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Abstract This paper deals with the dynamic behavior of reticulated beams made of
the periodic repetition of symmetric unbraced frames. Sucharchetypical cells can
present a high contrast between shear and compression deformabilities, conversely
to “massive” media. This opens the possibility of enriched local kinematics involv-
ing phenomena of global rotation, inner deformation or inner resonance, according
to studied configuration and frequency range. Firstly, the existence of these atypical
behaviors is established theoretically through the homogenization method of peri-
odic discrete media. Then, the results are adapted to buildings and confirmed with a
numerical example.

Key words: Dynamics, discrete structure, periodic homogenization, local reso-
nance, atypical modes, building, frame, shear wall

1 Introduction

This paper deals with the macroscopic dynamic behavior of periodic reticulated
structures widely encountered in mechanical engineering.Periodic lattices have
been studied through various approaches [14] such as transfer matrix, variational
approach [11], finite difference operator. Asymptotic methods of homogenization
[16] initially developed for periodic media, were extendedto multiple parameters
and scale changes by [8] and adapted to periodic discrete structures by [4], then [12].
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Fig. 1 Examples of atypical
normal modes of reticulated
structures

Unbraced frame-type structures have also been considered in structural dynamics.
The first studies focused on an individual bracing element such as a frame or coupled
shear walls [17, 1]. Then the models were extended to the whole building [18, 15]
and to 3D problems with torsion [15, 13]. All those methods aim to relate the fea-
tures of the basic cell and the global behavior.

The morphology of reticulated beams is such that the basic cells can present a
high contrast between shear and compression deformabilities (conversely to “mas-
sive” beams). This opens the possibility of enriched local kinematics involving phe-
nomena of global rotation, inner deformation or inner resonance, according to stud-
ied configuration and frequency range [9, 6]. A numerical illustration of these atyp-
ical situations is given in Fig. 1 that shows some unusual macroscopic modes.

The present study investigates and summarizes those phenomena by a system-
atic analysis performed on the archetypical case of symmetric unbraced frame-type
cells [2, 9, 5]. Assuming the cell size is small compared to the wavelength, the ho-
mogenization method of periodic discrete media leads to themacro-behavior at the
leading order.

The paper is organized as follows. Section 2 gives an overview of the method
and the assumptions. In Sect. 3, the studied structures are presented. Section 4 sum-
marizes the various generalized beam models which can describe the transverse
vibrations according to the properties of the basic cell elements and the frequency
range. Section 5 is devoted to longitudinal vibrations and the effect of local reso-
nance. Finally Sect. 6 explains how the results obtained forthis particular class of
structures can be generalized to more complex reticulated structures, for instance
buildings. It is illustrated by a numerical example.

2 Overview of Discrete Homogenization

The analysis of periodic lattices of interconnected beams is performed in two steps
[19]: first, the discretization of the balance of the structure under harmonic vibra-
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tions; second, the homogenization, leading to a continuousmodel elaborated from
the discrete description. An outline of this method is givenhereafter.

Discretization of the Dynamic Balance: Studied structures (Fig. 2) are made of
plates behaving like Euler-Bernoulli beams in out-of-plane motion, and assembled
with rigid connections. The motions of each extremity connected to the same node
are identical and define the discrete nodal kinematic variables of the system. The
discretization consists in integrating the dynamic balance (in harmonic regime) of
the beams, the unknown displacements and rotations at theirextremities being taken
as boundary conditions. Forces applied by an element on its extremities are then
expressed as functions of the nodal variables. The balance of each element being
satisfied, it remains to express the balance of forces applied to the nodes. Thus, the
balance of the whole structure is rigorously reduced to the balance of the nodes.

Homogenization Method: The key assumption of homogenization is that the cell
size in the direction of periodicityℓw is small compared to the characteristic sizeL
of the vibrations of the structure. Thusε = ℓw/L << 1. The existence of a macro
scale is expressed by means of macroscopic space variablex. The unknowns are
continuous functions ofx coinciding with the discrete variables at any node, e.g.
Uε(x = xn) = U(node n). These quantities, assumed to converge whenε tends to
zero, are expanded in powers ofε: Uε(x) =U0(x)+ ε U1(x)+ ε2 U2(x)+ . . .. Sim-
ilarly, all other unknowns, including the modal frequency,are expanded in powers
of ε. As ℓw = ε L is a small increment with respect tox, the variations of the vari-
ables between neighboring nodes are expressed using Taylor’s series; this in turn
introduces the macroscopic derivatives.

