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UNIQUENESS AND LONG TIME ASYMPTOTIC FOR THE KELLER-SEGEL

EQUATION: THE PARABOLIC-ELLIPTIC CASE

G. EGAÑA, S. MISCHLER

Abstract. The present paper deals with the parabolic-elliptic Keller-Segel equation in the plane
in the general framework of weak (or “free energy”) solutions associated to initial datum with
finite mass M , finite second moment and finite entropy. The aim of the paper is threefold:

(1) We prove the uniqueness of the “free energy” solution on the maximal interval of existence
[0, T ∗) with T ∗ = ∞ in the case when M ≤ 8π and T ∗ < ∞ in the case when M > 8π. The
proof uses a DiPerna-Lions renormalizing argument which makes possible to get the “optimal
regularity” as well as an estimate of the difference of two possible solutions in the critical L4/3

Lebesgue norm similarly as for the 2d vorticity Navier-Stokes equation.
(2) We prove immediate smoothing effect and, in the case M < 8π, we prove Sobolev norm

bound uniformly in time for the rescaled solution (corresponding to the self-similar variables).

(3) In the case M < 8π, we also prove weighted L4/3 linearized stability of the self-similar
profile and then universal optimal rate of convergence of the solution to the self-similar profile.

The proof is mainly based on an argument of enlargement of the functional space for semigroup
spectral gap.

Keywords: Keller-Segel model; chemotaxis; weak solutions; free energy; entropy method; log-
arithmic Hardy-Littlewood-Sobolev inequality; Hardy-Littlewood-Sobolev inequality; subcritical
mass; uniqueness; large time behavior; self-similar variables.
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1. Introduction

The aim of the paper is to prove uniqueness of weak “free energy” solutions to the the so-called
parabolic-elliptic Keller-Segel equation in the plane associated to initial datum with finite mass
M ≥ 0, finite polynomial moment and finite entropy, and in the subcritical case M < 8π, to
prove optimal rate of convergence to self-similarity of these solutions. In [19] our analysis will be
extended to the parabolic-parabolic Keller-Segel equation in a similar context.

The Keller-Segel (KS) system for chemotaxis describes the collective motion of cells that are
attracted by a chemical substance that they are able to emit ([34, 27]). We refer to [8] and the
references quoted therein for biological motivation and mathematical introduction. In this paper
we are concerned with the parabolic-elliptic KS model in the plane which takes the form

∂tf = ∆f −∇(f ∇c) in (0,∞)× R
2,(1.1)

c := −κ̄ = −κ ∗ f in (0,∞)× R
2,

1
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with κ := 1
2π log |z|, so that in particular

−∇c = K̄ := K ∗ f, K := ∇κ =
1

2π

z

|z|2 .

Here t ≥ 0 is the time variable, x ∈ R
2 is the space variable, f = f(t, x) ≥ 0 stands for the

mass density of cells while c = c(t, x) ∈ R is the chemo-attractant concentration which solves the
(elliptic) Poisson equation −∆c = f in (0,∞)× R

2.

The evolution equation (1.1) is complemented with an initial condition

(1.2) f(0, .) = f0 in R
2,

where throughout this paper, we shall assume that

(1.3) 0 ≤ f0 ∈ L1
2(R

2), f0 log f0 ∈ L1(R2).

Here and below for any weight function ̟ : R2 → R+ we define the weighted Lebesgue space
Lp(̟) for 1 ≤ p ≤ ∞ by

Lp(̟) := {f ∈ L1
loc(R

2); ‖f‖Lp(̟) := ‖f ̟‖Lp < ∞},
as well as L1

+(R
2) the cone of nonnegative functions of L1(R2). We also use the shorthand Lp

k,
k ≥ 0, for the weighted Lebesgue space associated to the polynomial growth weight function
̟(x) := 〈x〉k, 〈x〉 := (1 + |x|2)1/2.

The fundamental identities are that any solution to the Keller-Segel equation (1.1) satisfies at
least formally the conservation of mass

(1.4) M(t) :=

∫

R2

f(t, x) dx =

∫

R2

f0(x) dx =: M,

the second moment equation

(1.5) M2(t) :=

∫

R2

f(t, x) |x|2 dx = C1(M) t+M2,0, M2,0 :=

∫

R2

f0(x) |x|2 dx,

C1(M) := 4M
(
1− M

8π

)
, and the free energy-dissipation of the free energy identity

(1.6) F(t) +

∫ t

0

DF (s) ds = F0,

where the free energy F(t) = F(f(t)), F0 = F(f0) is defined by

F = F(f) :=

∫

R2

f log fdx+
1

2

∫

R2

f κ̄ dx,

and the dissipation of free energy is defined by

DF = DF(f) :=

∫

R2

f |∇(log f) +∇κ̄|2 dx.

It is worth emphasizing that the critical mass M∗ := 8π is a threshold because one sees from
(1.5) that there does not exist nonnegative and mass preserving solution when M > 8π (the
identity (1.5) would imply that the second moment becomes negative in a finite time shorter than
T ∗∗ := 2πM2,0/[M(8π −M)] which is in contradiction with the positivity of the solution).

On the one hand, in the subcritical case M < 8π, thanks to the logarithmic Hardy-Littlewood
Sobolev inequality (see e.g. [3, 18])

(1.7) ∀ f ≥ 0,

∫

R2

f(x) log f(x) dx+
2

M

∫ ∫

R2×R2

f(x) f(y) log |x− y| dxdy ≥ C2(M),

with C2(M) := M (1 + log π − logM), one can easily check (see [8, Lemma 7]) that

(1.8) H := H(f) =

∫

R2

f log f dx ≤ C3(M)F + C4(M),
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with C3(M) := 1/
(
1 − M

8π

)
, C4(M) := C3(M)C2(M)M/(8π). Then from (1.8) and the very

classical functional inequality (see for instance [8, Lemma 8])

(1.9) H+ := H+(f) =

∫

R2

f(log f)+dx ≤ H+
1

4
M2 + C5(M),

with C5(M) := 2M log(2π) + 2/e, one concludes that (1.4), (1.5) and (1.6) provide a convenient
family of a priori estimates in order to define weak solutions. More precisely, we get

H+(f(t)) +M2(f(t)) + C3(M)

∫ t

0

DF (f(s)) ds ≤(1.10)

≤ C3(M)F0 +
5

4
M2,0 + 2C1(M)t+ C4(M) + C5(M),

where the RHS term is finite under assumption (1.3) on f0, since

F0 ≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) (log |x− y|)+ dxdy(1.11)

≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) |x− y|2 dxdy ≤ H0 +

1

π
M M2,0,

with H0 := H(f0). In other words, we have

(1.12) AT (f) := sup
t∈[0,T ]

{
H+(f(t)) +M2(f(t))} +

∫ T

0

DF(f(s)) ds ≤ C(T ) ∀T ∈ (0, T ∗)

with T ∗ = +∞ and a constant C(T ) which depends on M , M2,0, H0 and the final time T .

On the other hand, in the critical case M = 8π and the supercritical case M > 8π, the
above argument using the logarithmic Hardy-Littlewood Sobolev inequality (1.7) fails, but one can
however prove that (1.12) holds with T ∗ = +∞ when M = 8π and that (1.12) holds with some
finial time T ∗ ∈ (0, T ∗∗] when M > 8π (see [6] for details as well as Remark 2.3 below).

Definition 1.1. For any initial datum f0 satisfying (1.3) and any final time T ∗ > 0, we say that

(1.13) 0 ≤ f ∈ L∞(0, T ;L1(R2)) ∩ C([0, T );D′(R2)), ∀T ∈ (0, T ∗),

is a weak solution to the Keller-Segel equation in the time interval (0, T ∗) associated to the initial
condition f0 whenever f satisfies (1.4), (1.5) and

(1.14) F(t) +

∫ t

0

DF (s) ds ≤ F0 ∀ t ∈ (0, T ∗),

as well as the Keller-Segel equation (1.1)-(1.2) in the distributional sense, namely

(1.15)

∫

R2

f0(x)ϕ(0, x) dx =

∫ T∗

0

∫

R2

f(t, x)
{
(∇x(log f) + K̄) · ∇xϕ− ∂tϕ

}
dxdt

for any ϕ ∈ C2
c ([0, T )× R

2).

It is worth emphasizing that thanks to the Cauchy-Schwarz inequality, we have
∫

R2

f |∇x(log f) + K̄| dx ≤ M1/2 D1/2
F ,

and the RHS of (1.15) is then well defined thanks to (1.10).

This framework is well adapted for the existence theory.

Theorem 1.2. For any initial datum f0 satisfying (1.3) there exists at least one weak solution on
the time interval (0, T ∗) in the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2) with
T ∗ = +∞ when M ≤ 8π and T ∗ < +∞ when M > 8π.
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We refer to [8, Theorem 1] for the subcritical case M ∈ (0, 8π) and to [6] for the critical and
supercritical cases M ≥ 8π.

Our first main result establishes that this framework is also well adapted for the well-posedness
issue.

Theorem 1.3. For any initial datum f0 satisfying (1.3) there exists at most one weak solution in
the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2).

Theorem 1.3 improves the uniqueness result proved in [20] in the class of solutions f ∈ C([0, T ];
L1
2(R

2)) ∩ L∞((0, T ) × R
2) which can be built under the additional assumption f0 ∈ L∞(R2)

(see also [24] where a uniqueness result is established for a related model). Our proof follows
a strategy introduced in [23] for the 2D viscous vortex model. It is based on a DiPerna-Lions
renormalization trick (see [21]) which makes possible to get the optimal regularity of solutions for
small time and then to follow the uniqueness argument introduced by Ben-Artzi for the 2D viscous
vortex model (see [4, 10]). More precisely, we start proving the optimal regularity for short time
t1/4‖f(t)‖L4/3 → 0 as t → 0 for any weak solution f , and next we estimate the L4/3-norm of the
difference of two possible solutions written in mild formulation. We emphasize that the L4/3-space
is critical for the Hardy-Littlewood-Sobolev inequality (see e.g. [28, Theorem 4.3]) because it writes
in that case

(1.16)
∥∥f ∗ K

∥∥
L(4/3)′(R2)

=
∥∥f ∗ K

∥∥
L4(R2)

≤ C ‖f‖L4/3(R2),

where p′ ∈ [1,∞] is the conjugate exponent associated to p ∈ [1,∞] defined by 1/p+1/p′ = 1. That
last inequality is the key estimate in order to control the nonlinear term in (1.1). One probably
could perform a similar argument with the Lq-norm, q ≥ 4/3, see [19].

