P(X0 = x) = px , with all px > 0.
Then P is an APP on the canonical sample space Ω. Let us show that P is
invariant. Let s, s′ ∈ S. Then s = x1 · . . . · xk and s′ = y1 · . . . · yk′ . Therefore
P( ↑s) = px1 · . . . · pxk

> 0, and:

Ps( ↑s′) =
px1
· . . . · pxk

· py1
· . . . · pyk′

px1 · . . . · pxk

= P( ↑s′) .

Hence P and Ps coincide on all elementary cylinders, and therefore they are
equal by Prop. 3.1.

Proof of Prop. 3.6. By Lemma 3.7, two invariant APP with the same character-
istic numbers coincide on all elementary cylinders, and thus they are equal by
Prop. 3.1.
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Proof of Prop. 4.2. A proof is given for each point.

Proofs of points 1 and 2 The probabilistic event {X = x1} decomposes as
the disjoint union of the different values (10) for ωU . Hence:

r1 =
∑
k≥0

∑
j1,...,jk≥0

P(ωU = u) , (28)

where u is the finite trajectory given by the right member of (10). Since U is a
stopping times, and since u is a value taken by U , it is straightforward to check
that we have:

P(ωU = u) = P( ↑u). (29)

By Lemma 3.7, and since u can be written as:

u = (t3)j1 · t2 · . . . · (t3)jk · t2 · t1 , (30)

we deduce from (29):

P(ωU = u) = p1 · pk2 · p
j1+···+jk
3 .

Replacing in (28), we get:

r1 = p1
∑
k≥0

pk2
∑

j1,...,jk≥0

pj1+···+jk
3 .

Since r1 <∞ on the one hand, and since p1 > 0 and p2 > 0 on the other hand,
it follows that p3 < 1. Since the argumnet could be repeated after a circular
permutation of {1, . . . , 4}, we actually obtain: p1, p2, p3, p4 < 1. Calculating
first the k geometric sums, we get:

r1 = p1
∑
k≥0

( p2
1− p3

)k
.

Since r1 < ∞ and p1 > 0 by assumption, we deduce that p2

1−p3
< 1, that is to

say p2 + p3 < 1. This completes the proof of point 1 of Prop. 4.2. We complete
the computation of r1 as follows:

r1 = p1
1

1− p2

1−p3

=
p1(1− p3)

1− p2 − p3
.

The computation of r4 is analogous, starting from:

r4 =
∑
k≥0

j1,...,jk≥0

p4p
k
3p

j1+·+jk
2 ,

which derives from (11). This completes the proof of point 2.
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Proof of point 3 The probabilistic event {X1 = x1 ∧K = k} decomposes as
the following disjoint union:

{X1 = x1 ∧K = k} =
⋃

j1,...,jk≥0

{ωU = u}

where u has the form given in (10), or equivalently in (30). Using again (29)
and the definition of the conditional probability, we calculate as follows:

P(K = k|X1 = x1) =
P(X1 = x1 ∧K = k)

P(X = x1)

=
1

r1

∑
j1,...,jk≥0

p1p
k
2p

j1+···+jk
3

=
p1p

k
2

r1

( 1

1− p3

)k
.

Using the value of r1 obtained above, we get:

P(K = k|X1 = x1) =
1− p2 − p3

1− p3

( p2
1− p3

)k
,

which was to be proved.

Proof of point 4 Analogous to the previous point.

Proof of point 5 We have the equality of probabilitic events:

{X1 = x1 ∧K = k ∧ (J1, . . . , Jk) = (j1, . . . , jk)}
= {ωU = (t3)j1 · t2 · . . . · (t3)jk · t2 · t1} .

Using (29) again and the definition of conditional probability, we obtain thus:

P(J1 = j1, . . . , Jk = jk|X1 = x1 ∧K = k)

=
p1p

k
2p

j1
3 · · · p

jk
3

p1pk2
(1− p3)k

= pj13 (1− p3) · · · pjk3 (1− p3) .

We recognize thus the product of k independent geometric laws pj3(1 − p3), as
expected.