To account properly for the local physics, the geometrical and mechanical char-
acteristics of the elements are scaled according to the powers ofε. As for the modal
frequency, scaling is imposed by the balance of elastic and inertia forces at macro
level. This scaling insures that each mechanical effect appears at the same order
whatever theε value is. Therefore, the same physics is kept whenε → 0, i.e. for
the homogenized model. Finally, the expansions inε powers are introduced in the
nodal balances. Those relations, valid for any smallε, lead for eachε-order to bal-
ance equations which describe the macroscopic behavior.

Local Quasi-Static State and Local Dynamics: In general the scale separation
requires wavelengths of the compression and bending vibrations generated in each
local element to be much longer than the element length at themodal frequency of
the global system. In that case the nodal forces can be developed in Taylor’s series
with respect toε. This situation corresponds to a quasi-static state at the local scale.
Nevertheless, in higher frequency range, it may occur that only the compression
wavelength is much longer than the length of the elements while local resonance
in bending appears. The homogenization remains possible through the expansions
of the compression forces and leads to atypical descriptions with inner dynamics.
Above this frequency range, the local resonance in both compression and bending
makes impossible the homogenization process.
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Fig. 2 The class of studied structures (left) and the basic frame and notations (right)

3 Studied Structures

We study the vibrations of structures of heightH = N× ℓw constituted by a pile
of a large numberN of identical unbraced frames called cells and made of a floor
supported by two walls (Fig. 2). The parameters of floors (i = f ) and walls (i = w)
are: lengthℓi ; thicknessai ; cross-section areaAi ; second moment of areaIi = a3

i h/12
in directione3; densityρi ; elastic modulusEi .

The kinematics is characterized at any leveln by the motions of the two nodes
in the plane(e1,e2), i.e., the displacements in the two directions and the rotation
(u1,u2,θ). These six variables can be replaced by (cf. Fig. 3):

∙ Three variables associated to the rigid body motion of the level n: the mean trans-
verse displacements,U(n) alonge1 andV(n) alonge2, and the global rotation
α (n) (differential vertical nodal motion divided byℓ f ),

∙ Three variables corresponding to its deformation: the meanand differential rota-
tions of the nodes,θ(n) andΦ(n), and the transverse dilatation∆(n).

Because of the longitudinal symmetry, the transverse and longitudinal kinematics,
respectively governed by (U,α ,θ) and (V,Φ,∆ ), are uncoupled.

A systematic study enables to identify the family of possible dynamic behaviors
by changing gradually the properties of the frame elements and the frequency range.
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Fig. 3 Decoupling of transverse (left) and longitudinal (right) kinematics

4 Transverse Vibrations

The transverse vibrations can be classified in two categories according to the na-
ture of the governing dynamic balance. For the first category, the horizontal elastic
forces balance the horizontal translation inertia. This corresponds to the “natural”
transverse vibration modes presented in Sect. 4.1. It can beshown that the associ-
ated frequency range is such that the elements behave quasi-statically at the local
scale (for lower frequencies, a static description of the structure is obtained). For
the second category, the global elastic moment is balanced by the global rotation in-
ertia. This leads to unusual gyration modes investigated inSect. 4.3. This situation
occurs at higher frequencies and local dynamics can appear.

4.1 “Natural” Transverse Vibrations: Translation Modes

The possible beam-like behaviors were established by varying the properties of the
basic frame elements in [9] to which one may refer for a precise analysis. Here below
the generic beam model derived from this approach is presented and an example
devoted to a given type of cell frame is discussed.

The synthesis of the different macroscopic behaviors showsthat only three
mechanisms — shear, global bending, inner bending — govern the physics at the
macroscale (Fig 4). Each of them is associated to a stiffness: in shearK, in global
bendingEw I , and in inner bendingEw I . The parameterI is the effective global
bending inertia andI is the effective inner bending inertia. Owing to the quasi-
static local state, these parameters are deduced from the elastic properties of ele-
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Fig. 4 The three transverse
mechanisms
(left: shear,
middle: global bending,
right: inner bending)

ments in statics. For structures as in Fig. 2, they read (Λ stands for the linear mass):

K−1 = K−1
w +K−1

f with Kw = 24
Ew Iw
ℓ2

w
and K f = 12

Ef I f

ℓw ℓ f
(1a)

I =
Aw ℓ2

f

2
; I = 2 Iw (1b)

Λ = Λw+Λ f with Λw = 2 ρw Aw and Λ f = ρ f Af
ℓ f

ℓw
(1c)

