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Abstract—Quality of video and audio output is a design-time
constraint for portable multimedia devices. Unfortunately, there
is a huge cost (e.g. buffer size) incurred to deterministically
guarantee good playout quality; the worst-case workload and the
timing behavior can be significantly larger than the average-case
due to high variability in a multimedia system. In future mobile
devices, the playout buffer size is expected to increase, so, buffer
dimensioning will remain as an important problem in system
design. We propose a probabilistic analytical framework that
enables low-cost system design and provides bounds for playing
acceptable multimedia quality. We compare our approach with
a framework comprising both simulation and statistical model
checking, built to simulate large embedded systems in detail. Our
results show significant reduction in output buffer size compared
to deterministic frameworks.

I. INTRODUCTION

As we are evolving towards next generation mobile devices,

a number of emerging platforms are expected to support

high-definition video and audio1. To support such high-end

features, tomorrow’s devices will require fast processors, large

memories, and other resources. In fact, a sizable amount of on-

chip memory is needed even for today’s hand-held devices.

For example, in a System-on-Chip (SoC) for processing mul-

timedia, decoded frames are temporarily stored on-chip before

display, consuming huge amount of on-chip memory. Figure 1

shows the video decoding portion of a SoC with an output

buffer.
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Fig. 1. Output buffer in the video accelerator of a SoC.

However, the required size of the on-chip buffer can reduce

if some loss in output quality is tolerated. A standard approach

in industry is to run exhaustive simulations (of a SoC model)

1Texas instrument’s multimedia mobile platform includes support for 3D
encoding and decoding [5]. Other companies have similar plans for bringing
high-end media to mobile devices [17], [25], [18], [22].

to estimate buffer size for an acceptable output quality. The

buffer size is chosen such that cost constraints of the SoC are

met. This practice is time inefficient, since the process involves

iteratively varying the buffer size.

To aid this architecture exploration, recent research proposes

to complement simulation techniques with mathematical mod-

els, especially during the early design phase. The two main

advantages of using analytical models are as follows: (1) for

fast analysis in contrast to detailed simulation and (2) to gain

key insights for tuning architecture and application parameters.

Many of the analytical models proposed so far are faster than

their simulation counterparts, but they often are incompatible

to the systems modeled and are too inflexible to model key

characteristic features of the application:

• Worst-case execution time modeling [16] cannot capture

behavior of soft real-time systems, leading to pessimistic

designs with exorbitant buffer size.

• Average-case execution analysis framework [30] cannot

provide QoS guarantees and are thus hardly trustworthy.

To address the above problems we sought a mathematical

framework for analyzing multimedia systems that account

for the stochastic nature of the streaming application. More

precisely, we need an analytical model characterizing input

stream and execution of the multimedia stream as stochastic,

instead of capturing event arrivals and executions with worst or

average cases. The stochastic nature of the multimedia stream

is due to high variability in the input and in processing these

streams.

Recently, stochastic network calculus2 based approaches

have been proposed for performance analysis of multimedia

systems [19], [21]. The proposal of this previous effort,

however, did not use the probabilistic calculus in its entirety;

the input stream objects of a multimedia stream (e.g., frames)

and their execution behavior are assumed to be deterministic.

Quite recently, there was another proposal to use probabilistic

real-time calculus for hard real-time systems [23]. However,

this effort did not rigorously explore using the calculus for

any specific application domain. We believe that design of

multimedia embedded platforms can benefit when stochastic

2Stochastic network calculus was originally developed for performance
analysis of computer networks [8].



network calculus is fully adopted for system-level design.

We experimented with the stochastic network calculus ap-

proach for analysis of a SoC architecture running video decod-

ing applications. The architecture we modeled is an abstraction

of the video decoding unit shown in Figure 1. The input video

stored is fed to the input buffer in terms of stream objects

such as macroblocks, frames, etc. A pipeline of functional

units process the input stream. Processed items are temporarily

stored in a frame buffer before sent to display. Now, we

overview the performance analysis using our analytical model.

We can estimate output buffer size using our analytical

framework. Previous work that estimate output buffer size

using deterministc real-time calculus proceed as follows [16].

For all given video clips, Maxiaguine et al. construct upper

bounds on the number of items that arrive to the input buffer

and that execute in the processor. These two bounds together

yield another upper bound on the number of items that arrive

to the frame buffer. Thus, given a rate at which things are

consumed from the output buffer, Maxiaguine et al. estimate

the maximum buffer size required.

