
HAL Id: hal-00877995
https://hal.science/hal-00877995

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for automated distributed implementation
of component-based models

Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, Joseph
Sifakis

To cite this version:
Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, Joseph Sifakis. A framework
for automated distributed implementation of component-based models. Distributed Computing, 2012,
25 (5), pp.383-409. �10.1007/s00446-012-0168-6�. �hal-00877995�

https://hal.science/hal-00877995
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Framework for Automated Distributed Implementation of

Component-based Models

Borzoo Bonakdarpour · Marius Bozga · Mohamad Jaber · Jean
Quilbeuf · Joseph Sifakis

Received: date / Accepted: date

Abstract Although distributed systems are widely

used nowadays, their implementation and deployment

are still time-consuming, error-prone, and hardly pre-

dictable tasks. In this paper, we propose a method
for producing automatically efficient and correct-by-

construction distributed implementations from a model

of the application software in BIP. BIP (Behavior, In-
teraction, Priority) is a well-founded component-based

framework encompassing high-level multi-party inter-

actions for synchronizing components (e.g., rendezvous
and broadcast) and dynamic priorities for scheduling

between interactions.

Our method transforms an arbitrary BIP model
into a Send/Receive BIP model that is directly im-

plementable on distributed execution platforms. The

transformation consists in (1) breaking the atomicity of
actions in components by replacing synchronous multi-

party interactions with asynchronous Send/Receive in-

teractions; (2) inserting distributed controllers that co-
ordinate the execution of interactions according to a

This article extends the results in two papers that appeared in
ACM International Conference on Embedded Software (EM-
SOFT’10) and IEEE International Symposium on Industrial
Embedded Systems (SIES’10). This work is partially sup-
ported by EU FP7 projects no. 215543 (COMBEST), no.
248776 (PRO3D), and by Canada NSERC DG 357121-2008,
ORF RE03-045, ORE RE-04-036, and ISOP IS09-06-037.

Borzoo Bonakdarpour
School of Computer Science
University of Waterloo
200 University Avenue West
Waterloo, ON, N2L 3G1, Canada
E-mail: borzoo@cs.uwaterloo.ca

Marius Bozga, Mohamad Jaber, Jean Quilbeuf, Joseph Sifakis
UJF-Grenoble 1 / CNRS UMR 5104
VERIMAG, Grenoble, F-38041, France
E-mail: name.surname@imag.fr

user-defined partition of interactions, and (3) adding

a distributed algorithm for handling conflicts between

controllers. The obtained Send/Receive BIP model is

proven observationally equivalent to its corresponding
initial model. Hence, all functional properties of the ini-

tial BIP model are preserved by construction in the

implementation. Moreover, the obtained Send/Receive
BIP model can be used to automatically derive dis-

tributed executable code. The proposed method is

fully implemented. Currently, it is possible to generate
C++ implementations for (1) TCP sockets for conven-

tional distributed communication, (2) MPI for multi-

processor platforms, and (3) POSIX threads for de-

ployment on multi-core platforms. We present four case
studies and report experimental results for different

design choices including partition of interactions and

choice of algorithm for distributed conflict resolution.

Keywords Component-based modeling · Auto-
mated transformation · Distributed systems · BIP ·
Correctness-by-construction · Committee coordina-

tion · Conflict resolution.

1 Introduction

Design and validation of computing systems often start
with developing a high-level model of the system which

abstracts the implementation details. Using an ab-

stract model is beneficial, as they can be validated
with respect to a set of requirements through differ-

ent techniques such as formal verification, simulation,

and testing. However, deriving a correct implementa-

tion from a model is always challenging, since adding
implementation details involves many subtleties that

can potentially introduce errors in the resulting sys-

tem. In the context of distributed systems, these diffi-

2 Borzoo Bonakdarpour et al.

culties are significantly amplified because of inherently

concurrent and non-deterministic behavior, as well as
the occurrence of unanticipated physical and computa-

tional events such as faults. Thus, it is highly advanta-

geous for designers to automatically derive a correct-by-
construction implementation from a high-level model.

It is, nonetheless, unclear how to transform a high-level

abstract model based on global state semantics and
multiparty interactions into a real distributed imple-

mentation.

In this paper, we present a novel method for auto-

matically transforming a high-level model in BIP [6,19]
into a distributed implementation. The BIP (Behavior,

Interaction, Priority) language is based on a seman-

tic model encompassing composition of heterogeneous
components. The behavior of components is described

as a Petri net extended with data and functions given

in C/C++. Transitions of the Petri net are labeled by
port names and functions computing data transforma-

tions when they are executed. If a transition can be ex-

ecuted, we say that the associated port is enabled. BIP

uses a composition operator to obtain composite com-
ponents from a set of atomic components. The opera-

tor is parametrized by a set of interactions between the

composed components. According to the operational se-
mantics of BIP, the execution of a composite component

is done by a sequential Engine as follows:

1. The Engine receives the sets of enabled ports from
all components.

2. It computes the set of possible interactions, that is

the set of interactions whose ports label only en-

abled transitions.
3. The Engine then chooses one amongst the possible

interactions non-deterministically and executes the

corresponding update function. This execution of an
interaction may involve data sharing between the

interacting components.

4. Finally the Engine sequentially executes the transi-
tions in components involved in the chosen interac-

tion.

We emphasize that the BIP semantics does not enforce

any fairness condition between interactions.
The principle of the method for transforming a BIP

model into a distributed implementation is illustrated

through the following example. Consider the BIP model
in Fig. 1 with components B1 · · ·B5 synchronized by

using four interactions a1 · · · a4. According to the se-

mantics of BIP, interactions are executed sequentially
by the Engine. Getting a distributed implementation

for this model requires addressing the following issues:

– (Partial observability) Suppose that interaction a1
involving components B1, B2, and B3 is executing in

a4

B1 B2

p1 p2 p3

a1

B3

p4

B4 B5

p5 p7 p8

p9p6

a2 a3

Fig. 1 A simple BIP model with conflicts.

a distributed implementation of the model. If com-

ponent B3 completes its computation before B1 and
B2, and, ports p4 and p5 are enabled, then interac-

tion a2 is enabled as well. In this case, a distributed

Engine must be designed, so that concurrent execu-
tion of interactions does not introduce a behavior

that is not allowed in the initial model.

– (Resolving conflicts) BIP semantics assumes that
each component has a sequential behavior and par-

ticipates in a single interaction at each execution

step. Since interactions a1 and a2 share component

B3, they cannot be executed concurrently. We call
such interactions conflicting. Obviously, a correct

distributed implementation must ensure that execu-

tion of conflicting interactions is mutually exclusive.
– (Performance) On top of correctness issues, a real

challenge is to ensure that the transformation leads

to efficient implementations. After all, one crucial
goal for developing distributed and parallel systems

is to exploit concurrency in order to achieve execu-

tion speed up.

Partial observability is achieved by breaking the
atomicity of transitions; i.e., each transition is decom-

posed into two steps. The first step consists in partici-

pating in some interaction. The second step is an inter-
nal unobservable computation [5].

Resolving conflicts boils down to solving the com-

mittee coordination problem [15], where a set of pro-

fessors organize themselves in different committees and

two committees that have a professor in common can-
not meet simultaneously. The original distributed solu-

tion to the committee coordination problem assigns one

manager to each interaction [15]. Conflicts between in-
teractions are resolved by reducing the problem to the

dining or drinking philosophers problems [14], where

each manager is mapped onto a philosopher. Bagro-
dia [4] points out a family of solutions to the committee

coordination problem, ranging from fully centralized to

fully decentralized ones, depending upon the mapping

of sets of committees to the managers. Applying differ-
ent solutions results in different distributed implemen-

tations of the initial BIP model. Each solution exhibits

advantages and disadvantages and, hence, fits a specific

A Framework for Automated Distributed Implementation of Component-based Models 3

Engine

B1 B2 B3 B4 B5

[a1, a2, a3, a4]

(a) Centralized

Engine

B1 B2 B3 B4 B5

[a1, a2] [a3, a4]

Engine

(b) Partially decentralized

Engine

B1 B2 B3 B4 B5

Engine Engine Engine Engine

(c) Fully decentralized

Fig. 2 Spectrum of transformations applied on the example presented in Fig. 1.

type of applications on a target architecture and plat-

form. As a rule, three types of solutions are possible
while designing an Engine for a distributed setting:

– (Centralized) This solution leads to transformations

where distributed components are coordinated by a
single centralized Engine (see Fig. 2(a)) no matter

how the components are distributed.

– (Partially decentralized) This solution leads to
transformations where a set of Engines collaborate

in order to resolve conflicts in a distributed fashion

(see Fig. 2(b)).
– (Fully decentralized) This solution leads to trans-

formations where each component acts as a local

Engine and reaches an agreement with other com-

ponents on which non-conflicting interaction(s) can
be executed (see Fig. 2(c)).

Existing methods [3,4,9,11,15,16,22,23,33] provide

only principles of solutions, algorithms and preliminary
simulation results. They partially focus on preservation

of functional properties, level of concurrency, fairness,

fault-tolerance, efficiency, or performance issues.
Nevertheless, the state-of-the-art lacks a deep under-

standing of the impact of all these issues and their

correlation on the generation of concrete distributed

implementations. For example, existing implementa-
tion methods either do not achieve decentralization [9],

are inefficient [16], or require the designer to explicitly

specify communication mechanisms of the distributed
implementation [33].

Contributions. With this motivation, we propose

a framework for transforming BIP models into dis-

tributed implementations that allow parallelism be-
tween components as well as parallel execution of non-

conflicting interactions by using solutions to the com-

mittee coordination problem. To the best of our knowl-

edge, this is the first fully automated general implemen-
tation method. The works mentioned above focus only

on impossibility results, abstract algorithms, and in one

instance [4] simulation of an algorithm. Our method

involves the following sequence of transformations pre-

serving observational equivalence [27]:

1. First, we transform a BIP model into another BIP
model that (1) operates in partial-state semantics,

and (2) expresses multi-party interactions in terms

of asynchronous message passing (Send/Receive

primitives). Moreover, the target BIP model is
structured in three layers, whose last two layers con-

stitute a distributed Engine:

(a) The Components Layer includes the components
of the initial model where each port involved in

a strong synchronization is replaced by a pair of

Send/Receive ports.
(b) The Interaction Protocol detects enabledness of

interactions of the original model and executes

them after resolving conflicts either locally or

by the help of the third layer. The Interaction
Protocol layer consists of a set of components,

each handling a user-defined subset of interac-

tions from the original BIP model1.
(c) The Reservation Protocol treats conflict resolu-

tion requests from the Interaction Protocol. It

implements a committee coordination algorithm
and our design allows employing any such al-

gorithm. We, in particular, consider three com-

mittee coordination algorithms: (1) a fully cen-

tralized algorithm, (2) a token-based distributed
algorithm, and (3) an algorithm based on a re-

duction to distributed dining philosophers.

2. Then, we generate C++ code from the 3-layer BIP
model. Currently, it is possible to generate C++

implementations using (1) TCP sockets for conven-

tional distributed communication, (2) MPI primi-
tives for multi-processor platforms, and (3) POSIX

threads for deployment on multi-core platforms2.

1 We note that although the BIP framework includes the
notion of priorities, transformations that respect priority rules
of the given BIP model are outside the scope of this paper.
The issue of priorities has been addressed in [10].
2 Notice that all code generation schemes are based on a

reliable communication mechanism. However, one can use

4 Borzoo Bonakdarpour et al.

We also conduct a set of simulations and experi-

ments to analyze the behavior and performance of the
generated code for different implementation choices

(i.e., different partition of interactions and choice of

committee coordination algorithm). Our simulations
and experiments show that each implementation choice

may be suitable for a different topology, size of the

distributed system, communication load, and of course,
structure of the initial BIP model.

Organization. In Section 2, we present the global
state operational semantics of BIP. We describe our

3-layer model in Section 3. Section 4 is dedicated to

detailed description of the transformation from BIP
to Send/Receive BIP. In Section 5, we prove correct-

ness of the transformation. Section 6 describes the tool-

chain implementing the transformation. Sections 7 and

8 present the results of our experiments. Related work
is discussed in Section 9. Finally, in Section 10, we make

concluding remarks and discuss future work.

2 Basic Semantic Model of BIP

In this section, we present the operational global state
semantics of BIP [5]. BIP is a component framework

for constructing systems by superposing three layers of

modeling: Behavior, Interaction, and Priority. In this
paper we do not consider priorities. In Subsection 2.1,

we formally define atomic components. The notion of

composite components is presented in Subsection 2.2.

2.1 Atomic Components

An atomic component is described as a 1-Safe Petri net
extended with data. It consists of a set of places, a set of

transitions, and a set of local variables. Each transition

is labelled by a port, a guard which is a predicate on
local variables, and an update function. Ports are used

for communication among different components. Each

port exports a subset of variables of the component.

Definition 1 A 1-Safe Petri net is defined by a triple

S = (L,P, T) where L is a set of places, P is a set of
ports, and T ⊆ 2L × P × 2L is a set of transitions. A

transition τ is a triple (•τ, p, τ•), where •τ is the set of

input places of τ and τ• is the set of output places of τ .

A Petri net is often modeled as a directed bipartite

graph G = (L∪T,E). Places are represented by circular
vertices and transitions are represented by rectangular

committee coordination algorithms that are resilient to faults
(e.g., [11, 26]) as well.

p1

p4

p2

p5

p3

t1

t2

t3

p1

p4

p2

p5

p3

t1

t2

t3

Fig. 3 A simple Petri net

vertices (see Fig. 3). The set of directed edges E is

the union of the sets {(l, τ) ∈ L × T | l ∈ •τ} and

{(τ, l) ∈ T × L | l ∈ τ•}.