A generic beam model is built in order to involve the three mechanisms. It is gov-
erned by:

∙ Three beam constitutive laws relating the kinematic variables to (i) the macro-
scopic shear forceT, (ii) the global bending momentM and (iii) the inner bending
momentM :

T =−K
(

U ′−α
)

; M =−Ew I α ′ ; M =−Ew IU ′′ (2)

∙ The force and moment of momentum balance equations:
{

(T −M ′)′ = Λω2U

M ′+T = 0
(3)

It is worth noticing that the macroscopic behavior depends only on two kinematic
variables:U andα which describe the rigid body motion of the cross-section. The
third variable associated to the transverse kinematicsθ has the status of a “hidden”
internal variable which can be derived from the two other “driving” variables. The
distinction between “driving” and “hidden” variables enables to generalize mod-
els built for the structures as in Fig. 2 to more complicated frame-type structures.
Indeed, the implementation of the homogenization method ofperiodic discrete me-
dia on structures with three walls shows that the additionalkinematic variables are
“hidden” variables and that the macroscopic behavior is still described by (2) and
(3). However expressions (1) which give the macroscopic parameters have to be
modified. Their calculation in the general case is the subject of Sect. 6.2.
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The generalized beam description presented above includesthe three mecha-
nisms but they do not have necessarily the same importance. The dominating ef-
fect(s) that actually drive(s) the effective behavior of a given structure can be iden-
tified through a dimensional analysis. In this aim, we introduce the characteristic
size of vibration for the first modẽL = 2 H/π (for thenth mode of a clamped-free
beam the characteristic size isL̃n = 2H/[(2n− 1)π]). Moreover, the variables are
rewritten asU = U r U∗ andα = α r α ∗ where the superscriptr denotes reference
values, and a * denotes the dimensionless terms,O(1) by construction. Introducing
the expressions of the beam efforts (2) and making the changeof variablex = x/L̃,
the set (3) becomes:

{

Ω2U∗+U∗(2)−C γ U∗(4) = (L α r/U r) α ∗′

α ∗−C α ∗(2) = (U r/L α r)U∗′
(4)

where superscripts in brackets stand for the order of derivative. The dimensionless
numbersC, γ and Ω2 compare respectively global bending and shear, inner and
global bendings, translation inertia and shear. They read:

C=
Ew I

K L̃2
; γ =

I

I
; Ω2 =

Λω2L̃2

K
(5)

Eliminatingα ∗ (or U∗) in (4) gives the differential equation governingU∗ (or α ∗):

C γ U∗(6)− (1+γ) U∗(4)−Ω2 U∗(2)+
Ω2

C
U∗ = O(ε̃) (6)

The termO(ε̃) highlights the fact that (6) is a zero-order balance and hence is only
valid up to the accuracỹε. Consequently, according to the values ofC, C γ andγ
compared tõε powers (̃ε = ℓw/L̃ = π/(2 N)), equation (6) degenerates into sim-
plified forms. The mapping (Fig. 5) gives the validity domainof the seven possible
behaviors according to the two parametersx andy defined byC = ε̃ x andγ = ε̃ y.
Note that, as the validity of the model requires the scale separation i.e.ℓw/L̃n < 1, the
maximum number of homogenizable modes of a structure ofN cells isnmax= N/3.

4.2 An Example: Slender Timoshenko Beam

Consider structures for whichC = O(1) andγ ≤ O(ε̃). Then the terms related to
C γ and γ are negligible in (6) and the generic beam degenerates into aslender
Timoshenko beam driven by:

U∗(4)+Ω2 U∗(2)− Ω2

C
U∗ = O(ε̃) (7)
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Fig. 5 Map of different kinds
of transverse “natural” be-
haviors in function of the pa-
rametersC = ε̃ x andγ = ε̃ y,
[9]

To illustrate how to reach (7) by homogenization, consider astructure as in Fig. 2
with floors thicker than walls:

aw

lw
= O(ε) ;

af

lw
= O(

√
ε) ;

ℓw

ℓ f
= O(1) ;

Ew

Ef
= O(1) (8)

so thatΛ = O(Λ f ), K = O(Kw) and, as required:

C=
Ew I

Kw L̃2
= O

(

ℓ2
w

a2
w

ℓ2
f

L̃2

)

= O(1) ; γ =
2 Iw

I
= O

(

a2
w

ℓ2
f

)

= O(ε2) (9)