Next we consider the smoothness issue and the long time behaviour of solution for subcritical
mass issue. For that last purpose it is convenient to work with self-similar variables. We introduce
the rescaled functions g and u defined by

(1.17) g(t, x) := R(t)−2f(logR(t), R(t)−1x), u(t, x) := c(logR(t), R(t)−1x),

with R(t) := (1 + 2t)1/2. The rescaled parabolic-elliptic KS system reads

∂tg = ∆g +∇(gx− g∇u) in (0,∞)× R
2,(1.18)

u = −κ ∗ g in (0,∞)× R
2.

Our second main result concerns the regularity of the solutions.

Theorem 1.4. For any initial datum f0 satisfying (1.3) the associated solution f is smooth for
positive time, namely f ∈ C∞((0, T ∗)×R

2), and satisfies the identity (1.6) on (0, T ∗). Moreover,
when M < 8π, the rescaled solution g defined by (1.17)-(1.1) satisfies the uniform in time moment
estimate

(1.19) sup
t≥0

Mk(g(t)) ≤ max((k − 1)k/2M,Mk(f0)) ∀ k ≥ 2,

with Mk(g) := ‖g‖L1
k
, as well as the uniform in time regularity estimate for positive time

(1.20) sup
t≥ε

‖g(t, .)‖W 2,∞ ≤ C ∀ ε > 0,

for some explicit constant C which depends on ε, M , F0 and M2,0.

It is worth mentioning that Lp bounds on g for positive time and for p ∈ [1,∞) were known,
but non uniformly in time and as an a priori bound, while here (1.20) is proved as an a posteriori
estimate. Our proof is merely based on the same estimates as those established in [8], on a
bootstrap argument (using the DiPerna-Lions renormalization trick) and on the observation that
the rescaled free energy provides uniform in time estimates.
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From now on in this introduction, we definitively restrict ourself to the subcritical case M < 8π
and we focus on the long time asymptotic of the solutions. It has been proved in [8, Theorem 1.2]
that the solution given by Theorem 1.2 satisfies

(1.21) g(t, .) → G in L1(R2) as t → ∞,

where G is a solution to the rescaled stationary problem

∆G+∇(Gx −G∇U) = 0 in R
2,(1.22)

0 ≤ G,

∫

R2

Gdx = M, U = −K ∗G.

Moreover, the uniqueness of the solution G to (1.22) has been proved in [8, 5], see also [15, 16, 17].
From now on, G = GM stands for the unique self-similar profile with same mass M as f0 and it is
given in implicit form by

(1.23) G = M
e−G∗κ−|x|2/2

∫
R2 e−G∗κ−|x|2/2 dx

,

or equivalently U = −G ∗ κ satisfies

(1.24) ∆U +
M∫

R2 eU−|x|2/2 dx
eU−|x|2/2 = 0.

Our third main result is about the convergence to self-similarity.

Theorem 1.5. For any M ∈ (0, 8π), and any finite positive real numbers F∗
0 , k

∗ > 3, M∗
k∗,0, there

exists a (non explicit) constant C such that for any initial datum f0 satisfying (1.3) with

M0(f0) = M, Mk∗(f0) ≤ M∗
k∗,0, F(f0) ≤ F∗

0 ,

the associated solution in self-similar variables g defined by (1.17)-(1.1) satisfies the optimal rate
of convergence

‖g(t, .)−G‖L4/3 ≤ C e−t ∀ t ≥ 1,

where G stands for the self-similar profile with same mass M as f0.

Let us emphasize that assuming only the second moment bound M2(f0) < ∞, the same proof
leads to a not optimal rate of convergence to the self-similar profile, namely ‖g(t, .) − G‖L4/3 ≤
Cη e

−ηt for all t ≥ 1 and for some η ∈ (0, 1), Cη ∈ (0,∞). It is likely that stronger moment
assumption on the initial datum leads to the same optimal rate of convergence in Lq-norm with
larger values of q, but we do not follow that line of research in the present work.

Theorem 1.5 drastically improves some anterior results which establish the same exponential
rate of convergence for some particular class of initial data. On the one hand, for a radially
symmetric initial datum with finite second moment it has been proved in [15, Theorem 1.2] the
same convergence in Wasserstein distance W2 by a direct and nice entropy method. On the

other hand, the same convergence in L2(eν|x|
2

) norm, ν ∈ (0, 1/4), has been recently proven to
hold in [17, Theorem 1] (see also [7, 16] for previous results in that direction) for any initial
datum f0 with mass M ∈ (0, 8π) and which satisfies (roughly speaking) the strong confinement

condition f0 ≤ G̃ for some self-similar profile G̃ associated to some mass M̃ ∈ [M, 8π). In that last
work [17], the uniform exponential stability (with optimal rate) of the linearized rescaled equation
is established in L2(G−1/2) by the mean of the analysis of the associated linear operator in a well
chosen (equivalent) Hilbert norm. The nonlinear exponential stability is then deduced from that
linear stability together with an uniform in time estimate deduced from the strong confinement
assumption made on the initial datum.

Our proof follows a strategy of “enlarging the functional space of semigroup spectral gap” initi-
ated in [32] for studying long time convergence to the equilibrium for the homogeneous Boltzmann
equation, and then developed in [30, 25, 12, 11, 29] (see also [31]) in the framework of kinetic
equations and growth-fragmentation equations. More precisely, taking advantage of the uniform
exponential stability of the linearized rescaled equation established in [17] in the small (strongly
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confining) space L2(G−1/2) (observe that logG(x) ∼ −|x|2/2 in the large position asymptotic) we
prove that the same uniform exponential stability (with the same optimal rate) result holds in

the larger space L
4/3
ℓ , ℓ > 3/2. It is worth emphasizing that the choice of the exponent 4/3 is

made in order to handle the singularity of the force field (thanks to the critical Hardy-Littlewood-
Sobolev inequality (1.16)) while the choice of the moment exponent ℓ > 3/2 is made in order to
have enough confinement and then to get the optimal rate. We probably can perform a similar
semigroup spectral gap analysis in a different space Lq

ℓ , q ≥ 4/3, ℓ ≥ 3/2, but also probably at
the cost of a stronger confinement (higher moment bound) assumption of the initial datum since
at some point in the proof we use the embedding Lq

ℓ ⊂ L∞ ∩ L1
qℓ. Anyway, we do not follow that

line of research in the present work. Next, gathering the long time convergence (without rate)
to self-similarity (1.21) with the estimates of Theorem 1.4, we obtain that any solution reaches a

small L
4/3
ℓ -neighborhood of G in finite time and we conclude to Theorem 1.5 by nonlinear stability

in L
4/3
ℓ . It is worth emphasizing that it is only in that last nonlinear step that we use the a bit

stronger initial (and then uniform in time) moment estimate (1.19) with k = k∗ > 3.

Let us end the introduction by describing the plan of the paper. In Section 2 we present
some functional inequalities which will be useful in the sequel of the paper, we establish several a
posteriori bounds satisfied by any weak solution, and we prove Theorem 1.4. Section 3 is dedicated
to the proof of the uniqueness result stated in Theorem 1.3. In Section 4 we prove the long time
behaviour result as stated in Theorem 1.5.

Acknowledgments. The authors gratefully acknowledge the support of the MADCOF ANR
project (ANR-08-BLAN-0220). E.G. would like to thank the CEREMADE at Université Paris-
Dauphine for its kind hospitality in 2012 and 2013 where the work has been initiated and mostly
written. He is also grateful to the MADCOF ANR project for the two several months grants that
it provided to him. S.M. would like to thank the mathematics department of the Universidad de
La Habana for its hospitality in summer 2013 where the present work has been concluded.

2. A posteriori estimates - Proof of Theorem 1.4

We start by presenting some elementary functional inequalities which will be of main importance
in the sequel. The two first estimates are picked up from [23, Lemma 3.2] but are probably classical
and the third one is a variant of the Gagliardo-Nirenberg-Sobolev inequality.

Lemma 2.1. For any 0 ≤ f ∈ L1(R2) with finite mass M and finite Fisher information

I = I(f) :=

∫

R2

|∇f |2
f

,

there hold

∀ p ∈ [1,∞), ‖f‖Lp(R2) ≤ Cp M
1/p I(f)1−1/p,(2.1)

∀ q ∈ [1, 2), ‖∇f‖Lq(R2) ≤ Cq M
1/q−1/2 I(f)3/2−1/q.(2.2)

For any 0 ≤ f ∈ L1(R2) with finite mass M , there holds

∀ p ∈ [2,∞) ‖f‖Lp+1(R2) ≤ Cp M
1/(p+1) ‖∇(fp/2)‖2/(p+1)

L2 .(2.3)

For the sake of completeness we give the proof below.

Proof of Lemma 2.1. We start with (2.2). Let q ∈ [1, 2) and use the Hölder inequality:

‖∇f‖qLq =

∫ ∣∣∣∣
∇f√
f

∣∣∣∣
q

f q/2 ≤
(∫ |∇f |2

f

)q/2 (∫
f q/(2−q)

)(2−q)/2

= I(f)q/2 ‖f‖q/2
Lq/(2−q) .

Denoting by q∗ = 2q/(2 − q) ∈ [2,∞) the Sobolev exponent associated to q in dimension 2, we
have, thanks to a standard interpolation inequality and to the Sobolev inequality,

‖f‖Lq/(2−q) = ‖f‖Lq∗/2 ≤ ‖f‖1/(q
∗−1)

L1 ‖f‖(q
∗−2)/(q∗−1)

Lq∗(2.4)

≤ Cq ‖f‖1/(q
∗−1)

L1 ‖∇f‖(q
∗−2)/(q∗−1)

Lq .
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Gathering these two inequalities, it comes

‖∇f‖Lq ≤ Cq I(f)
1/2 ‖f‖1/(2(q

∗−1))
L1 ‖∇f‖(q

∗−2)/(2(q∗−1))
Lq ,

from which we deduce (2.2).

We now establish (2.1). For p ∈ (1,∞), write p = q∗/2 = q/(2− q) with q := 2p/(1 + p) ∈ [1, 2)
and use (2.4) and (2.2) to get

‖f‖Lp ≤ Cp ‖f‖
1

q∗−1
+ q∗−2

q∗−1
( 1
q−

1
2 )

L1 I(f)
q∗−2
q∗−1

( 3
2−

1
q ),

from which one easily concludes.