We depict the state of a Petri net by marking its

places with tokens. We say that a place is marked if it
contains a token. A transition τ can be executed if all

its input places in •τ contain a token and all its output

places do not contain a token. Upon the execution of
τ , tokens in input places •τ are removed and tokens in

output places in τ• are added. Formally, let −→
S

be the

set of triples (m, p,m′), such that ∃τ = (•τ, p, τ•) ∈ T ,
where •τ ⊆ m and m′ = (m\•τ) ∪ τ•. The behavior

of a Petri net S can be defined as a labeled transition

system (2L, P,−→
S
), where 2L is the set of states, P is the

set of labels, and −→
S

is the set of transitions. The reader

may find more information about Petri Nets in [29].

Example 1 Fig. 3 shows an example of a Petri net in
two successive markings. It has five places {p1, . . . , p5}
and three transitions {t1, t2, t3}. The places containing

a token are depicted with gray background. The Petri

net on the right shows the resulting state of the Petri
net on the left after executing transition t2.

Definition 2 An atomic component B is defined by B

= (L, P , T , X, {Xp}p∈P , {gτ}τ∈T , {fτ}τ∈T) where:

– (L,P, T) is a 1-Safe Petri net.

– X is a set of variables.

– For each port p ∈ P , Xp ⊆ X is the set of variables
exported by p (i.e., variables visible from outside the

component through port p).

– For each transition τ ∈ T , gτ is a predicate defined
over X and fτ is a function that updates the set of

variables X.

Example 2 Fig. 4(a) shows an atomic component,

where the set of places is {s}, the set of ports is {p}, the
set of variables is {n}, the set of transitions is {(s, p, s)}
with no update function and guard equal to logical true.

Variable n is exported by port p.

Given a set X of variables, we denote by X the set
of valuations defined on X. Formally, X = {σ : X →
Domain}, where Domain is the set of all values possibly

taken by variables in X.

A Framework for Automated Distributed Implementation of Component-based Models 5

Definition 3 The semantics of an atomic compo-

nent B = (L, P , T , X, {Xp}p∈P , {gτ}τ∈T , {fτ}τ∈T)
is defined as the labeled transition system SB =

(QB , PB ,−→
B

) where

– QB = 2L×X, where X denotes the set of valuations

on X.
– PB = P ×X denotes the set of labels, that is, ports

augmented with valuations of variables.

– −→
B

is the set of transitions defined as follows. Let

(m, v) and (m′, v′) be two states in 2L ×X, p be a

port in P , and v′′p be a valuation in Xp of Xp. We

write (m, v)
p(v′′

p)
−−−→

B
(m′, v′), iff τ = (m, p,m′) is a

transition of the behavior of the Petri net (L,P, T),

gτ (v) is true, and v′ = fτ (v[Xp ← v′′p]), (i.e., v
′ is

obtained by applying fτ after updating variables Xp

exported by p by the values v′′p). In this case, we say

that p is enabled in state (m, v).

In Definition 3, we introduce an intermediate valua-

tion v′′p to parametrize the transition labeled by the port
p. Indeed, executing a transition labeled by p modifies

the values of variables in Xp through port p. Modified

values are the outcome of an interaction, as defined in
Subsection 2.2.

2.2 Composite Components

A composite component is built from a set of n atomic

components {Bi = (Li, Pi, Ti, Xi, {Xp}p∈Pi
, {gτ}τ∈Ti

,
{fτ}τ∈Ti

)}ni=1, such that their respective sets of places,

sets of ports, and sets of variables are pairwise disjoint;

i.e., for any two i 6= j from {1..n}, we have Li∩Lj = ∅,
Pi ∩ Pj = ∅, and Xi ∩Xj = ∅. We denote P =

⋃n
i=1 Pi

the set of all the ports in the composite component,

L =
⋃n

i=1 Li the set of all locations, and X =
⋃n

i=1 Xi

the set of all variables.

Definition 4 (Interaction) Let {Bi = (Li, Pi, Ti,
Xi, {Xp}p∈Pi

, {gτ}τ∈Ti
, {fτ}τ∈Ti

)}ni=1 be a composite

component. An interaction a between the atomic com-

ponents is a triple (Pa, Ga, Fa), where

– Pa ⊆ P is a nonempty set of ports, that contains

at most one port of every component, that is, |Pi ∩
Pa| ≤ 1, for all i, 1 ≤ i ≤ n. We denote by Xa =
⋃

p∈Pa
Xp the set of variables available to a.

– Ga : Xa → {True,False} is a guard.
– Fa : Xa → Xa is an update function.

By definition, Pa uses at most one port of every
component. Therefore, we simply denote Pa = {pi}i∈I ,

where I ⊆ {1 . . . n} contains the indices of the com-

ponents involved in a and for all i ∈ I, pi ∈ Pi. We

sn

p

p

(a) An atomic component

p1

p1s1n1

p2

p2s2n2

p3

p3s3n3

p4

p4s4n4

a = p1p2
n1 > n2

swap(n1, n2)

c = p3p4
n3 > n4

swap(n3, n4)

b = p2p3
n2 > n3

swap(n2, n3)

(b) A BIP composite component that sorts integers ni, ob-
tained by gluing 4 atomic components using 3 interactions.

Fig. 4 Atomic and composite components in BIP

denote by F i
a the projection of Fa on Xpi

. This pro-

jection corresponds to the values transmitted to atomic

component Bi as the outcome of the interaction.

Definition 5 (Composite Component) We denote

by B
def
= γ(B1, . . . , Bn) the composite component ob-

tained by applying a set of interactions γ to the set of

atomic components B1, . . . , Bn.

Definition 6 Let γ(B1, . . . , Bn) be a composite com-

ponent, where Bi = (Li, Pi, Ti,Xi, {Xp}p∈Pi
, {gτ}τ∈Ti

,

{fτ}τ∈Ti
)ni=1 and SBi

= (Qi, Pi,−−→
Bi

) is the semantics

of Bi. The semantics of γ(B1, · · · , Bn) is a transition

system (Q, γ,−→
γ
), where Q = Πn

i=1Qi, and −→
γ

is the

least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ
Ga({vpi

}i∈I) ∀i 6∈ I. (mi, vi) = (m′
i, v

′
i)

∀i ∈ I. (mi, vi)
pi(v

′′

pi
)

−−−−→
Bi

(m′
i, v

′
i), v

′′
pi

= F i
a({vpi

}i∈I)

((m1, v1), . . . , (mn, vn))
a
−→
γ

((m′
1, v

′
1), . . . , (m

′
n, v

′
n))

where for each i ∈ I, vpi
denotes the valuation vi re-

stricted to the variables of Xpi
. Note that {vpi

}i∈I de-
fines a valuation on Xa and therefore we may apply the

guard and the update function to it.

This rule says that a composite component B =

γ(B1, . . . , Bn) can execute an interaction a ∈ γ enabled

in state ((m1, v1), . . . , (mn, vn)), iff (1) for each pi ∈ Pa,
the corresponding atomic component Bi can execute a

transition labelled by pi, and (2) the guard Ga of the

interaction evaluates to true on the variables exported

by the ports participating in interaction a. Execution
of interaction a triggers the function Fa which modifies

the variables of the components exported by ports pi.

The new values obtained, encoded in the valuation v′′pi
,

6 Borzoo Bonakdarpour et al.

are then processed by the components’ transitions. The

state of a component that does not participate in the
interaction remains unchanged. We say that an inter-

action a ∈ γ is enabled at state q ∈ Q if there exists

state q′ ∈ Q such that q
a
−→
γ

q′.

Example 3 Fig. 4(b) illustrates a composite compo-

nent γ(B1, · · · , B4), where each Bi is identical to com-

ponent B in Fig. 4(a). The set γ of interactions is
{a, b, c}, where a = ({p1, p2}, n1 > n2, swap(n1, n2))

and function swap swaps the values of its arguments.

Interactions b and c are defined in a similar fash-
ion, that is, b = ({p2, p3}, n2 > n3, swap(n2, n3)) and

c = ({p3, p4}, n3 > n4, swap(n3, n4)). Interaction a is

enabled when ports p1 and p2 are enabled and the
value of n1 (in B1) is greater than the value of n2 (in

B2). Thus, the composite component B sorts values of

n1 · · ·n4, so that n1 contains the smallest value and n4

contains the largest value.

3 The 3-Layer Architecture

In this section, we describe the overall architecture of
the source-to-source transformation in BIP. Since we

target a distributed setting, we assume concurrent exe-

cution of interactions. However, if two interactions are

simultaneously enabled, they cannot always run in par-
allel without breaking the semantics of the initial global

state model. This leads to the notion of conflict between

interactions. Intuitively, two interactions are conflicting
if they share a port or they are using conflicting ports

of the same component.

Definition 7 Let γ(B1, . . . , Bn) be a BIP model. We

say that two interactions a1 = (P1, G1, F1), a2 =
(P2, G2, F2), where a1, a2 ∈ γ, are conflicting iff either:

– they share a common port p; i.e., p ∈ P1 ∩ P2, or
– there exists in an atomic component Bi = (Li,

Pi, Ti, Xi, {Xp}p∈Pi
, {gτ}τ∈Ti

, {fτ}τ∈Ti
), a loca-

tion l ∈ Li, two transitions τ1 = (•τ1, p1, τ
•
1), τ2 =

(•τ2, p2, τ
•
2) ∈ T , and two ports p1, p2 ∈ Pi, such

that (1) p1 ∈ P1, (2) p2 ∈ P2, and (3) l ∈ •τ1 ∩
•τ2.

As discussed in the introduction, handling conflict-
ing interactions in a BIP model executed by a central-

ized Engine is quite straightforward. However, in a dis-

tributed setting, detecting and avoiding conflicts is not

trivial. Thus, our target transformed BIP model should
have the following three properties:

1. preserving the behavior of each atomic component,

2. preserving the behavior of interactions modulo some

observation criterion, and

3. resolving conflicts in a distributed manner.

The target BIP model is designed based on the three

properties identified above. It consists of three layers

ensuring the three properties respectively. Moreover,
we require that interactions in the target model are

of the form Send/Receive with one sender and multiple

receivers. Such interactions can be implemented by us-

ing conventional communication primitives (e.g., TCP
sockets, MPI primitives, or shared memory). Finally,

we provide generic and minimal interfaces for the third

layer for conflict resolution, which can be implemented
using existing distributed algorithms.

Definition 8 We say that BSR = γSR(BSR
1 , . . . , BSR

n)
is a Send/Receive BIP composite component iff we

can partition the set of ports of BSR into three sets Ps,

Pr, and Pu that are respectively the sets of send-ports,
receive-ports, and unary interaction ports, such that:

– Each interaction a = (Pa, Ga, Fa) ∈ γSR, is ei-

ther (1) a Send/Receive interaction with Pa =
(s, r1, r2, . . . , rk), s ∈ Ps, r1, . . . , rk ∈ Pr, Ga = true

and Fa copies the variables exported by port s to the

variables exported by ports r1, r2, . . . , rk, or, (2) a
unary interaction Pa = {p} with p ∈ Pu, Ga = true,

Fa is the identity function.

– If s is a port in Ps, then there exists one and only one

Send/Receive interaction a = (Pa, Ga, Fa) ∈ γSR

with Pa = (s, r1, r2, . . . , rk) and all ports r1, . . . , rk
are receive-ports. We say that r1, r2, . . . , rk are the

receive-ports associated to s.
– If a = (Pa, Ga, Fa) with Pa = (s, r1, . . . , rk) is a

Send/Receive interaction in γSR and s is enabled

at some global state of BSR, then all its associ-
ated receive-ports r1, . . . , rk are also enabled at that

state.

Definition 8 defines a class of BIP models for dis-

tributed implementation based on asynchronous mes-

sage passing. In such systems, communication is sender-

triggered, in the sense that a message is emitted by the
sender, regardless the availability of receivers. The third

property of the definition, requires that all receivers are

ready to receive whenever the sender may send a mes-
sage. This ensures that the sender is never blocked and

triggers the Send/Receive interaction.

We use the BIP model in Fig. 1 as a running
example throughout the paper to describe the concepts

of our transformation. We assume that interaction a1
is in conflict with only interaction a2, and, interactions

a2, a3, and a4 are in pairwise conflict. In all Figures
depicting Send/Receive BIP components we represent

send-ports using triangles and receive-ports using

bullets. Our architecture consists of the following three

A Framework for Automated Distributed Implementation of Component-based Models 7

N
T
E
R
A
C
T
I
O
N

R
E
S
E
R
V
A
T
I
O
N

C
O
M
P
O
N
E
N
T

I

a1 f4r4 ok4

f4r4 ok4

f3ok3r3

f3r3 ok3

a4a1

BSR
2 BSR

3 BSR
4 BSR

5BSR
1

RP1

f2r2 ok2

f2r2 ok2

IP1 IP2a3

o1 p1 p2o2 o3p3p4 o5p8

o1 p1 p2o2 o3p3p4 o5p8p9o4p5 o4 p7

a2

p9p7p6

p6

p5o4

Fig. 5 3-layer model of Fig. 1.

layers.

Components Layer. Atomic components in the

given BIP model are placed in this layer with the fol-

lowing additional ports per component. The send-port
o (stands for offer) sends to the upper layer messages

containing the list of enabled ports in the component.

Also, for each port p in the original component, we
include a receive-port p through which the component

is notified from the upper layer to execute a transition

labeled by p. In Fig. 5, the bottom layer depicts the

modified components illustrated in Fig. 1.

Interaction Protocol Layer. This layer consists of
a set of components, each in charge of execution of a set

of interactions in the initial BIP model. Assignment of

interactions to components is defined by a partition of
interactions, where each class is handled by a different

component in this layer. Conflicts between interactions

executed by the same component are resolved by that
component locally. For instance, interactions a1 and a2
(resp. a3 and a4) of Fig. 1 are grouped into component

IP1 (resp. component IP2) in Fig. 5. Thus, conflicts

between a1 and a2 (resp. a3 and a4) are handled locally
in IP1 (resp. IP2). On the contrary, conflicts between

a2 and either a3 or a4 have to be resolved using an

external algorithm that solves the committee coordina-
tion problem. Such an algorithm is implemented by the

upper layer of our model. An Interaction Protocol also

evaluates the guard and executes the update function
associated with an interaction that is selected locally

or by the upper layer. The interface between this layer

and the component layer provides ports for receiving

offers from each component and sending responses to
the components on permitted ports for execution.