We too compute the deterministic upper bounds on arrival,

execution, and output, however, only for a sub-set of given

video clips; the remaining video clips can violate the deter-

ministic bounds. For example, the number of items arriving

to the output buffer over a time interval for a certain clip

can be larger than the determinsistic output bound. Assume

that the stream objects arrival and execution has stochastic.

So, what is the probability that the number of stream objects

that arrive to the input buffer over a time interval are larger

than the deterministic arrival bound? First, we estimate the

maximum probability of violating the deterministic bounds

for the arrival and execution. Second, similar to the determin-

istic case, using the probabilistic bounds for the arrival and

execution, we obtain the maximum probability with which

the output determinstic bound can be violated. Given the

constant consumption rate, we can estimate the probabilistic

distribution of the buffer size.

We also estimate the initial playout delay: the delay after

which the video starts to display. Previous work has shown

that initial delay can be tuned to reduce the output buffer size.

The trade-off is the loss in video quality. The context of the

existing work, however, is in a determinstic setting, we extend

it to our stochastic framework. Thus, we estimate the initial

delay such that we satisfy the given QoS constraints and report

the corresponding buffer size required.

We estimate the probability that the given QoS property is

true using a simulation framework. A model of the multimedia

SoC is constructed with the BIP framework. The design

parameters are chosen such that there is no loss in video

quality when any clip from a set of representative video clips

is processed. Then the stochastic behavior of the system is

simulated; the arrival times and corresponding execution of

stream objects are randomly chosen from input distributions.

The input distributions are constructed using a set of repre-

sentative video clips, which are used to estimate the deviation

of the upper and lower bounds in the analytical framework.

An inbuilt statistical model checking engine guides the

simulation of the SoC model in that only sufficient and

necessary simulations are performed. A precise estimate of

the probability that a specific QoS property is true can be

estimated using the statistical model checking framework.

These estimates are compared with the results obtained from

the stochastic real-time calculus.

To validate and compare probabilistic bounds obtained from

the mathematical framework, we modeled the multimedia SoC

using a rigorous simulation framework, namely, BIP [1]. We

used statistical model checking to verify if the QoS property is

satisfied. This design-flow, that is, detailed simulation followed

by model checking, is an idea recently proposed for verifying

large heterogeneous embedded systems [2]. Thus, we show

the accuracy of our results obtained from our mathematical

framework in comparison to the BIP approach.

Again, the main purpose of this study is to provide ways

to design low-cost systems, especially towards solutions for

reducing the on-chip memory size. In this context, the frame-

work we are proposing in this paper is an apt choice for design-

ing resource-constrained SoC for multimedia. The following

sub-sections list the contributions of this work and sketches

how the paper is organized.

A. Contributions and Organization

The main contributions of our paper are as follows:

• Stochastic characterization: The stochastic real-time cal-

culus we use for performance analysis captures the prob-

abilistic arrivals and executions of stream objects (and

dependencies between them). The stochastic nature inher-

ent in the multimedia applications is exploited to design

low-cost systems. We provide probabilistic guarantees on

specific QoS properties.

• Statistical Simulation: This work is among the very few to

use statistical model checking techniques for multimedia

system design. Towards time-efficient performance analy-

sis of multimedia system design, we believe this statistical

framework is an important candidate.

This paper is organized as follows. In Section II, we

formally characterize the multimedia application mapped to

the SoC with stochastic network calculus. In Section III, we

provide a detailed description of the BIP framework and the

statistical model checking approach, especially, on the applica-

tion of the simulation framework to our case-study. Section IV

presents analysis of both approaches for verifying specific QoS

properties of the multimedia system. We discuss two important

aspects of the analytical framework in Section V. Section VI

and Section VII contains our conclusions.

II. STOCHASTIC REAL-TIME CALCULUS MODEL

A. Background

This section presents the real-time calculus framework for

the system model we use in our subsequent sections. Note that

this section is not intended to be an exhaustive exposition of

real-time calculus for embedded systems.
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Fig. 2. Real-time calculus model

The system model used in this paper is sketched in Fig. 2.

The architecture is composed of memory buffers and process-

ing units. Fig. 2 shows a data stream x reaching the input

buffer while the processed stream y is written to the playout

buffer. The application mapped to the processing element is

a multimedia task. However, there is no limitation on the

number of applications running on the processing element.

Consequently, there are no restrictions on the number of

input streams fed to the processing element. Similarly, the

number of architecture units in the system-on-chip can be any

number of processing elements and memory units. Indeed,

analysis using real-time calculus has been shown for a complex

system containing shared memory, bus, and network-on-chip

communication architectures. The data flow need not to be

sequential in that there could be a feedback flow between

the architectural components in the system-on-chip, and there

could be splits and joins in the dataflow of the architecture.

