Stéphane Mischler 
  
Justine Scher 
  
Spectral analysis of semigroups and growth-fragmentation equations

Keywords: Mathematics Subject Classification (2000): 47D06 One-parameter semigroups and linear evolution equations [See also 34G10, 34K30], 35P15 Estimation 47A10], 35B40 Partial differential equations, Asymptotic behavior spectral analysis, semigroup, spectral mapping theorem, Weyl's theorem, Krein-Rutman theorem, growth-fragmentation equations, cell-division, eigenproblem, self-similarity, exponential rate of convergence, long-time asymptotics

   

Introduction

This paper deals with the study of decay properties for C 0 -semigroup of bounded and linear operators and their link with spectral properties of their generator in a Banach framework as well as some applications to the long-time asymptotic of growth-fragmentation equations.

1.1. Spectral analysis of semigroups. The study of spectral property of (unbounded) operators and of C 0 -semigroups of operators has a long history which goes back (at least) to the formalization of functional analysis by D. Hilbert [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF][START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF] at the beginning of the 20th century for the first issue and surely before the modern theoretical formalization of C 0 -semigroups of operators in general Banach spaces impulsed by E. Hille and K. Yosida [START_REF] Hille | Representation of one-parameter semigroups of linear transformations[END_REF][START_REF] Yosida | On the differentiability and the representation of one-parameter semigroup of linear operators[END_REF][START_REF] Hille | Functional Analysis and Semi-Groups[END_REF] in the 1940's for the second issue. For a given operator Λ on a Banach space X which generates a C 0 -semigroup S Λ (t) = e tΛ of bounded operators, the two following issues are of major importance:

• describe its spectrum Σ(Λ), the set of its eigenvalues and the associated eigenspaces;

• prove the spectral mapping theorem (1.1) Σ(e tΛ )\{0} = e tΣ(Λ) , and deduce the asymptotical behaviour of trajectories associated to the semigroup.

Although it is well-known that the first issue can be a complicated task and the second issue is false in general (see [START_REF] Hille | Functional analysis and semi-groups[END_REF] or [35, Section IV. [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF].a] for some counterexamples), there exists some particular classes of operators (among which is the class of self-adjoint operators with compact resolvent in a Hilbert space) for which these problems can be completely solved. In the present paper, motivated by evolution partial differential equations applications and inspired by the recent paper [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF] (see also [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Mischler | Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations[END_REF]), we identify a class of operators which split as

(1.2) Λ = A + B,
where A is "much more regular than B" and B has some dissipative property (and then a good localization of its spectrum) for which a positive answer can be given. The dissipative property assumption we make can be formulated in terms of the time indexed family of iterated time convolution operators (AS B ) ( * k) (t) in the following way (H1) for some a * ∈ R and for any a > a * , ℓ ≥ 0, there exists a constant C a,ℓ ∈ (0, ∞) such that the following growth estimate holds (1.3) ∀ t ≥ 0, S B * (AS B ) ( * ℓ) (t) B(X) ≤ C a,ℓ e at .

On the other hand, we make the key assumption that some iterated enough time convolution enjoys the growth and regularizing estimate: (H2-3) there exist an integer n ≥ 1 such that for any a > a * , there holds

(1.4) ∀ t ≥ 0, (AS B ) ( * n) (t) B(X,Y ) ≤ C a,n,Y e at , or (1.5) ∀ t ≥ 0, S B * (AS B ) ( * n) (t) B(X,Y ) ≤ C a,n,Y e at ,
for some suitable subspace Y ⊂ X and a constant C a,n,Y ∈ (0, ∞). In assumption (H2-3) we will typically assume that Y ⊂ D(Λ ζ ), ζ > 0, and/or Y ⊂ X with compact embedding.

Roughly speaking, for such a class of operators, we will obtain the following set of results:

• Spectral mapping theorem. We prove a partial, but principal, spectral mapping theorem which asserts that (1.6) Σ(e tΛ ) ∩ ∆ e at = e tΣ(Λ)∩∆a , ∀ t ≥ 0, ∀ a > a * , where we define the half-plane ∆ a := {ξ ∈ C; ℜeξ > a} for any a ∈ R.

Although (1.6) is less accurate than (1.1), it is strong enough to describe the semigroup evolution at first order in many situations. In particular, it implies that the spectral bound s(Λ) and the growth bound ω(Λ) coincide if they are at the right hand side of a * , or in other words (1.7) max(s(Λ), a * ) = max(ω(Λ), a * ), and it gives even more accurate asymptotic information on the semigroup whenever Σ(Λ) ∩ ∆ a * = ∅. • Weyl's Theorem. We prove some (quantified) version of the Weyl's Theorem which asserts that the part of the spectrum Σ(Λ) ∩ ∆ a * consists only of discrete eigenvalues and we get some information on the localization and number of eigenvalues as well as some estimates on the total dimension of the associated sum of eigenspaces.

• Krein-Rutman Theorem. We prove some (possibly quantified) version of the Krein-Rutman Theorem under some additional (strict) positivity hypothesizes on the generator Λ and the semigroup S Λ .

Let us describe our approach in order to get the above mentioned "spectral mapping theorem", this one being the key result in order to get our versions of Weyl's Theorem and Krein-Rutman Theorem. Following [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF] (and many authors before!), the spectral analysis of the operator Λ with splitting structure (1.2) is performed by writing the resolvent factorization identity (with our definition of the resolvent in (2.1))

(1.8) R Λ (z) = R B (z) -R B (z)AR Λ (z)
as well as

(1.9) R Λ (z) = R B (z) -R Λ (z)AR B (z),
or an iterative version of (1.9), and by exploiting the information that one can deduce from (1.3), (1.4) and (1.5) at the level of the resolvent operators. At the level of the semigroup, (1.8) yields the Duhamel formula

S Λ = S B + S B * (AS Λ ),
in its classic form, and (1.9) yields the Duhamel formula (1.10)

S Λ = S B + S Λ * (AS B ),
in a maybe less standard form (but also reminiscent of perturbation arguments in semigroup theory). On the other hand, iterating infinitely one of the above identities, it is well-known since the seminal articles by Dyson and Phillips [START_REF] Dyson | The radiation theories of Tomonaga, Schwinger, and Feynman[END_REF][START_REF] Phillips | Perturbation theory for semi-groups of linear operators[END_REF], that S Λ can be expended as the Dyson-Phillips series (1.11)

S Λ = ∞ ℓ=0 S B * (AS B ) ( * ℓ) ,
as soon as the right hand side series converges, and that matter has not an easy answer in general. The summability issue of the Dyson-Phillips series can be circumvented by considering the finite iteration of the Duhamel formula (1.10)

(1.12)

S Λ = n-1 ℓ=0 S B * (AS B ) ( * ℓ) + S Λ * (AS B ) ( * n) .
It is a usual trick in order to establish eventual norm continuity (see [START_REF] Brendle | On the spectral mapping theorem for perturbed strongly continuous semigroups[END_REF] and the references therein) and it has been also recently used in [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF][START_REF] Mischler | Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations[END_REF] in order to enlarge or to shrink the functional space where the semigroup S Λ satisfies some spectral gap estimate.

In the present work, and in the case ∆ a * ∩ Σ(Λ) = {λ}, where λ ∈ C is a semisimple eigenvalue and a * < a < ℜeλ in order to make the discussion simpler, our spectral mapping theorem simply follows by using the classical representation of the semigroup by means of the inverse Laplace transform of the resolvent, as already established by Hille in [START_REF] Hille | Representation of one-parameter semigroups of linear transformations[END_REF]. More precisely, we may write

S Λ (t) = Π Λ,λ e λt + N -1 ℓ=0 Π ⊥ Λ,λ S B * (AS B ) ( * ℓ) (t) (1.13) + i 2π a+i∞ a-i∞ e zt (-1) N Π ⊥ Λ,λ R Λ (z) (AR B (z)) N dz,
for N large enough, in such a way that each term is appropriately bounded.

Here Π Λ,λ stands for the projector on the (finite dimensional) eigenspace associated to λ and Π ⊥ Λ,λ := I -Π Λ,λ . From that formula, we will deduce the spectral mapping theorem (1.6), and more importantly for us, we will generalize the Liapunov result [START_REF] Liapunov | Stability of motion. With a contribution by V. A. Pliss and an introduction[END_REF] about the asymptotic behaviour of trajectories to that class of equations. It is worth emphasizing that our result characterizes the class of operators with "separable spectrum" for which the partial spectral mapping theorem holds (in the sense that we exhibit a condition which is not only sufficient but also necessary!) and then, in some sense, we prove for general semigroup the spectral mapping theorem known for analytic semigroup or more generally eventually continuous semigroup [START_REF] Phillips | Spectral theory for semi-groups of linear operators[END_REF][START_REF] Hille | Functional analysis and semi-groups[END_REF] and for general Banach space the partial spectral mapping theorem in a Hilbert space framework that one can deduce from the Gearhart-Prüss Theorem [START_REF] Gearhart | Spectral theory for contraction semigroups on Hilbert space[END_REF][START_REF] Prüss | On the spectrum of C0-semigroups[END_REF].

With such a representation formula at hand, the precise analysis of the semigroup S Λ reduces to the analysis of the spectrum of Λ at the right hand side of a, for any a > a * . In other words, the next fundamental issue consists in describing the part of the spectrum Σ(Λ) ∩ ∆ a in order to take advantage of the information given by (1.6). The simplest situation is when Σ(Λ) ∩ ∆ a only contains eigenvalues with finite (algebraical) multiplicity which is the situation one gets when one can apply Weyl's Theorem [START_REF] Weyl | Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen[END_REF] (see also [START_REF] Kato | Perturbation theory for linear operators[END_REF]Theorem IV.5.35]). In our second main result in an abstract setting, we recover Voigt's version [START_REF] Voigt | A perturbation theorem for the essential spectral radius of strongly continuous semigroups[END_REF] of Weyl's Theorem (for which we give a comprehensive and elementary proof) and we deduce a characterization of semigroups in a general Banach space for which the partial spectral mapping theorem holds with finite and discrete eigenspectrum in ∆ a . We must emphasize that our proof is very simple (it exclusively uses the Fredholm alternative [START_REF] Fredholm | Sur une classe d'équations fonctionnelles[END_REF] in its most basic form) and in particular does not use the essential spectrum set nor the Fredholm operators theory. Moreover we are able to formulate a quantified version of the Weyl's theorem in the sense that we exhibit a bound on the total dimension of the eigenspaces associated to the discrete eigenvalues which lie in Σ(Λ) ∩ ∆ a .

In order to describe in a more accurate way the spectrum Σ(Λ), one of the most popular techniques is to use a self-adjointness argument for the operator Λ as an infinite dimensional generalization of the symmetric structure of matrix. That implies Σ(Λ) ⊂ R and, together with Weyl's Theorem, leads to a completely satisfactory description of the operator's spectrum and the dynamics of the associated semigroup. One of the most famous application of that strategy is due to Carleman [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF] who carried on with the study of the linearized space homogeneous Boltzmann equation initiated by Hilbert and who obtained the spectral gap for the associated operator by combining Weyl's Theorem together with the symmetry of the operator [START_REF] Hilbert | Begründung der kinetischen Gastheorie[END_REF] and the regularity of the gain term [START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF] (see also the work by Grad [START_REF] Grad | Principles of the kinetic theory of gases[END_REF][START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] on the same issue, and the work by Ukai [START_REF] Ukai | On the existence of global solutions of mixed problem for non-linear Boltzmann equation[END_REF] on the more complicated space non-homogeneous setting). It is worth emphasizing that this kind of hilbertian arguments have been recently extended to a class of operators, named as "hypocoercive operators", which split as a selfadjoint partially coercive operator plus an anti-adjoint operator. For such an operator one can exhibit an equivalent Hilbert norm which is also a Liapunov function for the associated evolution dynamics and then provides a spectral gap between the first eigenvalue and the remainder of the spectrum. We refer the interested reader to [START_REF] Villani | Hypocoercive diffusion operators[END_REF] for a pedagogical introduction as well as to [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF][START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF][START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF][START_REF] Hérau | Short and long time behavior of the Fokker-Planck equation in a confining potential and applications[END_REF]116,[START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for kinetic equations conserving mass[END_REF] for some of the original articles.

In the seminal work [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF], C. Mouhot started an abstract theory of "enlargement of the functional space of spectral analysis of operators" which aims to carry on the spectral knowledge on an operator Λ and its associated semigroup S Λ in some space E (typically a "small Hilbert space" in which some self-adjointness structure can be exploited) to another larger general Banach space E ⊃ E. It is worth emphasizing that the "enlargement of functional spaces" trick for spectral analysis is reminiscent of several earlier papers on Boltzmann equations and on Fokker-Planck type equations where, however, the arguments are intermingled with some nonlinear stability arguments [START_REF] Arkeryd | Stability in L 1 for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Arkeryd | The Boltzmann equation for weakly inhomogeneous data[END_REF][START_REF] Wennberg | Stability and exponential convergence for the Boltzmann equation[END_REF] and/or reduced to some particular evolution PDE in some situation where explicit eigenbasis can be exhibited [START_REF] Bobylëv | The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules[END_REF][START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF]. While [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] was focused on the linearized space homogeneous Boltzmann operator and the results applied to sectorial operators, the "extension theory" (we mean here "enlargement" or "shrinkage" of the functional space) has been next developed in the series of papers [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF][START_REF] Mischler | Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations[END_REF] in order to deal with non-sectorial operators. A typical result of the theory is that the set Σ(Λ) ∩ ∆ a does not change when the functional space on which Λ is considered changes. We do not consider the extension issue, which is however strongly connected to our approach, in the present work and we refer to the above mentioned articles for recent developments on that direction.

Let us also mention that one expects that the spectrum Σ(Λ) of Λ is close to the spectrum Σ(B) of B if A is "small". Such a "small perturbation method" is an efficient tool in order to get some information on the spectrum of an operator Λ "in a perturbation regime". It has been developed in [START_REF] Phillips | Perturbation theory for semi-groups of linear operators[END_REF][START_REF] Hille | Functional analysis and semi-groups[END_REF][START_REF] Voigt | On the perturbation theory for strongly continuous semigroups[END_REF][START_REF] Kato | Perturbation theory for linear operators[END_REF], and more recently in [START_REF] Andreu | A spectral mapping theorem for perturbed strongly continuous semigroups[END_REF][START_REF] Brendle | On the spectral mapping theorem for perturbed strongly continuous semigroups[END_REF]. Again, we do not consider that "small perturbation" issue here, but we refer to [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF][START_REF] Arnold | The Wigner-Fokker-Planck equation: stationary states and large time behavior[END_REF][START_REF] Tristani | Boltzmann equation for granular media with thermal force in a weakly inhomogenous setting[END_REF] where that kind of method is investigated in the same framework as the one of the abstract results of the present paper.

Last, we are concerned with a positive operator Λ defined on a Banach lattice X and the associated semigroup S Λ as introduced by R.S. Phillips in [START_REF] Phillips | Semi-groups of positive contraction operators[END_REF]. For a finite dimensional Banach space and a strictly positive matrix the Perron-Frobenius Theorem [START_REF] Perron | Zur Theorie der Matrices[END_REF][START_REF] Frobenius | Ueber matrizen aus nicht negativen elementen[END_REF] states that the eigenvalue with largest real part is unique, real and simple. Or in other words, there exists a * * ∈ R such that Σ(Λ) ∩ ∆ a * * = {λ} with λ ∈ R a simple eigenvalue. In an infinite dimensional Banach space the Krein-Rutman Theorem [START_REF] Kreȋn | Linear operators leaving invariant a cone in a Banach space[END_REF] establishes the same result for a class of Banach lattices and under convenient strict positivity and compactness assumptions on Λ. The Krein-Rutman Theorem is then extended to broader classes of Banach lattices and broader classes of operator in many subsequent articles, see e.g. [START_REF] Greiner | Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen[END_REF][START_REF] Greiner | On the spectral bound of the generator of semigroups of positive operators[END_REF][START_REF] Arendt | One-parameter semigroups of positive operators[END_REF]. We present a very natural and general version of the abstract Krein-Rutman Theorem on a Banach lattice assuming that, additionally to the above splitting structure, the operator Λ satisfies a weak and a strong maximum principle. Our result improves the known versions of Krein-Rutman Theorem in particular because we weaken the required compactness assumption made on (the resolvent of) Λ. Moreover, our result is quite elementary and selfcontained.

Let us stress again that our approach is very similar to the "extension of the functional space of spectral analysis of operators" and that our starting point is the work by Mouhot [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] where (1.9) is used in order to prove an enlargement of the operator spectral gap for the space homogeneous linearized Boltzmann equation. Because of the self-adjointness structure of the space homogeneous linearized Boltzmann equation one can conclude thanks to a classical argument (namely the operator B is sectorial and the last term in (1.13) with the choice N = 1 converges, see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] or [35, Corollary IV.3.2 & Lemma V.1.9]). Our approach is in fact reminiscent of the huge number of works on the spectral analysis of operators which take advantage of a splitting structure (1.2) and then consider Λ as a (compact, small) perturbation of B. One of the main differences with the classical approach introduced by Hilbert and Weyl is that when one usually makes the decomposition

(1.14) Λ = A 0 + B 0
where B 0 is dissipative and A 0 is B 0 -compact, we make the additional splitting A 0 = A + A c with A "smooth" and A c small (it is the usual way to prove that A 0 is B 0 -compact) and we write

(1.15) Λ = A + B, B := A c + B 0 .
In such a way, we get quite better "smoothing properties" on A (with respect to A 0 ) without losing to much of the "dissipative property" of B (with respect to B 0 ). That splitting makes possible to get quantitative estimates (with constructive constants) in some situations. Of course, the drawback of the method is that one has to find an appropriate splitting (1.2) for the operator as well as an appropriate space X for which one is able to prove the estimates (1.3), (1.4) and (1.5). However, the efficiency of the method is attested by the fact that it has been successfully used for several evolution PDEs such as the space homogenous and space nonhomogeneous elastic Boltzmann equations in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF], the space homogenous and space nonhomogeneous inelastic Boltzmann equations in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Tristani | Boltzmann equation for granular media with thermal force in a weakly inhomogenous setting[END_REF], some Fokker-Planck type equations in [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF][START_REF] Arnold | The Wigner-Fokker-Planck equation: stationary states and large time behavior[END_REF][START_REF] Mischler | Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations[END_REF][START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation -part I. the parabolic-elliptic case[END_REF], the Landau equation in [START_REF] Carrapatoso | Exponential convergence to equilibrium for the homogeneous Landau equation[END_REF] and the growth-fragmentation equation in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF] and in the present paper.