Reservation Protocol Layer. This layer accommo-

dates an algorithm that solves the committee coordina-

tion problem [15]. This problem is as follows:

“Professors in a certain university have orga-

nized themselves into committees. Each commit-
tee has an unchanging membership roster of one

or more professors. From time to time a pro-

fessor may decide to attend a committee meet-
ing; it starts waiting and remains waiting until

a meeting of a committee of which it is a mem-

ber is started. All meetings terminate in finite
time. The restrictions on convening a meeting

are as follows: (1) meeting of a committee may

be started only if all members of that commit-

tee are waiting, and (2) no two committees may
convene simultaneously, if they have a common

member. The problem is to ensure that (3) if

all members of a committee are waiting, then a
meeting involving some member of this commit-

tee is convened.”

It is straightforward to observe that the committee co-

ordination problem can resolve conflicts in our models,

where professors represent components and committees
represent interactions. For instance, the external con-

flicts between interactions a2 and a3, and, interactions

a2 and a4 are resolved by this layer (component RP1)
in Fig. 5. We emphasize that this layer is fully deter-

mined by the conflict resolution algorithm chosen and

the externally conflicting interactions. Incorporating a
centralized algorithm results in one component RP1 as

illustrated in Fig. 5. Other algorithms (as will be dis-

cussed in Subsection 4.3), such as circulating token [3]

or dining philosophers [4, 15] result in different struc-
tures. The interface between this layer and the Inter-

action Protocol involves ports for receiving request to

reserve an interaction (labeled r for reserve) and re-
sponding by either success (labeled ok) or failure (la-

beled f for fail).

We note that when multiple interactions are en-
abled, the choice for executing interactions is non-

deterministic. This non-determinism depends on the or-

der of messages travelling in an actual distributed sys-
tem as well as the choice of algorithm for solving the

committee coordination problem.

4 Transforming BIP into 3-Layer
Send/Receive-BIP

In this section, we describe the method for auto-

mated transformation of a BIP model into a 3-layer

Send/Receive-BIP model in detail. This transformation

takes a BIP model, a partition of its interactions, and
a committee coordination algorithm as input, and gen-

erates another BIP model as described in Section 3.

Specifically,

8 Borzoo Bonakdarpour et al.

– atomic components in the input BIP model are au-

tomatically transformed into atomic Send/Receive
components (see Subsection 4.1),

– the partition of interactions, determines the compo-

nents in the Interaction Protocol layer and the in-
terface between these components and the Atomic

Components layer (see Subsection 4.2),

– the choice of the input committee coordination al-
gorithm determines the Reservation Protocol layer

and its interface with the Interaction Protocol (see

Subsection 4.3).

All these transformations are fully automated. Fur-

thermore, the interaction partition and the committee
coordination algorithm determine the level of distribu-

tion of the transformed model. For instance, the ar-

chitecture in Fig. 5 results in a distributed implemen-
tation, where one centralized component manages all

conflicts. Notice that, an interaction cannot be han-

dled by two components in the Interaction Protocol.

That is, only one component executes the interaction
to avoid inconsistencies. Hence, in general, obtaining a

fully distributed implementation such as the one shown

in Fig. 2(c) is not trivial. However, if an interaction
is used only for the purpose of synchronization (i.e.,

the interaction has an identity update function), then

a fully distributed solution is possible using commit-
tee coordination algorithms that allow full distribution

(e.g., [11, 26]).

4.1 Atomic Components Layer

For the sake of simplicity and clarity, we present the

transformation for atomic components such that Petri
nets are finite state automata. That is, each transition

has a single source place and a single target place.

We transform an atomic component B of a BIP

model into a Send/Receive atomic component BSR that

is capable of communicating with the Interaction Pro-

tocol in the 3-layer model. As mentioned in Section 3,
BSR sends offers to the Interaction Protocol that are

acknowledged by a response. An offer includes the set

of enabled ports of BSR at the current state through
which the component is ready to interact. For each port

p of the transformed component BSR, we introduce a

Boolean variable xp. This variable is modified by a port
update function when reaching a new state: the vari-

able xp is then set to true if the corresponding port

p becomes enabled, and to false otherwise. When the

upper layer selects an interaction involving BSR for ex-
ecution, BSR is notified by a response sent on the port

chosen. We also include in BSR a participation num-

ber variable n which counts the number of interactions

ft
o p

s t

s

t

⊥s ⊥t

fs =

xp := true

xq := false

xr := false

n + +

ft =

xp := false

xq := true

xr := true

n + +

r
ft

r

q

q

q

p r
p

rpo

fs
q o

Fig. 6 Transformation of atomic component.

that BSR has participated in. This number is used by

the Reservation Protocol to ensure conflict resolution.

That is, the number of times that from each state a
component has taken part in an interaction.

Since each notification from the Interaction Protocol

triggers an internal computation in a component, fol-

lowing [5], we split each place s into two places, namely,
s itself and a busy place ⊥s. Intuitively, reaching ⊥s

marks the beginning of an unobservable internal com-

putation. We are now ready to define the transforma-
tion from B into BSR.

Definition 9 Let B = (L, P , T , X, {Xp}p∈P ,

{gτ}τ∈T , {fτ}τ∈T) be an atomic component. The cor-
responding Send/Receive atomic component is BSR

= (LSR, P SR, T SR, XSR, {XSR
p }p∈P , {gτ}τ∈T SR ,

{fτ}τ∈T SR) with the additional variables X, such that:

– LSR = L ∪ L⊥, where L⊥ = {⊥s |s ∈ L}.
– XSR = X ∪ {xp}p∈P ∪ {n}, where each xp is a new

Boolean variable, and n an integer called participa-

tion number.
– P SR = P ∪ {o}, where the offer port o exports the

variables XSR
o = {n} ∪

⋃

p∈P ({xp} ∪Xp), that is

the participation number, the new Boolean variables
and the variables associated to each port. For all

other ports p ∈ P , we define XSR
p = Xp.

– For each location s ∈ L, we include an offer tran-

sition τs = (⊥s, o, s) in TSR. The guard gτs is true
and the update function fτs is the identity function.

– For each transition τ = (s, p, t) ∈ T , we include

a response transition τp = (s, p,⊥t) in TSR. The
guard gτp is true. The function fτp first applies the

original update function fτ , then increments n and

finally updates the Boolean variables:

for all r ∈ P xr :=

{

gτ ′ if ∃τ ′ = (t, r, t′) ∈ T

false otherwise

Fig. 6 illustrates the transformation of a component
into its corresponding Send/Receive component.

4.2 Interaction Protocol Layer

Consider a composite component B = γ(B1 · · ·Bn) and

a partition of the set of interactions γ = γ1 ∪ . . . ∪ γm.

A Framework for Automated Distributed Implementation of Component-based Models 9

This partition allows the designer to enforce load-

balancing and improve the performance of the given
model when running in a distributed fashion. It also

determines whether or not a conflict between interac-

tions can be resolved locally. We associate each class γj
of interactions to an Interaction Protocol component

IP j that is responsible for (1) detecting enabledness

by collecting offers from the components layer, (2) se-
lecting one non-conflicting interaction (either locally or

assisted by the Reservation Protocol), and (3) execut-

ing the selected interaction in γj and sending responses

to the corresponding atomic components. For instance,
in Fig. 5, we have two classes: γ1 = {a1, a2} (handled

by component IP1) and γ2 = {a3, a4} (handled by com-

ponent IP2).

Since components of the Interaction Protocol deal

with interactions of the original model, they need to
be aware of conflicts in the original model as defined

in Definition 7. We distinguish two types of conflicting

interactions according to a given partition:

– External: Two interactions are externally conflicting

if they conflict and they belong to different classes
of the partition. External conflicts are resolved by

the Reservation Protocol. For instance, in Fig. 5, in-

teraction a2 is in external conflict with interactions
a3 and a4.

– Internal: Two interactions are internally conflicting

if they conflict, but they belong to the same class

of the partition. Internal conflicts are resolved by
the Interaction Protocol within the component that

handles them. For instance, in Fig. 5, interaction a1
is in internal conflict with interaction a2. If compo-
nent IP1 chooses interaction a1 over a2, no further

action is required. On the contrary, if IP1 chooses

a2, then it has to request its reservation from RP1,
as it is in external conflict with a3 and a4.

The Petri net that defines the behavior of an Inter-
action Protocol component IP j handling a class γj of

interactions is constructed as follows. Fig. 7 illustrates

the construction of the Petri net of component IP1 in
Fig. 5.

Places. The Petri net has three types of places:

– For each component Bi involved in interactions of
γj , we include waiting and received places wi and

rcv i, respectively. IP j remains in a waiting place un-

til it receives an offer from the corresponding com-

ponent. When an offer from component Bi is re-
ceived (along with the fresh values of its variables),

IP j moves from wi to rcv i. In Fig. 7, since compo-

nents B1 · · ·B4 are involved in interactions handled

by IP1 (i.e., a1 and a2), we include waiting places

w1 · · ·w4 and received places rcv1 · · · rcv4.
– For each port p involved in interactions of γj , we

include a sending place sndp. The response to an

offer with xp = true is sent from this place to port p
of the component that has made the offer. In Fig. 7,

places sndp1
· · · sndp5

correspond to ports p1 · · · p5
respectively, as they form interactions hosted by IP1

(i.e., a1 and a2).

– For each interaction a ∈ γj that is in external con-

flict with another interaction, we include an engaged

place ea and a free place fra. In Fig. 7, only inter-
action a2 is in external conflict, for which we add

places ea2
and fra2

.

Variables and ports. For each port p involved in in-

teractions of γj , we include a Boolean variable xp and
a local copy of the variables Xp exported by p. Val-

ues of these variables are updated whenever an offer is

received from the corresponding component. Also, for
each component Bi involved in an interaction of γj , we

include an integer ni that stores the participation num-

ber of Bi. The set of ports of IP j is the following:

– For each component Bi involved in an interaction
of γj , we include a receive-port oi, to receive offers.

Each port oi exports the variables ni, xp and the

variables Xp associated to each port p of Bi. In Fig.

7, ports o1 · · · o4 represent offer ports for compo-
nents B1 · · ·B4.

– For each port p involved in interactions of γj , we

include a send-port p, which exports the set of vari-
ables Xp. In Fig. 7, ports p1 · · · p5 correspond to the

ports that form interactions a1 and a2.

– For each interaction a ∈ γj that is in external con-
flict with some other interaction, we include ports

ra (reserve a, send-port), oka (success in reserving

a, receive-port), and fa (failure to reserve a, receive-

port). If a = {pi}i∈I , the port ra exports the vari-
ables {ni}i∈I , where I is the set of indices of com-

ponents involved in interaction a. In Fig. 7, ports

ra2
, oka2

, and fa2
are used for solving the external

conflict of a2 with interactions a3 and a4.

– For each interaction a ∈ γj that is not in external

conflict, we include a unary port a. In Fig. 7, we in-
clude unary port a1, as a1 is only in internal conflict

with a2.

Transitions. IP j performs two tasks: (1) receiving

offers from components in the lower layer and respond-

ing to them, and (2) requesting reservation of an in-
teraction from the Reservation Protocol in case of an

external conflict. The following set of transitions of IP j

performs these two tasks:

10 Borzoo Bonakdarpour et al.

w1 w3w2 w4

rcv1 rcv3rcv2 rcv4

fra2

ea2

sndp1 sndp3 sndp4sndp2 sndp5

w1 w3w2 w4

fra2

o1 o2 o3 o4

o4

a1

ra2

oka2
fa2

p1 p2 p3 p4 p5

o1 o2 o3 o4

ra2
oka2 fa2

a1

p1 p2 p3 p4 p5

Waiting

Received

Engaged

Sending

Waiting

Free

Fig. 7 Component IP1 in Fig. 5.

– In order to receive offers from a component Bi, we

include transition (wi, oi, rcv i). If Bi participates in

an interaction not handled by IP j , we also include
transition (rcv i, oi, rcv i) to receive new offers when

Bi takes part in such an interaction. Transitions la-

beled by o1 · · · o4 in Fig. 7 are of this type.
– Requesting reservation of an interaction a ∈ γj that

is in external conflict is accomplished by transition

({rcv i}i∈I ∪ {fra}, ra, {rcv i}i∈I ∪ {ea}), where I is
the set of components involved in interaction a. This

transition is guarded by the predicate
∧

i∈I xpi
∧Ga

which ensures enabledness of a. Notice that this

transition is enabled when the token for each par-
ticipating component is in its corresponding receive

place rcv i and the guard Ga of the interaction a is

true. Execution of this transition results in moving
the token from the free place fra to the engaged

place ea. In Fig. 7, transition ra2
is of this type, and

is guarded by xp4
∧ xp5

.
– For the case where the Reservation Protocol

responds positively, we include the transition

({rcv i}i∈I ∪ {ea}, oka, {sndpi
}i∈I ∪ {fra}). The ex-

ecution of this transition triggers the function Fa of
the interaction a, and then, the token in the engaged

place moves to the free place and the tokens in re-

ceived places move to sending places to inform the
corresponding components. Transition oka2

in Fig.

7, occurs when interaction a2 is successfully reserved

by the Reservation Protocol.
– For the case where the Reservation Protocol

responds negatively, we include the transition

(ea, fa, fra). Upon execution of this transition, the

token moves from the engaged place to the free
place. Transition fa2

in Fig. 7, occurs when the

Reservation Protocol fails to reserve interaction a2
for component IP1.