The notations of the parameters involved in the description

of our model are described in the following tables, divided as

follows:

• Table I lists the application and architecture parameters

that are given to the system designer.

• Table II records the functions that are obtained from

simulations.

• The mathematical functions that are constructed from the

known parameters from Table II are given in Table III.

• Similarly, mathematical functions constructed from sim-

ulation data from Table I are presented in Table IV.

• Finally, Table V and VI shows the functions and the

models used in the real-time calculus framework.

The core part of the deterministic real-time calculus can be

reduced to three inequalities. First, bounds on the arrival of

the data stream are computed from the φl, φu functions, which

gives the minimum and maximum number of bits constituting

any k consecutive stream objects respectively.

αl(∆) = φ−1

u (r∆), (1)

αu(∆) = φ−1

l (r∆), (2)

where r is the bit-rate of the input video, and where

αl(∆), αu(∆) are the minimum and maximum number of

items arriving over the time interval ∆ respectively. The φu,l

functions are computed from the bits(k), which gives the

number of bits per k consecutive stream objects.

The number of items arriving at the input buffer over

the time interval [0, t] (x(t) is bounded by the previously

TABLE I
KNOWN APPLICATIONS AND ARCHITECTURE PARAMETERS.

Notation and name Description

A
p

p
li

ca
ti

o
n λ Bitrate (in bits per second) The bit rate of the input

video is constant and is fed
to the input buffer. This bit
rate is assumed to be con-
stant.

c Consumption rate (in
macroblocks per second)

The output device reads
items constantly from the
playout buffer.

d Initial playout delay (in
millisecond)

The delay after which the
output device starts playing
the video.

A
rc

h
it

ec
tu

re b Input buffer size (in
macroblocks†)

The stream is fed to the
input buffer. This is a log-
ical buffer and physically it
might be a part of memory.

B Playout buffer size (in
macroblocks or bytes)

The processed stream is
written to the playout buffer
after which the consumer
reads from the buffer.

f Processor frequency (in
MHz)

The effective number of
processor cycles available
per unit time. The avail-
able processor cycles for the
multimedia task is constant.

†The input buffer can hold a given number of macroblocks and it is not

given by a size in bytes because the application case study we use in this

paper is video decoding. The compressed stream arriving at the input buffer

consists of macroblocks of variable size whereas the playout buffer holds

decompressed items of constant size.

TABLE II
PARAMETERS FROM SIMULATION OF PROCESSOR AND FROM APPLICATION

SOURCE CODE.

Notation Name Description

bits(k)† Cumulative bits Number of bits per k consecu-
tive stream objects.

cycles(k)∗ Cumulative
cycles

Number of cycles consumed by
k consecutive stream objects.

†The number of bits for each and every macroblock is computed with the

execution of the application once and the data flow between the software

blocks.
∗The simulation performed to compute the cycles is not a system-level

simulation. The processing element is independently simulated using a

software simulation to compute the processor cycles consumed for each and

every macroblock.

TABLE III
MATHEMATICAL FUNCTIONS FROM SIMULATION DATA.

Notation Name Description

φl(k), φu(k) φ functions Minimum and maximum num-
ber of bits constituting any k
consecutive stream objects.

γl(k), γu(k) γ functions Minimum and maximum num-
ber of cycles needed to process
any k consecutive stream ob-
jects.

introduced αu,l functions:

αl(∆) ≤ x(t+∆)− x(t) ≤ αu(∆), (3)

for t,∆ ≥ 0.



TABLE IV
MATHEMATICAL FUNCTIONS FROM INPUT PARAMETERS.

Notation Name Description

β-cycles(k) Processor cycles
over [0, t]

Product of time and frequency,
β-cycles(k) = tf .

c(t) Consumption
function

Minimum and maximum num-
ber of cycles needed to process
any k consecutive stream ob-
jects.

TABLE V
MATHEMATICAL FUNCTIONS AND INPUTS OF ARRIVAL, SERVICE AND

OUTPUT.

Notation Name Description

x(t) Input function Number of items arriving in the
input buffer over the time inter-
val [0, t].

y(t) Output function Number of items arriving in the
output buffer over the time in-
terval [0, t].

TABLE VI
MATHEMATICAL MODEL.