1.2. Growth-fragmentation equations. The second aim of the paper is to establish the long-time asymptotics for the solutions of some growthfragmentation equations as a motivation, or an illustration, of the abstract theory developed in parallel. We then consider the growth-fragmentation equation

(1.16) ∂ t f = Λf := Df + Ff in (0, ∞) × (0, ∞).
Here f = f (t, x) ≥ 0 stands for the number density of cells (or particles, polymers, organisms, individuals), where t ≥ 0 is the time variable and x ∈ (0, ∞) is the size (or mass, age) variable. In equation (1.16) the growth operator is given by

(1.17) (Df )(x) := -∂ x (τ (x)f (x)) -ν(x) f (x)
where the (continuous) function τ : [0, ∞) → R is the drift speed (or growth rate), and we will choose τ (x) = 1 or τ (x) = x in the sequel, and the function ν : [0, ∞) → [0, ∞) is a damping rate. The drift and damping term D models the growth (for particles and cells) or the aging (for individuals) and the death which can be represented by the scheme

{x} e -ν(x) -→ {x + τ (x) dx}.
On the other hand, the fragmentation operator F is defined by

(1.18) (Ff )(x) := ∞ x k(y, x)f (y)dy -K(x)f (x)
and the fragmentation kernel k is related to the total rate of fragmentation K by

(1.19) K(x) = x 0 k(x, y) y x dy.
The fragmentation operator F models the division (breakage) of a single mother particle of size x into two or more pieces (daughter particles, offspring) of size x i ≥ 0, or in other words, models the event

(1.20) {x} k -→ {x 1 } + .... + {x i } + ... ,
in such a way that the mass is conserved

x = i x i , 0 ≤ x i ≤ x.
It is worth emphasizing that the above mass conservation at the microscopic level is rendered by equation (1.19) at the statistical level.

In order to simplify the presentation we will only consider situations where the size repartition of offspring is invariant by the size scaling of the mother particle, or more precisely that there exists a function (or abusing notation, a measure)

℘ : [0, 1] → R + such that (1.21) k(x, y) = K(x) κ(x, y), κ(x, y) = ℘(y/x)/x,
as well as, in order that the compatibility relation (1.19) holds, (1.22)

1 0 z ℘(dz) = 1.
Here κ(x, .) represents the probability density of the distribution of daughter particles resulting of the breakage of a mother particle of size x ∈ (0, ∞) and the assumption (1.21) means that this probability density is invariant by scaling of the size. As a first example, when a mother particle of size x breaks into two pieces of exact size σ x and (1σ)x, σ ∈ (0, 1), the associated kernel is given by (1.23)

κ(x, y) = δ y=σx (dy) + δ y=(1-σ)x (dy) = 1 σ δ x= y σ (dx) + 1 1 -σ δ x= y 1-σ (dx),
or equivalently ℘ = δ σ + δ 1-σ . In the sequel, we will also consider the case when ℘ is a smooth function. In any cases, we define

(1.24) z 0 := inf supp ℘ ∈ [0, 1).
The evolution equation (1.16) is complemented with an initial condition

(1.25) f (0, .) = f 0 in (0, ∞),
and a boundary condition that we will discuss for each example presented below.

Instead of trying to analyze the most general growth-fragmentation equation, we will focus our study on some particular but relevant classes of models, namely the cell division equation with constant growth rate, the self-similar fragmentation equation and the age structured population equation.

1.2.1. Example 1. Equal mitosis equation. We consider a population of cells which divide through a binary fragmentation mechanism with equal size offspring, grow at constant rate and are not damped. The resulting evolution equation is the equal mitosis equation which is associated to the operator Λ = D + F, where D is defined by (1.17) with the choice τ = 1 and ν = 0, and where F is the equal mitosis operator defined by (1.18) with the following choice of fragmentation kernel

k(x, y) = 2 K(x) δ x/2 (dy) = 4 K(x) δ 2y (dx). (1.26)
Equivalently, k is given by (1.21) with ℘(dz) := 2 δ z=1/2 . The associated equal mitosis equation takes the form

(1.27) ∂ ∂t f (t, x) + ∂ ∂x f (t, x) + K(x)f (t, x) = 4K(2x) f (t, 2x),
and it is complemented with the boundary condition

(1.28) f (t, 0) = 0.
As its name suggests, such an equation appears in the modeling of cell division when mitosis occurs (see [START_REF] Bell | Cell growth and division: I. A mathematical model with applications to cell volume distribution in mammalian suspension cultures[END_REF][START_REF] Sinko | A model for populations peproducting by fission[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Basse | A mathematical model for analysis of the cell cycle in cell lines derived from human tumors[END_REF] and the references therein for linear models as well as [START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF][START_REF] Basse | A mathematical model for analysis of the cell cycle in cell lines derived from human tumors[END_REF] for more recent nonlinear models for tumor growth) but also appears in telecommunication systems to describe some internet protocols [START_REF] Baccelli | A mean field model for multiple tcp connections through a buffer implementing red[END_REF].

We assume that the total fragmentation rate K is a nonnegative C 1 function defined on [0, ∞) which satisfies the positivity assumption

(1.29) ∃ x 0 ≥ 0, K(x) = 0 ∀x < x 0 , K(x) > 0 ∀ x > x 0 ,
as well as the growth assumption

(1.30) K 0 x γ 1 x≥x 1 ≤ K(x) ≤ K 1 max(1, x γ ), for γ ≥ 0, x 0 ≤ x 1 < ∞, 0 < K 0 ≤ K 1 < ∞.
There is no conservation law for the equal mitosis equation. However, by solving the dual eigenvalue-eigenfunction problem

(1.31) D * φ + F * φ = λφ, λ ∈ R, φ ≥ 0, φ ≡ 0,
one immediately observes that any solution f to the equal mitosis equation

(1.27) satisfies ∞ 0 f (t, x) φ(x) dx = e λt ∞ 0 f 0 φ(x) dx.
The first eigenvalue λ corresponds to an exponential growth rate of (some average quantity of) the solution. In an ecology context λ is often called the Malthus parameter or the fitness of the cells/organisms population. In order to go further in the analysis of the dynamics, one can solve the primal eigenvalue-eigenfunction problem 

(1.32) Df ∞ + Ff ∞ = λf ∞ , f ∞ ≥ 0, f ∞ ≡ 0,
℘ ′ 0 := 1 0 |℘ ′ (z)| dz < ∞.
We will sometimes make the additional strong positivity assumption

(1.35) ℘(z) ≥ ℘ * ∀ z ∈ (0, 1), ℘ * > 0,
or assume the additional monotony condition and the constant number of offspring condition

(1.36) ∂ ∂y x 0 κ(y, z) dz ≤ 0, n F := x 0 κ(x, z) dz > 1, ∀ x, y ∈ R + .
Observe that this monotony condition is fulfilled for the equal and unequal mitosis kernel (1.23) and for the smooth distribution of offspring functions ℘(z) := c θ z θ , θ > -1, see [START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF].

The smooth cell-division equation reads

(1.37) ∂ ∂t f (t, x) + ∂ ∂x f (t, x) = (Ff (t, .))(x),
and it is complemented again with the boundary condition (1.28) and the initial condition (1.25). We call the resulting model as the smooth celldivision equation.

The general fragmentation operator is used in physics in order to model the dynamics of cluster breakage and it is often associated in that context to the coagulation operator which models the opposite agglomeration mechanism (see [START_REF] Melzak | A scalar transport equation[END_REF]). It appears later associated with the drift operator D = -τ (x)∂ x + τ ′ (x) under the name of "cell population balance model" (see [START_REF] Fredrickson | Statistics and dynamics of prokaryotic cell populations[END_REF][START_REF] Heijmans | On the stable size distribution of populations reproducing by fission into two unequal parts[END_REF]) in a chemical or biological context. The general fragmentation operator is used in order to take into account unequal cell-division according to experimental evidence [START_REF] Koch | A model for statistics of the cell division process[END_REF][START_REF] Painter | Mathematics of microbial populations[END_REF]. In recent years, the above smooth celldivision equation (1.37) has also appeared in many articles on the modeling of proteins [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF][START_REF] Prüss | Analysis of a model for the dynamics of prions[END_REF][START_REF] Calvez | Size distribution dependence of prion aggregates infectivity[END_REF][START_REF] Calvez | Prion dynamics with size dependency-strain phenomena[END_REF].

Concerning the mathematical analysis of the smooth cell-division equation, and in particular the long-time behaviour of solutions, a similar picture as for the equal mitosis equation is expected and some (at least partial) results have been obtained in [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF][START_REF] Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Calvez | Self-similarity in a general aggregationfragmentation problem. Application to fitness analysis[END_REF][START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF].

With the above notation and for later references, for both equal mitosis and smooth cell-division equations, we introduce the critical exponent α * ≥ 1 uniquely implicitly defined by the equation

(1.38) ℘ α * = K 0 /K 1 ∈ (0, 1], ℘ α := 1 0 z α ℘(dz).
1.2.3. Example 2. Self-similar fragmentation equation. We consider now a fragmentation rate associated to a power law total fragmentation rate

(1.39) k(x, y) = K(x) ℘(y/x)/x, K(x) = x γ , γ > 0,
where ℘ is a continuous function satisfying (1.34). The pure fragmentation model is then obtained for τ = ν ≡ 0 in (1.16) and therefore reads

∂ t g = F g,
where F is a temporary notation for the fragmentation operator associated to the kernel k := k/γ. By analogy with the probabilistic name for the associated Markov process, see e.g. [START_REF] Bertoin | The asymptotic behavior of fragmentation processes[END_REF], we call that model the "self-similar fragmentation equation". This equation arises in physics to describe fragmentation processes. We refer to [START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF][START_REF] Ziff | The kinetics of cluster fragmentation and depolymerisation[END_REF][START_REF] Beysens | Fragmentation phenomena[END_REF] for the first study and the physics motivations, to [START_REF] Bertoin | The asymptotic behavior of fragmentation processes[END_REF] and the references therein for a probabilistic approach.

For this equation the only steady states are the Dirac masses, namely x g(t, x) = ρ δ x=0 . On the other hand, if g is a solution to the pure fragmentation equation, we may introduce the rescaled density f defined by

(1.40) f (t, x) = e -2t g e γ t -1, xe -t ,
which is a solution to the fragmentation equation in self-similar variables (see for instance [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF])

(1.41) ∂ ∂t f = Λf = F f -x ∂ ∂x f -2f.
This is a mass preserving equation with no detailed balance condition. However, defining the associated adjoint operator Λ * , one can show that Λf ∞ = 0, Λ * φ = 0, for some positive function f ∞ and for φ(x) = x. Equation (1.41) falls into the class of growth-fragmentation equation with first eigenvalue λ = 0 (because of the mass conservation). As for the cell-division equation one expects that the remarkable (self-similar profile) solution f ∞ is attractive and that (1.33) holds again. Existence of the self-similar profile f ∞ and convergence (without rate) to this one have been established in [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], while a rate of convergence for γ ∈ (0, 2) has been proved in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF] 

∂ ∂t f + ∂ ∂x (τ (x)f ) = -ν(x) f, f (t, x = 0) = ∞ 0 K(y)f (t, y)dy,
and it is commonly attributed to A. McKendrik [START_REF] Mckendrik | Applications of mathematics to medical problems[END_REF] and H. von Foerster [START_REF] Von Foerster | Some remarks on changing population[END_REF] (although the dynamics of age structured population has been anteriorly developed by A. Lotka and F. Sharpe [START_REF] Lotka | A problem in age distribution[END_REF] and before by L. Euler, as well as by P.H. Leslie [START_REF] Leslie | On the use of matrices in certain population mathematics[END_REF] in a discrete time and age framework). In the sequel we call that model as the age structured population equation. Let us also mention that nonlinear versions of equation (1.42) which take into account possibly overcrowding effect can be found in the work of Gurtin and MacCamy [START_REF] Gurtin | Some simple models for nonlinear agedependent population dynamics[END_REF].

In equation (1.42) the function K corresponds to the birth rate, the function ν to the death rate and the function τ to the aging rate (so that τ ≡ 1). Notice that the age structured population equation can be seen as a particular example of the growth-fragmentation equation (1.16)-(1.18) making the following choice for k :

(1. [START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] k(x, y) = K(x) [δ(y = x) + δ(y = 0)],

which corresponds to the limit case σ = 0 in (1.23). In order to simplify the presentation we make the assumptions

(1.44) τ = ν = 1, 0 ≤ K ∈ C 1 b (R + ) ∩ L 1 (R + ), K L 1 > 1.
The expected long-time behaviour of solutions to the age structured population equation is the same as the one described for a general growthfragmentation equation, in particular the long-time convergence (1.33) with exponential rate is known to hold. Here, the mathematical analysis is greatly simplified by remarking that the offspring number satisfies a (Volterra) delay equation (the so-called renewal equation) which in turn can be handled through the direct Laplace transform, as first shown by W. Feller [START_REF] Feller | On the integral equation of renewal theory[END_REF] and developed later in [START_REF] Feller | An introduction to probability theory and its applications[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF][START_REF] Iannelli | Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori and Stampore[END_REF]. Let us also mention that the long-time convergence (1.33) can also be obtained by entropy method [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF].

1.2.5. Main result. Let us introduce the functional spaces in which we will work. For any exponent p ∈ [1, ∞] and any nonnegative weight function ξ, we denote by L p (ξ) the Lebesgue space L p (R + ; ξ dx) or L p (R; ξ dx) associated to the norm u L p (ξ) := u ξ L p , and we simply use the shorthand L p α for the choice ξ(x) := x α , α ∈ R, x 2 := 1 + |x| 2 , as well as the shorthand Lp α for the choice ξ(x) := |x| α , α ∈ R.

Theorem 1.1. Consider the growth-fragmentation equations with the corresponding structure assumption and boundedness of coefficients as presented in the previous sections and define the functional space X as follows:

(1) Cell-division equation: take

X = L 1 α , α > α * , where α * ≥ 1 is defined in (1.38);
(2) Self-similar fragmentation equation: take

X = L1 α ∩ L1 β , 0 ≤ α < 1 < β; (3) Age structured population equation: take X = L 1 .
There exists a unique couple (λ, f ∞ ), with λ ∈ R and f ∞ ∈ X, solution to the stationary equation

(1.45) Ff ∞ -∂ x (τ f ) -νf ∞ = λ f ∞ , f ∞ ≥ 0, f ∞ X = 1.
There exists a * * < λ and for any a > a * * there exists C a such that for any f 0 ∈ X, the associated solution f (t) = e Λt f 0 satisfies

(1.46) f (t) -e λt Π Λ,λ f X ≤ C a e at f 0 -Π Λ,λ f 0 X ,
where Π Λ,λ is the projection on the one dimensional space spanned by the remarkable solution f ∞ . It is given by

Π Λ,λ h = φ, h f ∞
where φ ∈ X ′ is the unique positive and normalized solution to the dual first eigenvalue problem

(1.47)

F * φ + τ ∂ x φ -νφ = λ φ, φ ≥ 0, φ, f ∞ = 1.
Moreover, an explicit bound on the spectral gap λa * * is available for (i) the cell-division equation with constant total fragmentation rate K ≡ K 0 on (0, ∞), K 0 > 0, and a fragmentation kernel which satisfies the monotony condition and constant number of offspring condition (1.36); (ii) the self-similar fragmentation equation with smooth and positive offspring distribution in the sense that (1.34) and (1.35) hold.

Let us make some comments about the above result. Theorem 1.1 generalizes, improves and unifies the results on the longtime asymptotic convergence with exponential rate which were known only for particular cases of growth fragmentation equation, namely for the cell division model with (almost) constant total fragmentation rate and monotonous offspring distribution in [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF] and for the self-similar fragmentation equation and the cell division equation restricted to smooth and positive fragmentation rate and total fragmentation rate which increases at most quadratically in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF]. The rate of convergence (1.46) is proved under similar hypothesizes as those made in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF], but in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF] the convergence is established without rate. It has been established in [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF] a similar L 1 -norm decay as in (1.46), when however the initial datum is bounded in the sense of a (strange and) stronger norm than the L 1 -norm. It was also conjectured that the additional strong boundedness assumption on the initial datum is necessary in order to get an exponential rate of convergence. Theorem 1.1 disproves that conjecture in the sense that the norm involved in both sides of estimate (1.46) is the same. Let us emphasize that we do not claim that Theorem 1.1 is new for the age structured population equation. However, we want to stress here that our proof of the convergence (1.46) is similar for all these growth-fragmentation equations while the previous available proofs (of convergence results with rate) were very different for the three subclasses of models. It is also likely that our approach can be generalized to larger classes of growth operator and of fragmentation kernel such as considered in [START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Calvez | Self-similarity in a general aggregationfragmentation problem. Application to fitness analysis[END_REF][START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF]. However, for the sake of simplicity, we have not followed that line of research here. It is finally worth noticing that our result excludes the two "degenerate equations" which are the equal self-similar fragmentation equation associated to equal mitosis offspring distribution and the age structured population equation associated to deterministic birth rate K(z) := K δ z=L .

Let us make some comments about the different methods of proof which may be based on linear tools (Laplace transform, Eigenvalue problem, suitable weak distance, semigroup theory) and nonlinear tools (existence of selfsimilar profile by fixed point theorems, GRE and E-DE methods).

• Direct Laplace transform method. For the age structured population equation a direct Laplace transform analysis can be performed at the level of the associated renewal equation and leads to an exact representation formula which in turn implies the rate of convergence (1.46) (see [START_REF] Feller | On the integral equation of renewal theory[END_REF][START_REF] Feller | An introduction to probability theory and its applications[END_REF][START_REF] Iannelli | Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori and Stampore[END_REF]).

• PDE approach via compactness and GRE methods. Convergence results (without rate) have been proved in [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF][START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] for a general class of growth-fragmentation equation which is basically the same class as considered in the present paper thanks to the use of the so called general relative entropy method. More precisely, once the existence of a solution (λ, f ∞ , φ) to the primal eigenvalue problem (1.45) and dual eigenvalue problem (1.47) is established, we refer to [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Calvez | Self-similarity in a general aggregationfragmentation problem. Application to fitness analysis[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF] where that issue is tackled, one can easily compute the evolution of the generalized relative entropy J defined by

J (f ) := ∞ 0 j(f /f ∞ ) f ∞ φ dx
for a convex and non negative function j : R → R and for a generic solution f = f (t) to the growth-fragmentation equation. One can then show the (at least formal) identity

(1.48) J (f (t)) + t 0 D J (f (s)) ds = J (f (0)) ∀ t ≥ 0,
where D J ≥ 0 is the associated generalized dissipation of relative entropy defined by

D J (f ) := ∞ 0 ∞ 0 k(x * , x)1 x * ≥x [j(u) -j(u * ) -j ′ (u * ) (u -u * )] f ∞ φ * dxdx * ,
with the notation u := f /f ∞ and h * = h(x * ). Identity (1.48) clearly implies that J is a Liapunov functional for the growth fragmentation dynamics which in turn implies the long-time convergence f (t) → f ∞ as t → ∞ (without rate) under positivity assumption on the kernel k or the associated semigroup.