We verify (2.3). From the Sobolev inequality and the Cauchy-Schwarz inequality, we have

‖w2(1+1/p)‖L1(R2) = ‖w1+1/p‖2L2(R2) ≤ ‖∇(w1+1/p)‖2L1(R2)

≤ (1 + 1/p)2 ‖w1/p‖2L2 ‖∇w‖2L2(R2)(2.5)

and we conclude to (2.3) by taking w := fp/2. �

The proof of (1.20) in Theorem 1.4 is split into several steps that we present as some intermediate
autonomous a posteriori bounds.

Lemma 2.2. For any weak solution f and any final time T ∈ (0, T ∗) there exists a constant
C := C(M,AT (f)) such that

(2.6)
1

2

∫ T

0

I(f(t)) dt ≤ C.

In particular, in the subcritical case M < 8π the constant C only depends on M , H0, M2,0 and
T ∈ (0,∞).

Proof of Lemma 2.2. On the one hand, we write

DF(f) =

∫
f |∇(log f + κ̄)|2

≥
∫

f |∇ log f |2 + 2

∫
∇f · ∇κ̄ = I(f)− 2

∫
f2.

On the other hand, for any A > 1, using the Cauchy-Schwarz inequality and the inequality (2.1)
for p = 3, we have

∫
f2 1f≥A ≤

(∫
f 1f≥A

)1/2(∫
f3

)1/2

≤
(∫

f
(log f)+
logA

)1/2(
C3

3 M I(f)2
)1/2

,

from what we deduce for A = A(M,H+(f)) large enough, and more precisely taking A such that
logA = 16H+(f)C3

3 M ,

(2.7)

∫
f2 1f≥A ≤ C

3/2
3 M1/2 H+(f)1/2

(logA)1/2
I(f) ≤ 1

4
I(f).

Together with the first estimate, we find

1

2
I(f) ≤ DF (f) + 2

∫
f2 1f≤A

≤ DF (f) + 2M exp(16H+(f)C3
3 M),

and we conclude thanks to (1.12) in the general case and thanks to (1.4)–(1.11) in the subcritical
case M < 8π. �
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Remark 2.3. As we have already mentioned we are not able to use the logarithmic Hardy-
Littlewood-Sobolev inequality (1.7) in the critical and supercritical cases. However, introducing
the Maxwell function M := M (2π)−1 exp(−|x|2/2) of mass M and the relative entropy

H(h|M ) :=

∫

R2

(h log(h/M )− h+ M ) dx,

one classically shows that any solution f to the Keller-Segel equation (1.1) formally satisfies

d

dt
H(f(t)|M ) = −I(f(t)) +

∫
f(t)2 + C1/2

≤ −I(f(t)) +MA+ C
3/2
3 M1/2 H+(f(t))1/2

(logA)1/2
I(f(t)) + C1/2 (∀A > 0)

= −I(f(t)) +M exp
(
4C3

3 M H+(f(t))) + C1/2

= −I(f(t)) +M exp
{
C6 H(f(t)|M )

}
+ C1/2,

for a constant C6 = C6(M) and where C1 = C1(M) is defined in (1.5). In the above estimates, we
have used (2.7), we have made the choice logA := 4C3

3 M H+(f(t)) and we have used a variant
of inequality (1.9). This differential inequality provides a local a priori estimate on the relative
entropy which is the key estimate in order to prove local existence result for supercritical mass as
well as global existence result for critical mass in [6].

As an immediate consequence of Lemmas 2.1 and 2.2, we have

Lemma 2.4. For any T ∈ (0, T ∗), any weak solution f satisfies

f ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (1,∞),(2.8)

K̄ ∈ Lp/(p−1)(0, T ;L2p/(2−p)(R2)), ∀ p ∈ (1, 2),(2.9)

∇xK̄ ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (2,∞).(2.10)

Proof of Lemma 2.4. The bound (2.8) is a direct consequence of (2.6) and (2.1). The bound
(2.9) then follows from the definition of K, the Hardy-Littlewood-Sobolev inequality (see e.g. [28,
Theorem 4.3])

(2.11)
∥∥∥ 1

|z| ∗ f
∥∥∥
L2r/(2−r)(R2)

≤ Cr ‖f‖Lr(R2), ∀ r ∈ (1, 2),

with r = p and (2.8). Finally, from (2.6) and (2.2) we have

∇f ∈ L
2q

3q−2 (0, T ;Lq(R2)), ∀ q ∈ (1, 2).

Applying the Hardy-Littlewood-Sobolev inequality (2.11) to ∇xK̄ = K ∗ (∇xf) with r = q, we get

∇xK̄ ∈ L
2q

3q−2 (0, T ;L
2q

2−q (R2)), ∀ q ∈ (1, 2),

which is nothing but (2.10). �

Lemma 2.5. Any weak solution f satisfies
∫

R2

β(ft1) dx+

∫ t1

t0

∫

R2

β′′(fs) |∇fs|2 dxds(2.12)

≤
∫

R2

β(ft0) dx +

∫ t1

t0

∫

R2

(β′(fs) f
2
s − β(fs) fs)+ dxds,

for any times 0 ≤ t0 ≤ t1 < T ∗ and any renormalizing function β : R → R which is convex,
piecewise of class C1 and such that

|β(u)| ≤ C (1 + u (log u)+), (β′(u)u2 − β(u)u)+ ≤ C (1 + u2) ∀u ∈ R.
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Proof of Lemma 2.5. We write

∂tf −∆xf = K̄ · ∇xf + f2,

and we split the proof into three steps.

Step 1. Continuity. Consider a mollifier sequence (ρn) on R
2, that is ρn(x) := n2ρ(nx), 0 ≤ ρ ∈

D(R2),
∫
ρ = 1, and introduce the mollified function fn

t := ft∗xρn. Clearly, fn ∈ C([0, T ), L1(R2)).
Using (2.8) and (2.10), a variant of the commutation Lemma [21, Lemma II.1 and Remark 4] tells
us that

(2.13) ∂tf
n − K̄ · ∇xf

n −∆xf
n = rn,

with

rn := (f2) ∗ ρn + (K̄ · ∇xf) ∗ ρn − K̄ · ∇xf
n → f2 in L1(0, T ;L1

loc(R
2)).

The important point here is that f2, |∇xK̄| f ∈ L1((0, T )× R
2), thanks to (2.10) and (2.8).

As a consequence, the chain rule applied to the smooth function fn reads

(2.14) ∂tβ(f
n) = K̄ · ∇xβ(f

n) + ∆xβ(f
n)− β′′(fn) |∇xf

n|2 + β′(fn) rn,

for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a

compact set. Because the equation (2.13) with K̄ fixed is linear, the difference fn,k := fn − fk

satisfies (2.13) with rn replaced by rn,k := rn − rk → 0 in L1(0, T ;L1
loc(R

2) and then also (2.14)
(with again fn and rn changed in fn,k and rn,k). In that last equation, we choose β(s) = β1(s)
where βA(s) = s2/2 for |s| ≤ A, βA(s) = A |s|−A2/2 for |s| ≥ A and we obtain for any non-negative
function χ ∈ C2

c (R
d),
∫

R2

β1(f
n,k(t, x))χ(x) dx ≤

≤
∫

R2

β1(f
n,k(0, x))χ(x) dx +

∫ t

0

∫

R2

|rn,k(s, x)|χ(x) dxds

+

∫ t

0

∫

R2

β1(f
n,k(s, x))

∣∣∣−f χ+∆χ(x) − K̄(s, x) · ∇χ(x)
∣∣∣ dxds,

where we have used that divx K̄ = f , that |β′
1| ≤ 1 and that β′′

1 ≥ 0. In the last inequality,
the RHS term converges to 0 as n, k tend to infinity. More precisely, β1(f

n,k(0)) → 0 in L1(R2)
because f0 ∈ L1(R2); rn,k → 0 in L1(0, T ;L1

loc(R
2)) by the DiPerna-Lions commutation Lemma

recalled above; β1(f
n,k)K̄ → 0 in L1(0, T ;L1

loc(R
2)) because β1(s) ≤ |s|, because fn,k → 0 in

L3(0, T, L3/2(R2)) by (2.8) with p = 3/2 and because K̄ ∈ L6(0, T ;L3(R2)) by (2.9) with p = 6/5;
β1(f

n,k)f → 0 in L1(0, T ;L1(R2)) because again β1(s) ≤ |s| and f ∈ L2((0, T )×R
2) by (2.8) with

p = 2. All together, we get

sup
t∈[0,T ]

∫

R2

β1(f
n,k(t, x))χ(x) dx −→

n,k→∞
0.

Since χ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R

2)) so that fn → f̄ in
C([0, T ];L1

loc(R
2)), ∀T > 0. Together with the convergence fn → f in C([0,∞);D′(R2)) and the

a priori bound (1.10), we deduce that f = f̄ and

(2.15) fn → f in C([0, T ];L1(R2)), ∀T > 0.

Step 2. Linear estimates. We come back to (2.14), which implies, for all 0 ≤ t0 < t1, all
χ ∈ C2

c (R
2),

∫

R2

β(fn
t1)χdx+

∫ t1

t0

∫

R2

β′′(fn
s ) |∇xf

n
s |2 χdxds =

∫

R2

β(fn
t0)χdx(2.16)

+

∫ t1

t0

∫

R2

{
β′(fn

s ) r
n χ+ β(fn

s )∆χ− β(fn
s ) divx(K̄χ)

}
dxds.
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Choosing 0 ≤ χ ∈ C2
c (R

2) and β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is non-negative and vanishes

outside of a compact set, and passing to the limit as n → ∞, we get
∫

R2

β(ft1)χdx+

∫ t1

t0

∫

R2

β′′(fs) |∇xfs|2 χdxds ≤
∫

R2

β(ft0)χdx(2.17)

+

∫ t1

t0

∫

R2

{[
β′(f) f2 − β(f) f

]
χ+ β(f)

[
∆χ− K̄ · ∇χ

]}
dxds.

By approximating χ ≡ 1 by the sequence (χR) with χR(x) = χ(x/R), 0 ≤ χ ∈ D(R2), we see
that the last term in (2.17) vanishes and we get (2.12) in the limit R → ∞ for any renormalizing
function β with linear growth at infinity.