Notation Name Description

αl(∆), αu(∆) Arrival curves Minimum and maximum num-
ber of items arriving over the
time interval ∆. For example ∆
is defined as [0, t].

βl(∆), βu(∆) Service curves Minimum and maximum num-
ber of items guaranteed to be
processed over the time interval
∆. For example ∆ is defined as
[0, t].

The second core inequality is based on the service curve (β),

which guarantees the number of processor cycles dedicated

to that particular multimedia task over the time interval ∆.

Given the processor frequency (f ), we first compute the

processor cycles available over time interval [0, t], that is, β-

cycles(t) = tf . Second, given the number of cycles consumed

by k consecutive stream objects (cycles(k)), we compute

the minimum number of cycles needed to process any k

consecutive stream objects (γl). Third, we compute beta as

follows: βu(∆) = γ−1

l (β-cycles(∆)). Now, we present our

second core inequality. Let y(t) be the number of items

arriving in the output buffer over the time interval [0, t]. Then,

it can be shown that:

y(t) ≤ (αu ⊗ β)(t), (4)

where ⊗ is the min-plus convolution operator defined as:

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} . (5)

Finally, if the playout buffer never underflows, we have the

last core inequality:

y(t) ≤ c(t, d), ∀t ≥ 0. (6)

, where c(t, d) is the items consumed after the initial playout

delay (d) by the display device over the time interval [0, t].

B. Problem Formulation

In this section we propose a probabilistic framework for

designing multimedia SoCs. We start with the construction of

the synthetic traces.

Let the given set of input video clips be partitioned into two

sets, SA and SB , based on the designer’s requirement that all

clips in SB must be processed with no loss in video quality.

The deterministic upper bound on the arrival and the output,

introduced in the previous section, are constructed using clips

in SB . Now, we discuss how to synthetically generate clips in

case we do not have a set SB .

The information we have about the clips in set SA are the

number of bits and number of cycles corresponding to each

macroblock. For certain macroblocks, we modify the number

of bits and cycles, assuming we are given lower bounds3 on

these parameters. Any number of bits lower than the actual

bound in the input traces are replaced with a value of the

lower bound. Thus we obtain synthetic traces forming clips in

set SB . Now we explain how we estimate stochastic bounds

using the actual clips (i.e. clips from set SA) and synthetic

traces (or if available clips from set SB .

The upper and lower bounds on the arrival given from the

formulae in the previous subsection are calculated for the

synthetic traces. That is, from the modified inverse φ function,

we compute αl(∆) and αu(∆). This leads to the definition of

the stochastic arrival curve. Since by definition, x(t) gives

the number of items arriving over the time interval [0, t], we

obtain:

P

(

sup
0≤∆≤t

(x(t+∆)− x(t)− αu(∆)) > a

)

≤ f(a), (7)

for all 0 ≤ ∆ ≤ t and for all a ≥ 0.

In the above description, the arrival curve bounds are

checked with the actual number of items arriving at the input

buffer over any time interval. The decreasing function f(a) is

an upper bound on the probability.

In practice, the designer is typically given a set of input

clips to design the SoC with given display constraints. So,

in our problem setting, the designer can construct an upper

and lower bound using synthetic traces (which are obtained

from actual traces) and use the actual traces to construct the

bounding functions.

We define the stochastic service curve as follows. As

formulated in the previous subsection, the output function from

the processing element is guaranteed to be larger than the min-

plus convolution of the arrival and service curves:

y(t) ≤ (αu ⊗ βu)(t), ∀t ≥ 0. (8)

For a stochastic service, the above inequality is restated as

follows:

P (y(t)− (αu ⊗ βu)(t) > a) ≤ g(a), ∀t ≥ 0, (9)

where the stochastic bounding function g, ideally obtained

from psychovisual models, is related to the acceptable loss

3In the discussion section, we present a technique to generate synthetic
traces without this lower bound



of playback quality. Note that in defining a stochastic service

curve we are also including the definition of the arrival curve.

Thus dependencies are handled for both the arrival and the

service curve.

The output from the processing element is bounded by the

arrival functions αl and αu. The results from the stochastic

network calculus provides bounds on the output curve [8]. If

there is a stochastic arrival curve as defined in Eq. 7 and a

stochastic service curve as defined in Eq. 9, the output curve

is defined as follows:

P (y(t)− (αu ⊘ βu)(t) > a) ≤ (f ⊗ g)(a), ∀t ≥ 0. (10)

Write h(a) = (f ⊗ g)(a), and the min-plus deconvolution

operator is defined as follows:

(f ⊘ g)(t) = sup
u≥0

{f(t+ u)− g(u)} , (11)

Assume the output arrival curve is an arrival process to

the playout buffer. The probability distribution at the playout

buffer can be computed using the bounding function h.