• Suitable weak distance. In order to circumvent the possible weak information given by D J in the case of cell-division models when k is not positive (for the equal mitosis model for instance) an exponential rate of convergence for an (almost) constant total rate of fragmentation has been established by Perthame and co-authors in [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF] by exhibiting a suitable weak distance.

• Entropy -dissipation of entropy (E-DE) method.

In the case of the strong positivity assumption (1.35) an entropy -dissipation of entropy method has been implemented in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Balagué | Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates[END_REF] where the inequality D J ≥ c J is proved for j(s) = (s -1) 2 . The Gronwall lemma then straightforwardly implies a rate of convergence in a weighted Lebesgue L 2 framework.

• Extension semigroup method. For a general fragmentation kernel (including the smooth cell-division equation and the self-similar fragmentation equation) the enlargement of semigroup spectral analysis has been used in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF] in order to extend to a L 1 framework some of the convergence (with rate) results proved in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF] in a narrow weighted L 2 framework thanks to the above E-DE method.

• Markov semigroup method. Markov semigroups techniques have been widely used since the first papers by Metz, Diekmann and Webb on the age structured equation and the equal mitosis equation in a bounded size setting [START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF], see also [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] and the references therein for more recent papers. That approach has also been applied to more general growth-fragmentation equations (still in a bounded interval setting) in [START_REF] Rudnicki | Markov semigroups and stability of the cell maturity distribution[END_REF] (see also [START_REF] Banasiak | Asynchronous exponential growth of a general structured population model[END_REF] and the references therein for recent developments) and to other linear Boltzmann models (related to neuron transport theory) by Mokhtar-Kharroubi in [START_REF] Mokhtar-Kharroubi | Time asymptotic behaviour and compactness in transport theory[END_REF][START_REF] Mokhtar-Kharroubi | Mathematical topics in neutron transport theory[END_REF][START_REF] Mokhtar-Kharroubi | Spectral properties of a class of positive semigroups on Banach lattices and streaming operators[END_REF]. The Markov semigroup method consists in proving that the spectral bound is an algebraic simple eigenvalue associated to a positive eigenfunction and a positive dual eigenfunction and the only eigenvalue with maximum real part. It fundamentally uses the positivity structure of the equation and some compactness argument (at the level of the resolvent of the operator or at the level of the terms involved in the Dyson-Phillips series). This approach classically provides a convergence result toward the first eigenfunction, but does not provide any rate of convergence in general (see however the recent work [START_REF] Mokhtar-Kharroubi | On L 1 exponential trend to equilibrium for conservative linear kinetic equations on the torus[END_REF] where a rate of convergence is established).

Let us conclude that our method in the present paper is clearly a Markov semigroup approach. Our approach is then completely linear, very accurate and still very general. The drawback is the use of the abstract semigroup framework and some complex analysis tool (and in particular the use of the Laplace transform and the inverse Laplace transform) at the level of the abstract (functional space) associated evolution equation. The main novelty comes from the fact that we are able to prove that the considered growthfragmentation operator falls in the class of operators with splitting structure as described in the first part of the introduction and for which our abstract Krein-Rutman Theorem applies. In particular, in order to deduce the growth estimates on the semigroup from the spectral knowledge on the generator, we use the iterated Duhamel formula (instead of the Dyson-Phillips series) as a consequence of our more suitable splitting (1.15) (instead of (1.14)). That more suitable splitting and our abstract semigroup spectral analysis theory make possible to establish some rate of convergence where the usual arguments lead to mere convergence results (without rate).

The outline of the paper is as follows. In the next section, we establish the partial spectral mapping theorem in an abstract framework. In Section 3, we establish two versions of the Weyl's Theorem in an abstract framework and we then verify that they apply to the growth-fragmentation equations in Section 4. Section 5 is devoted to the statement and proof of an abstract version of the Krein-Rutman Theorem. In the last section we apply the Krein-Rutman theory to the growth-fragmentation equation which ends the proof of Theorem 1.1.
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Spectral mapping for semigroup generators

Notation and definitions.

There are many textbooks addressing the theory of semigroups since the seminal books by Hille and Philipps [START_REF] Hille | Functional Analysis and Semi-Groups[END_REF][START_REF] Hille | Functional analysis and semi-groups[END_REF] among them the ones by Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF], Davies [START_REF] Davies | One-parameter semigroups[END_REF], Pazy [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Arendt et al [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] and more recently by Engel and Nagel [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] to which we refer for more details. In this section we summarize some basic definitions and facts on the analysis of operators in a abstract and general Banach space picked up from above mentioned books as well as from the recent articles [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF][START_REF] Mischler | Semi-groupes dans les espaces de Banach[END_REF]. It is worth mentioning that we adopt the sign convention of Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF] on the resolvent operator (which is maybe opposite to the most widespread convention), see (2.1). For a given real number a ∈ R, we define the half complex plane

∆ a := {z ∈ C, ℜe z > a}.
For some given Banach spaces (X 1 , • X 1 ) and (X 2 , • X 2 ) we denote by B(X 1 , X 2 ) the space of bounded linear operators from X 1 to X 2 and we denote by • B(X 1 ,X 2 ) or • X 1 →X 2 the associated norm operator. We write B(X 1 ) = B(X 1 , X 1 ). We denote by C (X 1 , X 2 ) the space of closed unbounded (and thus possibly bounded) linear operators from X 1 to X 2 with dense domain, and C (X 1 ) = C (X 1 , X 1 ). We denote by K (X 1 , X 2 ) the space of compact linear operators from X 1 to X 2 and again K (X 1 ) = K (X 1 , X 1 ).

For a given Banach space (X, • X ), we denote by G (X) the space of generators of a C 0 -semigroup. For Λ ∈ G (X) we denote by S Λ (t) = e t Λ , t ≥ 0, the associated semigroup, by D(Λ) its domain, by N(Λ) its null space, by

M (Λ) = α∈N * N (Λ α )
its algebraic null space, and by R(Λ) its range. For any given integer k ≥ 1, we define D(Λ k ) the Banach space associated with the norm

f D(Λ k ) = k j=0 Λ j f X .
For two operators A, B ∈ C (X), we say that A is B-bounded if A ∈ B(D(B), X) or, in other words, if there exists a constant

C ∈ (0, ∞) such that ∀ f ∈ X, Af X ≤ C( f X + Bf X ).
Of course a bounded operator A is always B-bounded (whatever is B ∈ C (X)). For Λ ∈ G (X), we denote by Σ(Λ) its spectrum, so that for any z ∈ C\Σ(Λ) the operator Λz is invertible and the resolvent operator

(2.1) R Λ (z) := (Λ -z) -1
is well-defined, belongs to B(X) and has range equal to D(Λ). We then define the spectral bound

s(Λ) ∈ R ∪ {-∞} by s(Λ) := sup{ℜe ξ; ξ ∈ Σ(Λ)} and the growth bound ω(Λ) ∈ R ∪ {-∞} by ω(Λ) := inf{b ∈ R; ∃ M b s.t. S Λ (t) B(X) ≤ M b e bt ∀ t ≥ 0},
and we recall that s(Λ) ≤ ω(Λ) as a consequence of Hille's identity [START_REF] Hille | Representation of one-parameter semigroups of linear transformations[END_REF]: for any ξ ∈ ∆ ω(Λ) there holds

(2.2) -R Λ (ξ) = ∞ 0 S Λ (t) e -ξt dt,
where the RHS integral normally converges.

We say that Λ is a-hypo-dissipative on X if there exists some norm ||| • ||| X on X equivalent to the initial norm • X such that

(2.3) ∀ f ∈ D(Λ), ∃ ϕ ∈ F (f ) s.t. ℜe ϕ, (Λ -a) f ≤ 0,
where •, • is the duality bracket for the duality in X and X ′ and F (f ) ⊂ X ′ is the dual set of f defined by

F (f ) = F |||•||| (f ) := ϕ ∈ X ′ ; ϕ, f = |||f ||| 2 X = |||ϕ||| 2 X ′ . We just say that Λ is hypo-dissipative if Λ is a-hypo-dissipative for some a ∈ R.
From the Hille-Yosida Theorem it is clear that any generator Λ ∈ G (X) is an hypo-dissipative operator and that

ω(Λ) := inf{b ∈ R; Λ is b-hypo-dissipative}. A spectral value ξ ∈ Σ(Λ) is said to be isolated if Σ(Λ) ∩ {z ∈ C, |z -ξ| ≤ r} = {ξ} for some r > 0.
In the case when ξ is an isolated spectral value we may define the spectral projector Π Λ,ξ ∈ B(X) by the Dunford integral

(2.4) Π Λ,ξ := i 2π |z-ξ|=r ′ R Λ (z) dz,
with 0 < r ′ < r. Note that this definition is independent of the value of r ′ as the resolvent

C \ Σ(Λ) → B(X), z → R Λ (z) is holomorphic. It is well-known that Π 2 Λ,ξ = Π Λ,ξ
, so that Π Λ,ξ is indeed a projector, and its range R(Π Λ,ξ ) = M (Λξ) is the closure of the algebraic eigenspace associated to ξ. More generally, for any compact part of the spectrum of the form Γ = ∆ a ∩ Σ(Λ) we may define the associated spectral projector Π Λ,Γ by

(2.5) Π Λ,Γ := i 2π γ R Λ (z) dz,
for any closed path γ : [0, 1] → ∆ a which makes one direct turn around Γ. We recall that ξ ∈ Σ(Λ) is said to be an eigenvalue if N (Λξ) = {0}. The range of the spectral projector is finite-dimensional if and only if there exists α 0 ∈ N * such that

N (Λ -ξ) α = N (Λ -ξ) α 0 = {0} for any α ≥ α 0 ,
and in such a case

M (Λ -ξ) = M (Λ -ξ) = N ((Λ -ξ) α 0 ) and N (Λ -ξ) = {0}.
In that case, we say that ξ is a discrete eigenvalue, written as ξ ∈ Σ d (Λ). For any a ∈ R such that Σ(Λ) ∩ ∆ a = {ξ 1 , . . . , ξ J } where ξ 1 , . . . , ξ J are distinct discrete eigenvalues, we define without any risk of ambiguity Π Λ,a := Π Λ,ξ 1 + . . . Π Λ,ξ J . For some given Banach spaces X 1 , X 2 , X 3 and some given functions

S 1 ∈ L 1 (R + ; B(X 1 , X 2 )) and S 2 ∈ L 1 (R + ; B(X 2 , X 3 )), we define the convolution S 2 * S 1 ∈ L 1 (R + ; B(X 1 , X 3 )) by ∀ t ≥ 0, (S 2 * S 1 )(t) := t 0 S 2 (s) S 1 (t -s)ds.
When S 1 = S 2 and X 1 = X 2 = X 3 , we define recursively S ( * 1) = S and S ( * ℓ) = S * S ( * (ℓ-1)) for any ℓ ≥ 2.

For a generator L of a semigroup such that ω(L) < 0 we define the fractional powers L -η and L η for η ∈ (0, 1) by Dunford formulas [START_REF] Komatsu | Fractional powers of operators[END_REF][START_REF] Komatsu | Fractional powers of operators. II. Interpolation spaces[END_REF], see also [35, section II.5.c],

(2.6)

L -η := c -η ∞ 0 λ -η R L (λ) dλ, L η := c η ∞ 0 λ η-1 L R L (λ) dλ,
for some constants c η , c -η ∈ C * . The operator L -η belongs to B(X) and, denoting X η := R(L -η ), the operator L η is the unbounded operator with domain D(L η ) = X η and defined by L η = (L -η ) -1 . We also denote X 0 = X and X 1 = D(L). Moreover, introducing the J-method interpolation norm

f Xη := inf sup t>0 t -η J(t, g(t)) X ; g such that f = ∞ 0 g(t) dt t
with J(t, g) := max( g X , t Lg X ) and the associated Banach space Xη which corresponds to the interpolation space S(∞, -η, X 0 ; ∞, 1η, X 1 ) of Lions and Peetre [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] defined by Xη := {f ∈ X; f Xη < ∞}, 

the following inclusions (2.7) X η ⊂ Xη ⊂ X η ′
S(∞, -θ, X 0 ; ∞, 1 -η, X 1 ) ⊂ S(1, -θ ′ , X 0 ; ∞, 1 -θ ′ , X 1 ) whenever X 1 ⊂ X 0 and 0 < θ ′ < θ < 1.
2.2. An abstract spectral mapping theorem. We present in this section a "principal spectral mapping theorem" for a class of semigroup generators Λ on a Banach space which split as a hypodissipative part B and a "more regular part" A, as presented in the introduction. In order to do so, we introduce a more accurate version of the growth and regularizing assumption (H2-3), namely

(H2) there exist ζ ∈ (0, 1] and ζ ′ ∈ [0, ζ) such that A is B ζ ′ -bounded and
there exists an integer n ≥ 1 such that for any a > a * , there holds

(2.8) ∀ t ≥ 0, S B * (AS B ) ( * n) (t) B(X,D(Λ ζ )) ≤ C a,n,ζ e at for a constant C a,n,ζ ∈ (0, ∞).
Theorem 2.1. Consider a Banach space X, the generator Λ of a semigroup S Λ (t) = e tΛ on X, two real numbers a * , a ′ ∈ R, a * < a ′ , and assume that the spectrum Σ(Λ) of Λ satisfies the following separation condition

(2.9) Σ(Λ) ∩ ∆ a * ⊂ ∆ a ′ .
The following growth estimate on the semigroup (1) there exists a projector

Π ∈ B(X) satisfying ΛΠ = ΠΛ, Λ 1 := Λ |X 1 ∈ B(X 1 ), X 1 := RΠ, Σ(Λ 1
) ⊂ ∆ a * and for any real number a > a * there exists a constant C a such that

(2.10) ∀ t ≥ 0, e t Λ (I -Π) B(X) ≤ C a e a t ,
is equivalent to the following splitting structure hypothesis

(2) there exist two operators A, B ∈ C (X), such that Λ = A + B and hypothesizes (H1) and (H2) are satisfied. Moreover, under assumption (2), for any a > a * there exists an explicitly computable constant M = M (a, A, B) such that

(2.11) Σ(Λ) ∩ ∆ a ⊂ B(0, M ) := {z ∈ C; |z| < M }. Remark 2.2.
(a) Theorem 2.1 gives a characterization (and thus a criterium with the conditions (H1) and (H2)) for an operator Λ to satisfy a partial (but principal) spectral mapping theorem under the only additional assumption that the spectrum satisfies a separation condition. (b) Hypothesis (H1) holds for any ℓ ∈ N if it is true for ℓ = 0 (that is (Ba) is hypodissipative in X for any real number a > a * ) and A ∈ B(X). 

(Bf, f ) ≤ -a B ζ f 2 + C f 2 and Af ≤ C ( B ζ ′ f + f ),
then (H1) holds and (H2) holds with n = 0. A typical example is

B = -∆ and A = a(x) • ∇ in the space L 2 (R d ) with a ∈ L ∞ (R d ).
In that case, Theorem 2.1 is nothing but the classical spectral mapping theorem which is known to hold in such a sectorial framework. We refer to [100, section 2.5] and [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]Section II.4.a] for an introduction to sectorial operators (and analytic semigroups) as well as [35, Section IV.3.10] for a proof of the spectral mapping theorem in that framework. (h) Condition (H2) is fulfilled for the same value of n if A and B satisfy (H1) as well as

t → (AS B ) ( * n) (t) B(X,D(Λ ζ )) e -at ∈ L p (0, ∞)
for any a > a * and for some p ∈ [1, ∞]. (i) It is worth emphasizing that our result does not require any kind of "regularity" on the semigroup as it is usually the case for "full" spectral mapping theorem. In particular, we do not require that the semigroup is eventually norm continuous as in [START_REF] Hille | Functional analysis and semi-groups[END_REF] or [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]Theorem IV.3.10]. Let us also stress that some "partial" spectral mapping theorems have been obtained in several earlier papers as in [START_REF] Jörgens | An asymptotic expansion in the theory of neutron transport[END_REF][START_REF] Vidav | Spectra of perturbed semigroups with applications to transport theory[END_REF][START_REF] Voigt | A perturbation theorem for the essential spectral radius of strongly continuous semigroups[END_REF][START_REF] Mokhtar-Kharroubi | Compactness properties for positive semigroups on Banach lattices and applications[END_REF][START_REF] Latrach | Compactness properties for perturbed semigroups and application to transport equation[END_REF] under stronger assumptions than (H1)-(H2). See also Remark 3.2-(e).

Proof of Theorem 2.1. We only prove that (2) implies (1) since the reverse implication is clear (see Remark 2.2-(c)).

The proof is split into four steps. From now on, let us fix a ∈ (a * , a ′ ).

Step 1. We establish the cornerstone estimate (2.12)

∀ z ∈ ∆ a , (AR B (z)) n+1 B(X) ≤ C a 1 z α ,
where n ≥ 1 is the integer given by assumption (H2) and α := (ζζ ′ ) 2 /8 ∈ (0, 1). We recall the notation X s = D(Λ s ) for 0 ≤ s ≤ 1, with X 0 = X and X 1 = D(Λ). On the one hand, from (2.8) we have 

∀ z ∈ ∆ a , R B (z) (AR B (z)) n X→X ζ ≤ C ′ a,n , for a constant C ′ a,n ∈ (0, ∞)
R B (z) 1-ε (AR B (z)) n = (B -z) ε [R B (z) (AR B (z)) n ], we get (2.13) ∀ z ∈ ∆ a , R B (z) 1-ε (AR B (z)) n X→X ζ-ε ≤ C a,n , for any ε ∈ [0, ζ].
On the other hand, we claim that

(2.14) ∀ z ∈ ∆ a , R B (z) ε Xζ-ε → Xζ ′ ≤ C a,ε / z ε (ζ-ζ ′ -ε) ,
for any 0 ≤ ε < ζζ ′ and a constant C a,ε . First, from the resolvent identity

R B (z) = z -1 (R B (z)B -I),
we have for i, j = 0, 1, i ≥ j,

∀ z ∈ ∆ a , R B (z) X i →X j ≤ C 1,a i,j (z), with C 1,a 0,0 (z) = C 1,a 1,1 (z) = C 1,a and C 1,a 1,0 (z) = C 1,a 1,0 / z , C 1,a i,j ∈ R + .
Next, thanks to the first representation formula in (2.6), we clearly have

R B (z) ε X 1 →X 0 ≤ C(a, ε) ∞ 0 λ -ε z + λ dλ ≤ C ε,a 1,0 (z) := C ε,a 1,0 z ε .
Last, thanks to the interpolation theorem [76, Théorème 3.1] we get with some 0

≤ θ < θ ′ < 1 R B (z) ε Xθ ′ → Xθ ≤ R B (z) ε θ X 1 →X 1 R B (z) ε θ ′ -θ X 1 →X 0 R B (z) ε 1-θ ′ X 0 →X 0 , from which we conclude to (2.14). Writing now R B (z) (AR B (z)) n = R B (z) ε [R B (z) 1-ε (AR B (z)) n ],
with the optimal choice ε = (ζζ ′ )/2, we finally deduce from (2.13), (2.14) and the inclusions (2.7) that

∀ z ∈ ∆ a , R B (z) (AR B (z)) n X→X ζ ′ ≤ C a z α .
Because A is B ζ ′ -bounded we conclude to (2.12).