Step 3. superlinear estimates. Finally, for any β satisfying the growth condition as in the statement
of the Lemma, we just approximate β by an increasing sequence of smooth renormalizing functions
βR with linear growth at infinity, and pass to the limit in (2.12) in order to conclude. �

As a first consequence of Lemma 2.5, we establish an estimate on the quantity

(2.18) H2(f) :=

∫

R2

f (l̃ogf)2 dx, l̃og u := 1u≤e + (log u)1u>e.

Lemma 2.6. For any weak solution f and any time T ∈ (0, T ∗), there exists a constant C :=
C(M,T,AT ) such that for any 0 ≤ t0 < t1 ≤ T

(2.19) H2(f(t1)) ≤ H2(f(t0)) + C.

Proof of Lemma 2.6. We define the renormalizing function βK : R+ → R+, K ≥ e2, by

βK(u) := u (l̃ogu)2 if u ≤ K, βK(u) := (2 + logK)u logu− 2K logK if u ≥ K,

so that βK is convex and piecewise of class C1, and moreover there holds

β′
K(u)u2 − βK(u)u ≤ 2 u2 l̃og u 1u≤K + 4 logK u2 1u>K

and

β′′
K(u) ≥ 2

log u

u
1e≤u≤K + (2 + logK)

1

u
1u>K .

Defining now

l̃ogK u := 1u≤e + (log u)1e<u≤K + (logK)1u>K ,

we deduce from (2.12) that
∫

R2

βK(ft1) dx +

∫ t1

t0

∫

R2

|∇f |2
f

(l̃ogKf)1f≥e dxds

≤
∫

R2

βK(ft0) dx+ 4

∫ t1

t0

∫

R2

f2 l̃ogKf dxds.

Proceeding as in the proof of Lemma 2.2, we have for any A ∈ (e,K)
∫

R2

f2 l̃ogKf dx =

∫

R2

f2 l̃ogKf 1A≤K dx+

∫

R2

f2 l̃ogKf 1A≥K dx

≤ (A logA)M +
(H+(f)

logA

)1/2 (∫

R2

(f l̃ogKf)3 dx
)1/2

,

as well as thanks to inequality (2.1) with p = 3

(∫

R2

(f l̃ogKf)3 dx
)1/2

≤ C
3/2
3

(∫

R2

f l̃ogKf dx
)1/2

∫

R2

|∇(f l̃ogKf)|2

f l̃ogKf
dx

≤ 4C
3/2
3

(
M +H+(f)

)1/2(∫

R2

|∇f |2
f

(l̃ogKf)1f≥e dx+ I(f)
)
.
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The last three estimates together, we obtain for A large enough and K > A

∫

R2

βK(ft1) dx ≤
∫

R2

βK(ft0) dx+ 4T (A logA)M +

∫ t1

t0

I(fs)ds,

from which (2.19) immediately follows by letting K tends to +∞ and using Lemma 2.2. �

We now derive some Lp-norm estimate on the solutions to the KS equation.

Lemma 2.7. For any weak solution f , any time T ∈ (0, T ∗) and any p ∈ [2,∞) and t0 ∈ [0, T )
such that ft0 ∈ Lp, there exists a constant C := C(M,T,AT , p, ‖ft0‖Lp) such that

(2.20) ∀ t1 ∈ [t0, T ], ‖f(t1)‖pLp +
1

2

∫ t1

t0

‖∇x(f
p/2)‖2L2 dt ≤ C.

Proof of Lemma 2.7. We define the renormalizing function βK : R+ → R+, K ≥ 2, by

βK(u) :=
up

p
if u ≤ K, βK(u) :=

Kp−1

logK
(u log u− u)− 1

p′
Kp +

Kp

logK
if u ≥ K,

so that βK is convex and of class C1, and moreover there holds

β′
K(u)u2 − βK(u)u ≤ 1

p′
up+1 1u≤K + 2Kp−1 u2 1u>K ,

as well as

β′′
K(u) = (p− 1)up−2 1u≤K +

Kp−1

logK

1

u
1u>K .

Thanks to Lemma 2.5, we may write

∫

R2

βK(ft1) dx+
4

p′p

∫ t1

t0

∫

R2

|∇(fp/2)|2 1f≤K dxds+
Kp−1

logK

∫ t1

t0

∫

R2

|∇f |2
f

1f≥K dxds

≤
∫

R2

βK(ft0) dx+
1

p′

∫ t1

t0

∫

R2

fp+1 1f≤K dxds+ 2Kp−1

∫ t1

t0

∫

R2

f2 1f≥K dxds.

On the one hand, using the splitting f = (f ∧ A) + (f −A)+, we have

T1 :=

∫

R2

fp+1 1f≤K dx ≤ 2p Ap M + 2p
∫

R2

fp+1
A,K dx,

where we have defined fA,K := min((f −A)+,K−A), K > A > 0. Moreover, thanks to inequality
(2.3) and the same trick as in the proof of Lemma 2.2, we have

∫

R2

fp+1
A,K dx ≤ Cp

∫

R2

fA,K dx

∫

R2

|∇(f
p/2
A,K)|2 dx

≤ Cp
H+(f)

logA

∫

R2

|∇(fp/2)|2 1f≤K dx.

As a consequence, we obtain

1

p′

∫ t1

t0

T1 ds ≤
2p

p′
Ap M T +

1

p′p

∫ t1

t0

∫

R2

|∇x(f
p/2)|2 1f≤K dxds,

for A = A(p,AT ) > 1 large enough.
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On the other hand, thanks to the Sobolev inequality (line 2) and the Cauchy-Schwarz inequality
(line 3), we have

T2 := 2Kp−1

∫

R2

f2 1f≥K dx ≤ 8Kp−1

∫

R2

(f −K/2)2+ dx

≤ 8Kp−1
(∫

R2

|∇(f −K/2)+| dx
)2

= 8Kp−1
(∫

R2

|∇f |1f≥K/2 dx
)2

≤ 8Kp−1

∫

R2

|∇f |2
f

1f≥K/2 dx

∫
f 1f≥K/2 dx

≤ 8Kp−1
{ 4

p2

∫

R2

|∇(fp/2)|2
( 2

K

)p−1
1f≤K +

∫

R2

|∇f |2
f

1f≥K

} H2(f)

(log(K/2))2
.

Recalling that from Lemma 2.6 we have

sup
[t0,T ]

H2(f) ≤ H2(ft0) + C′ ≤ M + ‖ft0‖pLp + C′ =: C′′,

we deduce
∫ t1

t0

T2 ds ≤ 32C′′

(logK)2

{2p+1

p2

∫ t1

t0

∫

R2

|∇(fp/2)|2 1f≤K dxds+Kp−1

∫ t1

t0

∫

R2

|∇f |2
f

1f≥K dxds
}

≤ 1

p′p

∫ t1

t0

∫

R2

|∇(fp/2)|2 1f≤K dxds+
Kp−1

logK

∫ t1

t0

∫

R2

|∇f |2
f

1f≥K dxds,

for any K ≥ K∗ = K∗(p,AT ) > max(A, 4) large enough.

All together, we have proved that for some constant A and K∗ only depending on p, T , AT and
ft0 , and for any K ≥ K∗ there holds

∫

R2

βK(ft1) dx+
2

p′

∫ t1

t0

∫

R2

|∇x(f
p/2)|2 1f≤K dxds ≤

∫

R2

βK(ft0) dx+ 2p Ap M T.

We conclude to (2.20) by passing to the limit K → ∞. �

Lemma 2.8. Any weak solution f is smooth, that is

f ∈ C∞
b ((ε, T )× R

2), ∀ ε, T, 0 < ε < T < T ∗,

so that in particular it is a “classical solution” for positive time.

Proof of Lemma 2.8. For any time t0 ∈ (0, T ) and any exponent p ∈ (1,∞), there exists t′0 ∈ (0, t0)
such that f(t′0) ∈ Lp(R2) thanks to (2.8), from what we deduce using (2.20) on the time interval
(t′0, T ) that

(2.21) f ∈ L∞(t0, T ;L
p(R2)) and ∇xf ∈ L2((t0, T )× R

2).

Next, by writing K = K 1|z|≤1+K 1|z|≥1 ∈ L3/2+L∞, it is easily checked ‖K∗f‖L∞ ≤ C (‖f‖L3 +

‖f‖L1), and then K̄ ∈ L∞(t0, T ;L
∞(R2)) because of (2.21) and (1.13). We thus have

(2.22) ∂tf +∆xf = f2 + K̄ · ∇xf ∈ L2((t0, T )× R
2), ∀ t0 > 0,

so that the maximal regularity of the heat equation in L2-spaces (see Theorem X.11 stated in [9]
and the quoted reference) provides the bound

(2.23) f ∈ L2(t0, T ;H
2(R2)) ∩ L∞(t0, T ;H

1(R2)), ∀ t0 > 0.

Thanks to (2.23), an interpolation inequality and the Sobolev inequality, we deduce that ∇xf ∈
Lp((t0, T ) × R

2) for any 1 < p < ∞, whence K̄ · ∇xf ∈ Lp((t0, T ) × R
2), for all t0 > 0. Then

the maximal regularity of the heat equation in Lp-spaces (see Theorem X.12 stated in [9] and the
quoted references) provides the bound

(2.24) ∂tf,∇xf ∈ Lp((t0, T )× R
2), ∀ t0 > 0,
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and then the Morrey inequality implies the Hölderian regularity f ∈ C0,α((t0, T ) × R
2) for any

0 < α < 1, and any t0 > 0. Observing that the RHS term in (2.22) has then also an Hölderian
regularity, we deduce that

∂tf, ∂xf, ∂
2
xixj

f ∈ C0,α
b ((t0, T )× R

2), ∀T, t0; 0 < t0 < T < T ∗,

thanks to the classical Hölderian regularity result for the heat equation (see Theorem X.13 stated
in [9] and the quoted references). We conclude by (weakly) differentiating in time and space the
equation (2.22), observing that the resulting RHS term is still a function with Hölderian regularity,
applying again [9, Theorem X.13] and iterating the argument. �

Proof of Theorem 1.4. We split the proof into seven steps, many of them are independent from
one another.

Step 1. The regularity of f has been yet established in Lemma 2.8.