P (B(t) > a) ≤ h(a− (α∗ ⊘ ct))(0), ∀a, t ≥ 0. (12)

In the above equation α∗ is the output arrival function given

by (αu ⊘ βu)(t) which is denoted in Eq. 10.

In the results sections, we will show how to specify the QoS

property by using Eq. 12.

III. ANALYSIS WITH STATISTICAL MODEL CHECKING

This section describes the model of the multimedia SoC

built using the BIP framework as well as the performance

analysis results obtained on it using statistical model check-

ing.

A. Multimedia SoC models in BIP

BIP – Behavior, Interaction, Priority – [1] is a component

based framework encompassing rigorous model based design.

It allows building hierarchically structured systems (or com-

posite components) from atomic components characterized by

their behavior and their interface. Components are composed

by layered application of interactions and priorities. Interac-

tions express synchronization constraints between actions of

the composed components while priorities are used to filter

amongst possible interactions and to steer system evolution

e.g. to express scheduling policies.

In BIP, atomic components are finite-state automata ex-

tended with variables and ports. Variables are used to store

local data. Ports are action names, and may be associated with

variables. They are used for interaction with other components.

States denote control locations at which the components await

for interaction. A transition is a step, labeled by a port, from

a control location to another. It has associated a guard and an

action, that are respectively a Boolean condition and a com-

putation defined on local variables. In particular, probabilistic

computation can be used to model random variables and hence

stochastic behavior. In BIP, data and their transformations

are written in C/C++. Composite components are defined by

assembling atomic or composite using connectors. Connectors

relate ports from different sub-components and represent sets

of interactions, that are, non-empty sets of ports that have to

be jointly executed. For every such interaction, the connector

provides the guard and the data transfer, that are, respectively,

an enabling condition and an exchange of data across the ports

involved in the interaction. Finally, priorities provide a mean to

coordinate the execution of interactions within a BIP system.

They are used to specify scheduling or similar arbitration

policies between simultaneously enabled interactions.

Figure 3 shows the BIP model of the SoC running the

video decoding application. The functional units of the SoC

are modeled as atomic components respectively, Generator,

Processor, and Player. These functional components com-

municate explicitly through buffers, namely, Input Buffer and

Playout Buffer, represented in BIP as atomic components

as well. The lines represent connectors, namely write-push,

pop-read are used to transfer macroblocks objects between

a functional component and a buffer component. The tick

connector synchronizes all the functional components, and is

used to model explicitly the progress of the absolute (global)

time. Now we describe the behavior of each of the functional

components with more details.

tick tick tick

push pushpopwrite write readpopread

Processor (Frequency)Generator (BitRate) Playout BufferInput Buffer Player (Rate, Delay)

Fig. 3. BIP model of the SoC running a video decoding application.

Generator: This component models the generation of a

stream of macroblocks. The stream is generated randomly and

stored in the input buffer. The number of bits (the size) of every

macroblock determines the arrival time of the macroblock to

the input buffer. This number of bits for each macroblock

(for a specific frame type) is randomly picked from a specific

distribution, shown in Figure 4 and taken from [9], [10].

Moreover, the type of frames is chosen based on a Group

of Pictures (GOP) pattern (IBBPBBPBBPBB)4.
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Fig. 4. Frequency distributions of I,B, and P frames in the video. I frames
are smaller in size but larger in number than the B and P frames.

4The first GOP, IPBBPBBPBB,is different than the consecutive GOPs.



Processor: This component models the decoding of mac-

roblocks, sequentially after reading them from the input buffer.

The detailed behavior of the component is shown in Figure 5.

The component has two states, IDLE and PROCESS and

three ports read, write, and tick. In the IDLE state, the process

is either waiting to read from the input buffer or waiting

to write to the playout buffer. When there is a macroblock

available, the process transits to the PROCESS state and

remains there for the time required to process/decode the

macroblock.

IDLE
tick

read

token

write

period := INF;

period := token.cycles / Frequency;

tick

[ period = 0 ]

period := period − delta;

read

period := INF;
PROCESS

write

token

period delta

tick

Fig. 5. Processor model as a BIP component. The processor unit executes
a macro-block at a pre-specified speed. The execution cycles corresponding
to each macro-block is randomly selected from a distribution or taken from
a file in a sequential manner.