The dynamic regime is reached whenΩ2/C = O(1) i.e., accounting forC = O(1),
when the leading order of the circular frequency is:

ω0 = O(L̃−1
√

Kw/Λ f ) = O(Kw/
√

Ew I Λ f )

In that case, the leading order equations obtained by homogenization are:

−Kw
(

U 0′′−θ0′) = Λ f ω2
0 U 0 (10a)

K f
(

α 0−θ0) = 0 (10b)

−Ew I α 0′′−Kw
(

U 0′−θ0) = 0 (10c)

Equation (10a) expresses the balance of horizontal forces at the leading order, while
(10b) and (10c) come from the balance of both local and globalmoments at the first
two significant orders. Equation (10b) also describes the inner equilibrium of the
cell and imposes the node rotationθ0 to be equal to the section rotationα 0. Thus
the macroscopic behavior is described by a differential setthat governs the mean
transverse motionU 0 and the section rotationα 0:

{

−Kw
(

U 0′′−α 0′) = Λ f ω2
0 U 0

−Ew I α 0′′−Kw
(

U 0′−α 0
)

= 0
(11)
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Eliminatingα 0 provides: Ew I U 0(4)+
Ew I
Kw

Λ f ω2 U 0(2)−Λ f ω2
0 U 0 = 0

which corresponds to (7), i.e. a degenerated form of (6) withγ ≤ O(ε̃).
The similarity with Timoshenko beams is obvious when rewritting (11) with the

macro shear forcẽT0 and the global bending momentM̃ 0 defined in (2) (here with
0 superscript):

{

T0′ = Λ f ω2
0 U 0

M 0′+T0 = 0
(12)

Two features distinguish (12) from the usual Timoshenko description of “massive”
beams. First, the shear effect (that comes from the bending of the walls in parallel,
see (1a)) remains at the leading order even if the reticulated structure is slender.
Second, while the translation inertia is significant in the force balance (12a), the ro-
tation inertia is negligible in the moment balance (12b) (where the effective bending
results from the opposite extension-compression of the twowalls distant of the floor
length). In other words, the translation is in dynamic regime but the rotation stays
in quasi-static regime for the considered frequency range.This leads to investigate
higher frequencies to obtain rotational dynamics.

4.3 Atypical Transverse Vibrations: Gyration Modes

This section is devoted to gyration modes, i.e. transverse modes governed by the
section rotationα (Fig.6). Their existence is first established on a particular case.
Then the results are slightly generalized.

Fig. 6 Examples of gyration
modes

We come back to the structure studied in the previous sectionand whose geome-
try and parameters are scaled by (8). The frequency range is increased of one order
in ε, i.e.ω0 = O(ℓ−1

w

√

Kw/Λ f ) which remains sufficiently low to insure that the el-
ements behave quasi-statically at the local scale. Then, the leading order equations
obtained by homogenization become:
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0 = Λ f ω2
0 U 0 (13a)

K f
(

α 0−θ0) = 0 (13b)

−Ew I α 0′′−Kw
(

U 0′−θ0) =
ρ f Af ℓ

3
f

420ℓw
ω2

0

(

42α 0−7 θ0) (13c)

The comparison of (10) and (13) shows that the higher frequency leaves the inner
equilibrium condition of the cell (13b) unchanged (thus, here also, the mean rotation
of the nodes matches the section rotation, i.e.θ0 = α 0). Conversely, in (13a), the in-
creased order of magnitude of inertia terms makes thatΛ f ω2

0 U 0 cannot be balanced
by horizontal elastic forces, thus the section translationvanishes at the leading order,
U 0 = 0. In parallel, the rotation inertia now appears in the moment of momentum
balance (13c). After eliminatingθ0, the macroscopic behavior at the leading order
is described by the following differential equation of the second degree:

−Ew I α 0′′+ Kw α 0 = Jf ω2
0 α 0 (14)

θ0 = α 0 ; U 0 = 0 ; Jf =
ρ f Af ℓ

3
f

12ℓw

This is an atypical gyration beam model fully driven by the section rotationα 0 with-
out lateral translation (more precisely, one shows that thefirst non vanishing trans-
lation is of the second orderε2U2 =

(

Kw/(Λ f ω2
0)
)

α 0′). The gyration dynamics is
governed by the mechanism of opposite traction-compression of vertical elements
(whose elastic parameter is the global bending stiffnessEw I ), the shear of the cell
(stiffnessKw) acting as an inner elastic source of moment, and the rotation inertia
of the thick floors (Jf ). Solutions of (14) (inα 0) have a classical sinusoidal expres-
sion but, due to the presence of the source termKw α 0, the frequency distribution is
atypical.