Step 2. We prove (2.11). From the splitting Λ = A + B, we have

R Λ (z) = R B (z) -R Λ (z) A R B (z)
on the open region of C where R Λ and R B are well defined functions (and thus analytic), and iterating the above formula, we get

(2.15) R Λ (z) = N -1 ℓ=0 (-1) ℓ R B (z) (AR B (z)) ℓ + R Λ (z)(-1) N (AR B (z)) N
for any integer N ≥ 1. We define

(2.16) U (z) := R B (z) -• • • + (-1) n R B (z) (AR B (z)) n and
(2.17)

V(z) := (-1) n+1 (AR B (z)) n+1 ,
where n ≥ 1 is again the integer given by assumption (H2). With N = n+1, we may rewrite the identity (2.15) as

(2.18) R Λ (z)(I -V(z)) = U (z).
Observing that (2.12) rewrites as

(2.19) ∀ z ∈ ∆ a , V(z) B(X) ≤ C a 1 z α ,
we have in particular, for M large enough,

(2.20) z ∈ ∆ a , |z| ≥ M ⇒ V(z) B(X) ≤ 1 2 .
As a consequence, in the region ∆ a \B(0, M ) the operator I -V is invertible and thus R Λ is well-defined because of (2.18), which is nothing but (2.11).

Step 3. We write a representation formula for the semigroup which follows from some classical complex analysis arguments as in [51, Proof of Theorem 2.13] or [100, Chapter 1]). First, the inclusion (2.11) together with the separation condition (2.9) implies that

Γ := Σ(Λ) ∩ ∆ a ⊂ ∆ a ′ ∩ B(0, M ),
so that Γ is a compact set of ∆ a and we may define the projection operator Π on the corresponding eigenspace thanks to the Dunford integral (2.5). The projector Π fulfils all the requirements stated in [START_REF] Andreu | A spectral mapping theorem for perturbed strongly continuous semigroups[END_REF]. In order to conclude we just have to prove (2.10). In order to do so, for any integer N ≥ 0, we write

S Λ (I -Π) = (I -Π) S Λ = (I -Π) N -1 ℓ=0 (-1) ℓ S B * (AS B ) ( * ℓ) + ((I -Π)S Λ ) * (AS B ) ( * N ) ,
where we have used the iteration of the Duhamel formula (1.12) in the second line. For b > max(ω(Λ), a), we may use the inverse Laplace formula

T (t)f := ((I -Π)S Λ ) * (AS B ) ( * N ) f = lim M ′ →∞ i 2π b+iM ′ b-iM ′ e zt (-1) N +1 (I -Π)R Λ (z) (AR B (z)) N f dz
for any f ∈ D(Λ) and t ≥ 0, and we emphasize that the term T (t)f might be only defined as a semi-convergent integral. Because z

→ (I - Π)R Λ (z) (AR B (z)) N +1
is an analytic function on a neighborhood of ∆a , we may move the segment on which the integral is performed, and we obtain the representation formula

S Λ (t)(I -Π)f = N -1 ℓ=0 (-1) ℓ (I -Π)S B * (AS B ) ( * ℓ) (t)f (2.21) + lim M ′ →∞ i 2π a+iM ′ a-iM ′ e zt (-1) N +1 (I -Π)R Λ (z) (AR B (z)) N f dz,
for any f ∈ D(Λ) and t ≥ 0.

Step 4. In order to conclude we only have to explain why the last term in (2.21) is appropriately bounded for N large enough. Thanks to (2.18), we have

(2.22) W(z) := R Λ (z) (AR B (z)) N = U (z) ∞ ℓ=0 V(z) ℓ (AR B (z)) N ,
provided the RHS series converges. On the one hand, defining N := ([1/α]+ 1)(n + 1) and β := ([1/α] + 1)α > 1, we get from (2.12) that

(2.23) (AR B (z)) N B(X) ≤ V(z) [1/α]+1 B(X) ≤ C y β
for any z = a + iy, |y| ≥ M . On the other hand, we get from (2.20) that the series term in (2.22) is normally convergent uniformly in z = a + iy, |y| ≥ M . All together, we obtain

W(z) B(X) ≤ U (z) B(X) ∞ ℓ=0 V(z) ℓ B(X) (AR B (z)) N B(X) ≤ C |y| β (2.24)
for any z = a + iy, |y| ≥ M .

In order to estimate the last term in (2.21), we write lim

M ′ →∞ i 2π a+iM ′ a-iM ′ e zt (I -Π)W(z) dz B(X) ≤ e at 2π a+iM a-iM (I -Π)R Λ (z) B(X) (AR B (z)) N B(X)
dy

+ e at 2π R\[-M,M ] (I -Π)W(a + iy) B(X) dy,
where the first integral is finite thanks to Σ(Λ) ∩ [a -iM, a + iM ] = ∅ and (2.23), and the second integral is finite because of (2.24).

We give now two variants of Theorem 2.1 which are sometimes easier to apply. First, for a generator Λ of a semigroup S Λ with the splitting structure (1.2) we introduce an alternative growth assumption to (H1), namely (H1 ′ ) for some a * ∈ R and for any a > a * , the operator Ba is hypodissipative and there exists a constant C a ∈ (0, ∞) such that

(2.25) ∞ 0 e -a s A S B (s) B(X) ds ≤ C a . Remark 2.3. Estimate (2.25
) is reminiscent of the usual condition under which for a given generator B of a semigroup S B the perturbed operator A + B also generates a semigroup (see [START_REF] Phillips | Spectral theory for semi-groups of linear operators[END_REF], [START_REF] Miyadera | On perturbation theory for semi-groups of operators[END_REF], [117, condition (1.1)]). Here however the condition C a < 1 is not required since we have already made the assumption that S Λ exists.

It is clear by writing

S B * (AS B ) ( * ℓ) = [S B * (AS B ) ( * ℓ-1) ] * (AS B )
and performing an iterative argument, that (H1 ′ ) implies (H1). We then immediately deduce from Theorem 2.1 a first variant: Corollary 2.4. Consider a Banach space X, the generator Λ of a semigroup S Λ (t) = e tΛ on X and a real number a * ∈ R. Assume that the spectrum Σ(Λ) of Λ satisfies the separation condition (2.9) and that there exist two operators A, B ∈ C (X) such that Λ = A + B and hypothesises (H1 ′ ) and (H2) are met. Then the conclusions (2.11) ans (1) in Theorem 2.1 hold.

Next, for a generator Λ of a semigroup S Λ with the splitting structure (1.2) we introduce the alternative growth and regularizing assumptions to (H1 ′ ) and (H2), namely (H1 ′′ ) for some a * ∈ R, ζ ∈ (0, 1] and for any a > a * , ζ ′ ∈ [0, ζ] the operator Ba is hypodissipative and assumption (H1) or (H1 ′ ) also hold with B(X) replaced by B(D(Λ ζ ′ )); (H2 ′′ ) there exist an integer n ≥ 1 and a real number b > a * such that

∀ t ≥ 0, (AS B ) ( * n) (t) B(X,D(Λ ζ )) ≤ C b,n,ζ e bt , for a constant C b,n,ζ ∈ (0, ∞).
Our second variant of Theorem 2.1 is the following.

Corollary 2.5. Consider a Banach space X, the generator Λ of a semigroup S Λ (t) = e tΛ on X and a real number a * ∈ R. Assume that the spectrum Σ(Λ) of Λ satisfies the separation condition (2.9) and that there exist two operators A, B ∈ C (X) such that Λ = A + B and hypothesises (H1 ′′ ) and (H2 ′′ ) are met. Then the conclusions (2.11) ans (1) in Theorem 2.1 hold.

Corollary 2.5 is an immediate consequence of Theorem 2.1 or Corollary 2.4 together with the following simple variant of [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF]Lemma 2.15] which makes possible to deduce the more accurate regularization and growth condition (H2) from the rough regularization and growth condition (H2 ′′ ). Lemma 2.6. Consider two Banach spaces E and E such that E ⊂ E with dense and continuous embedding. Consider some operators L, A and B on E such that L splits as L = A + B, some real number a * ∈ R and some integer m ∈ N * . Denoting with the same letter A, B and L the restriction of these operators on E, we assume that the two following dissipativity conditions are satisfied:

(i) for any a > a * , ℓ ≥ m, X = E and X = E, there holds

(A S B ) ( * ℓ) B(X) ≤ C a,ℓ e at ;
(ii) for some constants b ∈ R, b > a * , and C b ≥ 0, there holds

(A S B ) ( * m) B(E,E) ≤ C b e bt .
Then for any a > a * , there exist some constructive constants n = n(a) ∈ N, C a ≥ 1 such that

∀ t ≥ 0 (AS B ) ( * n) (t) B(E,E) ≤ C a e a t .
Proof of Lemma 2.6. We fix a > a * and a ′ ∈ (a * , a), and we note T := (A S B ) ( * m) . For n = p m, p ∈ N * , we write

(AS B ) ( * n) (t) = T ( * p) (t) = t 0 dt p-1 t p-1 0 dt p-2 . . . t 2 0 dt 1 T (δ p ) . . . T (δ 1 )
with

δ 1 = t 1 , δ 2 = t 2 -t 1 , . . . , δ p-1 = t p-1 -t p-2 and δ p = t -t p-1 .
For any p ≥ 1, there exist at least one increment δ r , r ∈ {1, ..., p}, such that δ r ≤ t/p. Using (ii) in order to estimate T (δ r ) B(E,E) and (i) in order to bound the other terms T (δ q ) B(X) in the appropriate space X = E or X = E, we have

T (AS B ) ( * n) (t) B(E,E) ≤ ≤ t 0 dt p-1 t p-1 0 dt p-2 . . . t 2 0 dt 1 C ′ b e b δr q =r C a ′ ,m e a ′ δq ≤ C ′ b C p-1 a ′ ,m e a ′ t e b t/p t 0 dt p-1 t p-1 0 dt p-2 . . . t 2 0 dt 1 = C t p-1 e (a ′ +b/p) t ≤ C ′ e at ,
by taking p (and then n) large enough so that a ′ + b/p < a.

3. Weyl's Theorem for semigroup generators 3.1. An abstract semigroup Weyl's Theorem. We present in this section a version of Weyl's Theorem about compact perturbation of dissipative generator in the spirit of the above spectral mapping theorem. For that purpose, we introduce the growth and compactness assumption (H3) for the same integer n ≥ 1 as in assumption (H2) and with the same notation, the time indexed family of operators (AS B ) ( * (n+1)) (t) satisfies the growth and compactness estimate

∀ a > a * , ∞ 0 (AS B ) ( * (n+1)) (t) B(X,Y ) e -at dt ≤ C ′′ n+1,a ,
for some constant C ′′ n+1,a ≥ 0 and some (separable) Banach space Y such that Y ⊂ X with compact embedding. Theorem 3.1. Consider a Banach space X, the generator Λ of a semigroup S Λ (t) = e tΛ on X and a real number a * ∈ R. The following quantitative growth estimate on the semigroup (1) for any a > a * there exist an integer J ∈ N, a finite family of distinct complex numbers ξ 1 , ..., ξ J ∈ ∆a , some finite rank projectors Π 1 , . . . Π J ∈ B(X) and some operators T j ∈ B(RΠ j ), satisfying

ΛΠ j = Π j Λ = T j Π j , Σ(T j ) = {ξ j }, in particular Σ(Λ) ∩ ∆a = {ξ 1 , . . . , ξ J } ⊂ Σ d (Λ),
and a constant C a such that

(3.1) ∀ t ≥ 0, e t Λ - J j=1 e t T j Π j B(X) ≤ C a e a t ,
is equivalent to the following splitting structure of the generator

(2) there exist two operators A, B ∈ C (X) such that Λ = A + B and hypothesises (H1), (H2) and (H3) are met.

Remark 3.2.

(a) When Σ(Λ) ∩ ∆ a * = ∅ the above theorem gives a description of the principal asymptotic behaviour of the C 0 -semigroup S Λ , namely it states that it is essentially compact (see e.g. [45, Definition 2.1]). As a matter of fact, if conditions (H1), (H2) and (H3) hold with a * < 0, then the C 0 -semigroup S Λ is either uniformly exponentially stable or essentially compact. (b) We adopt the convention {ξ 1 , . . . , ξ J } = ∅ if J = 0. (c) In the case when B is sectorial and A is B-compact, Theorem 3.1 is nothing but the classical Weyl's Theorem on the spectrum [START_REF] Weyl | Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen[END_REF] [START_REF] Ribarič | Analytic properties of the inverse A(z) -1 of an analytic linear operator valued function A(z)[END_REF] and to apply Theorem 2.1). (e) It has been observed in [START_REF] Voigt | A perturbation theorem for the essential spectral radius of strongly continuous semigroups[END_REF] (see also [START_REF] Jörgens | An asymptotic expansion in the theory of neutron transport[END_REF][START_REF] Vidav | Spectra of perturbed semigroups with applications to transport theory[END_REF][START_REF] Mokhtar-Kharroubi | Compactness properties for positive semigroups on Banach lattices and applications[END_REF][START_REF] Latrach | Compactness properties for perturbed semigroups and application to transport equation[END_REF]) that a similar conclusion as (3.1) holds under a compactness condition on the remainder term

∞ ℓ=n-1 (AS B ) * ℓ = S Λ * (AS B ) ( * n) = (S B A) ( * n) * S Λ
in the Dyson-Phillips series (1.11). Hypothesis (H1)-(H2)-(H3) provide some conditions on the only operators A and B such that the above remainder term enjoys such a nice property.

Proof of Theorem 3.1. Again, we only prove that (2) implies (1) since the reverse implication is clear (see Remark 2.2-(c)). The cornerstone of the proof is the use of the identity

R Λ (z)(I -V(z)) = U (z)
established in (2.18), where we recall that the functions U and V defined by (2.16) and (2.17) are analytic functions on ∆ a * with values in B(X). Moreover, we have

(3.2) V(z) ∈ B(X, Y ) ⊂ K (X) ∀ z ∈ ∆ a
because of assumption (H3) and

(3.3) V(z) B(X) ≤ 1/2 ∀ z ∈ ∆ a ∩ B(0, M ) c
for some M = M (a) thanks to (2.12).

Step 1. We prove that Σ(Λ) ∩ ∆ a is finite for any a > a * . Let us fix ξ ∈ ∆ a and define C(z) := I -V(z), C 0 := C(ξ). Because of (3.2) and thanks to the Fredholm alternative [START_REF] Fredholm | Sur une classe d'équations fonctionnelles[END_REF] (see also [START_REF] Brezis | Analyse fonctionnelle[END_REF]Theorème VI.6] for a modern and comprehensible statement and proof), there holds

R(C 0 ) = N (C * 0 ) ⊥ , dimN (C 0 ) = dimN (C * 0 ) := N ∈ N. If N ≥ 1,
we introduce (f 1 , . . . , f N ) a basis of the null space N (C 0 ) and (ϕ 1 , . . . , ϕ N ) a family of independent linear forms in X ′ such that ϕ i (f j ) = δ ij . Similarly, we introduce (ψ 1 , . . . , ψ N ) a basis of the null space N (C * 0 ) and (g 1 , . . . , g N ) a family of independent linear vectors in X such that ψ i (g j ) = δ ij . Then defining the projectors on X

π 0 := n i=1 f i ϕ i and π 1 := n i=1 g i ψ i ,
and

X 1 := π 0 (X), X 0 := (I -π 0 )(X), Y 1 := π 1 (X), Y 0 := (I -π 1 )(X), we have X = X 0 ⊕ X 1 , X 1 = N (C 0 ) = Vect(f 1 , . . . , f N ),
and

X = Y 0 ⊕ Y 1 , Y 0 = R(C 0 ), Y 1 = Vect(g 1 , . . . , g N ).
On the one hand, C 0 : X 0 → Y 0 is bijective by definition, and the family of linear mappings D 0 (z) := C -1 0 (Iπ 1 ) C(z) |X 0 : X 0 → X 0 , is an analytic function with respect to the parameter z ∈ ∆ a and satisfies D 0 (ξ) = I X 0 . We deduce that D 0 (z) is also invertible for z belonging to a neighbourhood B(ξ, r 0 (ξ)) of ξ, r 0 (ξ) > 0, and then

(3.4) (I -π 1 ) C(z) |X 0 : X 0 → Y 0 is invertible for any z ∈ B(ξ, r 0 (ξ)).
On the other hand, the family of linear mappings

D 1 (z) := π 1 C(z) |Y 1 : Y 1 → Y 1 ,
is an analytic function with respect to the parameter z ∈ ∆ a and D 1 (z) is invertible for any z ∈ ∆ a ∩ B(0, M ′ ) c for M ′ large enough, because V(z) → 0 as ℑmz → ∞ from (2.12). Since Y 1 is finite dimensional we may define z → det(D 1 (z)), which is an analytic function on ∆ a and satisfies det(D 1 (z)) = 0 for any z ∈ ∆ a ∩ B(0, M ′ ) c . As a consequence, z → det(D 1 (z)) has isolate zeros and since det(D 1 (z 0 )) = 0 there exists a neighbourhood B(ξ, r 1 (ξ)) of ξ, r 1 (ξ) > 0, such that det(D 1 (z)) = 0 for any z ∈ B(z 0 , r 1 (ξ))\{ξ} from which we deduce

(3.5) π 1 C(z) |Y 1 : Y 1 → Y 1 is invertible for any z ∈ B(ξ, r 1 (ξ))\{ξ}.
Gathering (3.4) and (3.5), we get that C(z) : X → Y 0 ⊕ Y 1 = X is surjective for any z ∈ B(ξ, r(ξ))\{ξ}, r(ξ) := min(r 0 (ξ), r 1 (ξ)) > 0, and then bijective thanks to the Fredholm alternative.