Player: The Player component models the consumption of

the stream of decoded macroblocks. After an initial playout

delay, the Player starts reading the macroblocks from the

playout buffer at a constant rate. A buffer underflow occurs

whenever the requested number of macroblocks is not avail-

able in the buffer. In this case, the request is postponed for the

next iteration and the underflow is accumulated. For example,

if the current buffer underflow is 2, then, at the next request,

the Player seeks 3 macroblocks. If the buffer is still empty,

the underflow became 3. Else, if the playout buffer has (at

least) 3 items, then all three items are read at once the Player

and the buffer underflow is reset to 0, etc.

B. Statistical Model Checking

Statistical Model Checking (SMC) has been proposed as

an alternative to classical Model Checking techniques. It aims

to avoid exhaustive state space exploration. The idea is to do

verification on a sub-part of the state space (a sample) and

then, using statistics, extrapolate the result to the whole system

with some confidence. Concretely, given a stochastic system S

and a property φ, statistical model checking refers to a series

of simulation-based techniques that can be used to answer two

questions : (1) qualitative : is the probability for S to satisfy φ

greater or equal to a certain threshold θ ? and (2) quantitative

: what is the probability for S to satisfy φ ?

The main approaches [29], [24] proposed to answer the

qualitative question are based on hypothesis testing. Let p be

the probability that S |= φ. To determine whether p ≥ θ, we

can test H : p ≥ θ against K : p < θ. A statistical-based

solution (based on a sample) does not guarantee a correct

result but it is possible to bound the probability of making

an error. The strength (α, β) of a test is determined by two

parameters, α and β, such that the probability of accepting K

(respectively, H) when H (respectively, K) holds is less or

equal to α (respectively, β). Since it is impossible to ensure

a low probability for both types of errors simultaneously, a

solution is to use an indifference region [p1, p0] (with θ in

[p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1.

Several hypothesis testing algorithms exist in the literature.

Younes[29] proposed a logarithmic based algorithm that given

p0, p1, α and β implements the Sequential Ratio Testing Pro-

cedure (SPRT) (see [27] for details). In [4], [12] Peyronnet

et al. propose an estimation procedure (PESTIMATION) to

compute the probability p for S to satisfy φ.

We applied statistical model checking to evaluate QoS

properties on the BIP model of the multimedia SoC presented

above. As explained earlier, this model is fully stochastic. We

focus on a qualitative QoS property related to the playout

buffer, that is, the buffer underflow within a second never

exceeds two consecutive frames.

In order to evaluate this property on the traces of the model,

we use the additional Observer component shown in Figure 6.

This component runs in parallel with the systems and reacts to

events (interactions) relevant to the satisfaction of the property.

The component has three states: OK, PARTIAL, and FAIL.

The FAIL state denotes the failure of the property, namely,

the underflow of two consecutive frames within a second. If

there is a loss of a single frame the observer moves from state

OK to PARTIAL. Later, if there is an additional frame loss

the Observer reaches the FAIL state. If no loss happens, the

component moves back to the OK state.

[ lost = true ]
lost1frame frames ++;

read

[ lost = true ]
lost2frames

read

lost

success

read

if ( frames = 30 )
frames ++;

{     lost := false;
     frames := 0;}

PARTIALOK FAIL

[ frames = 30 v lost = false ]

lost:= false;
if ( frames = 30 )
    frames := 0;

Fig. 6. Observer model as a BIP component. The observer models the QoS
property to be verified. The variable frame counts the number of frames to
check if two consecutive loss occurs within a second (i.e. within 30 frames).
The read port of the Observer is synchronized with the read port of the Player.
A variable lost is associated with the read port records a frame loss.

We used the SMC-BIP tool , The SMC-BIP tool takes as in-

put (1) a stochastic system modeled in BIP, (2) a probabilistic

bounded LTL property (refer [4]) or, alternatively, an observer

component encoding the evaluation of the property, and (3) a

series of confidence parameters needed for the statistical test

(see [29]). Then, it proceeds according to the following steps:

• Step 1: an executable model of the SoC is created,

• Step 2: simulations traces of the system are iteratively

generated,

• Step 3: the observer component checks the property on

each input trace,

• Step 4: then gives a partial verdict for each of the trace

checked,



• Step 5: steps 2, 3, and 4 are repeated until the SMC

engine takes a decision to stop the simulation. The SMC

engine implements the statistical algorithms introduced

in the previous section.

Our tool is guaranteed to terminate its execution, when it

has decided an answer for the input property to be verified on

the input system based on the input statistical parameters. The

guarantee for termination relies on the mathematical theory of

the statistical model checking. [?]