Note that the thick floors of the specific studied frame lead toneglect the shear
stiffness of the floors and the rotation inertia of the walls.The particular description
(14) can be extended to other types of frames by considering the cell shear stiff-
nessK instead ofKw and rotation inertiaJ instead ofJf (for structures as in Fig. 2,
J = Jf +Jw with Jw = ρw Aw ℓ2

f /2). Introducing the macroscopic shear forceT0 and

the global bending momentM 0 already defined in (2) and accounting forU0 = 0
show that (14) is nothing but the moment of momentum balance of the usual Timo-
shenko formulation:

T0+M 0′ = Jf ω2
0 α 0 (15)

However, in “massive” Timoshenko beams, variablesU andα reach the dynamic
regime in the same frequency range, hence both are involved in common modes.
Conversely, for the reticulated beams studied here, “natural” and gyration modes are
uncoupled because the dynamic regimes forU andα occur in different frequency
ranges. This specificity implies that in the frequency rangeof non-homogenizable
“natural” modes, it exists homogenizable gyration modes. For a detailed analysis of
the conditions of existence of gyration modes, one may referto [7].
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Because gyration modes appear in a higher frequency domain than “natural”
modes, the elements have not necessarily a quasi-static behavior at the local scale
and phenomena of local dynamics can also occur. In this case,the bending wave-
length in the elements is of the order of their length, whereas the compression
wavelength remains much larger. This enables to expand the compression forces
and to derive a macroscopic behavior. The governing equation of the second degree
presents the same global moment parameter than for local quasi-static state but dif-
fers fundamentally by the inertia term and the inner elasticsource of moment, both
depending on frequency:

Ew I α ′′−K(ω) α +J(ω) ω2 α = 0 (16)

The reason of these modifications lies in the non expanded bending forces that
strongly depend on the frequency and that give rise to apparent inertiaJ(ω) and
moment source. This effect also appears in longitudinal vibrations and is discussed
in the next section.

5 Longitudinal Vibrations

The longitudinal vibrations, described by (V,Φ,∆ ), present a lesser complexity be-
cause the main mechanism is the vertical compression. The difference between the
identified models only relies in the possible presence of local dynamics.

Local Quasi-Static State: This case leads to the classical description of beam char-
acterized by the compression modulus 2Ew Aw and the linear massΛ :

2 Ew Aw V ′′+Λω2V = 0 (17)

The domain of validity of this model is derived by expressingthat the order of
magnitude of the fundamental frequency of the whole structure (described by (17))
is much smaller than the one of the elements in bending. For structures whose walls
and floors are made of the same material, a sufficient condition is to have a large
number of cells:N ≥ (ℓi/ai).

Local Dynamics: Similarly to gyration modes, the local dynamics introducesa
frequency depending apparent mass, that can be expressed analytically [6, 5]:

2 Ew Aw V ′′+Λ (ω) ω2 V(x) = 0 (18a)

Λ (ω) = Λw+Λ f
8

3π
√

ω
ωf 1

[

coth
(

3π
4

√

ω
ωf 1

)

+cot
(

3π
4

√

ω
ωf 1

)] (18b)

The study ofΛ (ω) (cf. Fig. 7), shows that (i)Λ (ω) → Λ when ω → 0, and
(ii) ∣Λ (ω)∣ → ∞ whenω→ ωf (2k+1), whereωf (2k+1) are the circular frequencies of
the odd normal modes of horizontal elements in bending. Thisinduces abnormal re-
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sponse in the vicinity of theωf (2k+1) that results in discrete spectrum of frequency
band gaps. Other frequency band gaps are generated by the excitation of modes
of the walls or of the whole cell which blocks the global kinematics [5]. However
this effect is described by higher order equations and, in a damped structure, it has
probably less influence than the frequency band gaps of zero order.

6 Extension and Application to Buildings

Ordinary concrete buildings (as the one presented in Fig. 8)are very frequently
made up of identical stories and their structure is periodicin height. Moreover, the
experimental modal shapes suggest using continuous beam models to describe their
first modes of vibration. For instance, Fig. 9 compares experimental data with the
normal modes of a Timoshenko beam whose features were chosenin order to fit to
the first two experimental frequencies [3, 10]. For these reasons we now propose
to adapt the beam models derived in the previous sections to buildings. Such an
approach presents two main advantages:

∙ The upscaling analysis provides a clear understanding of the dynamics of the
structure.