– For each interaction a = {pi}i∈I in γj that has only

internal conflicts, let A be the set of interactions
that are in internal conflict with a, and are exter-

nally conflicting with other interactions. We include

the transition ({rcv i}i∈I∪{fra′}a′∈A, a, {sndpi
}i∈I∪

{fra′}a′∈A). This transition is guarded by the predi-

cate
∧

i∈I xpi
∧Ga and moves the tokens from receiv-

ing to sending places. Tokens at fra′ places ensure
that no internally conflicting interaction requested

a reservation. This transition triggers the function

Fa. The transition labeled by a1 in Fig. 7 falls in

this category.
– Finally, for each component Bi exporting p, we in-

clude a transition (sndp, p, wi). This transition noti-

fies component Bi to execute the transition labeled
by port p. These are transitions labeled by p1 · · · p5
in Fig. 7.

4.3 Reservation Protocol Layer

The Reservation Protocol ensures that externally con-

flicting interactions are executed in mutual exclusion.

This can be ensured by employing an algorithm that
solves the committee coordination problem. Our design

characterizes the Reservation Protocol by its generic in-

terface with the Interaction Protocol and thus allows
employing different algorithms with minimal restric-

tions.

We adapt the message-count technique from [4].

This technique is based on counting the number of times
that a component interacts. This number is recorded

as the participation number n, in every atomic com-

ponent. The Reservation Protocol ensures that, for a
fixed value of the participation number, each compo-

nent takes part in only one interaction. To this end,

for each component Bi, the Reservation Protocol has a
variable Ni which stores the latest value of the partici-

pation number ni of Bi. Whenever a reserve message ra
for interaction a = {pi}i∈I is received by the Reserva-

tion Protocol, the message provides a set of participa-
tion numbers ({na

i }i∈I) for all components involved in

a. If for each component Bi, the participation number

na
i is greater than Ni, then the Reservation Protocol ac-

knowledges successful reservation through port oka and

the participation numbers in the Reservation Protocol

are set to values sent by the Interaction Protocol. On
the contrary, if there exists a component whose partici-

pation number is less than or equal to what Reservation

Protocol has recorded, then the corresponding compo-

nent has already participated for this number and the
Reservation Protocol replies failure via port fa.

Since the structure and behavior of the Reservation

Protocol components depend on the employed commit-

A Framework for Automated Distributed Implementation of Component-based Models 11

treata4

waita3

oka3 fa3ra3

treata3

N4 := na3
4

ra3 fa3

N5 := na3
5

[na3
3 > N3
∧na3

4 > N4]
oka3

waita2

oka2 fa2ra2

treata2

N3 := na2
3

ra2 fa2

N4 := na2
4

[na2
3 > N3
∧na2

4 > N4]
oka2

oka4 fa4ra4

N4 := na4
4

ra4 fa4

N5 := na4
5

[na4
3 > N3
∧na4

4 > N4]
oka4

waita4

Fig. 8 A centralized Reservation Protocol for Fig. 5.

tee coordination algorithm, we only specify an abstract

set of minimal restrictions of this layer as follows:

– For each component Bi connected to an interac-
tion with external conflicts, the Reservation Proto-

col maintains a variable Ni indicating the last par-

ticipation number reserved for Bi.

– For each interaction a = {pi}i∈I handled by the
Reservation Protocol, we include three ports: ra,

oka and fa. The receive-port ra accepts reservation

requests containing fresh values of variables na
i . The

send-ports oka and fa accept or reject the latest

reservation request, and the variables Ni are incre-

mented in case of positive response.
– Each ra message should be acknowledged by exactly

one oka or fa message.

– Each component of the Reservation Protocol should

respect the message-count properties described
above.

4.3.1 Centralized Implementation

Fig. 8 shows a centralized Reservation Protocol for the

model in Fig. 5 (i.e., component RP1 in Fig. 5). A reser-

vation request, for instance, ra2
, contains fresh value of

variables na2
3 and na2

4 (corresponding to components

B3 and B4). The token representing interaction a2 is

then moved from place waita2
to place treata2

. From
this place, the Reservation Protocol can still receive

a request for reserving a3 and a4 since waita3
and

waita4
still contain a token. This is where message-

counts play their role. The guard of transition oka2
is

(na2
3 > N3) ∧ (na2

4 > N4) where Ni is the last known

used participation number for Bi. Note that since exe-

cution of transitions is atomic in BIP, if transition oka2

is fired, it modifies variables Ni before any other tran-

sition can take place. We denote this implementation

by RP .

4.3.2 Token Ring Implementation

Another example of a Reservation Protocol is inspired
by the token-based algorithm due to Bagrodia [3],

where we add one reservation component for each ex-

ternally conflicting interaction. We denote by TRa the

req

r2 ok2 f2 r4 ok4 f4r3 ok3 f3

STST

RT ST

RT RT

[∀j : nj > Nj]

f3

[∃j : nj ≤ Nj]

ST

ok3r3 f3

r3

RT

RT

ST RT

nj := Nj

ok3

f3

[∃j : nj ≤ Nj]

wait

ready token

Fig. 9 Token-based Reservation Protocol for the BIP models
in Fig. 1 and Fig. 5.

component that corresponds to interaction a. Fig. 9

shows the components of a token-based reservation pro-

tocol for the model presented in Fig. 5 and depicts the
behavior of component TRa3

. Mutual exclusion is en-

sured using a circulating token carrying Ni variables.

Initially, all components are in place wait, except the
one that owns the token which is in place ready. From

place wait, a component waits to receive a reservation

request, and then, it moves to place req. From this
place, it is possible to respond to the reservation re-

quest by a fail message before receiving the token, if

there exists a variable ni whose value is less or equal to

the last known value of the corresponding Ni. This is
correct, since the value of Ni can only increase. Other-

wise, the component waits to receive the token. After

receiving the token (i.e., place token), the component
compares the values of ni variables with the values of

Ni variables from the token. If ni > Ni for all i, then

an ok message is sent to the component that handles
the requested interaction and increases the values of the

variables Ni. Otherwise, a fail message is sent. Subse-

quently, the reservation component releases the token

via port ST , which is received by the next component
via port RT . Obviously, this algorithm allows a better

degree of parallelism at the reservation protocol layer.

We denote this implementation, that is the set of com-
ponents TRa for all a that are externally conflicting, by

TR.

4.3.3 Implementation Based on Dining Philosophers

A third choice of Reservation Protocol algorithm is
an adaptation of the hygienic solution to the Dining

Philosophers problem presented in [4,15]. In this prob-

lem, a number of philosophers are placed at the ver-

12 Borzoo Bonakdarpour et al.

f2ok2r2

RR2

SR2

RF2

SF2

RR2

SR2

RF2

r4

SF2

RR3

SF3

RF3

SR4

RR4

SF4

RF4

SR3

ok2 f2r2

[hasfork4]

intern

[hasfork3]

[!hasfork3]

intern

[hasreq3∧!hasfork3]
hasreq4 := false

ok2
Nj := nj

RR3

[∀j : nj > Nj]

SF3
hasfork3 := false;

SR3

[∀j : nj > Nj]
intern

[hasreqi ∧ dirtyforki]
SFi

i ∈ {3, 4}

[!hasreqi]
RRi

r2

RF3

SF4
hasfork4 := false;

[!hasfork4]
RF4

[!hasreq3]
RR3

SR4

[hasreq4∧!hasfork4]

[hasreq4 ∧ dirtyfork4]

[∃j : nj ≤ Nj]
f2

hasreq3 := false

hasforki := false i ∈ {3, 4}

[∃j : nj ≤ Nj]
f2

[hasreq3 ∧ dirtyfork3]

[!hasreq3]

RR : ReceiveRequest
SR : SendRequest
SF : SendFork
RF : ReceiveFork

SF3

SR3

RR3

RF3

SR4

RR4

SF4

RF4

f3ok3r3

f4ok4

2

1

3

5

4

6

1

Fig. 10 Dining philosophers-based Reservation Protocol for
the BIP models in Fig. 1 and Fig. 5.

tices of a finite undirected graph with one philosopher

at each vertex. An edge between two vertices models

adjacent philosophers. A philosopher is in one of the

following three states: (1) thinking : the philosopher is
not requesting to eat (i.e., using a critical resource);

(2) hungry : the philosopher is requesting to eat; or (3)

eating : the philosopher is eating (i.e., is in critical sec-
tion). Philosophers can eat for only a finite amount of

time; i.e., they cannot remain in the critical section in-

definitely. Adjacent philosophers share a common fork
that represents the shared critical resource. A philoso-

pher can eat if she has all the forks from its neighbors.

Solutions to the Dining Philosophers problem ensure

the following properties: (1) mutual exclusion: adjacent
philosophers do not eat simultaneously; (2) fairness : ev-

ery hungry philosopher eventually eats; (3) symmetry :

all philosophers execute the same code (they only differ
by their initial places); (4) concurrency : non-neighbors

can eat simultaneously; and (5) boundedness : the num-

ber of messages that are in transit between any pair of
philosophers, as well as their size, are bounded.

The corresponding Send/Receive BIP implementa-
tion is presented in Fig. 10. Similarly to the token ring

implementation, each externally conflicting interaction

a is handled by a separate component DPa. If two inter-

actions are conflicting, the two corresponding compo-
nents share a fork carrying Ni variables corresponding

to the atomic components causing the conflict. A fork

is either clean or dirty. Initially, all forks are dirty and

are located around philosophers. We construct a prece-

dence graph H, where philosophers are vertices and the
direction of arcs of this graph are determined as follows.

The direction of an arc between two philosophers u and

v is from u to v (i.e., u has precedence over v) if and only
if one of the following conditions hold: (1) u holds the

fork shared by u and v, and the fork is clean, (2) v holds

the fork and the fork is dirty, or (3) the fork is in transit
from v to u. In practice, this can be done, by giving a

unique identifier to each philosopher and if two philoso-

phers u and v share a fork, then the philosopher with

the higher identifier retains the fork initially. Obviously,
H is acyclic by construction. A fork gets cleaned only

when a philosopher is willing to release it to another

philosopher. Moreover, we introduce a request for each
fork. A philosopher that intends to acquire a fork f ,

needs to send the corresponding request to the philoso-

pher that currently holds the fork. Initially, every fork
f and request for f are held by different philosophers

(i.e., hasfork i ⊕ hasreq i = true, where ⊕ denotes the

exclusive-or operator).

In Fig. 10, initially a component is in place 1 (think-
ing). From this place, the component either receives

a fork request, sends a fork, or receives a reservation

request. After receiving a reservation request (r2), it
moves to place 2 (hungry). From this place, first, the

component compares participation numbers ni received

from the reservation request with its corresponding

numbers Ni. If there exists a participation number ni

in the reservation request which is less than or equal

to its current number Ni, the component responds fail

directly before receiving all the forks. This is due to the
fact that Ni can only increase. Otherwise, the compo-

nent has to acquire all the forks shared with its neigh-

bors. Thus, the state of the component moves to places
3 and 4. Note that, in general, for each conflicting in-

teraction, the Petri net needs to have two places for ne-

gotiating the corresponding fork (here, locations 3 and

5 are used for negotiation with component DPa3
and

places 4 and 6 are used for negotiation with component

DPa4
). From place 3, the component moves to place 5,

if it has the fork. Otherwise, it sends a request for the
corresponding fork and waits for its reception. After re-

ceiving all the forks (locations 5 and 6), the component

compares participation numbers (ni) received from the
reservation request with its current numbers (Ni) and

responds accordingly. After responding, the forks be-

come dirty. Moreover, at these places, it is possible to

receive request in order to release a dirty fork if the
philosopher is asked to do so. We denote this imple-

mentation, that is the set of components DPa for all a

that are externally conflicting, by DP .

A Framework for Automated Distributed Implementation of Component-based Models 13

4.4 Cross-Layer Interactions

In this subsection, we define the interactions of our
3-layer model. Following Definition 8, we introduce

Send/Receive interactions by specifying only the

sender. Given a BIP model γ(B1 · · ·Bn), a partition

γ1 · · · γm of γ, the transformation gives a Send/Receive
BIP model γSR(BSR

1 , . . . , BSR
n , IP1, . . . , IPm, X)

where X can be any set of the Reservation Pro-

tocol components RP , TR, or DP . We define the
Send/Receive interactions of γSR as follows:

– For each component BSR
i , let IP j1 , . . . , IP jl be the

Interaction Protocol components handling interac-
tions involving BSR

i . We include in γSR the offer

interaction (BSR
i .o, IP j1 .oi, . . . , IP jl .oi).

– For each port p in component BSR
i and for each In-

teraction Protocol component IP j handling an in-

teraction involving p, we include in γSR the response

interaction (IP j .p, B
SR
i .p).

– For each Interaction Protocol component IP j han-

dling an interaction a that is in external con-

flict, we include in γSR the reserve interaction

(IP j .ra, X.ra). Likewise, we include in γSR the ok
interaction (X.oka, IP j .oka) and the fail interaction

(X.fa, IP j .fa).

Since the interface of the Reservation Protocol is the

same for the 3 versions, they all have the same inter-

action with the Interaction Protocol layer. The trans-

formed model obtained in that manner is denoted by
BSR

RP , B
SR
TR or BSR

DP depending on the embedded Reser-

vation Protocol. The interactions between the three lay-

ers of our running example are depicted in Fig. 5.

5 Correctness

In Subsection 5.1, we show that the 3-layer model is in-
deed a Send/Receive model as defined in Section 3. In

Subsection 5.2, we prove that the initial high-level BIP

model is observationally equivalent to the Send/Receive
BIP model obtained by the transformation of Section 4.

Finally, we prove correctness of models embedding dif-

ferent implementations of Reservation Protocol in Sub-

section 5.3.

5.1 Compliance with Send-Receive Model

We need to show that receive-ports of BSR
RP are enabled

whenever the corresponding send-ports are enabled.

This holds since communications between two succes-

sive layers follow a request/acknowledgement pattern.

Whenever a layer sends a request, it enables the receive-

port to receive acknowledgement and no new request is
sent until the first one is acknowledged.

Proposition 1 Given a BIP model B, the model BSR
RP

obtained by transformation of Section 4 meets the prop-

erties of Definition 8.

Proof The send-ports and receive-ports determined in

subsection 4.4 respect the syntax presented in the two

first properties of Definition 8. We now prove the third
property, that is whenever a send-port is enabled, all

its associated receive-ports are enabled.