Step 2. First, we claim that the free energy functional F is lsc in the sense that for any bounded
sequence (fn) of nonnegative functions of L

1
2(R

2) with same massM < 8π and such that F(fn) ≤ A
and fn ⇀ f in D′(R2), there holds

(2.25) 0 ≤ f ∈ L1
2(R

2) and F(f) ≤ lim inf F(fn).

The proof of (2.25) is classical (see [13, 14, 8]) and we just sketch it for the sake of completeness.
Because of (1.8) and (1.9), we have H+(fn) +M2(fn) ≤ A′ for any n ≥ 1, and we may apply the
Dunford-Pettis lemma which implies that fn ⇀ f in L1(R2) weak. Now, introducing the splitting
F = Fε +Rε, Fε = H + Vε, with

Vε(g) :=
1

2

∫ ∫

R2×R2

g(x) g(y)κ(x− y)1|x−y|≥ε,

Rε(g) :=
1

2

∫ ∫

R2×R2

g(x) g(y)κ(x− y)1|x−y|≤ε,

we clearly have that Fε(f) ≤ lim inf Fε(fn) because H is lsc and Vε is continuous for the L1 weak
convergence. On the other hand, using the convexity inequality uv ≤ u logu + ev ∀u > 0, v ∈ R

and the elementary inequality (log u)− ≤ u−1/2 ∀u ∈ (0, 1), we have for ε ∈ (0, 1) and λ > 1

|Rε(g)| =
1

4π

∫ ∫

R2×R2

g(x)1g(x)≤λ g(y) (log |x− y|)− 1|x−y|≤ε

+
1

4π

∫ ∫

R2×R2

g(x)1g(x)≥λ g(y) log(|x − y|−1)1|x−y|≤ε

≤ λ

4π

∫

R2

g(y) dy

∫

|z|≤ε

(log |z|)− dz

+
1

4π

∫

R2

g(x)1g(x)≥λ

∫ {
g(y) log g(y) + |x− y|−1

}
dy

≤ λ

3
M ε3/2 +

1

4π

H+(g)

logλ

{
H+(g) + 2πε

}
,

and we get that supn |Rε(fn)| → 0 as ε → 0 from which we conclude that F is lsc. Now, we easily
deduce that the free energy identity (1.6) holds. Indeed, since f is smooth for positive time, for
any fixed t ∈ (0, T ∗) and any given sequence (tn) of positive real numbers which decreases to 0, we
clearly have

F(f(tn)) = F(t) +

∫ t

tn

DF (f(s)) ds.

Then, thanks to the Lebesgue convergence theorem, the lsc property of F and the fact that
f(tn) ⇀ f0 weakly in D′(R2), we deduce from the above free energy identity for positive time that

F(f0) ≤ lim inf
n→∞

F(f(tn)) ≤ lim
n→∞

{
F(t) +

∫ t

tn

DF (f(s)) ds
}
= F(t) +

∫ t

0

DF(f(s)) ds.
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Together with the reverse inequality (1.14) we conclude to (1.6).

Step 3. From now on, we assume that M < 8π is subcritical and we prove the uniform in time
estimates (1.19) and (1.20). We start with the a priori additional moment estimate (1.19). Because
we will show the uniqueness of solution without using that additional moment estimates, these ones
are rigorously justified thanks to a standard approximation argument, see [8] for details. Denoting
g the rescaled solution (1.17) and

Mk :=

∫

R2

g(x) |x|k dx

we compute with Φ(x) = |x|k, k ≥ 2, thanks to the antisymmetry of the kernel and the Hölder
inequality

d

dt
Mk = k2 Mk−2 − kMk −

1

2π

∫

R2

Φ′(x)g(t, x)

∫

R2

g(t, y)
x− y

|x− y|2 dydx

= k2 Mk−2 − kMk

− 1

4π

∫

R2

∫

R2

g(t, y)g(t, x) (Φ′(x)− Φ′(y))
x− y

|x− y|2 dydx

≤ k2 M2/k M
1−2/k
k − kMk,

from which we easily conclude that (1.19) holds.

Step 4. Defining the rescaled free energy E(g) and the associated dissipativity of rescaled free
energy DE(g) by

E(g) :=

∫
g(1 + log g) +

1

2

∫
g|x|2 + 1

4π

∫ ∫
g(x)g(y) log |x− y| dxdy(2.26)

DE(g) :=

∫
g
∣∣∣∇

(
log g +

|x|2
2

+ κ ∗ g
)∣∣∣

2

,(2.27)

we have that any solution g to the rescaled equation (1.18) satisfies

(2.28)
d

dt
E(g) +DE(g) = 0 on [0,∞).

On the one hand, as for (1.8), the following functional inequality

(2.29)

∫
g log g +

1

2

∫
g|x|2 ≤ C3(M) E(g) + C4(M) ∀ g ∈ L1

+(R
2)

holds, and together with (1.9), we find

(2.30)

∫
g(log g)+ +

1

4

∫
g|x|2 ≤ C3(M) E(g) + C7(M) ∀ g ∈ L1

+(R
2),

where C7 := C4 + C5. As a consequence of (2.28) and (2.30), we get the uniform in time upper
bound on the rescaled free energy for the solution g of (1.18)

(2.31) sup
t≥0

∫
gt(log gt)+ +

1

4

∫
gt|x|2 ≤ C3(M) E(f0) + C7(M).

Step 5. As in the proof of Lemma 2.7, we easily get that the rescaled solution g of the rescaled
equation (1.18) satisfies for any p ∈ [2,∞)

d

dt
‖g‖pLp +

4

p′
‖∇(gp/2)‖2L2 = 2 (p− 1) ‖g‖pLp + (p− 1)‖g‖p+1

Lp+1

≤ 2 (p− 1)M + 3(p− 1)‖g‖p+1
Lp+1.
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Writing s = s ∧ A + (s − A)+, so that sp+1 ≤ 2p+1(s ∧ A)p+1 + 2p+1(s − A)p+1
+ , and using the

Gagliardo-Nirenberg-Sobolev type inequality (2.5) in order to get
∫
(g −A)p+1

+ ≤ Cp

∫
|∇(g −A)

p/2
+ |2

∫
(g −A)+

≤ Cp

∫
|∇(gp/2)|2 H+(g)

logA

for any A > 1, we deduce

d

dt
‖g‖pLp + ‖∇(gp/2)‖2L2 ≤ 2pM + 3p2p+1Ap M + 3p2p+1

∫
(g −A)p+1

+

≤ C8(M,p,A) + Cp
H+(g)

logA
‖∇(gp/2)‖2L2 .

Taking A large enough, we obtain

(2.32)
d

dt
‖g‖pLp +

1

2
‖∇(gp/2)‖2L2 ≤ C9(M,p, E0).

Using the Nash inequality

‖w‖2L2(R2) ≤ CN ‖w‖L1(R2) ‖∇w‖L2(R2)

with w := gp/2, we conclude with

d

dt
‖g‖pLp +

1

C2
N

‖g‖−p
Lp/2 ‖g‖2pLp ≤ C9(M,p, E0).

Defining u(t) := ‖g(t)‖pLp first with p = 2, so that ‖g(t)‖p/2
Lp/2 = M , we recognize the classical

nonlinear ordinary differential inequality

u′ + c u2 ≤ C on (0,∞),

for some constants c and C (which only depend on M and E0) from which we deduce the bound

(2.33) ∀ ε > 0 ∃ C = C(ε, c, C) sup
t≥ε

‖g(t)‖pLp ≤ C,

with p = 2. In order to get the same uniform estimate (2.33) in all the Lebesgue spaces Lp,
p ∈ (2,∞), we may proceed by iterating the same argument as above with the choice p = 2k,
k ∈ N

∗. Coming back to (2.32) with p = 2, we also deduce that for any ε, T > 0 there exists
C = C(ε, T, E0) so that

sup
t0≥ε

∫ t0+T

t0

‖∇g(s)‖2L2(R2) ds ≤ C.

Step 6. The function gi := ∂xig satisfies

∂tgi −∆gi −∇(xgi) = gi + 2 g gi − ∂xi(∇u · ∇g),

from which we deduce that

d

dt

∫
|gi|p + p(p− 1)

∫
|∇gi|2|gi|p−2 ≤(2.34)

≤ (3p− 2)

∫
|gi|p + 2p

∫
g |gi|p + p

∫
∂xi(∇u · ∇g) gi |gi|p−2.

For p = 2, we have for any t ≥ ε

T (t) := 4

∫
g |gi|2 + 2

∫
∂xi(∇u · ∇g) gi

≤ 4‖g‖L3 ‖gi‖2L3 + 2 ‖∇u · ∇g‖2L2 +
1

2
‖∂igi‖2L2
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thanks to the Hölder inequality, an integration by part and the Young inequality. Next, we have
for any t ≥ ε

T (t) ≤ C1 ‖gi‖4/3L2 ‖∇gi‖2/3L2 + C2‖∇g‖2L2 +
1

2
‖∇gi‖2L2

where we have used the classical Gagliardo-Nirenberg inequality (see (85) in [9, Chapter IX] and
the quoted references)

(2.35) ‖w‖Lr(R2) ≤ CGN ‖w‖1−a
Lq(R2) ‖∇w‖aL2(R2), a = 1− q

r
, 1 ≤ q ≤ r < ∞,

with w := gi, r = 3, q = 2, the uniform bound established in step 5 and the fact that ∇u =
−K ∗ g ∈ L∞((ε,∞) × R

2) thanks to the same argument as in the proof of Lemma 2.8. Last, by
the Young inequality we get for any t ≥ ε

T (t) ≤ 2

3
C

3/2
1 ‖gi‖2L2 +

1

3
‖∇gi‖2L2 + C2‖∇g‖2L2 +

1

2
‖∇gi‖2L2 ,

from which we deduce from (2.34)

d

dt

∫
|gi|2 +

∫
|∇gi|2 ≤ C3 ‖∇g‖2L2 on (ε,∞),

with C3 := 4 + 2
3 C

3/2
1 + C2. Remarking that for any fixed ε ∈ (0, 1) and any t1 ≥ 2ε, we may

define t0 ∈ (t1 − ε, t1) so that

‖∇g(t0)‖2L2 = inf
(t1−ε,t1)

‖∇g‖2L2 ≤ 2

ε

∫ t1

t1−ε

‖∇g(s)‖2L2 ds ≤ C4

thanks to the bound established at the end of step 5, we deduce from the above differential
inequality that

‖gi(t1)‖2L2 ≤ ‖gi(t0)‖2L2 + C3

∫ t1

t0

‖∇g(s)‖2L2 ds ≤ C5,

where again C5 := C4 + C3 C4 ε/2 only depends on ε, M and E0. Coming back to the above
differential inequality again, we easily conclude that for any ε > 0, there exists a constant Cε =
C(ε,M, E0) so that

(2.36) sup
t≥ε

{
‖∇g(t)‖2L2 +

∫ t+1

t

‖D2g(s)‖2L2

}
≤ Cε.