∙ Calculations are greatly reduced since the dynamic analysis is performed on a 1D
analytical model instead of the complete 3D numerical modelof the building.

Applications concern as well preliminary design of new structures as seismic diag-
nosis and reinforcement of existing buildings.

As earthquakes principally shake the first “natural” transverse modes of build-
ings, the study focuses on the models of Sect. 4.1. The use of homogenized models
requires the structure to respect some conditions. Firstly, the scale separation implies
that the building should have at leastN = 5 stories and that the maximum number
of studied modes in a given direction isnmax= N/3. Secondly, the structure should
be symmetric to avoid coupling between the two transverse directions and torsion
because the homogenized models describe motion in a plane. Moreover, the mod-
els were derived by assuming that elements behave like Euler-Bernoulli beams. This
hypothesis is acceptable for structures with columns and beams but not for structures
with shear walls. Therefore, we have to add the shear mechanism in the elements.
This is the subject of Sect. 6.1. Next, the new model is applied to the building of
Fig. 8 and the calculation of macroscopic parameters is explained (Sect. 6.2).

6.1 Generic Beam Model for Structures with Shear Walls

For the structures with thin columns studied in Sect. 4.1, “natural” transverse modes
are governed by three mechanisms: shear, global bending andinner bending (Fig. 4).
As the global bending results from the opposite extension-compression of the two
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Fig. 7 Effect of the local resonance on the apparent dimensionless massΛ (ω̂)/Λ for Λw = Λ f

Fig. 8 Studied building and its typical floor plan view

Fig. 9 Comparison of exper-
imental (circles) and Tim-
oshenko (continuous lines)
mode shapes in directiony.
Only two parameters were
used for the fitting of the Tim-
oshenko beam: the first two
experimental frequencies.
(Experimental frequencies in
Hz: 2.15 ; 7.24 ; 13.97 ; 20.5 -
Timoshenko beam frequen-
cies in Hz: 2.15 ; 7.24 ; 13.96 ;
20.1)
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walls, its physics is unchanged by the increase of the wall thickness. On the contrary,
shear and inner bending are generated by the bending of the elements at the local and
the global scales respectively. Therefore the shear mechanism in the walls has now
to be taken into account. For local bending, this effect is naturally included during
the calculation ofK the shear stiffness of the cell and it does not modify the beam
models. This is not the case for the shear associated to the bending of the walls at the
global scale which requires to add a fourth mechanism. Consequently, the generic
beam model of Sect. 4.1 is valid as long as walls behave like Euler-Bernoulli beams
at the global scale.

For structures with shear walls which do not respect the previous condition, a
new model involving the four mechanisms is derived from the homogenization of
the dynamic behavior of structures as in Fig. 2 by considering that the elements be-
have now like Timoshenko beams. To make the shear associatedwith inner bending
emerge at the leading order, the wall geometry should respect: aw/ℓw ≥ O(ε−1).
The new generic beam model is governed by:

∙ four beam constitutive laws relating the kinematic variables to (i) the shear force
associated to the local bending of the floorT, (ii) the shear force associated to
the shear in the wallsτ , (iii) the global bending momentM and (iv) the inner
bending momentM :

T =−K f (α −θ) M =−Ew I α ′

τ =−Kw
(

U ′−θ
)

M =−Ew I θ ′
(19)

∙ three balance equations closed to (3):

τ ′ = Λω2U ; M ′+T = 0 ; T −M
′ = τ (20)

Combining (19) and (20) gives the sixth degree differentialequation describing the
macroscopic behavior of the structure:

Ew I Ew I
K f

U (6)−
(

Ew I +Ew I − Λ ω2 Ew I Ew I
Kw K f

)

U (4)

−
(

Ew I

Kw
+Ew I

( 1
Kw

+
1

K f

)

)

Λ ω2 U ′′+Λ ω2 U = 0

(21)

The main differences with the model presented in Sect. 4.1 are listed below:

∙ The replacement ofU ′′ by θ ′ in the constitutive law associated to inner bending,
∙ The distinction between the shear forces in the walls and in the floor,
∙ An additional balance equation (20c) which expresses the inner equilibrium of

the cell.