Between Interaction Protocol and Reservation Pro-

tocol layers, for reserve, ok and fail interactions related

to a ∈ γ it is sufficient to consider places fra and ea
in the Interaction Protocol layer, waita and treata in

the Reservation Protocol layer. Initially, the configura-

tion is (fra, waita) from which only the send-port ra in
Interaction Protocol might be enabled, and the receive-

port ra is enabled. If the ra interaction takes place,

we reach the configuration (ea, treata), in which only
send-ports oka and fa in Reservation Protocol might

be enabled, and the associated receive-ports in Inter-

action Protocol are enabled. Then, if either an ok or a

fail interaction takes place, we switch back to the initial
configuration.

Between components and Interaction Protocol lay-

ers, for all interactions involving a component Bi, it is

sufficient to consider only the places wi, ri and sp for

each port p exported from Bi to the Interaction Pro-
tocol. Whenever one of the places wi or ri is enabled

in each Interaction Protocol component, the property

holds for the oi interaction. In this configuration, no
place sp can be active since this would require one of

the tokens from a wi or a ri, thus no send port p is

enabled.

If there is an Interaction Protocol component such

that the token associated to Bi is in a place sp, it comes
either from a transition labelled by a or oka. In the first

case, no other interaction involving Bi can take place;

otherwise, it would be externally conflicting with a. In
the second case, according to the Reservation Protocol,

oka is given for the current participation number in

the component Bi and no other interaction using this

number will be granted. Thus in all cases, there is only
one active place sp with p exported by Bi. The response

can then take place and let the components continue

their execution. ⊓⊔
This proof ensures that any component ready to

perform a transition labeled by a send-port will not
be blocked by waiting for the corresponding receive-

ports. In other terms, it proves that any Send/Receive

interaction is initiated by the sender. This proof can be

14 Borzoo Bonakdarpour et al.

adapted for BSR
TR and BSR

DP by remarking that in both

cases each reservation interaction is acknowledged by
exactly one interaction (either ok or fail).

5.2 Observational Equivalence between Original and

Transformed BIP Models

We recall the definition of observational equivalence of

two transition systems A = (QA, P ∪ {β},→A) and

B = (QB , P ∪ {β},→B). It is based on the usual defi-
nition of weak bisimilarity [28], where β-transitions are

considered unobservable. The same definition is triv-

ially extended for atomic and composite BIP compo-

nents.

Definition 10 (Weak Simulation) A weak simula-

tion from A to B, denoted A ⊂ B, is a relation
R ⊆ QA × QB , such that ∀(q, r) ∈ R, a ∈ P :

q
a
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗aβ∗

→ B r′ and

∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗

→B r′

A weak bisimulation over A and B is a relation R
such that R and R−1 are both weak simulations. We

say that A and B are observationally equivalent and

we write A ∼ B if for each state of A there is a weakly

bisimilar state of B and conversely. In this subsection,
our goal is to show that B and BSR

RP are observationally

equivalent. We consider the correspondence between ac-

tions of B and BSR
RP as follows. To each interaction a ∈ γ

of B, we associate either the binary interaction oka or

the unary interaction a of BSR
RP , depending upon the

existence of an external conflict. All other interactions
of BSR

RP (offer, response, reserve, fail) are unobservable

and denoted by β.

We proceed as follows to complete the proof of ob-

servational equivalence. Amongst unobservable actions
β, we distinguish between β1 actions, that are commu-

nication interactions between the atomic components

layer and the Interaction Protocol (namely offer and
response), and β2 actions that are communications be-

tween the Interaction Protocol and Reservation Proto-

col (namely reserve and fail). We denote by qSR a state

of BSR
RP and q a state of B. A state of BSR

RP from where
no β1 action is possible is called a stable state, in the

sense that any β action from this state does not change

the state of the atomic components layer.

Lemma 1 From any state qSR, there exists a unique

stable state [q]SR such that qSR
β∗

1−→ [q]SR.

Proof The state [q]SR exists since each Send/Receive

component BSR
i can do at most two β1 transitions: re-

ceive a response and send an offer. Since two β1 tran-

sitions involving two different components are indepen-

dent (i.e. do not change the same variable or the same
place), the same final state is reached independently

of the order of execution of β1 actions. Thus [q]SR is

unique. ⊓⊔
The above lemma proves the existence of a well-defined

stable state for any of the transient states reachable by

the distributed model BSR
RP . This stable state will be

used later to define our observational equivalence. We

now show a property of the participation numbers. Let

B.n mean ‘the variable n that belongs to component

B’.

Lemma 2 When BSR
RP is in a stable state, for each pair

(i, j), such that Bi is involved in interactions handled

by IP j, we have BSR
i .ni = IP j .ni > RP .Ni.

Proof At a stable state, all the offers have been sent,
thus the participation numbers in Interaction Protocol

are equal to the corresponding participation numbers

of the components: BSR
i .ni = IP j .ni.

Initially, for each component Bi, RP.Ni = 0 and
BSR

i .ni = 1 thus the property holds. The variables Ni

in Reservation Protocol are updated upon execution of

oka transition, using values provided by the Interac-
tion Protocol, that is by the components. Thus, in the

unstable state reached immediately after a oka tran-

sition, we have BSR
i .ni = RP.Ni for each component

BSR
i participant in a. Then, the response transition in-

crements participation numbers in components so that

in the next stable state BSR
i .ni > RP.Ni. For compo-

nents Bi′ not participating in a, by induction we have
BSR

i .ni′ > RP.Ni′ and only participation numbers in

atomic components can be incremented. ⊓⊔
Lemma 2 shows that the participation numbers

propagate in a correct manner. In particular, at any

stable state the reservation protocol has only previously

used values and all components of the interaction pro-
tocol layer have the freshest values, that is the same as

in the atomic components.

Since we need to take into account participation

numbers ni, we introduce an intermediate high-level
model Bn. This new model is a copy of B that in-

cludes in each atomic component an additional variable

ni which is incremented whenever a transition is exe-
cuted. As B and Bn have identical sets of states and

transitions labeled by the same ports, they are observa-

tionally equivalent. (They are even strongly bisimilar.)

Lemma 3 B ∼ Bn.

Proof We say that two states (q, qn) of B and Bn are
equivalent if they have the same state when removing

participation numbers from Bn. Since these participa-

tion numbers do not change the behavior of the model

A Framework for Automated Distributed Implementation of Component-based Models 15

(i.e. they only count the number of transitions), the

above equivalence defines a bisimulation. ⊓⊔
We are now ready to state and prove our central

result.

Proposition 2 BSR
RP ∼ Bn.

Proof We define a relation R between the set of states
QSR of BSR

RP and the set of states Q of Bn as follows:

R = {(qSR, q) | ∀i ∈ I : [q]SRi = qi} where qi denotes

the state of Bn
i at state q and [q]SRi denotes the state

of BSR
i at state [q]SR. The three next assertions prove

that R is a weak bisimulation:

(i) If (qSR, q) ∈ R and qSR
β
−→ rSR then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR
a
−→ rSR then ∃r ∈ Q : q

a
−→

r and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
a
−→ r then ∃rSR ∈ QSR :

qSR
β∗a
−→ rSR and (rSR, r) ∈ R.

(i) If qSR
β
−→ rSR, either β is a β1 action and

[q]SR = [r]SR, or β is a β2 action which does not change
the state of component layer and does not enable any

send-port.

(ii) The action a in BSR
RP is either a unary interaction

a or a binary interaction oka. In both cases, a = {pi}i∈I

has been detected to be enabled in IP j by the tokens in

received places and the guard of the transitions labeled

by a or oka in Interaction Protocol. We show that a is
also enabled at state [q]SR:

– If a has only local conflicts, no move involving Bi

can take place in another Interaction Protocol, and

no β1 move involving Bi can take place in IP j , since

a is enabled.

– If a is externally conflicting, no move involving
Bi has taken place in another Interaction Protocol

(otherwise oka would not have been enabled), nor

in IP j since the place fra is empty.

At the stable state [q]SR, Lemma 2 ensures that

IP j .ni = BSR
i .ni. Following the definition of R, we have

Bi.ni = BSR
i .ni when Bn is at state q. Thus a is en-

abled with the same participation numbers at state q

and in IP j at states q
SR and [q]SR, which implies q

a
−→.

Since interactions β1 lead to state [q]SR, they do not
interfere with action a. We can replay them from rSR

to reach a state r′
SR

, as shown on Fig. 11. State r′
SR

is

not stable because of β1 actions that take place in com-
ponents participating in a (that is, receiving response

and sending offer). Executing these actions brings the

system to state [r′]SR which is equivalent to r, and by

point (i) we have (rSR, r) ∈ R.
(iii) In Fig. 12, we show the different actions and

states involved in this condition. From qSR, we reach

[q]SR by doing β1 actions. Then we execute all possible

qSR
rSR

a

[q]SR

β∗

1

r′
SR

a

β∗

1

[r]SR

β∗

1

q r
a

Fig. 11 Proof of observational equivalence – point (ii)

fail interactions (these are β2 actions), so that all fra
places are empty, to reach a state [q′]SR. At this state,

if a has only local conflicts, interaction a is enabled;
else the sequence ra oka can be executed since Lemma

2 ensures that the guard of oka is true. In both cases,

the interaction corresponding to a brings the system to

state rSR. From this state, the responses corresponding
to each port of a are enabled, and the next stable state

[r]SR is equivalent to r, thus (rSR, r) ∈ R. ⊓⊔

5.3 Interoperability of Reservation Protocol

As mentioned in Subsection 4.3, the centralized imple-

mentation RP of the Reservation Protocol can be seen
as a specification. Recall that, we chose two other imple-

mentations in Subsection 4.3, respectively, token-ring

TR and dining philosophers DP that can be embed-

ded in our framework as reservation protocol as well.
However, these implementations are not observation-

ally equivalent to the centralized implementation. More

precisely, the centralized version defines the most lib-
eral implementation: if two reservation requests a1 and

a2 are received, the protocol may or may not acknowl-

edge them, in a specific order. This general behavior
is not implemented neither by the token ring nor by

the dining philosophers implementations, which are fo-

cused on ensuring progress. In the case of token ring,

the response may depend on the order the token travels
through the components. In the case of dining philoso-

phers, the order may depend on places and the current

status of forks.

q r
a

qSR [q]SR
β∗

1
[q′]SR

β∗

2

fail
rSR

a

ra oka

[r]SR
β∗

1

Fig. 12 Proof of observational equivalence – point (iii)

16 Borzoo Bonakdarpour et al.

Nevertheless, we can prove observational equiva-

lence if we consider weaker versions of the above im-
plementations. More precisely, for the token ring pro-

tocol, consider the weaker version TR(w) which allows

to release the token or provide a fail answer regard-
less of the values of counters. Likewise, for the din-

ing philosophers protocol, consider the weaker version

DP (w), where forks can always be sent to neighbors,
regardless of their status and the values of counters.

Clearly, a weakened Reservation Protocol is not de-

sirable for a concrete implementation since it do not

enforce progress. But, it is an artifact for proving the
correctness of our approach. The following proposition

establishes the relation between the different implemen-

tations of the Reservation Protocol.

Proposition 3 RP ∼ TR(w) ∼ DP (w)

Proof The observable actions are request, ok and fail

messages, namely ra, oka and fa. The unobservable ac-

tions are token passings for TR(w) and forks exchange
for DP (w).

Given a state sTR of the TR protocol or a state
sDP of the DP protocol, we construct a state sRP for

the centralized protocol as follows. For each interaction

a ∈ γ:

– If a request for a is pending in sTR or sDP , the

equivalent state sRP is defined such that the place

treata contains a token. Otherwise, the place waita
contains a token.

– For each component Bi involved in a, we set the

participation number na
i associated to the pending

requests in sRP to the value of ni held in the com-
ponent managing interaction a, that is TRa or RPa.

Moreover, we set the last used participation number Ni

in sRP to the value of variable Ni stored on the token

in sTR or to the value of variable Ni stored on the forks
in sDP .

In TR(w) and DP (w), it is clear that any unobserv-
able action does not change the associated state sRP .

Weakening makes the above relation an observa-
tional equivalence. Indeed, whenever an action (either

oka, fa or ra) is possible at sRP , then by moving the

token, (resp. the forks), we can always reach a state sTR

(respectively sDP) where this action is possible as well.

Reciprocally, if an action is possible in either sTR or

sDP then, in the equivalent state sRP , the same action

is allowed. ⊓⊔
Recall that we denote BSR

X the 3-layer model ob-

tained from the initial system B and that embeds the
Reservation Protocol X, which ranges over RP, TR and

DP . Also, let us denote by Tr(B) the set of all possible

traces of observable actions allowed by an execution

of B. We now show the correctness of the implemen-

tation, by using the weak implementations of TR and
DP . Since the real implementations of these protocols

restrict the behaviour of their weak version, we only

state correctness of our implementation with respect to
the original model, by showing that the traces of our

implementation are included in the traces of the origi-

nal model.

Proposition 4 (i) B ∼ BSR
RP ∼ BSR

TR(w) ∼ BSR
DP(w)

(ii) Tr(B) ⊇ Tr(BSR
TR) and Tr(B) ⊇ Tr(BSR

DP).

Proof (i) The leftmost equivalence is a consequence of

Lemma 3 and Proposition 2. The other equivalences

come from Proposition 3 and the fact that observa-
tional equivalence is a congruence with respect to par-

allel composition. (ii) Trace inclusions come from the

fact that any trace of TR (respectively DP) is also a
trace of TR(w) (respectively DP (w)). ⊓⊔

6 BIP into Distributed Implementations: The

BIP2Dist Tool-Chain

We have implemented the presented transformations in

the BIP2Dist tool3. Fig. 13 illustrates the complete de-

sign flow for generating different types of distributed
implementations from a given BIP model. The tool is

written in Java. In this section, we discuss the design

choices and features of the BIP2Dist.