IV. RESULTS

This section sketches QoS probabilities estimated from the

two analysis approaches presented in previous sections. We

also tabulate the buffer size savings obtained using synthetic

traces.

We implemented the analytical framework described in

Section II in MATLAB. The experiments were conducted for

a low-bit rate and low resolution clips (352 ∗ 240) obtained

from an open source [26]. The bit-rate of the input video

is 1.5 Mbits per second and the frame output rate is 30fps.

We used an MPEG2 implementation optimized for speed [14].

The MPEG2 source was annotated to get the number of bits

corresponding to each compressed macroblock. The execution

cycles for each macroblock is obtained from the software

simulator SimpleScalar. Recapitulate that the number of bits

and execution cycles per macroblock are inputs to the an-

alytical framework. We chose the video files cact.m2v,

mobile.m2v, and tennis.m2v for our experiments.

To construct the synthetic clips we set the lower bound for

bits (e.g to 60) and the lower bound for execution cycles (e.g

to 9000). Then from the actual trace containing the number of

bits and execution cycles per macroblocks, synthetic traces are

obtained; any value below the lower bound is modified to the

lower bound. Figures 7, 9, and 11 show the probability that the

buffer underflow is greater than two consecutive frames over

any time interval (this refers to Equation 12 in Section II).

Figures 7, 9, and 11 also show the probability estimates from

the BIP framework. Following are the observations:

• Increase in playout delay decreases the amount of buffer

underflow, so, probability that the buffer underflow is

more than two consecutive frames decreases.

• The estimates from stochastic real-time calculus upper

bound the statistical model checking results as the ana-

lytical framework captures the worst-case behavior.

• The delay values at which the statistical model checking

starts to state that the property is true is not same for the

analytical framework. The analysis using the stochastic

real-time calculus should be used to determine a small

set or range of delay values. Later, to precisely verify the

property detailed simulation should be carried out.

• For each probability estimation, the number of traces

statistical model checking simulated ranged from 44 to

1345. For each trace, the method took around 6 to 8
seconds to verify the property. The probability of error

for the probabilistic estimates from the statistical model

checking is bounded by 0.01.
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Fig. 7. Probabilistic bounds for cact.m2v

Figures 8, 10, and 12 plots the results of the buffer sizes for

various playout delay values, and corresponding probabilistic

bounds. These results correspond to simulation and statistical

model checking. We observe that buffer size reduces substan-

tially even for a small decrease of probabilistic value. For

instance, there could be a buffer size reduction of 40% for

a increase in the value of the probabilistic bound from 0 to

0.2 (Figures 10). In fact the buffer savings can be larger if

we compare the buffer size required for no underflow and the

memory required for the QoS property to be always true.
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Fig. 8. Playout buffer fill level for cact.m2v.

V. DISCUSSION

The results in the previous section confirms our hypothesis

that, for tolerable loss in video playout, output buffer size

could be significantly reduced compared to the buffer size

required for playing lossless video. In this section, we focus on

two requirements for our hypothesis to be used in practice: (1)

extraction of synthetic clips from benchmark video clips, and

(2) modeling loss of macroblocks as deadline misses (instead

of dropping stream objects). We speculate the combined

strengths of both the approaches when used together in a

system design flow in the technical report.
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A. Synthetic Clip Generation

The primary motivation to generate synthetic clips is that

a system designer would use the synthetic clips instead of

actual video clips when deciding architecture parameters such

as buffer size. The question is then how to generate synthetic

clips from given actual video clips.

Currently, we choose at which point in frequency distribu-

tion of the input data (bits and cycles) we need to cut and

reshape frequency distribution to generate the synthetic data.

We choose this cut-off point based on two objectives: (1) to

get significant reduction in playout buffer size, and (2) the loss

in video is tolerable when the actual video clip is running in

the SoC, which is designed using synthetic clips.

The approach we use to generate synthetic data can be

time-inefficient as it involves iteration in making a choice

to cut the distribution and analyze using our framework to

check if our objectives are met. Instead of this trial and

error technique, we are currently researching on a more sound

technique to generate synthetic clips (for example, Yanhong

et al., [15] use error percentage and eliminate some tail data

from the distribution). To further this thought, notice in the

analytical framework the need for synthetic clips arises when

we compute the stochastic bounding functions. What if we
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use standard tail distribution functions that could characterize

multimedia data accurately?