As a result, (21) contains two new terms (in frame) which become negligible when
the shear of the walls is much more rigid than inner bending (Ew I << Kw L2).
Moreover, the three variables related to the transverse kinematics,U , α and θ,
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emerge at the macroscopic scale. Therefore the generalization of this model to more
complicated frame-type structures is an open question. However the implementation
of the homogenization method on structures with three wallsshows that this model
is still valid when the three walls are identical. In the following we assume that this
model is a good approximation of the behavior of structures with walls mechanical
properties of which are not too different.

6.2 Calculation of Macroscopic Parameters

This section illustrates the relevance of the previous generalized beam model to
describe the dynamic behavior of a 16-story building (Fig. 8) on which in situ mea-
surements have been carried out. The structure is in reinforced concrete with pre-
cast facade panels. In order to evaluate the accuracy of the beam models, the results
are compared with full 3D finite element simulations (and eventually with the ex-
perimental data). The COMSOL Multiphysics software is usedin the linear range.
Floors and shear walls are represented by perfectly connected shells and the influ-
ence of facade panels is neglected. We make the number of stories vary between 6
and 30. Reinforced concrete properties are summarized below:

Density Young’s Modulus Poisson’s ratio

ρ = 2300 kg/m3 E = 30000 MPa ν = 0.2
(22)

The use of the generic beam model of Sect. 6.1, which describes shear wall build-
ings, requires to calculate five macroscopic parameters: the linear mass which is
equal to the mass of a story divided by the story height and therigidities associ-
ated to the four mechanisms. The effective inertias of global and inner bendings are
evaluated with formulas of the beam theory:

I = ∑
walls

A j d2
j ; I = ∑

walls

I j (23)

whereA j stands for the cross-section area andI j for the second moment of area of
wall j. The parameterd j is the projection of the distance between the centroid of
wall j and the centroid of all the walls onto the axisy or z (Fig 8) according to the
studied direction.

It remains to estimate the two shear rigiditiesK f andKw. As the shape of the
floor can be very complex, there is no analytical expression of K f . Thus, we propose
to derive it from the shear rigidity of the whole cellK obtained thanks to a finite
element modeling of one story. The boundary conditions are those identified by
homogenization and are presented in Fig. 10. It consists in:

∙ preventing the rigid body motion of the cell by blocking bothvertical and hor-
izontal translations of a wall and the vertical translationof a second wall at the
centroid of their lower cross-sections,
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∙ imposing periodic boundary conditions between bottom and top of each wall,
∙ applying a distortion∆U/ℓ whereℓ = 2.70 m is the story height,
∙ blocking the vertical translation of all the walls which is consistent with a global

shear distortion.

Fig. 10 Boundary conditions for the calculation of the shear rigidity of the whole cellK

Note that those boundary conditions allow the rotation of the walls. The shear rigid-
ity of the whole cellK is derived from the calculated shear force in the walls. Then
contributions of the floorK f and the wallsKw are separated thanks to the formula
obtained by homogenization for structures as in Fig. 2 (connection in series):

K =

∣

∣∑wallsTj
∣

∣

∆U/ℓ
;

1
K f

=
1
K
− 1

Kw
(24)

According to the complexity of the walls, the shear rigidityKw is evaluated either
with analytical expressions of the beam theory or with the finite element modeling
of one story. In the latter case, the walls are clamped at their extremities, undergo a
distortion (Fig. 11) and the shear rigidity is deduced from the calculated shear force.

Kw = ∑
walls

κ j A j G j or Kw =

∣

∣∑wallsTj
∣

∣

∆U/ℓ
(25)

(κ j : Timoshenko shear coefficient,A j : cross-section area andG j : shear modulus)

Fig. 11 Boundary conditions for the calculation of the shear rigidity of the wallsKw

For the studied building, both shear rigidities were estimated with a finite ele-
ment modeling. Figure 12 presents the deformation of one story due to the load
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Fig. 12 Finite element modeling of one story for the calculation of the shear rigidity of the cellK
in directiony. Top: undeformed story, middle and bottom: deformed story.
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applied for the calculation of the shear rigidity of the whole cell K in directiony.
Note that the maximum vertical displacement is greater thanthe imposed horizontal
distortion∆U = 1 mm. The values of all the macroscopic parameters are givenin
Table 1 for directiony. The resonant frequencies calculated with a finite element
modeling of the whole structure and with the generic beam models of Sects. 4.1
(column structure) and 6.1 (shear wall structure) are summarized in Table 2.