1. Starting from a hierarchical BIP model, first we flat-

ten [13] the hierarchy of components and connec-
tors. Hierarchical models are normally obtained us-

ing incremental addition of components and inter-

actions to an existing model, while respecting the

operational semantics presented in Section 2. Com-
ponent flattening replaces the hierarchy on compo-

nents by a set of hierarchically structured connec-

tors applied on atomic components. An example of
hierarchically structured connector is shown in Fig.

27. Connector flattening computes for each hierar-

chically structured connector an equivalent flat con-
nector.

2. From the flattened model that consists only of

atomic components and flat connectors, we gener-

ate a 3-layer Send/Receive BIP model by choosing a
user-specified partition of interactions and a Reser-

vation Protocol.

3. From the 3-layer Send/Receive BIP model, a de-
signer may merge sets of components implemented

on the same processor. Such merging (described

3 Information about the tool is provided at http://

www-verimag.imag.fr/dbip.

A Framework for Automated Distributed Implementation of Component-based Models 17

Composition

BIP2BIP
BIP model

3−layer

Code Generator
MPI/C++

Code
MPI/C++

BIP COMPILER

BIP2DIST

CODE GENERATOR

BIP language

parser

connector flattening
component flattening

Flat BIP model

Code Generator
POSIX/C++

Code Generator
Socket/C++

Pthreads/C++Socket/C++
Code Code

Send/Receive BIP

Send/Receive BIP

BIP2Dist

Interactions
Partition

Reservation
Protocol

Components
Partition

BIP2BIP
Component

Fig. 13 BIP2Dist toolset: General architecture

in Subsection 6.1) is defined by a mapping from
Send/Receive components into processors.

4. Finally, from the obtained model, we generate C++

code by employing communication mechanisms sup-

ported by the following platforms: (1) TCP sock-
ets, (2) POSIX (shared memory) threads, or (3) the

Message Passing Interface (MPI) (described in Sub-

section 6.2).

6.1 Merging Components

Given a user-defined partition of components of the 3-
layer Send/Receive model, merging consists in generat-

ing for each block of the partition a single component

which is strongly bisimilar to their product. Component
merging is formally defined in [12]. Merging components

allows significant performance gains. For instance, when

we generate MPI code, significant overhead is due to

context switching between processes and merging can
potentially avoid such context switches. Fig. 14 shows

the Send/Receive model obtained by merging compo-

nents RP1 and IP2 and components IP1 and BSR
1 .

f2

f4r4 ok4

f4r4 ok4

f3ok3r3

f3r3 ok3

a4a1

BSR
2 BSR

3 BSR
4 BSR

5BSR
1

RP1

f2r2 ok2

f2r2 ok2

IP1 IP2a3

o1 p1 p2o2 o3p3p4 o5p8

o1 p1 p2o2 o3p3p4 o5p8p9o4p5 o4 p7

a2

p9p7p6

p6

p5o4

BSR
2 BSR

3 BSR
4 BSR

5

p2o2 o3p3p4 o5p8

o2 o3p3p4 o5p8p9o4p5 o4 p7

p9p7p6

p6

p5o4

p2

r2

ok2

f2

r2

ok2

Fig. 14 Merging together components BSR
1 and IP1, and

RP1 and IP2.

6.2 Transformation from Send/Receive BIP into C++

We describe the principle of generation of C++ code

from a Send/Receive BIP component. The code struc-
ture is depicted in Fig. 15 and involves the following

steps.

First, we initialize connections with respect to the

platform communication primitives library (Line 2).
For instance, in case of TCP sockets, this step estab-

lishes connection-oriented stream sockets between com-

ponents that need to send and receive messages to each
other. We assign one Boolean variable to each place of

Petri net of the Send/Receive component. The value of

these variables shows whether or not each place con-
tains a token. Thus, the initial state of the Petri net is

determined by an initial assignment of these variables

(Line 3).

The code scans the list of all possible transitions and
gives priority to transitions that are labeled by a send-

port (Lines 6-10) or unary ports of the given Petri net

(Lines 12-16). Actual emission of data is performed by
an invocation of the function send() in Line 7. Once data

transmission or an internal computation is completed,

tokens are removed from input places and put to output

places of the corresponding transitions (Lines 8 and 14).

Finally, if no send-port is enabled and all internal

computations are complete, then execution stops and

waits for messages from other components (Line 18).

18 Borzoo Bonakdarpour et al.

1: // Initialization
2: InitializeConnections();
3: PrepareInitialState();

4: while true do

5: // Send messages
6: if there exists an enabled send-port then

7: send(...);
8: PrepareNextState();
9: goto line 4;
10: end if

11: // Internal computation
12: if there exists an enabled unary port then

13: DoInternalComputation();
14: PrepareNextState();
15: goto line 4;
16: end if

17: // Receive messages
18: select(...);
19: recv(...);
20: PrepareNextState();
21: end while

Fig. 15 Code for execution of Send/Receive Petri nets

Once a message is received, the component resumes its
execution (Line 19).

This code generation scheme gives priority to send

actions over unary (local computation) and receiving
actions. Sending messages before doing internal compu-

tation triggers components waiting for a response so as

to preserve parallelism. Regarding the TCP implemen-
tation, we use the send(), select(), and receive() prim-

itives for sending, waiting, and receiving messages re-

spectively. Regarding the MPI implementation, we use

the following communication primitives MPI Send(),
MPI ISend(), MPI Recv(), and MPI IRecv(). The logic

of MPI- and socket-based implementations follows ex-

actly the presented principle for code generation.

We provide a multi-threaded implementation as

well. We use shared memory, mutexes, and semaphores
offered by the POSIX library for implementing send,

receive, and select primitives. More precisely, for each

atomic component, we create a shared-memory FIFO

buffer, a semaphore, and a mutex. The communication
primitives used in the code are implemented as follows:

– The send primitive: The source component writes

the message in the FIFO buffer of the destina-

tion component and increments the value of its

semaphore. These actions are protected by a mu-
tex of the destination component.

– The select primitive: The component waits on its

semaphore.

– The receive primitive: The component reads the

message from its buffer protected by its correspond-
ing mutex.

7 Simulations

We conducted simulations to study the impact of differ-

ent choices of reservation protocol and partition of in-

teractions. We emphasize that we distinguish between
simulations (results in this section) and an experiments

(results in Section 8). In distributed systems, the exe-

cution of a task or network communication may take a
considerable amount of time depending on the under-

lying platform. Thus, we provide simulations by adding

communication delays and computation times to take
into account the dynamics of different target platforms.

Unlike simulations, all parameters and results in the ex-

periments are determined by real platform characteris-

tics.

We denote each simulation scenario by (i,X), where
i is the number of Interaction Protocol components and

X is one among the three Reservation Protocols de-

scribed in Subsection 4.3 (i.e., RP , TR, or DP). For
the cases where partition of interactions results in hav-

ing no external conflicts and, hence, requires no conflict

resolution, we use the symbol ‘−’ to denote absence of

Reservation Protocol. The scenarios considered in this
Section are referred to as ‘simulations’, because we con-

sider a large number of processes running on a limited

number of stand-alone machines. Thus, we model com-
munication delays by temporarily suspending commu-

nicating processes.

All simulations are conducted on five quad-Xeon 2.6

GHz machines with 6GB RAM running under Debian

Linux and connected via a 100Mbps Ethernet network.
Our aim is to show that different conflict resolution al-

gorithms and partitions may result in significantly dif-

ferent performance. In Subsection 7.1, we present sim-
ulation results for a distributed diffusing computation

algorithm. In Subsection 7.2, we describe results for a

distributed transportation system.

7.1 Diffusing Computation

We model a simplified version of Dijkstra-Scholten ter-
mination detection algorithm for diffusing computa-

tions [17] in BIP. Diffusing computation consists in

propagating a message across a distributed system; i.e.,

a wave starts from an initial node and diffuses to all
processes in a distributed system. Diffusing computa-

tion has numerous applications including traditional

distributed deadlock detection and reprogramming of

A Framework for Automated Distributed Implementation of Component-based Models 19

a1

a

a2

a0

a3

Fig. 16 Partial BIP model for diffusing computations.

modern sensor networks. One challenge in diffusing

computation is to detect its termination. In our ver-

sion, we consider a torus (wrapped around grid) topol-
ogy for a set of distributed processes, where a spanning

tree throughout the distributed system already exists.

Each process has a unique parent and the root process

is its own parent. Termination detection is achieved in
two phases: (1) the root of the spanning tree possesses a

message and initiates a propagation wave, so that each

process sends the message to its children; and (2) once
the first wave of messages reaches the leaves of the tree,

a completion wave starts, where a parent completes

once all its children have completed. When the root
has completed, termination is detected.

The BIP model has n × m atomic components

(see Fig. 16 for a partial model). Each component
participates in two types of interactions: (1) four binary

rendezvous interactions (e.g., a0 · · · a3) to propagate

the message to its children (as in a torus topology, each
node has four neighbors and, hence, potentially four

children), and (2) one 5-ary rendezvous interaction

(e.g., a) for the completion wave, as each parent has
to wait for all its children to complete. Finally, in

order to make our simulations realistic, we require that

execution of each interaction involves 10ms suspension

of the corresponding component in the Interaction
Protocol.

7.1.1 Influence of Partition

Our first set of simulations is for a 6 × 4 torus. We

used different partitions as illustrated in Fig. 17. Fig.

18 shows the time needed for 100 rounds for detect-
ing termination of diffusing communication for each

scenario. In the first two scenarios, the interactions

are partitioned, so that all conflicts are internal and,

(4, [RP, TR,DP])

(1,−) (2,−)

(2, [RP, TR,DP]) (24, [RP, TR,DP])

Fig. 17 Different scenarios for diffusing computations.

hence, resolved locally by the Interaction Protocol. In
case (2,−), all interactions of the propagation wave are

grouped into one component of the Interaction Proto-

col and all interactions related to the completion wave
are grouped into the second component. Such grouping

does not allow parallel execution of interactions. This

is the main reason for poor performance of (1,−) and
(2,−) shown in Fig. 18.

Other scenarios group all interactions involved in

components 1 · · · 12 into one component and the re-

maining interactions in a second component of the In-

teraction Protocol. These provide simulations (2,RP),
(2,TR), and (2,DP). Such partitions allow more paral-

lelism during propagation and completion waves, as an

interaction in the first class can be executed in parallel
with an interaction in the second class. Recall that ex-

ecution of each interaction involves 10ms of suspension

of the corresponding component in the Interaction Pro-
tocol. This is why (2,RP/TR/DP) outperforms (1,−)
and (2,−). As almost all propagation interactions con-

flict with each other and so do all completion inter-

actions, the conflict graph is dense. Hence, to make a
decision within DP , each philosopher needs to grab a

high number of forks, which entails a lot of communica-

tion. Thus, the performance of (2,TR) is slightly better
than (2,DP). It can also be seen that (2,RP) performs

as well as (2,TR) and (2,DP). This is due to the fact

that we have only two classes, which results in a low
number of reservation requests.

Fig. 18 also shows the same type of simulations for

4 and 24 partition classes. As for two partitions, TR

and RP for 4 and 24 partition classes have comparable
performance. However, RP and TR outperform DP .

This is due to the fact that for DP , each philosopher

needs to acquire the forks corresponding to all conflict-

ing interactions, which requires a considerable amount
of communication. On the contrary, TR does not re-

quire as much communication, as the only task it has

to do is releasing and acquiring the token. Moreover,

20 Borzoo Bonakdarpour et al.

the level of parallelism in DP for a 6 × 4 torus is not

high enough to cope with the communication volume.

Following our observations regarding tradeoff be-
tween communication volume and parallelism, we de-

sign a scenario illustrating the advantages of DP . Recall

that each component in DP resolves conflicts through
communication involving only its neighboring compo-

nents. This is not the case for TR, since the token has

to travel through a large number of components. For a

20×20 torus, as can be seen in Fig. 19, DP outperforms
TR. This is solely because, in TR, the token travels

along the ring of components and enables interactions

sequentially. On the contrary, in DP , the Reservation
Protocol components act in their local neighborhood

and although more communication is needed, a higher

level of concurrency is possible and, hence, more inter-
actions can be enabled simultaneously. We expect for

increasing size of the torus, DP outperforms RP as well.

7.1.2 Influence of Communication Delays and

Execution Times

We now study the influence of communication delays
and execution times of functions attached to interac-

tions. We simulate different environments by adding

execution times and communication delays. The idea
is to provide some guidelines on whether one should

use a coarse or fine grain partition and which protocol

to choose, depending on the application software and
the architecture.

Note that adding execution times within atomic
components will slow down the system regardless of the

partition and committee coordination algorithm. The

response time to a notification is the time needed for
the reception of the notification, parallel execution of

transitions in atomic components and emission of offer

 30
 40
 50
 60
 70
 80
 90

 100
 110

(1
,-

)

(2
,-

)

(2
,R

P
)

(2
,T

R
)

(2
,D

P
)

(4
,R

P
)

(4
,T

R
)

(4
,D

P
)

(2
4,

R
P

)

(2
4,

T
R

)

(2
4,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 18 Performance of termination detection in diffusing
computation in different scenarios for torus 6× 4.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

(1
0,

R
P

)

(1
0,

T
R

)

(1
0,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 19 Performance of termination detection in diffusing
computation in different scenarios for torus 20× 20.

messages. Since we have parallelism between compo-

nents, the response time to a notification is determined

by the response time of the slowest component and does

not depend on the partition of interactions or the reser-
vation protocol used. Therefore, we do not model exe-

cution times on atomic components transitions, nor the

communication delay between components layer and in-
teraction protocol layer.

We consider three different environments, each of

them defined by the following parameters:

– tinter is the execution time for an interaction.
– tIP↔RP is the communication delay between the In-

teraction Protocol and Reservation Protocol layers.

– tRP↔RP is the communication delay between com-
ponents inside the Reservation Protocol layer.