By compactness of the set ∆a ∩ B(0, M ′ ), we may cover that set by a finite number of balls B(ξ j , r(ξ j )), 1 ≤ j ≤ J, so that C(z) = I -V(z) is invertible for any z ∈ Ω := ∆ a \{ξ 1 , ..., ξ J }. As a consequence, the function

W(z) := U (z) (I -V(z)) -1
is well defined and analytic on Ω and coincide with R Λ (z) on the half plane ∆ b , where b = ω(Λ) is the growth bound of S Λ . These facts immediately imply that R Λ = W on Ω and then

Σ(Λ) ∩ ∆ a ⊂ {ξ 1 , ..., ξ J } = ∆ a \Ω.
Step 2. We prove that Σ(Λ)∩∆ a * ⊂ Σ d (Λ). Indeed, for any ξ ∈ Σ(Λ)∩∆ a * , we may write with the notation of step 1

Π Λ,ξ (I -π 1 ) = |z-ξ|=r(ξ)/2 R Λ (z)(I -π 1 ) = |z-ξ|=r(ξ)/2 U (z) (I -V(z)) -1 (I -π 1 ) = 0,
where in the last line we have used that I -V(z) : X 0 → Y 0 is bijective for any z ∈ B(ξ, r(ξ)) so that (I -V(z)) -1 (Iπ 1 ) is well defined and analytic on B(ξ, r(ξ)). We deduce that Π Λ,ξ = Π Λ,ξ π 1 , and then dimR(Π Λ,ξ ) ≤ dimR(π 1 ) = N.

That precisely means ξ ∈ Σ d (Λ).

Step 3. The fact that S Λ satisfies the growth estimate (3.1) is an immediate consequence of Theorem 2.1.

3.2.

A quantified version of the Weyl's Theorem. We present now a quantified version of Weyl's Theorem 3.1.

Theorem 3.3. Consider a Banach space X, the generator Λ of a semigroup S Λ (t) = e tΛ on X, a real number a * ∈ R and assume that there exist two operators A, B ∈ C (X) such that Λ = A + B and the hypothesises (H1), (H2) and (H3) of Theorem 3.1 are met. Assume furthermore that

(3.6) ∀ a > a * , ∞ 0 AS B (t) B(X,Y ) e -at dt ≤ C a ,
for some constant C a ∈ R + , and there exists a sequence of N dimensional range increasing projectors π N and a sequence of positive real numbers ε N → 0 such that

(3.7) ∀ f ∈ Y π ⊥ N f X ≤ ε N f Y .
For any a > a * , there exists an integer n * (which depends on a constructive way on a, (π N ), (ε N ) and the constants involved in the assumptions (H1), (H2), (H3) and (3.6)) such that

(3.8) ♯(Σ(Λ) ∩ ∆ a ) ≤ n * , dim R(Π Λ,a ) ≤ n * .
We assume moreover (H1 ′′ ) and (S B A) ( * n) B(X,D(Λ ζ )) e -at ∈ L 1 (0, ∞) for any a > a * . Then, for any a > a * , there exists a constant C ′ a such that for any Jordan basis (g i,j ) associated to the eigenspace RΠ Λ,a there holds

(3.9) g i,j X = 1, g i,j D(Λ ζ )∩Y ≤ C ′ a . Proof of Theorem 3.3. Step 1.
Let us fix a > a * and let us define for any z ∈ ∆ a the compact perturbation of the identity

Φ(z) := I + A R B (z) : X → X.
On the one hand, because of (3.6), we know that there exists a constant C a such that

∀ z ∈ ∆ a A R B (z) B(X,Y ) ≤ C a ,
and then

π ⊥ N A R B (z) B(X) ≤ ε N C a < 1 for N large enough.
We deduce from the above smallness condition that

I + π ⊥ N A R B (z) : Rπ ⊥ N → Rπ ⊥ N
is a an isomorphism for any z ∈ ∆ a . On the other hand, thanks to the Fredholm alternative, it is clear that Φ(z) is invertible if, and only if, π N Φ(z) has maximal rank N .

Step 2. For a given basis (g 1 , ..., g N ) of Rπ N we denote by π N,i a projection on C g i , 1 ≤ i ≤ N , and we define Φ N,i (z) := π N,i Φ(z). For a given i ∈ {1, ..., N } and if z i ∈ ∆ a satisfies Φ N,i (z i ) = 0 we have

π N,i + π N,i A R B (z i ) = 0 and Φ N,i (z) = π N,i + π N,i A ∞ n=0 R B (z i ) n+1 (z -z i ) n ∀ z ∈ ∆ a ∩ B(z i , r), with r := R B (z i ) -1 ≥ C -1 a > 0.
From the two last equations, we deduce

Φ N,i (z) = -π N,i ∞ n=1 R B (z i ) n (z -z i ) n ∀ z ∈ ∆ a ∩ B(z i , r i )
and we observe that rank Φ N,i (z) = 1 for any z ∈ B(z i , r), z = z i . As a consequence, in any ball B of radius r, rank π N Φ(z) = N for any z ∈ B ∩ ∆ a except at most N points z 1 , ..., z N ∈ B, and the total dimension of the "defect of surjectivity" codim R(π N Φ(z i )) = dim Π Λ,z i is at most N . Covering the region ∆a ∩ B(0, M ) by (1 + 2M/r) 2 balls of radius r ∈ (C -1 a , M ), we see that (3.8) holds with n * := (1 + 2M C a ) 2 N .

Step 3. Consider a Jordan basis (g j,m ) associated to an eigenvalue ξ ∈ Σ d (Λ) ∩ ∆ a , and then defined by Λg j,m = ξg j,m + g j,m-1 .

We write

g j,m = R B (ξ)g j,m-1 -R B (ξ)Ag j,m ,
and iterating the formula

g j,m = L-1 ℓ=0 (-1) ℓ R B (ξ)(A R B (ξ)) ℓ g j,m-1 + (-1) L (R B (ξ)A) n g j,m
, from which we easily conclude that (3.9) holds.

4. Semigroup Weyl's theorem for the growth-fragmentation equations 4.1. Equal mitosis and smooth cell-division equations. In this paragraph we are concerned with the equal mitosis equation (1.27) and the cell division equation (1.37) with smooth offspring distribution, so that we consider the operator

Λf (x) := - ∂ ∂x f (x) -K(x)f (x) + (F + f )(x)
where K satisfies (1.29) and (1.30) and the gain part F + of the fragmentation operator is defined by (4.10)

F + f (x) := ∞ x k(y, x) f (y) dy
with k satisfying (1.21) and ℘ = 2δ 1/2 (in the equal mitosis case) or ℘ is a function which satisfies (1.22) and (1.34) (in the case of the smooth celldivision equation). We recall that the operator is complemented with a boundary condition (1.28).

We fix α > α * , with α * > 1 defined thanks to Equation (1.38), and we set

K ′ 0 := K 0 -℘ α K 1 > 0. When K(0) = 0 or ℘ = 2δ 1/2
, we then define the critical abscissa a * ∈ R by

a * := -K ′ 0 if γ = 0, a * := -∞ if γ > 0.
Observe that when K(0) > 0, the positivity conditions (1.29) and (1.30) imply that there exists a constant K * > 0 such that (4.11)

K(x) ≥ K * ∀ x ≥ 0.
When K(0) > 0 and ℘ satisfies (1.34), we then define the critical abscissa a * ∈ R by

a * := -min(K ′ 0 , K * ) if γ = 0, a * := -K * if γ > 0.
We perform the spectral analysis of Λ in the Banach space X = L 1 α defined at the beginning of Section 1.2.5. We also define, for later reference, the Sobolev spaces

W 1,1 α = {f ∈ L 1 α , ∂ x f ∈ L 1 α }, Ẇ 1,1 α := {f ∈ L 1 loc ; ∂ x f ∈ L1 α }, α ∈ R.
It is worth emphasizing that we classically have (and that is also a straightforward consequence of the lemmas which follow)

D(Λ) = {f ∈ L 1 α+γ , ∂ x f ∈ L 1 α , f (0) = 0}.
As a first step in the proof of Theorem 1.1 we have Proposition 4.4. Under the above assumptions and definitions of α * > 1 and a * < 0, the conclusion (2), and then (2.11) and (1), of Theorem 3.1 holds for the cell-division semigroup in L 1 α for any α > α * and for any a > a * . Moreover the conclusions of Theorem 3.3 hold under the additional assumptions that K(0) = 0 and ℘ satisfies the smoothness condition (1.34).

In order to establish Proposition 4.4 we will introduce an adequate splitting Λ = A + B and we prove that A and B satisfy conditions (H1), (H2) and (H3) (or one of the "prime" variants of them) for n = 1 or 2 as a consequence of the series of technical Lemmas 4.5, 4.6, 4.7, 4.8 and 4.9 below.

Taking a real number R ∈ [1, ∞) to be chosen later, we define

K R := K χ R K c R := K χ c R , k R = K R κ, k c R = K R κ
where χ R (x) = χ(x/R), χ c R (x) = χ c (x/R), χ being the Lipschitz function defined on R + by χ(0) = 1, χ ′ = -1 [START_REF] Andreu | A spectral mapping theorem for perturbed strongly continuous semigroups[END_REF][START_REF] Arendt | Kato's equality and spectral decomposition for positive C0-groups[END_REF] and χ c = 1χ, as well as

F + R = ∞ x k R (y, x) f (y) dy, F +,c R = ∞ x k c R (y, x) f (y) dy,
and then

A = A R = F + R , B = B R = - ∂ ∂x -K(x) + F +,c R so that Λ = A + B. Lemma 4.5. (1) For any 0 ≤ α ≤ 1 ≤ β there holds A ∈ B( L1 α , L1 α ∩ L1 β ).
(2) For the mitosis operator, there holds A ∈ B(W 1,1 , W 1,1 α ) for any α ≥ 0. In particular A ∈ B(D(Λ η )) for η = 0, 1.

(3) Under assumption (1.34) on ℘ there holds A ∈ B( L1 β-1 , Ẇ 1,1 β ) for any β ≥ 0.

(4) Under assumption (1.34) on ℘ and the additional assumption K(0) = 0, there holds A ∈ B(L 1 α , W 1,1 α ) for any α ≥ 0.

Proof of Lemma 4.5. We split the proof into four steps.

Step 1. Fix 0 ≤ f ∈ L1 α as well as α ′ ≥ α. Recalling from (1.30) that K(x) ≤ K 1 x γ , x := (1 + x 2 ) γ/2 , we compute

Af L1 α ′ = ∞ 0 f (x) x 0 k R (x, y) y α ′ dy dx = ℘ α ′ ∞ 0 f (x) K R (x) x α ′ dx ≤ ℘ α ′ K 1 R γ+α ′ -α 2R 0 f (x) x α dx, so that A ∈ B( L1 α , L1 α ′ ).
Step 2. For the mitosis operator, we have

∂ x Af = 8 (∂ x K R )(2x) f (2x) + 8 K R (2x) (∂ x f )(2x),
and similar estimates as above leads to the bound

∂ x A R f L 1 α ≤ 4 R α K W 1,∞ (0,2R) f W 1,1
for any α ≥ 0 and f ∈ W 1,1 , from which (2) follows.

Step 3. Under the regularity assumption (1.34), there holds

∂ x Af = ∞ x K R (y) ℘ ′ (x/y) y -2 f (y) dy -K R (x) ℘(1) f (x)/x, so that ∂ x Af L1 β ≤ ℘(1) + ℘ ′ β K 1 R γ 2R 0 f (x) x β-1 dx,
and we conclude with A ∈ B( L1

β-1 , Ẇ 1,1 β ). Step 4.
With the assumption of point (4) and recalling that K is C 1 , there holds K(x)/x L ∞ (0,2R) for any R ∈ (0, ∞) and then from the above expression of ∂ x Af , we get

∂ x Af L 1 α ≤ ℘(1) + ℘ ′ 0 K(x)/x L ∞ (0,2R) f L 1 α for any f ∈ L 1
α and α ≥ 0.

Lemma 4.6. For any a > a * there exists R * (a) > 0 such that the operator B is a-hypodissipative in L 1 α for any R ∈ (R * (a), ∞). Proof of Lemma 4.6. We introduce the primitive functions (4.12)

K(z) := z 0 K(u) du, K(z 1 , z 2 ) := K(z 2 ) -K(z 1 )
and, for any given a ∈ (a * , 0], we define the space

E := L 1 (φ), φ(x) := φ 0 (x) 1 x≤x 2 + φ ∞ (x) 1 x≥x 2 ,
where

φ 0 (x) := e K(x)+a x e K(x 2 )+a x 2 , φ ∞ (x) := x α x α 2 ,
and where

x 2 := max(1, x 1 , 2α/(a + K ′ 0 )) if γ = 0; (4.13) x 2 := max(1, x 1 , [3α/(x 1 K ′ 0 )] 1/γ , [-3a/K ′ 0 ] 1/γ ) if γ > 0. (4.14)
We recall that x 1 is defined in (1.30) and K ′ 0 is defined at the beginning of Section 4.1.

Consider f ∈ D(Λ) a real-valued function and let us show that for any a > a * and any R > R * (a), R * (a) to be chosen later,

(4.15) ∞ 0 sign(f (x)) Bf (x) φ(x) dx ≤ a f E .
Since the case of complex-valued functions can be handled in a similar way and since the norm • E is clearly equivalent to • L 1 α , that will end the proof.

On the one hand, we have

F +,c f L 1 (φ 0 1 x≤x 2 ) = ∞ R K c R (x) f (x) x∧x 2 0 ℘(y/x) φ 0 (y) dy x dx ≤ η(x 2 /R) ∞ R K c R (x) f (x) dx, with η(u) := sup [0,x 2 ] φ 0 u 0 ℘(z) dz ,
so that, performing one integration by part, we calculate

x 2 0 sign(f (x)) Bf (x) φ 0 (x) dx = = x 2 0 { -K(x)|f (x)| -∂ x |f (x)| } φ 0 (x) dx + x 2 0 sign(f ) (F +,c f ) φ 0 dx ≤ -|f (x 2 )| + a x 2 0 |f (x)| φ 0 (x) dx + η(x 2 /R) ∞ R K c R (x) f (x) dx. (4.16)
On the other hand, performing one integration by part again, we compute with θ := -(a+K ′ 0 )/2 if γ = 0 and θ := -K ′ 0 /3 if γ > 0 thanks to the choice of x 2 . Gathering (4.16) and (4.17), and taking R * large enough in such a way that η(x 2 /R * ) K 1 + θ ≤ 0, we get that B R is a-dissipative in E. We define If ℘ satisfies (1.34) and K(0) = 0, for any a > a * and any r ∈ [0, 1) there exists a constant C a,r such that

∞ x 2 sign(f (x)) B R f (x) φ ∞ (x) dx = ≤ |f (x 2 )| + ∞ x 2 |f (x)| { -Kφ ∞ + ∂ x φ ∞ + K c R (x) x 0 ℘( y x ) φ ∞ (y) dy x } dx ≤ |f (x 2 )| + ∞ x 2 |f (x)| [(℘ α K 1 -K 0 ) x γ + α/x] φ ∞ (x) dx ≤ |f (x 2 )| + ∞ x 2 |f (x)| a + θ x γ φ ∞ (x) dx, (4.
Y r := {f ∈ W r,1 α ∩ L 1 α+γ+1 (R); suppf ⊂ [0, ∞)}, r ∈ [0, 1], as a family of interpolating spaces between Y 0 = L 1 α+γ+1 ⊂ X and Y 1 ⊂ D(Λ).
(4.19) (AS B ) ( * 2) (t) B(X,Yr ) ≤ C a,r e at .
Proof of Lemma 4.8. Extending by 0 a function g ∈ L 1 (R + ) outside of [0, ∞), we may identify L 1 (R + ) = {g ∈ L 1 (R); supp g ⊂ [0, ∞)} and extending k = k(x, y) by 0 outside of {(x, y); 0 ≤ y ≤ x}, we may consider S B (t) and A as operators acting on L 1 (R) which preserve the support [0, ∞) (they then also act on L 1 (R + )).

Step 1. Assume first K(0) = 0. From Lemma 4.5-( 4) and Lemma 4.6, for any f ∈ L 1 α , we get

∂ x (AS B (t)f ) L 1 α ≤ C S B (t)f L 1 α ≤ C a e at f L 1 α .
From Lemma 4.5-(1) and Lemma 4.6 we get a similar estimate on the quantity AS B (t) B(L 1 α ,L 1 α+γ+1 ) and that ends the proof of (4.18).

Step 2. We assume now K(0) = 0. We introduce the notation

B 0 f (x) := - ∂ ∂x f (x) -K(x)f (x)
and then the shorthands 

U = U 0 + U 0 * U c .
From the explicit representation formula

(4.22) (S B 0 (t)f )(x) = e -K(x-t,x) f (x -t) ∀ t ≥ 0, ∀ x ∈ R,
where K is the primitive function defined in (4.12), we get

U 0 (t)f (x) = ∞ x k R (y, x) e -K(y-t,y) f (y -t) dy, so that ∂ x [U 0 (t)f (x)] = ∞ x K R (y) ℘ ′ (x/y) y -2 e -K(y-t,y) f (y -t) dy - K R (x) x ℘(1) e -K(x-t,x) f (x -t).
Using that K(yt, y) ≥ K * t for any y ≥ t, we have

e -K(y-t,y) |f (y -t)| ≤ e at |f (y -t)| ∀ t ≥ 0, ∀ y ∈ R,
and we deduce

∂ x [U 0 (t)f ] L 1 α ≤ ℘(1) 2R 0 K R (x) x α |f (x -t)| (x -t) + t dx e at + 2R 0 K R (x) x 0 |℘ ′ (y/x)| y α dy x |f (x -t)| (x -t) + t dx e at ≤ ℘(1) + ℘ ′ 0 K 1 2R γ+α e at t 2R 0 |f (x)|dx.
Since clearly (from the explicit representation formula (4.22) for instance) the same estimate holds for U 0 (t) B(L 1 ,L 1 α+γ+1 ) we get by interpolation and for any r ∈ [0, 1]

U 0 (t) B(L 1 ,Yr) ≤ C a
e at t r . Thanks to the identity (4.21), the fact that A c ∈ B(L 1 γ , L 1 ) and Lemma 4.6, we deduce for r ∈ [0, 1)

U (t)f Yr ≤ C a e at t r f L 1 + t 0 C a e a(t-s) (t -s) r A c S B (s)f L 1 ≤ C a,r e at t r f L 1 max(α,γ)
.