Table 1 Values of macroscopic parameters for the studied building in directiony

Λ (t/m) I (m4) I (m4) K (MN) Kw (MN) K f (MN)

100 1648 56 7841 59056 9041

Table 2 Resonant frequencies (in Hz) of the studied building in direction y

Mode Finite Elements Generic beam of Sect. 4.1
(column structure)

Generic beam of Sect. 6.1
(shear wall structure)

6 stories ⇒ ε ≈ 0.26

1 7.43 10.59 + 42% 8.10 + 9.0%
2 23.28 57.48 + 147% 27.79 + 19%

11 stories ⇒ ε ≈ 0.14

1 3.38 4.02 + 19% 3.54 + 4.6%
2 11.69 18.50 + 58% 12.81 + 9.6%
3 21.00 47.94 + 128% 25.88 + 23%

16 stories ⇒ ε ≈ 0.098

1 2.08 (2.15a) 2.31 + 11% 2.13 + 2.2%
2 7.26 (7.25a) 9.53 + 31% 7.63 + 5.1%
3 14.30 (14.00a) 23.33 + 63% 15.61 + 9.2%

30 stories ⇒ ε ≈ 0.052

1 0.91 0.96 + 5.4% 0.92 + 1.4%
2 3.16 3.52 + 11% 3.21 + 1.5%
3 6.36 7.71 + 21% 6.49 + 2.0%

a Experimental frequencies

The generic beam model of Sect. 4.1 gives reasonable resultsfor the first resonant
frequencies when the number of stories is sufficiently high and walls behave like
Euler-Bernoulli beams at the global scale. But, this model and then all its simplified
forms are unsuitable for the higher modes and the structureswith few stories. In
these cases, the results are significantly improved by the use of the generic beam
model of Sect. 6.1 which includes the shear in the walls. The estimated frequencies
are very closed to the ones calculated by finite elements (andto the experimental
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data), which shows that the physics of the problem has been taken into account with
considerably reduced calculations.

7 Conclusion

At the macroscopic scale, unbraced (or weakly braced) reticulated structures present
a much more complex behavior than usual “massive” media. It comes from the high
contrast between shear and compression deformabilities which enables enriched lo-
cal kinematics (gyration modes and inner bending mechanism) and phenomena of
local resonance in bending. Consequently, there is an analogy between those struc-
tures and generalized media. The gyration beam model looks like Cosserat medium,
structures where inner bending is not negligible are similar to micromorphic media
and local resonance is a way to design metamaterials. Thanksto dimensional anal-
ysis, it is possible to extend these results to other types ofstructures of decametric
size such as buildings but also of millimetric size such as foams or of nanometric
size such as graphene tubes. Future works can as well deal with the other vibration
modes which are governed by the inner deformation of the cell(Fig. 1).
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5. Chesnais, C.: Dynamique de milieux réticuĺes non contreventés. Application aux b̂atiments.
PhD thesis, ENTPE, Lyon (2010).
http://bibli.ec-lyon.fr/exl-doc/TH_T2177_cchesnais.pdf

6. Chesnais, C., Hans, S., Boutin, C.: Wave propagation and diffraction in discrete structures:
Effect of anisotropy and internal resonance. PAMM7(1), 1090,401–1090,402 (2007)

7. Chesnais, C., Hans, S., Boutin, C.: Dynamics of reticulated structures: Evidence of atypical
gyration modes. Int. J. Multiscale Comput. Eng.9(5), 515–528 (2011)

8. Cioranescu, D., Saint Jean Paulin, J.: Homogenization of Reticulated Structures,Applied
Mathematical Sciences, vol. 136. Springer-Verlag, New York (1999)

9. Hans, S., Boutin, C.: Dynamics of discrete framed structures: A unified homogenized descrip-
tion. J. Mech. Mater. Struct.3(9), 1709–1739 (2008)

10. Hans, S., Boutin, C., Ibrahim, E., Roussillon, P.: In situ experiments and seismic analysis
of existing buildings. Part I: Experimental investigations. Earthq. Eng. Struct. Dyn.34(12),
1513–1529 (2005)



20 Chesnais C., Boutin C. and Hans S.

11. Kerr, A.D., Accorsi, M.L.: Generalization of the equations for frame-type structures; a varia-
tional approach. Acta Mech.56(1-2), 55–73 (1985)

12. Moreau, G., Caillerie, D.: Continuum modeling of latticestructures in large displacement
applications to buckling analysis. Comput. Struct.68(1-3), 181–189 (1998)

13. Ng, S.C., Kuang, J.S.: Triply coupled vibration of asymmetric wall-frame structures. J. Struct.
Eng.126(8), 982–987 (2000)

14. Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev.41(7),
285–296 (1988)
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