Assuming that these tail distributions could be found

(refer Jelenkovic et al., [7]), then the task of generating

synthetic clips reduces to a litmus test: does the synthetic

clip generated conforms to the stochastic bounding function?

In other words, without performing the iterative analysis —

choosing a cut-off point first for synthetic clip generation,

second checking if the video loss is tolerable, and then

choosing a different cut-off point — we just check if a set of

synthetic clips generated conforms to the stochastic bounding

function.

B. Video Loss Model

In our model, when we say video loss, we precisely mean

that the macroblocks missed their deadlines; we do not model

video loss as drop in macroblocks or frames, as studied in [3],

where the authors present an analytical framework to study

the trade-off between buffer size and video quality required

for a multimedia decoder in the context of frame drops.

In correspondence to display of the video, as video loss is

interpreted as deadline miss, the display device awaits until all



macroblocks are ready for display. If there were no deadline

miss, for example, a frame would be displayed at the right

time.

The QoS property we verified using our set-up required to

check if there is a loss of two consecutive frames within 1
second. This should be read in the context of our model as

the display of two consecutive frames being delayed within 1
second.

VI. RELATED WORK

In this section, we present the state-of-the-art in charac-

terizing the stochastic behavior of multimedia applications

and compare it with our approach. We will focus mainly

on analytical approaches (refer previous work for survey on

simulation based approaches [2], [13]).

A domain-agnostic approach is to statistically analyze the

execution variance of soft-real time applications (Kumar et

al., [11]). Using profiling, components of the applications

that lead to variable execution times are first identified. Then

programmers can identify components that affect real-time

behavior of the application in the context of other components.

Thus, the programmers need not resort to ad-hoc methods

for tuning applications for expected real-time behavior. Our

approach differs from the domain agnostic techniques in the

following way: our model tightly couples the application and

architecture; in what follows, we also discuss how both the

stochastic real-time calculus and statistical model checking are

an excellent fit for streaming applications.

On the other hand, domain-specific techniques in a proba-

bilistic setting perform analysis at task granularity (Yaldiz et

al., [28] and Iqbal et al., [6]). In stochastic real-time calculus,

our model captures input, execution, and output streams of the

SoC. The granularity of the stream object can be at any level:

bits, macroblock, frame, and group of pictures.

Iqbal and others [6] proposed scheduling techniques for

soft-real time systems. The task execution times are stochastic

and the solution for scheduling is based on an online Monte

Carlo method on a joint space model of all tasks. The objective

of this technique is similar to ours: reducing memory and

computational requirements. The complexity of this technique,

however, as the authors report, does not scale well for task

graphs of huge size. Yaldiz and others [28] use stochastic

modeling of the applications to obtain policies for energy

savings and for providing probabilities for satisfying timing

constraints. Their model considers set of concurrent tasks and

takes into account data dependence, precedence relations and

timing constraints.

Our methodology differs from the above two discussed

approaches in the following way: (1) there is a tight characteri-

zation of inputs for streaming applications using arrival curves

in the stochastic real-time calculus and randomly generated

clips (based on distributions) in statistical model checking, and

(2) we provide probabilistic guarantees instead of average-case

analysis in the analytical framework.

Liu and others [15] introduced a new concept called ap-

proximate variability characterization curves (or Approximate

VCCs), to characterize the average-case behavior of mul-

timedia workloads in a parameterized fashion. The crucial

difference in comparison to our work is that Approximate

VCCs belongs to a family of average-case analysis; instead

of probabilistic guarantees on buffer size they bound the

error due to their analysis. Also, the framework remains in a

deterministic setting after the alteration of workload curves.

So, it is not elegantly able to capture stochastic nature of

arrivals and stochastic nature of execution times.

VII. CONCLUSIONS AND FUTURE WORK

The use of synthetic traces for SoC design for multimedia

applications yielded significant reduction in buffer size. The

trade-off of in quality over buffer size savings were analyzed

using two independent approaches. The stochastic real-time

calculus and the statistical model checking techniques esti-

mated the probability that a certain QoS property is true. The

analytical framework upper bounded the estimates from the

statistical model checking.

Future extensions to this work are as follows: (a) mod-

eling communication architectures such as bus, network-on-

chip, and others; (b) modeling for variable bit-rate video and

variable consumption rate; (c) integrating real-time calculus

and BIP framework. This paper juxtaposes the analytical

framework with a model checking technique, where both

the techniques observe same QoS property of a multimedia

system. This experience led us to envision a joint model, which

can combine strengths of both the models (see discussion

section in technical report [20]).
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