On the other hand, from Lemma 4.5-(1) and Lemma 4.6, we know that

U (t)f L 1 α+γ ≤ A B(L 1 α ,L 1 α+γ ) S B (t)f L 1 α ≤ C a e at f L 1 α .
These two estimates together imply (4.19).

Lemma 4.9. For the equal mitosis equation, there holds

(4.23) (A S B ) ( * 2) (t) B(X,Y 1 ) ≤ C t ∀ t ≥ 0
for some constant C which only depends on K through its norm K W 1,∞ (0,R) , where R is defined in Lemma 4.6.

Proof of Lemma 4.9. Thanks to the Duhamel formula (4.20) and the iterated Duhamel formula

S B = S B 0 + S B 0 * A c S B 0 + S B 0 * A c S B 0 * A c S B ,
we have

U = U 0 + U 0 * U c and U = U 0 + U 0 * U c 0 + U 0 * U c 0 * U c , from which we finally deduce (4.24) U * 2 = U * 2 0 + U * 2 0 * U c + U 0 * U c 0 * U + U 0 * U c 0 * U c * U.
From the explicit representation formula (4.22), we get

(U 0 (t)f )(x) = 4 K R (2x) e -K(2x-t,2x) f (2x -t)
as well as

(U c 0 (t)f )(x) = 4 K c R (2x) e -K(2x-t,2x) f (2x -t). We then easily compute (U * 2 0 (t)f )(x) = t 0 (U 0 (t -s)U 0 (s)f )(x) ds = 4 K R (2x) t 0 e -K(2x-t+s,2x) (U 0 (s)f )(2x -t + s) ds = 16 K R (2x) t 0 K R (2(2x -t + s))
e -K(2x-t+s,2x)-K(4x-2t+s,2(2x-t+s)) f (4x -2t + s) ds

= 16 K R (2x) u 1 u 0 K R (2u -4x + 2t) e -Θ(u) f (u) du (4.25) with u 0 := (4x -2t) ∧ (2x -t + R/2), u 1 := (4x -t) ∧ (2x -t + R/2) and Θ(u) := K(u -2x + t, 2x) + K(u, 2u -4x + 2t). Similarly, we have (4.26) (U 0 * U c 0 (t)f )(x) = 16 K R (2x) u 1 u 0 K c R (2u -4x + 2t) e -Θ(u) f (u) du.
The two last terms are clearly more regular (in x) than the initial function f . Moreover, extending by 0 the function f outside of [0, ∞), we see thanks to (4.22) that S B 0 (t)f , and then U * 2 0 (t)f and U 0 * U c 0 (t)f , are well defined as functions in L 1 (R). Using the lower bound Θ ≥ 0 and performing some elementary computations, we easily get from (4.24), (4.25) and (4.26) the estimate

∂ x [(AS B ) ( * 2) (t)f ] L 1 (R) ≤ C R t f L 1 , ∀ t ≥ 0,
which ends the proof of (4.23) since then

(AS B ) ( * 2) (t)f ∈ C(R) and supp (AS B ) ( * 2) (t)f ⊂ [0, ∞] imply (AS B ) ( * 2) (t)f (0) = 0.
With all the estimates established in the above lemmas, we are able to present the Proof of Proposition 4.4. We just have to explain why the hypothesis of Theorem 3.1 are satisfied in each cases. Hypothesis (H1) is an immediate consequence of Lemma 4.5-(1) and Lemma 4.6 together with Remark 2.2-(b). For that last claim we use that Y r ⊂ D(Λ r ′ ) for any 0 ≤ r ′ < r < 1 thanks to the classical interpolation theory, see (2.7), [START_REF] Komatsu | Fractional powers of operators. II. Interpolation spaces[END_REF] and [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF].

In the case when ℘ satisfies (1.34), Lemma 4.8 and Remark 2.2-(h) imply that hypothesises (H2) and (H3) are met with n = 1, ζ = 1 and ζ ′ = 0 in the case K(0) = 0 and are met with n = 2, ζ ∈ (0, 1) and ζ ′ = 0 in the case K(0) = 0. Also notice that the additional assumptions of Theorem 3.3 are met in the case that K(0) = 0.

For the equal mitosis equation, Lemma 4.5-(2) and Lemma 4.6 imply that assumption (H1) also holds with B(X) replaced by B(D(Λ)) and B(X, L 1 α+1 ), while Lemma 4.9 implies that (H2 ′′ ) holds with n = 2, ζ = 1, ζ ′ = 0 and any b > 0, so that we can apply Corollary 2.5 (assumption (H2) holds with n large enough thanks to Lemma 2.6). Finally, hypothesis (H3) follows from (H2) and the fact that D(Λ) ∩ L 1 α+1 ⊂ X compactly.

4.2.

Quantified semigroup Weyl's Theorem for the self-similar fragmentation equation. In this paragraph we are concerned with the selfsimilar fragmentation equation (1.41), so that we consider the operator

Λf (x) := -x ∂ ∂x f (x) -2 f (x) -K(x)f (x) + (F + f )(x)
where K(x) = x γ and F + is defined in (4.10) with k satisfying (1.21), (1.22) and (1.34). We perform the spectral analysis of Λ in the Banach space

X := L1 α ∩ L1 β for 0 ≤ α < 1 < β < ∞,
where we recall that the homogeneous Lebesgue space L1 α has been defined at the beginning of Section 1.2.5, and we set a * := α -1 ∈ [-1, 0). It is worth emphasizing that we classically have (that is again a consequence of the estimates established in the series of lemmas which follow, moreover the inclusion ⊃ is just straightforward and it is the only inclusion that we will really use)

D(Λ) = {f ∈ L1 α ∩ L1 β+γ , ∂ x f ∈ L1 α+1 ∩ L1 β+1 }.
As a first step in the proof of Theorem 1.1 we have Proposition 4.10. Under the above assumptions and definitions, the conclusion (2), and then (2.11) and (1), of Theorem 3.3 holds for the selfsimilar fragmentation semigroup in L1 α ∩ L1 β for any a > a * .

In order to establish Proposition 4.10 we introduce a suitable splitting Λ = A + B and we prove that A and B satisfy conditions (H1), (H2), (H3) with n = 1 as well as (3.6) with Y ⊂ D(Λ) as a consequence of the two technical Lemmas 4.11 and 4.12 below.

We introduce the following splitting inspired from [START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF]. With the notation of the previous section, we define

k s (x, y) := k(x, y) χ c δ (x) χ c ε (y) χ R (y) for 0 < ε ≤ δ/2 ≤ 1, R ≥ 2 to
be specified later, and then

k c := k c,1 + k c,2 + k c,3 with k c,1 (x, y) = k(x, y) χ δ (x), k c,2 (x, y) = χ c δ (x) χ c R (y) and k c,3 (x, y) = k(x, y) χ c δ (x) χ ε (y). We then define Af (x) = ∞ x k s (y, x) f (y) dy, A c,i f (x) = ∞ x k c,i (y, x) f (y) dy,
and then

A c = A c,1 + A c,2 + A c,3 , B 0 = -x ∂ ∂x -2 -K(x), B = B 0 + A c so that Λ = A + B. Lemma 4.11. For any 0 ≤ α ′ ≤ 1 ≤ β ′ , there holds A ∈ B( L1 1 , Ẇ 1,1 α ′ ∩ Ẇ 1,1 β ′ ) and A c,i ∈ B( L1 α ′ +γ , L1 α ′ ) for i = 1, 2, 3, with A c,1 f L1 α ′ ≤ ℘ α ′ δ γ f L1 α ′ +γ , A c,2 f L1 α ′ ≤ ℘ α ′ ∞ R f (x) x α ′ +γ dx, A c,3 f L1 α ′ ≤ ℘(z) z α ′ L 1 (0,ε/δ) f L1 α ′ +γ . Proof of Lemma 4.11. For 0 ≤ f ∈ L1 α ′ +γ , we compute A c,3 f L1 α ′ = ∞ 0 f (x) x γ χ c δ (x) x 0 ℘(y/x) y α ′ χ ε (y) dy x dx ≤ ℘(z) z α ′ L 1 (0,2ε/δ) f L1 α ′ +γ ,
and that establishes the last claim. For the other claims we refer to Lemma 4.5 and [18, 3. Proof of the main theorem] where very similar estimates have been proved.

Lemma 4.12. For any a > a * there exist R, δ, ε > 0 such that the operator B is a-hypodissipative in X.

Proof of Lemma 4.12. We define the space

E := L 1 (φ), φ(x) := x α + η x β , η > 0.
Consider a real-valued function f ∈ D(Λ) and let us show that for any a > a * and for suitable R ∈ (1, ∞), δ ∈ (0, 1), ε ∈ (0, δ/2) to be chosen later, (

∞ 0 sign(f (x)) Bf (x) φ(x) dx ≤ a f E . 4.27) 
Since the case of complex-valued functions can be handled in a similar way and since the norm • E is clearly equivalent to • X , that will end the proof.

From the identity

∞ 0 sign(f (x)) B 0 f (x) x r dr = ∞ 0 ((r -1)x r -x r+γ ) |f | dx
and the following inequality which holds for η > 0 small enough

η (β -1 -a) x β ≤ 1 + a -α 2 x α + η 1 -℘ β 2 x β+γ ∀ x > 0,
we readily deduce

∞ 0 sign(f (x)) B 0 f (x) φ(x) dx ≤ a ∞ 0 |f | φ dx + ∞ 0 ( α -a -1 2 x α -η ℘ β + 1 2 x β+γ ) |f | dx.
On the other hand, we know from Lemma 4.11 that

A c f E ≤ ℘ α δ γ f E + ( ℘ α R β-α + η ℘ β ) ∞ R x β+γ |f | + ℘(z) z α L 1 (0,2ε/δ) f E .
We then easily conclude to (4.27) putting together these two estimates and choosing R large enough, δ small enough, and then ε/δ small enough.

Proof of Proposition 4.10. We just have to explain why the hypothesis of Theorem 3.3 are satisfied. Hypothesis (H1) is an immediate consequence of Lemma 4.11-(1), Lemma 4.12 and Remark 2.2-(b).

We define

Y := {f ∈ W 1,1 (R); supp f ⊂ [ε, 2R]} endowed with the norm • W 1,1 .
We also define on X the projection π N onto the 2N + 1 dimension subspace

Rπ N := {1 [0,2R] p, p ∈ P 2N (R)},
where P 2N stands for the set of polynomials of degree less that 2N , by

(π N f )(x) := χ c ε (x) χ 2R (x) (p N,R * f )(x), p N,R (x) 
:= p(x/(4R))/(4R), where p N stands for the Bernstein polynomial p N (x) := α N (1x 2 ) N with α N such that p N L 1 (-1,1) = 1. By very classical approximation arguments, we have

f -π N f X ≤ C R √ N f W 1,1 ∀ f ∈ Y, so that (3.7) is fulfilled.
Finally, Lemma 4.11-(1) and Lemma 4.12 imply that

AS B (t)f Y ≤ C a e at f X
for any t ≥ 0, f ∈ X, a > a * . We then deduce (H2) with n = 1, ζ = 1 and ζ ′ = 0 thanks to Remark 2.2-(h) and Y ⊂ D(Λ), and also deduce (H3) with n = 1 and (3.6) from the fact that Y is compactly embedded in X .

4.3.

A remark on the age structured population equation. The aim of this short section is to present a quantified version of the Weyl's Theorem for the age structured population equation (1.42) in the simple case when

τ = ν = 1 and K ∈ C b (R + ) ∩ L 1 (R + ).
More precisely, we consider the evolution equation (4.28)

∂ t f = Λf = Af + Bf with A and B defined on M 1 (R) by (Af )(x) := δ x=0 ∞ 0 K(y) f (y) dy (Bf )(x) := -∂ x f (x) -f (x),
and we emphasize that the boundary condition in (1.42) has been equivalently replaced by the term Af involving a Dirac mass (δ 0 )(x) = δ x=0 in x = 0. We perform the spectral analysis of Λ in the space L 1 (R + ) as well as in the space X := M 1 (R) of bounded measures endowed with the total variation norm. In that last functional space, the domain D(Λ) is the space BV (R) of functions with bounded variation.

Lemma 4.13. In X = M 1 (R), the operators A and B satisfy

(i) A ∈ B(X, Y ) where Y = C δ 0 ⊂ X with compact embedding; (ii) S B (t) is -1-dissipative; (iii) the family of operators S B * AS B (t) satisfy (S B * AS B )(t) X→D(Λ) ≤ C e -t ∀ t ≥ 0.
Proof of Lemma 4.13. We clearly have A ∈ B(X, Y ) because K ∈ C b (R + ) and the -1-dissipativity of S B follows from the explicit formula

S B (t)f (x) = f (x -t) e -t 1 x-t≥0 .
We next prove (iii). We write

AS B (t)f = δ x=0 ∞ 0 K(y + t) f (y) dy e -t , next (S B * AS B )(t)f = t 0 S B (s) AS B (t -s)f ds = t 0 δ x-s=0 e -s 1 x-s≥0 ∞ 0 K(y + t -s) f (y) dy e -(t-s) ds = e -t 1 x≤t ∞ 0 K(y + t -x) f (y) dy,
and then

∂ x (S B * AS B )(t)f = -e -t δ x=t ∞ 0 K(y + t -x) f (y) dy -e -t 1 x≤t ∞ 0 K ′ (y + t -x) f (y) dy.
As a consequence, we deduce

∂ x (S B * AS B )(t)f M 1 ≤ K W 1,∞ e -t f M 1
and a similar estimate for (S B * AS B )(t)f M 1 .

As a first step in the proof of Theorem 1.1 for the age structured population equation, we have Proposition 4.14. Under the above assumptions and notation, the conclusion (2), and then (2.11) and (1), of Theorem 3.3 holds for the age structured population semigroup S Λ in M 1 (R) and in L 1 (R + ) for any a > a * := -1. Moreover, any eigenvalue ξ ∈ Σ d (Λ)∩∆ -1 is algebraically simple.

Proof of Proposition 4.14. In order to prove the result in X = M 1 (R + ), we just have to explain again why the hypothesis of Theorem 3.3 are satisfied. Conditions (H1), (H3) and (3.6) are immediate consequences of Lemma 4.13-(i) & (ii) together with Remark 2.2-(b). We refer to [START_REF] Gurtin | Non-linear age-dependent population dynamics[END_REF][START_REF] Chipot | On the equations of age-dependent population dynamics[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF] and the references therein for the existence theory in L 1 (R + ) (which extends without difficulty to M 1 (R + )) for the semigroup S Λ . Hypothesis (H2) with n = 1, ζ = 1 and ζ ′ = 0 is nothing but Lemma 4.13-(iii). Finally, taking up again the proof of Theorem 3.3 and using the additional fact that dimY = 1, we get the algebraic simplicity of the eigenvalues ξ ∈ Σ(Λ) ∩ ∆ -1 .

We may then easily extend the spectral analysis performed in M 1 (R + ) to the functional space L 1 (R + ). Indeed, for a function f ∈ L 1 , Theorem 3.3 implies that

e tΛ f - J j=1 e tξ j Π j f M 1 ≤ C a e at f M 1
for any a > -1 and t ≥ 0. Because S Λ is well defined in L 1 and the domain of Λ as an operator in M 1 (R + ) is BV (R + ) ⊂ L 1 (R + ), all the terms involved in the above expression belong to L 1 and we can replace the norms . M 1 by the norms . L 1 .

The Krein-Rutman Theorem in an abstract setting

In this section we consider a "Banach lattice of functions" X. We recall that a Banach lattice is a Banach space endowed with an order denoted by ≥ (or ≤) such that the following holds:

-The set X + := {f ∈ X; f ≥ 0} is a nonempty convex closed cone.

-For any f ∈ X, there exist some unique (minimal)

f ± ∈ X + such that f = f + -f -, we then denote |f | := f + + f -∈ X + .
-For any f, g ∈ X, 0 ≤ f ≤ g implies f ≤ g . We may define a dual order ≥ (or ≤) on X ′ by writing for ψ ∈ X ′ ψ ≥ 0 (or ψ ∈ X ′ + ) iff ∀ f ∈ X + ψ, f ≥ 0, so that X ′ is also a Banach lattice.

We then restrict our analysis to the case when X is a"space of functions". The examples of spaces we have in mind are the space of Lebesgue functions X = L p (U ), 1 ≤ p < ∞, U ⊂ R d borelian set, the space X = C(U ) of continuous functions on a compact set U and the space X = C 0 (U ) of uniformly continuous functions defined on an open set U ⊂ R d and which tend to 0 at the boundary of U . For any element (function) f in such a "space of functions" X, we may define without difficulty the composition functions θ(f ) and θ ′ (f ) for θ(s) = |s| and θ(s) = s ± as well as the support suppf as a closed subset of U . Although we believe that our results extend to a broader class of Banach lattices, by now on and in order to avoid technicality, we will restrict ourself to these examples of "space of functions" without specifying anymore but just saying that we consider a "Banach lattice of functions" (and we refer to the textbook [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] for possible generalisation). As a first consequence of that choice, we may then obtain a nice and simple property on the generator of a positive semigroup. Definition 5.1. Let us consider a Banach lattice X and a generator Λ of a semigroup S Λ on X.

(a) -We say that the semigroup S Λ is positive if S Λ (t)f ∈ X + for any f ∈ X + and t ≥ 0.

(b) -We say that a generator Λ on X satisfies Kato's inequalities if the inequality

(5.1) ∀ f ∈ D(Λ) Λθ(f ) ≥ θ ′ (f ) Λf
holds for θ(s) = |s| and θ(s) = s + . (c) -We say that -Λ satisfies a "weak maximum principle" if for any a > ω(Λ) and g ∈ X + there holds (5.2) f ∈ D(Λ) and (-Λ + a)f = g imply f ≥ 0.

(d) -We say that the opposite of the resolvent is a positive operator if for any a > ω(Λ) and g ∈ X + there holds -R Λ (a)g ∈ X + .

Here the correct way to understand Kato's inequalities is

∀ f ∈ D(Λ), ∀ ψ ∈ D(Λ * ) ∩ X ′ + θ(f ), Λ * ψ ≥ θ ′ (f ) Λf, ψ ,
where Λ * is the adjoint of Λ.

It is well known (see [START_REF] Nagel | An abstract Kato inequality for generators of positive operators semigroups on Banach lattices[END_REF] and [2, Remark 3.10] and the textbook [3, Theorems C.II.2.4, C.II.2.6 and Remark C-II.3.12] ) that the generator Λ of a positive semigroup S Λ on one of our Banach lattice space of functions satisfies Kato's inequalities (5.1). It is also immediate from the Hille's identity (2.2) that (a) implies (d) and then (c) in the general Banach lattice framework. For a broad class of spaces X the properties (a), (b), (c) and (d) are in fact equivalent and we refer again to the textbook [START_REF] Arendt | One-parameter semigroups of positive operators[END_REF] for more details on that topics.