Proof of point 6 Analogous to the previous point.
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A.2 Proofs for Section 5

Proof of Lemma 5.4. We first claim that, for any u ≤ U , Q(ωU ≥ u) is given
by the following function:

λ(u) = pk1
1 p

k2
2 p

k3
3 p

k4
4 , (31)

where k1, k2, k3, k4 are the numbers of occurrences of transitions t1, t2, t3, t4
respectively that appear in u (note that k2, k3 are arbitrary, while k1, k4 ≤ 1
and k1 + k4 = 1).

To prove this claim, assume first that u ∈ U , and the first coordinate of u
is x1 . Then u has the following form:

u = tj13 · t2 · . . . · t
jk
3 · t2 · t1 ,

so that k1 = 1, k2 = k, k3 = j1 + · · · + jk , k4 = 0. By construction of Q, we
have:

Q(ωU = u) = ρ1
1− p2 − p3

1− p3

( p2
1− p3

)k2

(1− p3)pj13 · · · (1− p3)pjk3

= p1
pk2
2 (1− p3)kpj1+···+jk

3

(1− p3)k2

= λ(u) .

The same holds in the case where the first coordinate of u is x4 , so that Q(ωU ≥
u) = λ(u) is true if u ∈ U .

Now for the general case where u ≤ U , we have by the property that U is a
stopping time:

Q(ωU ≥ u) =
∑
v∈U
u≤v

Q(ωU = v)

=
∑
v∈U
u≤v

λ(v) .

Assume that u < U , since we have already treated the case where u ∈ U .
Then the v ∈ U such that u ≤ v are in bijection with the r ∈ U , and the
correspondance is given by v = u · r. Hence:

Q(ωU ≥ u) =
∑
r∈U

λ(u · r) .

It is obvious on (31) that λ(u · r) = λ(u)λ(r). Hence:

Q(ωU ≥ u) = λ(u)
∑
r∈U

λ(r)

= λ(u)
∑
r∈U

Q(ωU = r)

= λ(u).
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We have thus, as claimed, that Q(ωU ≥ u) = λ(u) for all u ≤ U .
The invariance of the pair (U,Q) is now obvious.

From now on, all the proofs and results presented here apply in whole gen-
erality, not to the 4-sites ring structure only.

In view of the proof of Th. 5.3, we need some preliminary results. We
start with some conbinatorial lemmas, which might be found elsewhere in the
literature.

Lemma A.1. Let a, b, c, d ∈ S such that a·b = c·d. Then there are a1, a2, b1, b2 ∈
S such that:

a = a1 · a2 , b = b1 · b2 ,
c = a1 · b1 , d = a2 · b2 .

Proof. If s ≤ s′ are two finite trajectories, we denote by s′ − s the unique finite
trajectory r such that s · r = s′. Assuming a, b, c, d given as in the statement,
we put:

a1 = a ∧ c , a2 = (a− a1) ∧ d ,
b1 = b ∧ (c− a1) , b2 = (b− b1) ∧ (d− a2) ,

to obtain the result.

Lemma A.2. Let a, c, d ∈ S such that a ≤ c · d. Then there exist a1, a2 ∈ S
such that:

a = a1 · a2 , a1 ≤ c , a2 ≤ d .

Proof. Since a ≤ c ·d, there is b ∈ S such that a ·b = c ·d. Let thus a1, a2, b1, b2 ∈
S be as in the conclusion of Lemma A.1. From a1 · b1 = c and a2 · b2 = d, we
deduce: a1 ≤ c and a2 ≤ d.

Lemma A.3. Let k ≥ 0 be an integer, and let u, u1, . . . , uk be finite trajectories
such that u ≤ u1 · . . . · uk . Then there are finite trajectories v1, . . . , vk such that
vi ≤ ui for all i ∈ {1, . . . , k}, and u = v1 · . . . · vk .