Step 7. Starting from the differential inequality (2.34) for p ∈ (2,∞) and using the Morrey-Sobolev
inequalities

‖g‖L∞ ≤ C ‖g‖H2 and ‖D2u‖L∞ ≤ C ‖D2u‖H2 ≤ C ‖g‖H2 ,

we easily get

1

p

d

dt

∫
|∇g|p ≤ C (1 + ‖g‖L∞ + ‖D2u‖L∞)

∫
|∇g|p

≤ C (1 + ‖g‖H2)

∫
|∇g|p on (ε,∞),

from which we deduce for any t1 ≥ t0 ≥ ε

‖∇g(t1)‖Lp ≤ ‖∇g(t0)‖Lp exp
(∫ t1

t0

C (1 + ‖g(s)‖H2) ds
)
.

Now, arguing similarly as in step 6, we deduce from the above time integral inequality, the Sobolev
inequality ‖∇g‖Lp ≤ Cp ‖g‖H2 for p ∈ [2,∞) and the already established bound (2.36), that for
any ε > 0, there exists a constant Cε = C(ε,M, E0, p) so that

(2.37) sup
t≥ε

‖∇g(t)‖Lp ≤ Cε.



KELLER-SEGEL EQUATION 17

Step 8. Iterating twice the arguments we have presented in steps 6 and 7, it is not difficult to
prove

sup
t≥ε

‖g(t, .)‖W 3,p ≤ C ∀ ε > 0, p ∈ [2,∞),

for some constant C = C(ε, p,M,F0,M2,0) from which (1.20) immediately follows. �

3. Uniqueness - Proof of Theorem 1.3

We split the proof into two steps. We recall that from Theorem 1.4 we already know that
‖f‖L2 ∈ C1(0, T ) and ‖f‖Lp ∈ L∞(t0, T ) for any 0 < t0 < T < T ∗ and any p ∈ [1,∞].

Step 1. We establish our new main estimate, namely that any weak solution satisfies

(3.1) t1/4‖f(t, .)‖L4/3 → 0 as t → 0.

First, from (1.1) and the regularity of the solution, we have

d

dt
‖f‖2L2 + 2‖∇xf‖2L2 = ‖f‖3L3 on (0, T ).

As in the proof of Lemma 2.7, we deduce that

d

dt
‖f‖2L2 +

1

2
‖∇xf‖2L2 ≤ A2M on (0, T )

for A large enough. Thanks to the Nash inequality

‖f‖2L2 ≤ CM ‖∇f‖L2,

we thus obtain
d

dt
‖f‖2L2 + cM‖f‖4L2 ≤ A2M on (0, T ).

It is a classical trick of ordinary differential inequality to deduce that there exists a constant K
(which only depends on cM , A2M and T ) so that

(3.2) t ‖f(t, .)‖2L2 ≤ K ∀ t ∈ (0, T ).

We now prove (3.1) from (3.2) and an interpolation argument. On the one hand, introducing the

notation l̃og+f := 2 + (log f)+, we use the Hölder inequality in order to get
∫

f4/3 =

∫
f2/3 (l̃og+f)

2/3 f2/3 (l̃og+f)
−2/3

≤
(∫

f l̃og+f
)2/3 (∫

f2 (l̃og+f)
−2

)1/3

,

or in other words and using a similar estimate as (1.9)

(3.3) ‖f‖L4/3 ≤ C(H(f),M2(f))
(∫

f2 (l̃og+f)
−2

)1/4

.

On the other hand, we observe that for any R ∈ (0,∞)

t

∫
f2 (l̃og+f)

−2 ≤ t

∫

f≤R

f2 (l̃og+f)
−2 + t

∫

f≥R

f2 (l̃og+f)
−2

≤ t
R

(l̃og+R)2

∫

f≤R

f +
t

(l̃og+R)2

∫

f≥R

f2

≤ t
MR

(l̃og+R)2
+

K

(l̃og+R)2
≤ M +K

(l̃og+1/t)
2
→ 0,(3.4)

where we have used that s 7→ s/(l̃og+s)
2 is an increasing function in the second line, then the mass

conservation and estimate (3.2) in the third line, and we have chosen R := t−1 in order to get the
last inequality. We conclude to (3.1) by gathering (3.3) and (3.4).
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Step 3. Conclusion. We consider two weak solutions f1 and f2 to the Keller-Segel equation (1.1)
that we write in the mild form

fi(t) = et∆fi(0) +

∫ t

0

e(t−s)∆∇(Vi(s) fi(s)) ds, Vi = K ∗ fi,

where et∆ stands for the heat semigroup defined inR
2 by et∆f := γt∗f , γt(x) := (2πt)−1 exp(−|x|2/(2t)).

When we assume f1(0) = f2(0), the difference F := f2 − f1 satisfies

F (t) =

∫ t

0

∇ · e(t−s)∆(V2(s)F (s)) ds +

∫ t

0

∇ · e(t−s)∆(W (s) f1(s)) ds = I1 + I2,

with W := V2 − V1. For any t > 0, we define

Zi(t) := sup
0<s≤t

s1/4 ‖fi(s)‖L4/3 , ∆(t) := sup
0<s≤t

s1/4 ‖F (s)‖L4/3 .

We then compute

J1 := t1/4 ‖I1(t)‖L4/3

≤ t1/4
∫ t

0

‖∇ · e(t−s)∆(V2(s)F (s))‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖V2(s)F (s)‖L1 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖V2(s)‖L4 ‖F (s)‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖f2(s)‖L4/3 ‖F (s)‖L4/3 ds

≤
∫ t

0

C

(t− s)3/4
t1/4

s1/2
dsZ2(t)∆(t)

=

∫ 1

0

C

(1− u)3/4
du

u1/2
Z2(t)∆(t),

where we have used the regularizing effect of the heat equation

‖∇(et∆g)‖L4/3 ≤ ‖∇γt‖L4/3 ‖g‖L1 ≤ C

t3/4
‖g‖L1,

at the third line, the Hölder inequality at the fourth line and the critical Hardy-Littlewood-Sobolev
inequality (1.16) at the fifth line.

Similarly, we have

J2 := t1/4 ‖I2(t)‖L4/3

≤
∫ 1

0

C

(1− u)3/4
du

u1/2
∆(t)Z1(t).

All together, we conclude thanks to (3.1) with the inequality

∆(t) ≤
∫ 1

0

C

(1− u)3/4
du

u1/2
(Z1(t) + Z2(t))∆(t) ≤ 1

2
∆(t)

for t ∈ (0, T ), T > 0 small enough, which in turn implies ∆(t) ≡ 0 on [0, T ). �

4. Self-similar behaviour - Proof of Theorem 1.5

In this section we restrict ourself to the subcritical case M < 8π and we investigate the self-
similar long time behaviour of generic solutions to the KS equation or more precisely, and equiv-
alently, we investigate the long time convergence to the self-similar profile of the rescaled solution
g defined through (1.17). We start by recalling some known results on the self-similar profile and
its stability. First, we consider the stationary problem (1.22).
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Theorem 4.1. For any M ∈ (0, 8π), there exists a unique nonnegative self-similar profile G = GM

of mass M with finite second moment and finite entropy of the KS equation (1.1), it is the unique
solution to the stationary problem (1.22) and it satisfies

G ∈ C∞(R2), e−(1+ε)|x|2/2+C1,ε ≤ G ≤ e−(1−ε)|x|2/2+C2,ε ,

for any ε ∈ (0, 1) and some constants Ci,ε ∈ (0,∞). Moreover, with the definitions (2.26) of the
modified free energy E and (2.27) of the modified dissipation of the free energy DE , the self-similar
profile G is characterized as the unique solution to the optimization problem

(4.1) g̃ ∈ ZM , E(g̃) = min
g∈ZM

E(g),

where ZM := {g ∈ L1
+ ∩ L1

2; M0(g) = M}, as well as the unique function g ∈ ZM such that
DE(g) = 0.

That theorem follows by a combination of known results. On the one hand, as a consequence
of the fact that U := −K ∗G satisfies (1.24) together with the elementary inequality

(4.2) ∀x ∈ R
2

∣∣U(x) +
M

2π
(log |x|)+

∣∣ ≤ C,

where C only depends on M , M2(G) and H(G) (see [8, Lemma 23] and the argument presented
in order to bound Rε(g) in step 2 of the proof of Theorem 1.4), and the Naito’s variant [33] of the
famous Gidas, Ni, Nirenberg radial symmetry result on solutions to Poisson type equations, it has
been established in [8, Lemma 25] that U is radially symmetric. It follows that any self-similar
profile G is radially symmetric. On the other hand, the uniqueness of radially symmetric self-
similar profiles has been proved in [5, Theorem 3.1] (see also [15, Theorem 1.2]) and that concludes
the proof of the uniqueness of the solution to the stationary problem (1.22). The smoothness
property is established in [8, Lemma 25] and the behaviour for large values of |x| is a immediate
consequence of (4.2). It is clear from (2.28) that any solution g̃ to the minimization problem (4.1)
also satisfies DE(g̃) = 0 which in turns implies that log g̃+ |x|2/2+κ∗ g̃ = 0 and then g̃ is a solution
to the stationary problem (1.22).

Second, the profile G is a stationary solution to the evolution equation (1.18) and the associated
linearized equation reads

∂th = Λh := divx
(
∇h+ xh+ (K ∗G)h+ (K ∗ h)G).