In the first environment, we assume tinter = 10ms

for an interaction execution time, as for the previous
simulation, and no communications delay (tIP↔RP =

tRP↔RP = 0ms). In the second environment, we still

assume the same execution time and we add a delay of
tIP↔RP = 10ms for communication between Interac-

tion Protocol and Reservation Protocol layers. In the

third environment, we assume slower processors with

tinter = 100ms interaction execution time. Further-
more, we assume tIP↔RP = 10ms for communications

between Interaction Protocol and Reservation Proto-

col and tRP↔RP = 1ms for communications inside the
Reservation Protocol.

For each of these environments, we executed a dif-

ferent scenario of diffusing computation built on a 5×5

grid. We used three different partitions of the 5×5 torus:
a centralized one, a partition with 5 Interaction Proto-

col components (similar to the one with 4 Interaction

Protocol components depicted in Fig. 17), and the fully

decentralized one, with 25 Interaction Protocol compo-
nents. The total execution time of these scenarios in the

three environments described above, are shown in Fig.

20, Fig. 21, and Fig. 22 respectively.

A Framework for Automated Distributed Implementation of Component-based Models 21

 0

 20

 40

 60

 80

 100

 120

(1
,-

)

(5
,R

P
)

(5
,T

R
)

(5
,D

P
)

(2
5,

R
P

)

(2
5,

T
R

)

(2
5,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 20 Simulation of a diffusing computation on a 5 × 5
torus. tinter = 10ms, tIP↔RP = 0ms, tRP↔RP = 0ms

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

(1
,-

)

(5
,R

P
)

(5
,T

R
)

(5
,D

P
)

(2
5,

R
P

)

(2
5,

T
R

)

(2
5,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 21 Simulation of a diffusing computation on a 5 × 5
torus, tinter = 10ms, tIP↔RP = 10ms, tRP↔RP = 0ms

 0

 100

 200

 300

 400

 500

 600

(1
,-

)

(5
,R

P
)

(5
,T

R
)

(5
,D

P
)

(2
5,

R
P

)

(2
5,

T
R

)

(2
5,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 22 Simulation of a diffusing computation on a 5 × 5
torus, tinter = 100ms, tIP↔RP = 10ms, tRP↔RP = 1ms

Notice that in the first environment, the best perfor-
mance is achieved for the most decentralized partition,

as in Fig. 18, since there are no communication delays.

In the second environment, where we made the assump-

tion that one communication and one interaction execu-
tion require the same time, the best performance is ob-

tained for the centralized solution. In this case, the com-

munication between interaction protocol and reserva-

calling unit

Central Station

Fig. 23 Utopar transportation system.

tion protocol is too expensive compared to the speedup

obtained by having interactions running in parallel. Fi-
nally, in the third environment, where the communica-

tion costs 10 times less than executing an interaction,

the solution with 5 interaction protocol components
gives the best performance, except for the token ring

protocol. Indeed, the bottleneck is the time needed for

the token to cycle through all reservation protocol com-

ponents. Having more interaction protocol components
allows to have more pending reservations and thus di-

minishing the time between two granted reservations.

Increasing the communication time tRP↔RP (experi-
ments not shown in this paper) penalizes token ring

much more than dining philosophers.

7.2 Utopar Transportation System

Utopar is an industrial case study proposed in the con-
text of the European Integrated Project SPEEDS4.

Utopar is an automated transportation system manag-

ing requests for transportation. The system consists of a
set of autonomous vehicles, called U-cars, a centralized

automatic control (Central-Station), and calling units

(see Fig. 23).

We model a simplified version of Utopar in BIP. The
overall system architecture is depicted in Fig. 24. It is a

composition of an arbitrary (but fixed) number of com-

ponents of three different types: U-Cars, Calling-Units,
and Central-Station. The Utopar system interacts with

external users (passengers). Users are also represented

as components, however, their behavior is not explicitly
modeled.

The overall behavior of the system is obtained by

composing the behavior of the components using the

following set of interactions:

4 http://www.speeds.eu.com/

22 Borzoo Bonakdarpour et al.

request

departure

close

arrival

awake

open

posChanged

destination

departurei=1,N

openi=1,N

awakei=1,N

destinationi=1,N

posChanged i=1,N

arrival i=1,N

closei=1,N

requestk,l=1×M,1×M

UCar(N) CentralStation

CallingUnit(M ×M)

enterk,l=1×M,1×M

enter i=1,N

Fig. 24 A BIP model for Utopar system.

– awake: handling awake calls of cars by Central-
Station;

– request: handling car requests by users at Calling-

Units;
– destination: handling destination requests by users

seating within U-Cars;

– enter: handling the step on (resp. off) of users into

U-Cars;
– departure: handling departure commands issued by

Central-Station towards U-Cars;

– posChanged, arrival: information provided by mov-
ing U-Cars towards Central-Station;

– open, close: handling the opening/closing of U-Cars

doors, while parked at Calling-Units.

Our first set of simulations consists of 25 = 5 × 5

calling units and 4 cars. For each calling unit, we group

all the interactions it is involved, in one Interaction
Protocol component. Moreover, for each car, we group

all the interactions connecting the car with CentralSta-

tion in the same Interaction Protocol component. Thus,
we obtain 29 Interaction Protocol components. Using

this partition, we generate the corresponding 3-layer

Send/Receive model for the three Reservation Proto-
cols. We simulate the target platform as follows. We

consider that there exists a machine on each calling

unit. Moreover, each machine is connected to its four

neighbours and the communication time between two
neighbour machines is 1ms.

We generate the corresponding C++ executables as

follows. We merge each calling unit with its associated

Interaction Protocol component and map the resulting

code into the machine located on the calling unit. In
a similar way, we merge each car with its associated

Interaction Protocol component and map the resulting

code into an arbitrary machine, such that two differ-

 52

 54

 56

 58

 60

 62

(2
9,

R
P

)

(2
9,

T
R

)

(2
9,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 25 Performance of responding 10 requests per calling
unit in Utopar System in different scenarios for 5× 5 calling
units and 4 cars.

ent cars are located in different machines. Regarding

CentralStation, we map its code into the central (mid-
most) machine. Regarding the Reservation Protocol, in

the case of RP , the best choice is to map its code into

the central machine as well. In the case of TR and DP
protocols, we map the code of each component in the

same machine as the Interaction Protocol component

communicating with it.

Fig. 25 shows the time needed for responding to 10

requests by each calling unit. Clearly, (29,DP) outper-
forms (29,TR) and (29,RP). This is due to the over-

head of communications for the case of TR and RP .

More precisely, regarding RP the overhead is due to the
communication between the components of Interaction

Protocol layer and Reservation Protocol layer, since the

centralized Reservation Protocol is placed in the central

machine. Regarding TR, the overhead is due to commu-
nications between Reservation Protocol which depend

on the number of components in this layer. To the con-

trary, in DP , the Reservation Protocol components act
in their local neighborhood although more communica-

tion is needed.

Fig. 26 also shows the same type of simulations by

taking 4 cars and 49 = 7× 7 calling units. Performance

becomes worse for TR since the token has to travel a

 110
 115
 120
 125
 130
 135
 140
 145
 150

(5
3,

R
P

)

(5
3,

T
R

)

(5
3,

D
P

)T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Scenario

Fig. 26 Performance of responding 10 requests per calling
unit in Utopar System in different scenarios for 7× 7 calling
units and 4 cars.

A Framework for Automated Distributed Implementation of Component-based Models 23

long way through the components of the Reservation

Protocol layer.

We conclude this section by stating the main les-

son learned from our simulations. Different partitions

and choice of committee coordination algorithm for dis-

tributed conflict resolution, suit different topologies and
settings although they serve a common purpose. De-

signers of distributed applications should have access

to a library of algorithms and choose the best accord-
ing to parameters of the application.

8 Running Experiments

In this section, we present the results of our experi-

ments on two popular parallel sorting algorithms: (1)

network sorting algorithm (see Subsection 8.1), and (2)
bitonic sorting (see Subsection 8.2). Unlike simulations

in Section 7, all results in this section are determined

by physical computation and communication times.

All experiments are conducted on quad-Xeon 2.6

GHz machines with 6GB RAM running under Debian
Linux and connected via a 100Mbps Ethernet network.

We show that our method allows evaluation of parallel

and multi-core applications modeled in BIP. Moreover,
we show that different mergings of components may

result in significantly different performance.

8.1 Network Sorting Algorithm

We consider 2n atomic components, each containing an

array of N items. The goal is to sort the items, so that
all the items in the first component are smaller than

those of the second component and so on. Fig. 27 shows

a BIP model of the Network Sorting Algorithm [1] for
n = 2 using incremental and hierarchical composition

of components. The atomic components B1 . . . B4 are

identical. Each atomic component computes indepen-

dently the minimum and the maximum values of its
array. Once this computation completes, interaction a1
compares the maximum value of B1 with the minimum

value of B2 and swaps them if the maximum of B1 is
greater than the minimum of B2. Otherwise, the corre-

sponding arrays are correctly sorted and interaction a2
gets enabled. This interaction exports the minimum of
B1 and the maximum of B2 to interaction a5. The same

principle is applied to components B3 and B4 and inter-

actions a3 and a4. Finally, interaction a5 works in the

same way as interaction a1 and swaps the minimum and
the maximum values, if they are not correctly sorted.

All interactions in Fig. 27 are in conflict. We choose

to construct a single Interaction Protocol component

IP1 that encompasses all these interactions (see Fig.

......

a5

a2
a1

a4
a3

B1 B2 B3 B4

Fig. 27 A BIP model for Network Sorting Algorithm.

28). We try different merging schemes in order to study

the degree of parallelism for each scenario. More pre-

cisely, we run experiments for five configurations 1c,
2c, 3c, 4c, and 5c. For 1c, we merge all components to

obtain a single component, as described in Subsection

6.1. For 2c, we merge components [BSR
1 , BSR

2 , IP1] and
[BSR

3 , BSR
4], obtaining two Send/Receive components.

For 3c, we merge components [BSR
1 , IP1], [B

SR
2 , BSR

3],

and [BSR
4], obtaining three Send/Receive components.

For 4c, we merge components [BSR
1 , IP1], [B

SR
2], [BSR

3],
and [BSR

4], obtaining four Send/Receive components.

Finally, for 5c we do not merge components, hence, we

have five Send/Receive components (see Fig. 28).

Table 1 shows performance of the automatically

generated C++ code using TCP sockets and POSIX
threads. The implementation using POSIX slightly out-

performs TCP sockets. This is due to the fact that the

number of messages exchanged per component is huge,
making the socket-based implementation slower, as it

requires network communication. Performance clearly

depends on the size of the input array as well. Also,
notice that configuration 5c outperforms all the other

configurations. This is due to the fact that the compu-

tational load in this configuration is much higher than

the communication load.

8.2 Bitonic Sorting

Bitonic sorting [7] is one of the fastest sorting algo-

rithms suitable for distributed implementations or in

......
BSR

1 BSR
2 BSR

3 BSR
4

IP1

Fig. 28 3-layer Send/Receive BIP model for Network Sort-
ing Algorithm.

24 Borzoo Bonakdarpour et al.

1c 2c 3c 4c 5c

k C++/POSIX (Shared Memory)
1 1.78 1.61 0.93 0.73 0.53

5 9.72 8.75 5.08 4.21 2.88

10 21.52 19.42 11.21 9.42 6.52

50 191.14 171.12 98.07 82.96 63.43

k C++/Socket
1 1.8 1.94 1.27 1.07 0.83

5 9.81 9.44 5.85 4.91 3.53

10 21.7 20.55 12.56 10.03 7.51

50 191.47 177 104.1 86.17 65.84

Table 1 Performance (execution time in seconds) of NSA
(n = 2), where k × 103 is the size of array for sorting.

parallel processor arrays. A sequence is called bitonic if
it is initially non-decreasing, then it is non-increasing.

The first step of the algorithm consists in construct-

ing a bitonic sequence. Then, by applying a logarithmic
number of bitonic merges, the bitonic sequence is trans-

formed into a totally ordered sequence. We provide an

implementation of the bitonic sorting algorithm in BIP
using four atomic components, each handling one quar-

ter of the array. These components are connected as

shown in Fig. 29.

The six interactions are non-conflicting. Moreover,

interactions a1, a2, and a3 cannot run in parallel. The
same holds for interactions a4, a5, and a6. Thus, to

obtain maximal parallelism between interactions, it is

sufficient to create only two components for the Inter-

action Protocol layer. The first component IP1 handles
interactions a1, a2, and a3 and the second component

IP2 handles interactions a4, a5, and a6. Furthermore,

since all interactions are non-conflicting, there is no
need for Reservation Protocol. According to this parti-

tion of interactions, we obtain the 3-layer Send/Receive

BIP model shown in Fig. 30. In this example, each com-
ponent sends only three messages containing the array

of values.

...

step1

step2

step3

step1 step2

B1

a2

a5

a4

a1

a3 a6

step3

step1

step2

step3

step1 step2

step3

B2

step1

step2

step3

step1 step2

step3

B3

step1

step2

step3

step1 step2

step3

B4

Fig. 29 A BIP model for Bitonic Sorting Algorithm.

......
BSR

4BSR
1 BSR

2 BSR
3

a2a1 a3 a5a4 a6

IP1 IP2

Fig. 30 3-layer Send/Receive BIP model for Bitonic Sorting
Algorithm (6c).

We choose different merging schemes to study the
degree of parallelism with respect to each configuration.

More precisely, we run experiments for four configura-

tions 1c, 2c, 4c, and 6c (see Fig. 31). For 1c, we merge
all components in one component. For 2c, we merge

components [BSR
1 , BSR

2 , IP1] and [BSR
3 , BSR

4 , IP2], ob-

taining two components. For 4c, we merge components
[BSR

1 , IP1], [B
SR
2], [BSR

3], and [BSR
2 , IP2], obtaining

four components. Finally, for 6c we do not merge com-

ponents, hence, we have six Send/Receive components

(see Fig. 30).