Last, we need some strict positivity notion on X and some strict positivity (or irreducibility) assumption on S Λ that we will formulate in term of "strong maximum principle". It is worth mentioning that we have not assumed that X + has nonempty interior, so that the strict positivity property cannot be defined using that interior set (as in Krein-Rutman's work [START_REF] Kreȋn | Linear operators leaving invariant a cone in a Banach space[END_REF], see also [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]). However, we may define the strict order > (or <) on X by writing for f ∈ X f > 0 iff ∀ ψ ∈ X ′ + \{0} ψ, f > 0, and similarly a strict order > (or <) on X ′ by writing for ψ ∈ X ′ ψ > 0 iff ∀ g ∈ X + \{0} ψ, g > 0.

It is worth emphasising that from the Hahn-Banach Theorem, for any f ∈ X + there exists ψ ∈ X ′ + such that ψ X ′ = 1 and ψ, f = f X from which we easily deduce that

(5.3) ∀ f, g ∈ X, 0 ≤ f < g implies f X < g X .
Definition 5.2. We say that -Λ satisfies the "strong maximum principle" if for any given f ∈ X and µ ∈ R, there holds |f | ∈ D(Λ)\{0} and (-Λ + µ)|f | ≥ 0 imply f > 0 or f < 0.

We can now state the following version of the Krein-Rutman Theorem in a general and abstract setting.

Theorem 5.3. We consider a generator Λ of a semigroup S Λ on a Banach lattice of functions X, and we assume that

(1) Λ satisfies the property (1) of the semigroup Weyl's Theorem 3.1 for some a * ∈ R;

( 

Λf ∞ = λ f ∞ , Λ * φ = λ φ, RΠ Λ,λ = Vect(f ∞ ),
and then Π Λ,λ f = f, φ f ∞ ∀ f ∈ X. Moreover, there exists a * * ∈ (a * , λ) and for any a > a * * there exists C a > 0 such that for any

f 0 ∈ X S Λ (t)f -e λt Π Λ,λ f 0 X ≤ C e at f 0 -Π Λ,λ f 0 X ∀ t ≥ 0.
Remark 5.4. (a) Theorem 5.3 generalises the Perron-Frobenius Theorem [START_REF] Perron | Zur Theorie der Matrices[END_REF][START_REF] Frobenius | Ueber matrizen aus nicht negativen elementen[END_REF] for strictly positive matrix Λ, the Krein-Rutman Theorem [START_REF] Kreȋn | Linear operators leaving invariant a cone in a Banach space[END_REF] for irreducible, positive and compact semigroup on a Banach lattice with non empty interior cone and the Krein-Rutman Theorem variant [3, Corollary III-C.3.17] (see also [START_REF] Greiner | Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen[END_REF] for the original proof) for irreducible, positive, eventually norm continuous semigroup with compact resolvent in a general Banach lattice framework. We also refer to the book by Dautray and Lions [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] for a clear and comprehensible version of the the Krein-Rutman Theorem as well as to the recent books [START_REF] Mokhtar-Kharroubi | Mathematical topics in neutron transport theory[END_REF][START_REF] Banasiak | Perturbations of positive semigroups with applications[END_REF] and the references therein for more recent developments on the theory of positive operators. The main novelty here is that with assumptions (1) and (2) we do not ask for the semigroup to be eventually norm continuous and we only ask power compactness on the decomposition A and B of the operator Λ instead of compactness on the resolvent R Λ . .12] (see also [START_REF] Davies | One-parameter semigroups[END_REF][START_REF] Greiner | Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen[END_REF][START_REF] Greiner | On the spectral bound of the generator of semigroups of positive operators[END_REF]). We do not know whether the strong maximum principle and the irreducibility are equivalent assumptions although both are related to strict positivity of the semigroup or the generator. Anyway the strong maximum principle for the operator -Λ is a very natural notion and hypothesis from our PDE point of view and that is the reason why we have chosen to presented the statement of Theorem 5.3 in that way. Moreover, the proofs in [3, part C] are presented in the general framework of Banach lattices and positive or reducible semigroups (no compactness assumption is required in the statement of [3, Theorem C-III.3.12]) so that quite abstract arguments are used during the proof. We give below a short, elementary and somewhat selfcontained proof of Theorem 5.3, and thus do not use [3, Theorem C-III.3.12].

Proof of Theorem 5.3. We split the proof into five steps.

Step 1. On the one hand, let us fix 0 ≤ f 0 ∈ D(Λ) such that C := f 0 , ψ > 0 which exists by definition of ψ. Then denoting f (t) := S Λ (t)f 0 , we have

d dt f (t), ψ = Λf (t), ψ = f (t), Λ * ψ ≥ b f (t), ψ ,
which in turn implies (5.4)

f (t), ψ ≥ C e bt ∀ t ≥ 0.
On the other hand, from Theorem 2.1 we know that ω(Λ) ≤ max(a * , λ). As a consequence, if λ < b for any a ∈ (max(a * , λ), b) there exists C a ∈ (0, ∞) such that

f (t), ψ ≤ ψ X ′ f (t) X ≤ C a ψ X ′ e at f 0 X .
That would be in contradiction with (5.4). We conclude that a * < b ≤ λ = ω(Λ).

Step 2. We prove that there exists f ∞ ∈ X such that (5.5)

f ∞ = 1, f ∞ > 0, Λf ∞ = λf ∞ .
Thanks to the Weyl's Theorem 3.1 we know that for some a < 0

Σ(Λ) ∩ ∆ a = ∪ J j=1 {ξ j } ⊂ Σ d (Λ), ℜeξ j = λ, with J ≥ 1.
We introduce the Jordan basis V := {g 1,1 , ..., g J,L J } of Λ in the invariant subspace RΠ Λ,a as the family of vectors g j,ℓ = 0, Λg j,ℓ = ξ j g j,ℓ + g j,ℓ-1 ∀ j ∈ {1, ..., J}, ∀ ℓ ∈ {1, ..., L j }, with the convention g j,k = 0 if k ≤ 0 or k ≥ L j + 1, as well as the projectors (associated to the basis V ) Π j,ℓ := projection on g j,ℓ , Π k := projection on Vect(g j,k , 1 ≤ j ≤ J}.

For any fix g ∈ V we write g = g 1 -g 2 +ig 3 -ig 4 with g α ≥ 0 and we remark that there exists α ∈ {1, ..., 4} and k 0 ≥ 1 such that Π k 0 g α = Π Λ,a g α = 0. We then define k * = k * (g α ) := max{k; Π k g α = 0}, that set being not empty (since it contains k 0 ). We may split the semigroup as e Λt g α = j ℓ e Λt Π j,ℓ g α + e Λt (I -Π Λ,a ), with Π j,ℓ g α = (π j,ℓ g α ) g j,ℓ , π j,ℓ g α ∈ C, and e Λt g j,ℓ = e ξ j t g j,ℓ + ... + t ℓ-1 e ξ j t g j,1 .

Using the positivity assumption (3) and keeping only the leading order term in the above expressions, we have thanks to Theorem 3.1

0 ≤ 1 t k * -1 e (Λ-λ)t g α = J j=1 (π j,k * g α )e (ξ j -λ)t g j,1 + o(1).
There exist a sequence (t n ) which tends to infinity and complex numbers z j ∈ C, |z j | = 1, such that, passing to the limit in the above expression, we get 0

≤ J j=1 (π j,k * g α ) z j g j,1 =: g ∞ .
Because of the choice of α and the fact that the vectors g j,1 , 1 ≤ j ≤ J, are independent, we have then g ∞ ∈ RΠ Λ,a ∩ X + \{0}. Applying again the semigroup, we get

0 ≤ e Λt g ∞ = J j=1 e ξ j t [(π j,k * g α ) z j g j,1 ] ∀ t ≥ 0, which in particular implies J j=1
ℑm e ξ j t [(π j,k * g α ) z j g j,1 ] = 0 ∀ t ≥ 0, and then π j,k * g α = 0 if ℑm ξ j = 0. As a conclusion, we have proved that there exists g ∞ ∈ N (Λλ) ∩ X + \{0}. Together with the strong maximum principle we conclude that f ∞ := g ∞ / g ∞ satisfies (5.5).

Moreover, the above argument for any g = g j,L j associated to ξ j = λ and for any α ∈ {1, ..., 4} such that Π j,L j g α = 0 implies that π j,k * g α = 0, or in other words (5.6) max

ξ j =λ L j < max ξ j =λ L j .
Step 3. We prove that there exists φ ∈ X ′ such that (5.7) φ > 0, Λ * φ = λφ.

We define S * Λ to be the dual semigroup associated to S Λ and we emphasize that it is not necessarily strongly continuous (for the norm in X ′ ) but only weakly continuous (for the weak topology σ(X ′ , X)). However, introducing the splitting

S * Λ = (S Λ (I -Π Λ,a )) * + (S Λ Π Λ,a ) * and observing that (S Λ (I -Π Λ,a )) * B(X) ≤
C a e at for some a < λ, the same finite dimension argument as in Step 2 implies that there exists φ ∈ N (Λ *λ) ∩ X ′ \{0}.

Let us prove the strict positivity property. For a > s(Λ) and g ∈ X + \{0}, thanks to the weak and strong maximum principles (3) and (4), there exists 0 < f ∈ X such that (-Λ + a)f = g.

As a consequence, we have

φ, g = φ, (-Λ + a)f = (a -Λ * )φ, f = (a -λ) φ, f > 0.
Since g ∈ X + is arbitrary, we deduce that φ > 0. That concludes the proof of (5.7).

Step 4.

We prove that N (Λλ) = Vect(f ∞ ). Consider a normalized eigenfunction f ∈ X R \{0} associated to the eigenvalue λ. First we observe that from Kato's inequality

λ|f | = λf sign(f ) = Λf sign(f ) ≤ Λ|f |.
That inequality is in fact an equality, otherwise we would have

λ |f |, φ = Λ|f |, φ = |f |, Λ * φ = λ |f |, φ ,
and a contradiction. As a consequence, |f | is a solution to the eigenvalue problem λ|f | = Λ|f | so that the strong maximum principle assumption (4) implies f > 0 or f < 0, and without loss of generality we may assume f > 0. Now, thanks to Kato's inequality again, we write

λ(f -f ∞ ) + = Λ(f -f ∞ ) sign + (f -f ∞ ) ≤ Λ(f -f ∞ ) + ,
and for the same reason as above that last inequality is in fact an inequality. Since (5.3) and to the normalization hypothesis f = f ∞ = 1 the second case in the above alternative is not possible. Repeating the same argument with (f ∞f ) + we get that f ∞ ≤ f and we conclude with f = f ∞ . For a general eigenfunction f ∈ X C associated to the eigenvalue λ we may introduce the decomposition f = f r + if i and we immediately get that f α ∈ X R is an eigenfunction associated to λ for α = r, i. As a consequence of what we have just established, we have

(f -f ∞ ) + = |(f -f ∞ ) + |, the strong maximum principle implies that either (f -f ∞ ) + = 0, or in other words f ≤ f ∞ , either (f -f ∞ ) + > 0 or in other words f > f ∞ . Thanks to
f α = θ α f ∞ for some θ α ∈ R and we conclude that f = (θ r + iθ i ) f ∞ ∈ Vect(f ∞ ) again.
Step 5. We first claim that λ is algebraically simple. Indeed, if it was not the case, there would exist f ∈ X R such that Λf = λf + f ∞ and then

λ f, φ = f, Λ * φ = Λf, φ = λf + f ∞ , φ ,
which in turn implies f ∞ , φ = 0 and a contradiction. With the notation of step 2 and thanks to (5.6), that implies that for any ξ j = λ there holds L j < 1 or in other words Σ(Λ) ∩ ∆λ = {λ}. We conclude the proof by using the semigroup Weyl's Theorem 3.1, which in particular implies that Σ(Λ) ∩ ∆ a * * = {λ} for some a * * ∈ (a * , λ) because Σ(Λ) ∩ ∆ a is finite for any a > a * .

Krein-Rutman Theorem for the growth-fragmentation equations

This section is devoted to the proof of Theorem 1.1.

6.1. General growth-fragmentation equations. We present below the proof of the part of Theorem 1.1 which holds in full generality. Namely, we prove (1.45), (1.46) and (1.47) for the three models of growth-fragmentation equations.

We start with the cell-division equation for which we apply the Krein-Rutman Theorem 5.3 in the Banach lattice L 1 ((x 0 z 0 , ∞); x α dx), α > 1, where z 0 is defined by (1.24), instead of L 1 α in order that the operator Λ enjoys a strong maximum principle. We have proved (1) in Proposition 4.4. We have Λ * 1 = K(x) (1 -℘ 0 ) ≥ 0 so that (2) holds with b = 0 > a * . The weak maximum principle (3) is an immediate consequence of Kato's inequalities which in turn follows from the fact that 

F + θ(f ) ≥ θ ′ (f )F + f a.
-∂ x |f | + (K(x) + µ)|f | ≥ F + |f | ≥ 0,
and we conclude as in the [84, proof of Theorem 3.1] that the continuous function |f | does not vanish on (x 0 z 0 , ∞), so that f > 0 on (x 0 z 0 , ∞) or f < 0 on (x 0 z 0 , ∞).

For the self-similar equation the proof is exactly the same by applying the Krein-Rutman Theorem 5.3 in the Banach lattice L 1 (R + ; (x α + x β )dx), 0 ≤ α < 1 < β < ∞. Let us just emphasize that condition (1) has been proved in Proposition 4.10 and that condition (2) with b = 0 > a * follows from the fact that Λ * φ = 0 for the positive function φ(x) = x. We refer to [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF]Section 3] for the proof of the weak and strong maximum principles (3) and (4).

Finally, for the age structured population equation we apply the Krein-Rutman Theorem 5.3 in the Banach lattice L 1 (R + ). As in [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF]Appendix], we observe that, denoting by λ > -1 the real number such that 

* ψ = ∂ x ψ -ψ + K(x)ψ(0) = λψ, 0 ≤ ψ ∈ L ∞ (R + ),
so that in particular (2) holds with λ > a * = -1. Condition (1) has been proved in Proposition 4.14 and the proof of the weak and strong maximum principles (3) and (4) is classical. 6.2. Quantified spectral gap theorem for the cell division equation with constant total fragmentation rate. We consider the particular case of the cell-division equation with constant total fragmentation rate and fragmentation kernel which furthermore fulfils condition (1.36) for which we can give an accurate long-time asymptotic behaviour (as formulated in point (i) of Theorem 1.1) and answer to a question formulated in [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF]. We then consider the equation (6.8)

∂ t f + ∂ x f + K 0 f = K 0 ∞ x κ(y, x) f (y) dy
with vanishing boundary condition (1.28), where K 0 > 0 is a constant and κ satisfies (1.36). In such a situation, we have the following accurate description of the spectrum.

Proposition 6.5. The first eigenvalue is given by λ = s(Λ) := (n F -1)K 0 with n F defined in (1.36). On the other hand, for any a * * ∈ (-K 0 , (n F -1)K 0 ) and any α > α * , with α * large enough (but explicit and given during the proof ), the spectral gap Σ(Λ) ∩ ∆ a * * = {λ} holds in X := L 1 α . We use the following extension (shrinkage) of the functional space of the semigroup decay proved in [START_REF] Mischler | Semigroup factorisation in Banach spaces and kinetic hypoelliptic equations[END_REF]. Theorem 6.6 (Extension of the functional space of the semigroup decay). Let E and E be two Banach spaces such that E ⊂ E with dense and continuous embedding, and let L be the generator of a semigroup S L (t) := e tL on E, L the generator of a semigroup S L (t) := e tL on E with L |E = L.

We assume that there exist two operators A, B ∈ C (E) such that

L = A + B, L = A + B, A = A |E , B = B |E ,
and a real number a * * ∈ R such that there holds:

(i) B -a is hypodissipative on E, B -a is hypodissipative on E for any a > a * * ; (ii) A ∈ B(E), A ∈ B(E);
(iii) there is n ≥ 1 such that, for any a > a * * and for some constant

C ′ a ∈ (0, ∞), (AS B ) ( * n) (t) B(E,E) ≤ C ′ a e at .
The following equivalence holds:

(1) There exists a finite rank projector Π L ∈ B(E) which commutes with L and satisfy Σ(L |Π L ) = {0}, so that the semigroup S L = e tL satisfies the growth estimate (6.9)

∀ t ≥ 0, S L (t) -Π L B(E) ≤ C L,a e a t
for any a > a * * and some constant C L,a > 0;

(2) There exists a finite rank projector Π L ∈ B(E) which commutes with L and satisfy Σ(L |Π L ) = {0}, so that the semigroup S L = e tL satisfies the growth estimate (6.10) ∀ t ≥ 0, S L (t) -Π L B(E) ≤ C L,a e a t for any a > a * * and some constant C L,a > 0.

Proof of Proposition 6.5.

Step 1. We recall some facts presented in [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF]. We introduce the rescaled function g(t, x) := f (t, x) e -λt and the associated rescaled equation (6.11)

∂ t g + ∂ x g + n F K 0 g = K 0 ∞
x κ(y, x) g(y) dy with vanishing boundary condition (1.28) and initial condition g(0) = f 0 . We observe that the number of particles ∞ 0 g(t, x) dx is conserved. One can then show using the Tikhonov's infinite dimensional version of the Brouwer fixed point Theorem that there exists a steady state f ∞ by proceeding exactly as for the self-similar fragmentation equation [36, Section 3] (see also [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF][START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF] where other arguments are presented). Existence of the steady state f ∞ is also given by the Krein-Rutman Theorem presented in section 6.1. This steady sate corresponds to the first eigenfunction associated to the first eigenvalue (n F -1) K 0 of the cell-division equation (6.8). Anyway, under assumption (1.36), it has been shown during the proof of [103, Theorem 1.1] and [START_REF] Laurenc ¸ot | Exponential decay for the growthfragmentation/cell-division equation[END_REF]Theorem 1.1] that the solution g to (6.11) satisfies g(t)f 0 f ∞ -1,1 ≤ e -λt f 0f 0 f ∞ -1,1 where for any f ∈ L 1 1 with mean 0 we have defined as well as the Banach space E obtained by completion of L 1 α with respect to the norm • -1,α . Let us explain now why the hypothesis (i), (ii) and (iii) in Theorem 6.6 are fulfilled. We clearly have that A satisfies (ii) in both spaces E and E, as well as that B satisfies (i) in the space E for any a > a * , a * := -K 0 (1 -℘ α ) thanks to Lemma 4.6. We claim that B also satisfies (i) in the space E for any α > log 2 3 and any a > a ′ := 2K 0 (3 × 2 -α -1). In order to prove that last claim we proceed along the line of the proof of [START_REF] Perthame | Exponential decay for the fragmentation or celldivision equation[END_REF]Theorem 1.1]. For any g ∈ E, we introduce the notation g(t) := e Bt g, G(t, x) := x 0 g(t, u) du, and we compute Similarly as in the proof of Lemma 4.6, we define

∂ t G + ∂ x G + 2 K 0 G = -2K 0 ∞ x χ c R ( 
φ(x) := 1 [0,x 2 ] + x α-1 x α-1 2 1 [x 2 ,∞)
and we compute for R ≥ x 2

∂ t ∞ 0 |G| φ + ∞ 0 |G| φ α -1 x 1 x≥x 2 + 2 K 0 ∞ 0 |G| φ ≤ K 0 2 α-1 ∞ 0 |G| φ χ c R + K 0 2 α-1 ∞ 0 |(χ c R ) ′ | x |G| φ dx ≤ 3 K 0 2 α-1 ∞ 0 |G| φ,
where in the last line we have used that |x (χ c R ) ′ | ≤ 2 by definition of χ c R . We conclude by taking x 2 = R large enough.