We briefly explain the spectral analysis of Λ in the Hilbert space E := L2(G−1/2) of self-adjointness
performed in [17]. Defining h0,0 := ∂GM/∂M , it is (formally) clear that h0,0 is a first eigenfunction
of the operator Λ associated to the first eigenvalue λ = 0, and it has been furthermore shown in
[17, Lemma 8] that the null space N(Λ) = vect(h0,0). Moreover, defining the bilinear form

〈f, g〉 :=
∫

R2

f g G−1 dx+

∫

R2

∫

R2

f(x) g(y)κ(x− y) dxdy,

and the associated quadratic form Q1[f ] := 〈f, f〉, it has been shown in [17, Section 4.3] that Q1

is nonnegative, that Q1[h0,0] = 0 and that

Q1[f ] = 0 and 〈f, h0,0〉 = 0 imply f = 0.

As a consequence Q1[·] defines an Hilbert norm on the linear submanifold

E⊥
0 := {f ∈ E; 〈f, h0,0〉 = 0} = {f ∈ E; M(f) = 0}

which is equivalent to the initial norm ‖ · ‖E . That new norm is suitable for exhibiting a spectral
gap for the operator Λ and to make the stability analysis of the associated semigroup etΛ.

Theorem 4.2 ([17]). For any g ∈ E⊥
0 which belongs to the domain of Λ, there holds

(4.3) 〈Λg, g〉 ≤ −Q1[g].

Moreover, there exists a∗ < −1 and C > 0 so that

(4.4) ‖etΛh− e−t Π1h−Π0h‖E ≤ C ea
∗t ‖h− (Π1 +Π0)h‖E ∀ t ≥ 0, ∀h ∈ E,
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where Π0 is the (Q1-orthogonal) projection on Vect(h0,0), also defined as Π0h := M(h)h0,0, and
Π1 is the (Q1-orthogonal) projection on Vect(h1,1, h1,2) where h1,i := ∂xiG.

Inequality (4.3) is nothing but [17, Theorem 15] and (4.4) is a consequence of the fact that the
spectrum of Λ is discrete and included in the real line and that the second (larger) eigenvalue of Λ
is −1, see [17, Section 4].

Our first main result in this section is a linearized stability result in a large space E , namely we
consider

E := L
4/3
k (R2), k > 3/2.

We consider that space because it is the larger space in terms of moment decay in which we are able
to prove a (optimal) spectral gap on the linearized semigroup. For such a general Banach space
framework and the associated spectral analysis issue, we adopt the classical notations of [35, 26]
used in [25], for more details we refer to [25, Section 2.1] and the references therein (in particular
[26, 35, 22]).

Theorem 4.3. For any k > 3/2 and any a > ā := max(a∗, a(k)), a(k) := 1/2 − k (so that
a(k) < −1) there exists a constant Ck,a so that

‖etΛh− e−t Π1h−Π0h‖E ≤ C eat ‖h− Π1h−Π0h‖E ∀ t ≥ 0, ∀h ∈ E ,

where again Π0 stands for projection on the eigenspace Vect(h0,0) associated to the eigenvalue 0 and
Π1 stands for projection on the eigenspace Vect(h1,1, h1,2) associated to the eigenvalue −1. Both
operators are defined through the Dunford formula (see [25, Section 2.1] or better [26, III-(6.19)])

Πξ := − 1

2iπ

∫

|z−ξ|=r

(Λ − z)−1 dz, ξ = 0,−1, r > 0 (small enough),

but also in a simpler manner Π0h = M(h)h0,0 for any h ∈ E.

The proof is a straightforward adaptation of arguments of “functional extension of semigroup
spectral gap estimates” developed in [25] for the Fokker-Planck equation.

Lemma 4.4. For any k ≥ 0 fixed, there exists a constant Ck such that for any g ∈ D(Λ), there
holds

(4.5) 〈Λg, g†〉E ≤ Ck

∫
|g|4/3 〈x〉 4

3k−1 +
(1
2
− k

) ∫
|g|4/3 〈x〉 4

3k,

where g† := ḡ |g|−2/3 (here ḡ stands for the complex conjugate of g).

Proof of Lemma 4.4. For the sake of simplicity we assume g ≥ 0 so that g† = g1/3, we set ℓ := 4k/3,
we write

〈Λg, g†〉E =

∫

R2

(Λg) g1/3 〈x〉ℓ = T1 + ...+ T4,

and we compute each term Ti separately. First, performing two integrations by part, we have

T1 :=

∫

R2

(∆g) g1/3 〈x〉ℓ dx

= −1

3

∫

R2

|∇g|2 g−2/3 〈x〉ℓ dx+
3

4

∫

R2

g4/3 ∆〈x〉ℓ dx.

Second, performing one integration by part, we have

T2 :=

∫

R2

(2g + x · ∇g) g1/3 〈x〉ℓ dx

=

∫

R2

{1
2
〈x〉ℓ−2 +

(1
2
− k

)
〈x〉ℓ

}
g4/3 dx.
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Third, performing one integration by part, we have

T3 :=

∫

R2

(
2Gg + (K ∗G) · ∇g

)
g1/3 〈x〉ℓ dx

=
5

4

∫

R2

Gg4/3 〈x〉ℓ dx− 3

4

∫

R2

g4/3 (K ∗G) · ∇x〈x〉ℓ dx

≤ C

∫

R2

g4/3 〈x〉ℓ−1 dx,

for some constant C ∈ (0,∞).
Fourth and last, thanks to the Hölder inequality and the critical Hardy-Littlewood-Sobolev in-
equality (1.16), we have

T4 :=

∫

R2

(K ∗ g) · ∇Gg1/3 〈x〉ℓ dx

≤ ‖∇G 〈x〉k‖∞ ‖g‖1/3
L4/3 ‖K ∗ g‖L4 ≤ C ‖g‖4/3

L4/3.

Gathering all these estimates, we get (4.5). �

We define

Ag := NχR g and Bg = Λg −A g,

for some truncation function χR(x) := χ(x/R), χ ∈ D(R2), 1B(0,1) ≤ χ ≤ 1B(0,2), and some
constants N,R > 0.

We clearly have

(4.6) A ∈ B(L2, E) ⊂ B(E) and A ∈ B(L4/3, E) ⊂ B(E).

From lemma 4.4 we easily have that for any a > a(k) there exist N and R large enough so that
B − a is dissipative in E (see [35, Chapter I, Definition 4.1]) in the sense that

(4.7) 〈g∗, (B − a) g〉E′,E ≤ 0,

where g∗ := ḡ |g|−2/3 ‖g‖2/3E ∈ E ′.

Lemma 4.5. There exist some constants C > 0 and b ∈ R such that the semigroup SB(t) = eBt

satisfies

(4.8) ‖SB(t)h‖L2
1
≤ C ebt

t1/2
‖h‖

L
4/3
1

∀h ∈ L
4/3
1 , ∀ t > 0.

Proof of Lemma 4.5. The proof of the hypercontractivity property as stated in Lemma 4.5 is
a classical consequence of the Gagliardo-Nirenberg inequality. For the sake of completeness we
sketch it. Arguing similarly as in the proof of Lemma 2.7 and Lemma 4.4 and denoting ht := etBh,
we compute

1

2

d

dt

∫
|ht|2〈x〉2 = −

∫
|∇ht〈x〉|2 +

∫
ht (K ∗ ht) · ∇G〈x〉2

+

∫
|ht|2

{
1− |∇〈x〉|2 + 〈x〉2

(3
2
G−N χR

)
+ 〈x〉K ∗G · ∇〈x〉

}
.

On the one hand, thanks to the Gagliardo-Nirenberg inequality (2.35) with q = 4/3, r = 2 and
a = 1/3, we know that

∫
|∇(h〈x〉)|2 ≥ C−6

GN

(∫
|h 〈x〉|2

)3 (∫
|h 〈x〉|4/3

)−3

.
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On the other hand, introducing the splitting K = K0+K∞ with K0 := K 1|z|≤1 and K∞ := K 1|z|≥1

and using the Hölder inequality and the Young inequality, we have
∫

ht (K ∗ ht) · ∇G〈x〉2 ≤ ‖∇G 〈x〉2‖L∞ ‖h‖2 ‖K0 ∗ h‖L2 + ‖∇G 〈x〉2‖L2 ‖h‖L2 ‖K∞ ∗ h‖L∞

≤ C (‖K0‖L1 ‖h‖2L2 + ‖h‖L2 ‖K0‖L3‖h‖L3/2)

≤ C ‖h‖2L2
1
.

We also bound the last term by C ‖ht‖2L2
1
. All together and using the notations X(t) := ‖ht‖2L2

1

and Y (t) := ‖ht‖4/3
L

4/3
1

and the fact that Y (t) ≤ Y (0) thanks to Lemma 4.4, we get

X ′ ≤ −α (X/Y (0))3 + β X

for some constants α, β > 0. The estimate (4.8) is then a classical consequence to the above
differential inequality. �

Proof of Theorem 4.3. We immediately deduce from (4.6) and Lemma 4.5 that

‖ASB(t)‖B(E,E) ≤
C

t1/2
ebt ∀ t > 0,

for some constants C > 0 and b ∈ R. As a consequence, proceeding as in [25, section 3] or
[29, Lemma 2.4], we deduce that the time convolution function (ASB)

(∗ℓ) defined iteratively by
(ASB)

(∗1) := (ASB), (ASB)
(∗ℓ) := (ASB)

(∗(ℓ−1)) ∗ (ASB), for any ℓ ≥ 2, satisfies

(4.9) ‖(ASB)
(∗ℓ)(t)‖B(E,E) ≤ Cℓ e

bℓt ∀ t > 0,

for some constants Cℓ > 0 and bℓ ∈ (a(k),−1) for k > 3/2 and ℓ ≥ 2 large enough. Putting
together Theorem 4.2 and the properties (4.6), (4.7) and (4.9) we observe that Λ = A+B satisfies
all the assumptions of [25, Theorem 2.13]. As a consequence, the conclusions of Theorem 4.2 hold
true by a straightforward application of [25, Theorem 2.13]. �

Before going to the proof of Theorem 1.5 we present two results that will be useful during the
proof of that Theorem.

Lemma 4.6. For any M ∈ (0, 8π), k′ > 2 ≥ k > 3/2, Mk′ ≥ (k′ − 1)k
′/2 M and C > 0, there

exists an increasing function η : [0,∞) → [0,∞), η(0) = 0, η(u) > 0 for any u > 0, such that

(4.10) ∀ g ∈ Z DE(g) ≥ η(‖g −G‖
L

4/3
k

)

where

Z := {g ∈ L1
+(R

2), M(g) = M, Mk′(g) ≤ Mk′ , ‖g‖W 2,∞ ≤ C}.