Table 2 shows performance of the automatically

generated C++ code using TCP sockets, POSIX
threads (shared memory), and MPI. Clearly, the con-

figuration 6c outperforms the other configurations for

TCP sockets and for POSIX threads. Furthermore, the

overall performance of these implementations is quite
similar. This is due to the fact that, in contrast to the

previous example, the number of messages exchanged

per component is small. More precisely, each compo-
nent performs three steps in order to obtain a totally

ordered sequence. Each step requires a binary synchro-

nization and leads to one message exchange between
an atomic component and the Interaction Protocol. On

the other hand, at each step the amount of computa-

tion per atomic component is huge with respect to the

communication time.

For the MPI implementation, configuration 4c out-

performs the other configurations. This is due to the
fact that MPI uses active waiting, which entails CPU

time consumption when a component is waiting. The

MPI code consisting of four processes is therefore the

best fitting the four cores available on the target ma-
chine and yields best performances.

Moreover, Table 2 shows performance of the hand-
written C++ code using MPI collective communica-

tion primitives (e.g., Gather and Scatter) instead of

Send/Receive to transfer data. We notice that the best

performance of automatically generated C++ code (ob-
tained in configuration 6c) is comparable to the perfor-

mance of handwritten code (and run on configuration

4c).

A Framework for Automated Distributed Implementation of Component-based Models 25

......

... ...

......
BSR

4BSR
1 BSR

2 BSR
3

a2a1 a3 a5a4 a6

IP1 IP2

PetriNet

BSR
2 BSR

3

BSR
2 BSR

3

BSR
1

a2a1 a3 a5a4 a6

IP1 IP2

BSR
4

PetriNet1 PetriNet2PetriNet1 PetriNet2

BSR
1 BSR

2 BSR
3

a2a1 a3 a5a4 a6

IP1 IP2

BSR
4

2c1c 4c

Fig. 31 Merging schemes applied on Send/Receive BIP model of Bitonic Sorting Algorithm.

1c 2c 4c 6c

k C++/POSIX (Shared Memory)
1 0.02 0.01 0.01 0.01

10 1.8 0.96 0.75 0.54

50 44 23.57 18.37 12.04

100 178.42 94.71 73.22 48.1

k C++/Socket
1 0.02 0.02 0.34 0.27
10 1.8 1 1.01 0.75

50 44 24.1 18.57 12.3

100 178.42 95.32 74.01 48.7

k MPI
1 0.26 0.8 1.15 1.16
10 1.93 2.06 1.92 2.03
50 44.85 24.04 19.47 23.08
100 179.4 95.83 74.59 85.37

k Handwritten
1 1.54
10 2.01
50 13.47
100 49.67

Table 2 Performance (execution time in seconds) of bitonic
sorting (n = 2), where k× 103 is the size of array for sorting.

The main observation from these experiments is

that determining adequate component merging and

communication primitives depends on (1) the topology
of the system with respect to communication delays,

and (2) the computational load of the system, and (2)

the target architecture on which the system is deployed.

9 Related Work

In this section, we report on the work related to au-

tomated code generation for distributed systems from

high-level models. We first discuss solutions to the com-
mittee coordination problem in Subsection 9.1. Then,

we present frameworks for automatic generation of dis-

tributed code in Subsection 9.2.

9.1 Algorithms for Solving the Committee

Coordination Problem

As mentioned in the introduction, resolving distributed
conflicts in the context of our framework leads us

to solving the committee coordination problem [15],

where a set of professors organize themselves in dif-

ferent committees. Two committees that have a profes-
sor in common cannot meet simultaneously. The origi-

nal distributed solution to the committee coordination

problem assigns one manager to each interaction [15].
Conflicts between interactions are resolved by reduc-

ing the problem to the dining or drinking philosophers

problems [14], where each manager is mapped onto a
philosopher. Bagrodia [3] proposes an algorithm where

message counts are used to solve synchronization and

exclusion is ensured by a circulating token. In a follow-

up paper [4], Bagrodia modifies the solution in [3] by
using message counts to ensure synchronization and

reducing the conflict resolution problem to dining or

drinking philosophers. Also, Perez et al [30] propose
another approach that essentially implements the same

idea using a lock-based synchronization mechanism.

In [23], Kumar proposes an algorithm that re-

places the managers by tokens, one for each interaction,

traversing the processes. An interaction executes when-
ever the corresponding token manages to traverse all

involved processes. Another solution without managers

has been provided in [22] based on a randomized algo-
rithm. The idea is that each process randomly chooses

an enabled interaction and sends its choice to all other

processes. If some process detects that all participants

in an interaction have chosen it, then the interaction is
executed. Otherwise, this procedure gets restarted.

In [11], the authors propose snap-stabilizing com-
mittee coordination algorithms. Snap-stabilization is a

versatile technique allowing to design algorithms that

efficiently tolerate transient faults. The authors show

26 Borzoo Bonakdarpour et al.

that it is impossible to implement an algorithm that re-

spects both fairness and maximal concurrency amongst
meetings or professors. Consequently, they propose two

snap-stabilizing algorithms that respect either fairness

or maximal concurrency.

9.2 Automated Generation of Distributed Code

LOTOS [21] is a specification language based on pro-
cess algebra, that encompasses multiparty interactions.

In [34], the authors describe a method of executing

a LOTOS specification in a distributed fashion. This
implementation is obtained by constructing a tree at

runtime. The root is the main connector of the LO-

TOS specification and its children are the subprocesses

that are connected. A synchronization between two pro-
cesses is handled by their common ancestor. This ap-

proach is not suitable for BIP where there is no ‘main’

interaction. Also, the idea of a parent to be responsible
for ensuring synchronization makes solutions more cen-

tralized than distributed with greater communication

overhead.

Another framework that offers automatic dis-

tributed code generation is described in [33]. The input
model consists of composition of I/O automata [25],

from which a Java implementation using MPI for com-

munication is generated. The model, as well as the im-
plementation, can interact with the environment. How-

ever, connections between I/O automata (binary syn-

chronization) are less expressive than BIP interactions,
as described in [8]. Indeed, to express an n-ary ren-

dezvous between n I/O automata, one would need to

add an automaton in charge of synchronization, which

is not needed in BIP. Another difference with our work
is that the designer has to provide some function that

resolves non-determinism. Finally, the framework in

[33] requires the designer to specify low-level elements
of a distributed system such as channels and schedulers.

Finally, [31] provides a distributed implementation
method for the Reo framework [2]. In this framework,

components are black boxes with input and output

ports synchronized by data-flow connectors. A dis-
tributed implementation is obtained by deploying con-

nectors, according to a user-defined partition, on a set

of generic engines, implemented in Scala. At execution,
a consensus algorithm between all the engines chooses a

subset of connectors to be executed, based on the set of

currently enabled ports. Unlike BIP interactions, data-

flow connectors in Reo do not provide support for guard
conditions and arbitrary data transfer functions. More-

over, the consensus algorithm used enforces a global

agreement between all engines, whereas in the 3-layer

BIP decisions are taken independently by each engine,

or by communication with the Reservation Protocol.

10 Conclusion

We presented a framework for automated transforma-

tion of BIP models into distributed implementations.

Our transformation, first, takes as input a BIP model

and generates another BIP model which contains com-
ponents glued by Send/Receive interactions in the fol-

lowing three layers: (1) the components layer consists

of a transformation of behavioral atomic components
in the original model, (2) the Interaction Protocol de-

tects enabledness of interactions of the original model

and executes them, and (3) the Reservation Protocol
resolves conflicts among interactions in a distributed

fashion by employing a solution to the committee co-

ordination problem. The second step of our transfor-

mation takes the intermediate 3-layer BIP model as in-
put and generates C++ executables using TCP sockets,

MPI primitives, or POSIX threads.

We reported our observations through conducting

several simulations and experiments using different al-

gorithms in the Reservation Protocol and partitions.
Design of efficient and correct distributed systems de-

pends on a large variety of parameters and choices. De-

signers must be provided with a rigorous method and

rich libraries of algorithms such as the ones presented in
this paper, to derive correct and yet efficient distributed

implementations.

For future work, we are considering several re-

search directions. An important extension is to allow

the Reservation Protocol to incorporate different algo-
rithms for concurrent conflict resolution, so that each

set of conflicting interactions within the same system is

handled by the most appropriate algorithm. In this con-
text, we are also planning to explore other algorithms,

such as solutions to distributed graph matching [18]

and distributed independent set problems [24] for better

understanding the tradeoffs between parallelism, load
balancing, and communication overhead. Another im-

portant line of research is to study the overhead in-

troduced by our transformations where communication
cost is crucial, such as in peer-to-peer and large sensor

networks.

Another interesting problem is to develop tech-

niques for generating an efficient Interaction Protocol

partition automatically rather than requiring the user

to provide it as input to our transformation. Finally,
given the recent advances in the multi-core technology,

we plan to customize our transformation for multi-core

platforms as well by using non-blocking data structures

A Framework for Automated Distributed Implementation of Component-based Models 27

(e.g., transactional memory [20, 32]) rather than inter-

process communication data structures. Thus, one can
investigate whether it is possible to devise more effec-

tive techniques to achieve correct-by-construction pro-

cess synchronization in multi-core settings.

References

1. M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log
n parallel steps. Combinatorica, 3(1):1–19, 1983.

2. F. Arbab. Reo: a channel-based coordination model for
component composition. Mathematical. Structures in
Comp. Sci., 14:329–366, June 2004.

3. R. Bagrodia. A distributed algorithm to implement n-
party rendevouz. In Foundations of Software Technology
and Theoretical Computer Science, Seventh Conference
(FSTTCS), pages 138–152, 1987.

4. R. Bagrodia. Process synchronization: Design and perfor-
mance evaluation of distributed algorithms. IEEE Trans-
actions on Software Engineering (TSE), 15(9):1053–
1065, 1989.

5. A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Dis-
tributed semantics and implementation for systems with
interaction and priority. In Formal Techniques for Net-
worked and Distributed Systems (FORTE), pages 116–
133, 2008.

6. A. Basu, M. Bozga, and J. Sifakis. Modeling heteroge-
neous real-time components in BIP. In Software Engi-
neering and Formal Methods (SEFM), pages 3–12, 2006.

7. K. E. Batcher. Sorting networks and their applications.
In AFIPS ’68 (Spring): Proceedings of the April 30–May
2, 1968, spring joint computer conference, pages 307–
314, 1968.

8. S. Bliudze and J. Sifakis. A notion of glue expressiveness
for component-based systems. In Concurrency Theory
(CONCUR), pages 508–522, 2008.

9. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and
J. Sifakis. From high-level component-based models to
distributed implementations. Technical Report TR-2010-
9, VERIMAG, March 2010.

10. B. Bonakdarpour, M. Bozga, and J. Quilbeuf. Automated
distributed implementation of component-based models
with priorities. In ACM International Conference on
Embedded Software (EMSOFT), pages 59–68, 2011.

11. B. Bonakdarpour, S. Devismes, and F. Petit. Snap-
stabilizing committee coordination. In IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), pages 231–242, 2011.

12. M. Bozga, M. Jaber, and J. Sifakis. Source-to-source ar-
chitecture transformation for performance optimization
in BIP. In Symposium on Industrial Embedded Systems
(SIES), pages 152–160, 2009.

13. M. Bozga, M. Jaber, and J. Sifakis. Source-to-source ar-
chitecture transformation for performance optimization
in BIP. IEEE Transactions on Industrial Informatics,
5(4):708–718, 2010.

14. K. M. Chandy and J. Misra. The drinking philosophers
problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 6(4):632–646, 1984.

15. K. M. Chandy and J. Misra. Parallel program design:
a foundation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1988.

16. O. M. Cheiner and A. A. Shvartsman. Implementing an
eventuallyserializable data service as a distributed sys-
tem building block. In Principles Of Distributed Systems
(OPODIS), pages 9–24, 1998.

17. E. W. Dijkstra and C. S. Scholten. Termination detec-
tion for diffusing computations. Information Processing
Letters, 11(1):1–4, 1980.

18. Z. Galil, S. Micali, and H. N. Gabow. An o(ev log v)
algorithm for finding a maximal weighted matching in
general graphs. SIAM J. Comput., 15(1):120–130, 1986.

19. G. Gössler and J. Sifakis. Composition for component-
based modeling. Science of Computer Programming,
55(1-3):161–183, 2005.

20. M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA, pages 289–300, 1993.

21. ISO/IEC. Information Processing Systems – Open Sys-
tems Interconnection: LOTOS, A Formal Description
Technique Based on the Temporal Ordering of Obser-
vational Behavior, 1989.

22. Y.-J. Joung and S. A. Smolka. Strong interaction fairness
via randomization. IEEE Trans. Parallel Distrib. Syst.,
9(2):137–149, 1998.

23. D. Kumar. An implementation of n-party synchroniza-
tion using tokens. In ICDCS, pages 320–327, 1990.

24. M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput., 15(4):1036–
1053, 1986.

25. N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

26. F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new
self-stabilizing maximal matching algorithm. Theoretical
Computer. Scence., 410(14):1336–1345, 2009.

27. R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer,
1980.

28. R. Milner. Communication and concurrency. Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1995.

29. T. Murata. Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE, 77(4):541 –580, apr
1989.

30. J. A. Pérez, R. Corchuelo, and M. Toro. An order-
based algorithm for implementing multiparty synchro-
nization. Concurrency and Computation: Practice and
Experience, 16(12):1173–1206, 2004.

31. J. Proença. Synchronous Coordination of Distributed
Components. PhD thesis, Faculteit der Wiskunde en
Natuurwetenschappen, May 2011.

32. N. Shavit and D. Touitou. Software transactional mem-
ory. Distributed Computing, 10(2):99–116, 1997.

33. J. A. Tauber, N. A. Lynch, and M. J. Tsai. Compil-
ing IOA without global synchronization. In Symposium
on Network Computing and Applications (NCA), pages
121–130, 2004.

34. G. von Bochmann, Q. Gao, and C. Wu. On the dis-
tributed implementation of lotos. In FORTE, pages 133–
146, 1989.