Proof. By induction on the integer k ≥ 0. The result is obvious for k = 0 and for
k = 1. Assume it is true for k ≥ 1, and let u ≤ u1 · . . . ·uk+1 . Put c = u1 · . . . ·uk .
Then u ≤ c · uk+1 . According to Lemma A.2, there are a1, a2 ∈ S such that
u = a1 · a2 and a1 ≤ c and a2 ≤ uk+1 . Applying the induction hypothesis to
a1 ≤ u1 · . . . · uk , we find v1, . . . , vk ∈ S such that a1 = v1 · . . . · vk and vi ≤ ui
for all i ∈ {1, . . . , k}. Putting vk+1 = a2 , we are done.
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Lemma A.4. Let (U,Q) be an exhaustive randomized stopping time. Then for
all u ∈ S, there exists v1, . . . , vk ∈ S such that u = v1 · . . . · vk and vi ≤ U for
all i ∈ {1, . . . , k}.

Proof. Let u ∈ S. In order to prove the existence of the v1, . . . , vk, and in view
of Lemma A.3, it is enough to have the existence of u1, . . . , uk such that ui ∈ U
for all i ∈ {1, . . . , k}, and u ≤ u1 · . . . · uk . But this is part of the definition of
an exhautive stopping time, hence we are done.

Lemma A.5. Let (U,Q) be an invariant and exhaustive stopping time, and let
P be the probability on (Ω,F) induced by (U,Q). Then we have:

∀u ∈ S u ≤ U ⇒ Pu = P . (32)

Proof. The equality in (32) is clear if u ∈ U since the sequence (Ui)i≥0 is iid.
Hence, without loss of generality, we assume u < U . The invariance assumption
on (U,Q) implies then:

∀v ∈ U Pu( ↑v) = P( ↑v).

Since the sequence (Ui)i≥0 is iid, it follows that, for any sequence v1, · · · , vk ∈ U ,
one has:

Pu

(
↑(v1 · . . . · vk)

)
= P

(
↑(v1 · . . . · vk)

)
(33)

We now prove that Pu( ↑v) = P( ↑v) for all v ∈ S, which will complete the proof
of the lemma. For this, we introduce the following stopping time V : for ω ∈ Ω,
considering the chain:

∅ ≤ U0(ω) ≤ U0(ω) · U1(ω) ≤ · · ·

which goes to ω with probability 1 since (U,Q) is exhaustive, we put:

V (ω) = inf{U0 · . . . Uk ≥ v}. (34)

It is readily checked that V is indeed a stopping time, which is finite on ↑ v.
This implies the following decomposition of ↑v as a countable disjoint union:

↑v =
⋃
w∈V
w≥v

↑w . (35)

Taking the Pu-probabilities of both members of (35), we get:

Pu( ↑v) =
∑
w∈V
w≥v

Pu( ↑w)

=
∑
w∈V
w≥v

P( ↑w) by (33)

= P( ↑v) by (34).

The proof of the lemma is complete.
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Lemma A.6. Let (U,Q) be an invariant and exhaustive stopping time, and
let P be the probability on (Ω,F) induced by (U,Q). Then we have, for any
u1, . . . , uk ∈ S such that ui ≤ U for all i ∈ {1, . . . , k}:

P
(
↑(u1 · . . . · uk)

)
= P( ↑u1) · . . . · P( ↑uk). (36)

Proof. By induction on the integer k ≥ 0. The relation (36) is obvious if k = 0
or k = 1. Assume it is true until k − 1 ≥ 0. By definition of Pu1 , one has:

P
(
↑(u1 · . . . · uk)

)
= P( ↑u1)Pu1

(
↑(u2 · . . . · uk)

)
Since u1 ≤ U , we have Pu1

= P according to Lemma A.5, and therefore the
induction hypothesis yields P

(
↑ (u2 · . . . · uk)

)
= P( ↑ u2) · . . . · P( ↑ uk) which

brings the result.

Proof of Theorem 5.3. We have to show that Pu = P for all u ∈ S. This equiv-
alent to showing that P

(
↑ (u · v)

)
= P( ↑u) · P( ↑ v) for all u, v ∈ S. According

to Lemma A.6, this is true if u has the form u = u1 · . . . · uk with ui ≤ U for
all i ∈ {1, . . . , k}, and if v is of the same form. But any u and v have this form
according to Lemma A.4, so the proof is complete.
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