Moreover, we claim that (6.12) (AS B ) ( * 2) (t)

B(E,E)

≤ C ′ (1 + t) e -µt , with µ := n F K 0 = 2K 0 . In order to prove estimate (6.12), as in the proof of Lemma 4.9 and with the same notation, we compute starting from (4.25) We have a similar estimate for U 0 * U c 0 and we then obtain (6.12) thanks to formula (4.24). We conclude by using the shrinkage of functional space result stated in Theorem 6.6, and we get for possible definition of α * the unique real number such that 3℘ α *n F = [a * * -(n F -1)K 0 ]/K 0 for any fixed a * * ∈ (-K 0 , (n F -1)K 0 ).

U ( * 2) 0 (t)g(x) = 16K 2 0 χ R (2x) e -µt
Step 3. For the cell division equation with smooth offspring distribution ℘ we can proceed along the line of [73, Theorem 1.1] and of step 2. We introduce the same splitting as for the mitosis equation and we work in the same spaces. We clearly have again that A satisfies (ii) in both spaces E and E and B satisfies (i) in E. We claim that B also satisfies (i) in the space E for any a > a ′ ∈ (-n F K 0 , 0) and any α > α ′ where α ′ > 1 is such that a ′ /K 0 = -n F + 4 α ′ n F + ℘ α ′ -1 . Indeed, we have and that ends the proof of (6.13). We introduce the notation E 1 := E, E 0 := E and E 1/2 as the 1/2 complex interpolation between the spaces E 0 and E 1 . From the above estimates, we have for any a > -µ that U 0 (t) E j ,E j+1/2 ≤ C t -1/2 e at , for j = 0, 1/2.

∂ t G + ∂ x G + n F K 0 G = -K 0 ∞ x ∞ y κ c R (z, y) ∂ z G(z) dzdy = -K 0 ∞ x β c R (z, x) G(z) dz,
Thanks to (4.24) it is not difficult now to prove that (6.12) holds also in the present case. We conclude again by using the shrinkage of functional space result stated in Theorem 6.6. Then, there exists a computable constant a * * ∈ (a * , 0) such that the spectral gap Σ(Λ) ∩ ∆ a * * = {0} holds in the functional space X = L1 α ∩ L1 β , 0 ≤ α < 1 < β.

Proof of Proposition 6.7. We split the proof into four steps.

Step 1. A priori bounds. We fix a = a * /2, where a * is the same as in Proposition 4.10. From Proposition 4.10 and then Theorem 3.3, there exists a constant R a such that for any eigenfunction f associated to an eigenvalue ξ ∈ Σ(Λ) ∩ ∆ a , which satisfies the normalization condition Together with the eigenvalue problem rewritten

∂ x (x 2 f ) = x 2 [x γ f + ξ f -F + f ],
we deduce that x 2 f ∈ BV (R + ) ⊂ L ∞ (R + ) and then, iterating the argument, that for any δ ∈ (0, 1) there exists C δ such that (6.16) f W 1,∞ (δ,1/δ) ≤ C δ .

Step 2. Positivity. From (6.14) and (6.15) we clearly have (6.17 Taking δ 1 := 1/(4R), we see that there exists at least one point x 1 ∈ (2δ 1 , 1/(2δ 1 )) such that (6.18) |f (x 1 )| ≥ δ 2 1 /2. Introducing the logarithm function θ defined by f (y) = |f (y)| e iθ(y) which is locally well defined for any y ∈ (0, ∞) such that f (y) = 0, we see from (6.18) and (6.16) that there exists an interval I 1 ⊂ (δ 1 , 1/δ 1 ), x 1 ∈ I 1 , and a computable real number ε 1 := ε(δ 1 ) > 0 such that (6. We may assume without loss of generality that x 1 > x 2 .

Step 3. By definition of the growth-fragmentation operator Λ and denoting signf := f /|f | 2 where f stands for the complex conjugate of f , we clearly have 

  hold with continuous embedding for any 0 < η ′ < η < 1. Let us emphasize that the first inclusion follows from the second inclusion in[70, Proposition 2.8] and [70, Theorem 3.1] while the second inclusion in (2.7) is a consequence of the first inclusion in [70, Proposition 2.8] together with [70, Theorem 3.1] and the classical embedding

  (c) The implication (1) ⇒ (2) is just straightforward by taking A := ΛΠ and B := Λ(I -Π). With such a choice we have A ∈ B(X) by assumption, next A ∈ B(X, D(Λ)), because ΛA = A 2 ∈ B(X), and Ba is hypodissipative in X for any real number a > a * so that hypothesis (H1) is satisfied as well as hypothesis (H2) with n = 1, ζ = 1 and ζ ′ = 0. (d) We believe that the implication (2) ⇒ (1) is new. It can be seen as a condition under which a "spectral mapping theorem for the principal part of the spectrum holds" in the sense that (1.6) holds. Indeed, defining Λ 0 := Λ(I -Π), for any a > a * there holds Σ(Λ) = Σ(Λ 0 ) ∪ Σ(Λ 1 ), Σ(e tΛ ) = Σ(e tΛ 0 ) ∪ Σ(e tΛ 1 ), Σ(e tΛ 1 ) = e tΣ(Λ

17

 17 

  )

Lemma 4 . 7 .

 47 The operator Λ generates a C 0 -semigroup on L 1 α . Proof of Lemma 4.7. Thanks to Lemmas 4.5 and 4.6, we have that Λ is b-dissipative in E with b := A R B(E) + a. On the other hand, one can show that R(Λ-b) = X for b large enough and conclude thanks to Lumer-Phillips Theorem ([START_REF] Lumer | Dissipative operators in a Banach space[END_REF] or[START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] Theorem I.4.3]) that Λ generates a C 0 -semigroup. Equivalently, one can argue as in [36, Proof of Theorem 3.2] by introducing an approximation sequence of bounded total fragmentation rates (K n ) and proving that for any fixed initial datum f 0 ∈ X the associated sequence of solutions (f n ) (constructed by a mere Banach fixed point Theorem in C([0, T ]; E), ∀ T > 0) is a Cauchy sequence. That establishes that for any f 0 ∈ E there exists a unique solution f ∈ C(R + ; E) to the Cauchy problem associated to the operator Λ and then that Λ generates a C 0 -semigroup.

Lemma 4 . 8 .

 48 If ℘ satisfies (1.34) and K(0) = 0, for any a > a * there exists a constant C a such that(4.18) AS B (t) B(X,Y 1 ) ≤ C a e at .

  A c := F +,c , U := AS B , U c := A c S B , U 0 := AS B 0 and U c 0 := A c S B 0 , where S B (resp. S B 0 ) is the semigroup associated to the generator B (resp. B 0 ) complemented with the boundary condition (1.28). Thanks to the Duhamel formula (4.20) S B = S B 0 + S B 0 * A c S B ,

  ) there exist b > a * and ψ ∈ D(Λ * ) ∩ X ′ + \{0} such that Λ * ψ ≥ b ψ; (3) S Λ is positive (and Λ satisfies Kato's inequalities); (4) -Λ satisfies a strong maximum principle. Defining λ := s(Λ), there holds a * < λ = ω(Λ) and λ ∈ Σ d (Λ), and there exists 0 < f ∞ ∈ D(Λ) and 0 < φ ∈ D(Λ * ) such that

  (b) Condition (2) is necessary because the requirement (1) only implies the needed compactness and regularity on the iterated operator (A R B (z)) n for z ∈ ∆ a * . Condition (2) can be removed (it is automatically verified) if condition (1) holds for any a * ∈ R. (c) In a general Banach lattice framework and replacing the strong maximum principle hypothesis (4) by the more classical irreducibility assumption on the semigroup (see for instance [3, Definition C-III.3.1]) Theorem 5.3 is an immediate consequence of Theorem 3.1 together with [3, Theorem C-III.3

  e for any f ∈ D(Λ), θ(s) = |s| and θ(s) = s + . The strong maximum principle (4) follows from the fact that the equation |f | ∈ D(Λ)\{0} and (-Λ + µ)|f | ≥ 0 may be rewritten as

∞ 0 K

 0 (x) e -(1+λ) x dx = 1, which exists thanks to condition (1.44), the function ψ(x) := e (1+λ)x ∞ x K(y) e -(1+λ) y dx is a solution to the dual eigenvalue problem Λ

f - 1 Step 2 .x 0 f

 120 For the mitosis equation, we introduce the splitting Λ = A + B whereA := F + R , B := -∂ xn F K 0 + F +,cR , with the notation of section 4.1. We define E := L 1 α , α > 1, and for any f ∈ L 1 α with mean 0 we define f -1,α := ∞ 0 (y) dy x α-1 dx,

  2y) ∂ y G(t, 2y) dy = 2K 0 χ c R (2x) G(t, 2x) + 4K 0 ∞ x (χ c R ) ′ (2y) G(t, 2y) dy.

u 1 u 0 χUL 1 β≤ C ( 1 +

 011 R (2u -4x + 2t)g(u) du = 16K 2 0 χ R (2x) e -µt χ R (2u -4x + 2t)G(u) -4x + 2t)G(u) du ,and we get then for any β ≥ 0 t) e -µt G L 1 .

= 1 u 0 ∞ 0 Φ 1 1 ∞ 0 |G|

 100110 -n F (x/z) (χ c R (z)) ′ + χ c R (z) β(z, x),whereβ(z, x) := -∂ ∂z ∞ x κ(z, y) dy, n F (u) := ℘(u ′ ) du ′ ,and where κ c R (x, y) = χ c R (x) κ(x, y) is defined on R 2 + by extended it to 0 outside of the set {(x, y) ∈ R 2 ; 0 < y < x}. On the one hand, we haveΦ 1 (z) := z 0 n F (x/z) |(χ c R (z)) ′ | φ(x) dx ≤ n F |(χ c R (z)) ′ | (x 2 + z α /α) ≤ 4 α n F φ(z)for any z ≥ 0 if x 2 ≤ R α /α. On the other hand, we haveΦ 2 (z) := z 0 χ c R (z) β(z, x) φ(x) dx ≤ χ c R (z) η(x 2 /R) + ℘ α-1 φ(z) , η(u) := u 0 ℘(u ′ ) du ′ , for any z ≥ 0. Next, we compute x)| φ(x) dx |G(z)| dz ≤ K (z) + Φ 2 (z) |G(z)| dz ≤ K 0 4 α n F + η(x 2 /R) + ℘ α-φ dx,and we take α > 1 large enough and next R/x 2 large enough. We next claim that U 0 := AS B 0 withB 0 := -∂ xµ, µ := n F K 0 , satisfies (6.13) U 0 (t)g L 1 β ≤ C 1 + 1 t e -µt g -1,1 .Starting from the definition(U 0 (t))(x) := e -µt K 0 ∞ x κ R (y, x) ∂ y G(yt) dy = -e -µt K 0 κ R (x, x) G(xt)e -µt K 0 ∞ x ∂ y [κ R (y,x)] G(yt) dy, β G(yt) dy≤ K 0 e -µt C R,β 1 + 1 t ∞ 0 |G(z)| dz,

6. 3 .

 3 Quantified spectral gap for the self-similar fragmentation equation with positive kernel. We present a second situation where a very accurate and quantitative description of the spectrum (as formulated in point (ii) of Theorem 1.1) is possible. Proposition 6.7. Consider the self-similar fragmentation equation (1.41) and assume that the fragmentation kernel satisfies (1.39),(1.34) and(1.35).

  )| y 2+γ dy ≤ R a , |ξ| ≤ R a .

)

  )| y dy ≥ 1 -2 R δ.

19 )0δ- y dy ≥ κ 2 .

 192 |I 1 | ≥ ε 1 and ℜe(f (x) e -iθ(x 1 ) ) ≥ δ 2 1 /4 ∀ x ∈ I 1 , and better (since cos and |f (x)| are Lipschitz functions)(6.20) |I 1 | ≥ ε 1 and |f (x)| ≥ δ 2 1 /4, |θ(x 1 )θ(x)| ≤ π/4 ∀ x ∈ I 1 .On the other hand, we know that Π Λ,0 f = 0 which yields ∞ ℜe f (y) e -iθ(x 1 ) y dy = 0. From (6.15) again, we deduce that1/δ δ ℜe f (y) e -iθ(x 1 ) y dy ≤ 2 R δ.But together with the positivity property (6.19), there exists δ 2 < δ 1 such that 2Rδ 2 < κ 2 := ε 1 δ 2 1 /8 > 0 and for any δ ∈ (0, δ 2 )ℜe f (y) e -iθ(x 1 )Using the same arguments as above, there existsx 2 ∈ (δ 2 , 1/δ 2 ) such that |f (x 2 )| cos(θ(x 2 )θ(x 1 )) ≤ 2 δ 2 2 /2,and then there exist an interval I 2 ⊂ (δ 2 , 1/δ 2 ) and some constants ε 2 , κ 2 > 0 such that|I 2 | ≥ ε 2 and |f (y)| ≥ κ 2 ∀ y ∈ I 2 ,as well as cos[θ(y)θ(x)] ≤ 0 ∀ x ∈ I 1 , ∀ y ∈ I 2 .

0 ( 1 2 I 2 |f (y)| I 1 1 2 δ 1 ε 1 ε 2 κ 2

 012122 x) |f (y)|(1signf (y) signf (x)) φ(x) dxdy. Since ℜe{1signf (y) signf (x)} = 1cos[θ(y)θ(x)] ≥ 1 ∀x ∈ I 1 , ∀ y ∈ I 2 , we deduce that ℜe ∞ Λ|f | -(Λf ) signf ) φ ≥ ℘ * δ γ-cos[θ(y)θ(x)] x dx dy ≥ ℘ * δ γ-1 =: -a * * .Step 4.Conclusion. For any mass normalized eigenvector f ∈ D(Λ) associated to an eigenvalue ξ ∈ ∆ a ∩ Σ(Λ)\{0}, there holds thanks to step 3ℜeξ |f |, φ = ℜe ξf signf, φ = ℜe Λf signf, φ ≤ Λ|f |, φ + a * *and then ℜeξ ≤ a * * . As a consequence, ∆ a * * ∩ Σ(Λ) = {0} and we conclude thanks to Theorem 3.1.

  and the growth bound ω(Λ) coincide if they are at the right hand side of a * , or in other words (1.7) holds. Although the splitting condition in (2) may seem to be strange, it is in fact quite natural for many partial differential operators, including numerous cases of operators which have not any self-adjointness property, as that can be seen in the many examples studied in[START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres[END_REF][START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF][START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-Theorem[END_REF][START_REF] Arnold | The Wigner-Fokker-Planck equation: stationary states and large time behavior[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations[END_REF][START_REF] Cáceres | Rate of convergence to selfsimilarity for the fragmentation equation in L 1 spaces[END_REF][START_REF] Carrapatoso | Exponential convergence to equilibrium for the homogeneous Landau equation[END_REF][START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation -part I. the parabolic-elliptic case[END_REF][START_REF] Tristani | Boltzmann equation for granular media with thermal force in a weakly inhomogenous setting[END_REF][START_REF] Carrapatoso | Uniqueness and long time asymptotic for the Keller-Segel equation -part II. the parabolic-parabolic case[END_REF].

	(e) When a * < 0 the above result gives a characterization of uniformly
	exponentially stable semigroup (see e.g. [35, Definition V.1.1]) in a
	Banach space framework. More precisely, if assumption (2) holds
	with a * < 0, then
	S Λ is uniformly exponentially stable iff s(Λ) < 0.
	That last assertion has to be compared to the Gearhart-Prüss The-
	orem which gives another characterization of uniform exponential
	stability in a Hilbert framework, see [44, 107, 3] as well as [35, The-
	orem V.1.11] for a comprehensive proof.
	(f )

1 

) (because Λ 1 ∈ B(X 1 )), Σ(Λ 0 ) ⊂ ∆ a (by hypothesis) and Σ(e tΛ 0 ) ⊂ ∆ e at (from the conclusion (2.10)). In particular, under assumption (2) the spectral bound s(Λ) (g) For a sectorial operator B, hypothesis (H1) holds for any operator A which is suitably bounded with respect to B. More precisely, in a Hilbert space framework, for a "hypo-elliptic operator B of order ζ" and for a B ζ ′ -bounded operator A, with ζ ′ ∈ [0, ζ), in the sense that for any f ∈ D(B)

  Assumption (2) in Theorem 3.1 is similar to the definition in[START_REF] Voigt | A perturbation theorem for the essential spectral radius of strongly continuous semigroups[END_REF] of the fact that "A is B-power compact", but it is written at the semigroup level rather than at the resolvent level. Under such a power compact hypothesis, Voigt establishes a generalisation of Weyl's Theorem. His proof uses the analytic property of the resolvent function R

	or
	[67, Theorem IV.5.35] combined with the spectral mapping theorem,
	see [35, Section IV.3.10] for instance.
	(d)

Λ (z) obtained by Ridav and Vidav in

[START_REF] Ribarič | Analytic properties of the inverse A(z) -1 of an analytic linear operator valued function A(z)[END_REF] 

as we present here. As a matter of fact, Theorem 3.1 is a simple consequence of [118, Theorem 1.1] together with Theorem 2.1. However, for the sake of completeness we give an elementary proof of Theorem 3.1 (which consists essentially to prove again

[START_REF] Voigt | A perturbation theorem for the essential spectral radius of strongly continuous semigroups[END_REF] Theorem 1.1] 

without the help of