Proof of Lemma 4.6. We proceed by contradiction. If (4.10) does not hold, there exists a sequence
(gn) in Z and a real δ > 0 such that

DE(gn) → 0 as n → 0 and ‖g −G‖
L

4/3
k

≥ δ.

Therefore, on the one hand, there exists ḡ ∈ Z such that, up to the extraction of the subsequence,

there holds gn → ḡ strongly in L
4/3
k , so that ‖ḡ −G‖

L
4/3
k

≥ δ. Using again gn → ḡ and the critical

Hardy-Littlewood-Sobolev inequality (1.16), we deduce that
√
gn K ∗ gn → √

ḡK ∗ ḡ strongly in

L1
loc(R

2) and then 2∇√
gn+

√
gn K∗ gn ⇀ 2∇√

ḡ+
√
ḡK∗ ḡ in D′(R2). Since (∇√

gn+
√
gnK∗ gn)

is bounded in L2, that implies that 2∇√
gn +

√
gn K ∗ gn ⇀ 2∇√

ḡ +
√
ḡK ∗ ḡ weakly in L2(R2)

and then

DE(ḡ) = ‖2∇√
ḡ +

√
ḡ x+

√
ḡK ∗ ḡ‖2L2 ≤ lim inf DE(gn) = 0.

We easily conclude thanks to the mass condition M0(ḡ) = M and the uniqueness Theorem 4.1 that
ḡ = G. That is our contradiction. �
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Lemma 4.7. Define E2 := R(I−Π0−Π1) the supplementary linear submanifold to the eigenspaces
associated to the eigenvalues 0 and −1. There exists a norm ||| · ||| on E2 equivalent to the initial
one ‖ · ‖E so that

(4.11)
d

dt
|||etΛf |||2 ≤ −2 |||etΛf |||2 ∀ t ≥ 0, ∀ f ∈ E2.

Proof of Lemma 4.7. This result is nothing but [25, Proposition 5.14]. For the sake of completeness
and because we will need to use the same computations at the nonlinear level, we just check it
below. First recall that from Theorem 4.3, we know that for any a ∈ (ā,−1) there exists C = C(a)
such that

‖eΛt f‖E ≤ C ea t ‖f‖E , ∀ t ≥ 0, ∀ f ∈ E2,
and on the other hand, from Lemma 4.4 there exists some constant b ∈ R such that

〈Λf, f∗〉 ≤ b ‖f‖2E .
We define

(4.12) |||f |||2 := η ‖f‖2E +

∫ ∞

0

‖eτΛ eτ f‖2E dτ

with η ∈ (0, (b+ 1)−1). The norm ||| · ||| is clearly well defined and it is equivalent to ‖ · ‖E because

∀ f ∈ E2, η ‖f‖2E ≤ η ‖f‖2E +

∫ ∞

0

‖eΛτ eτ f‖2E dτ ≤
(
η +

∫ ∞

0

C2 e2 (a+1)τ dτ
)
‖f‖2E .

Next, for f ∈ E2 and with the notation ft := eΛtf , we compute

d

dt
|||eΛtf |||2 = η

d

dt
‖ft‖2 +

∫ ∞

0

d

dt
‖eΛ(t+τ)+τ f‖2 dτ

= 2η 〈f∗
t ,Λft〉+

∫ ∞

0

{ d

dτ
‖eΛ(t+τ)+τ f‖2 − 2 ‖eΛ(t+τ)+τ f‖2

}
dτ

≤ 2η b ‖ft‖2 +
[
‖eΛ(t+τ)+τ f‖2

]∞
0

− 2

∫ ∞

0

‖eΛτ eτ ft‖2 dτ

=
{
2η (b − a)− 1

}
‖ft‖2 − 2

{
η‖ft‖2 +

∫ ∞

0

‖eΛτ eτ ft‖2 dτ
}

≤ −2 |||eΛtf |||2,
so that (4.11) is proved. �

We conclude with the proof of the long time convergence result.

Proof of Theorem 1.5. The proof follows the same strategy as in [32, 30, 25] (see also [2, 1, 36]
where similar proof is carried on in the context of the Boltzmann equation). We split the proof
into four steps.

Step 1. We consider a solution g to the rescaled equation (1.18) with initial datum f0 6= G. Thanks
to Theorem 1.4 there holds g(t) ∈ Z for any t ≥ 1. For any δ > 0 and T := (E(f0)−E(G))/η−1(δ)+1
there exists t0 ∈ [1, T ] so that

(4.13) DE(g(t0)) ≤ η−1(δ)

because on the contrary we would have from (2.28)

d

dt
(E(g(t)) − E(G)) ≤ −η−1(δ) on (1, T ),

and then
E(g(T ))− E(G) ≤ −(E(f0)− E(G)) < 0

which is in contradiction with the fact that G satisfies E(G) < E(f) ∀ f ∈ Z\{G} from Theorem 4.1.
We deduce from (4.13) and Lemma 4.6 that

‖g(t0)−G‖
L

4/3

k′

≤ δ.
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Step 2. The function h := g −G satisfies the equation

∂th = Λh+ div(hK ∗ h).
We introduce the splitting

h = h0 + h1 + h2, h12 = h1 + h2

with

h0 := Π0h, h1 := Π1h,

so that the evolution of h1 and h2 are given by

(4.14) ∂th1 = −h1 +Π1[div(hK ∗ h)]
and

(4.15) ∂th2 = Λh2 +Q2, Q2 := Π2[div(hK ∗ h)].
Because of the mass conservationM(g(t)) = M(G), there holds h0(t) = Π0h(t) = h0,0 M(h(t)) = 0.

Moreover, from (4.14) and with the notation h∗
1 = h1 |h1|−1/3 ‖h1‖2/3

L
4/3
k

, we clearly have

d

dt
‖h1‖2L4/3

k

= 2 〈−h1 +Π1[div(hK ∗ h)], h∗
1〉

≤ −2 ‖h1‖2L4/3
k

+ 2 ‖h1‖L4/3
k

‖Π1[div(hK ∗ h)]‖
L

4/3
k

= −2 ‖h1‖2L4/3
k

+ C ‖h1‖L4/3
k

‖div(hK ∗ h)‖
L

4/3
k

.(4.16)

Step 3. Estimate on the nonlinear term. We make the splitting

‖div(hK ∗ h)‖
L

4/3
k

≤ I1 + I2, I1 := ‖h2‖
L

4/3
k

, I2 := ‖∇h · K ∗ h‖
L

4/3
k

,

and we compute each term separately. On the one hand, using the Hölder inequality and the
Galgliardo-Nirenberg inequality (see [9, Chapter IX, inequality (86)]) in dimension 2

‖u‖Lp ≤ C ‖u‖1−a
Lq ‖u‖aW 1,r , a =

1
q − 1

p
1
q + 1

2 − 1
r

,

with r = p = ∞, q = 4/3 and a = 3/5, we have

I1 ≤ ‖h‖L∞ ‖h‖
L

4/3
k

≤ C ‖h‖7/5
L

4/3
k

‖h‖3/5W 1,∞ .

On the other hand, thanks to the critical Hardy-Littlewood-Sobolev inequality (1.16), the elemen-
tary inequality

‖∇u‖2L2
k
= −

∫

R2

u div(〈x〉2k ∇u) ≤ C ‖u‖W 2,∞ ‖u‖L1
2k
,

and the Hölder inequality

‖u‖L1
2k

≤ ‖〈x〉−1‖1/γ
L4γ/α ‖u‖α

L
4/3
k

‖u‖1−α
L1

k′

,

with 0 < α < 1, 2γ > α and k′ = k′(α, γ) := ((2− α)k + γ)/(1− α), we have

I2 ≤ ‖∇h‖L2
k
‖K ∗ h‖L4 ≤ Cα,γ ‖h‖1+α/2

L
4/3
k

‖h‖1/2W 2,∞ ‖h‖(1−α)/2

L1
k′

.

To make the computtaions simpler, when k′ = 4, we can take k = 8/5 > 3/2, γ/α = 5/8 > 1/2
and we get α = 32/121 ∈ (0, 1) and α/2 < 2/5. All together we find

∀h ∈ Z, ‖div(hK ∗ h)‖
L

4/3
k

≤ C ‖h‖1+α/2

L
4/3
k

.

Thanks to Theorem 1.4 we have h(t) ∈ Z for all t ≥ 1 (where in the definition Z the constant C
is given by (1.20)), and we conclude with

(4.17) ∀ t ≥ 1, ‖div(h(t)K ∗ h(t))‖
L

4/3
k

≤ C ‖h(t)‖1+α/2

L
4/3
k

.
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It is worth noticing that in the limit k → 3/2, γ/α → 1/2 and α → 0, we find k′ = 3. In other
words, one can easily verify that (4.17) still holds for any k′ > 3 (with another choice of α ∈ (0, 1)).

Step 4. Estimate on the remaining term and conclusion. From (4.15), using the norm ||| · ||| defined
in (4.12) and the notation Sτ := eτΛ eτ , we compute

d

dt
|||h2|||2 = η 〈h∗

2,Λh2〉+
∫ ∞

0

〈(Sτh2)
∗, SτΛh2〉 dτ

+η 〈h∗
2,Q2〉+

∫ ∞

0

〈(Sτh2)
∗,Q2〉 dτ

≤ −2 |||h2|||2 + C ‖h2‖L4/2
k

‖div(hK ∗ h)‖
L

4/2
k

,(4.18)

where we have used Lemma 4.7 in order to bound the first (linear) term and the equivalence
between the two norms ||| · ||| and ‖ · ‖

L
4/2
k

in order to estimate the second one (which involves the

nonlinear quantity). Gathering (4.16), (4.18), (4.17), we clearly see that

u(t) := ‖h1‖2E + |||h2|||2

satisfies the differential inequality

u′ ≤ −2u+ C ‖h‖2+α on (0,∞),

and then thanks to the first step

(4.19) u′ ≤ −2u+ C u1+α/2 on (t0,∞), u(t0) ≤ K2 δ.

Taking δ > 0 small enough in the first step, we classically deduce that

(4.20) u(t) ≤ Ca e
2a t ∀ t ≥ t0

for any a > −1, so that for a close enough to −1, we deduce from (4.19)-(4.20) that

u′ ≤ −2u+K2 e
−2t on (t0,∞),

from which we easily conclude u ≤ C e−2t. �
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