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Abstract—Recent years have seen social networks gain lot of
popularity to share information, connecting millions of people
from all over the world. Studying the spread of information,
or Information Diffusion in these networks has shaped into
a well known field of study with numerous applications in
areas such as marketing, politics, and personality evaluation.
Researchers have studied information diffusion under various
models and opted centrality-based algorithms that offer better
results over many other approaches. These algorithms try to
select initial seed nodes effectively so as to maximize influence in
a network in minimum time. However, since different networks
follow different structural properties, motivating the need to
study different diffusion strategies for networks with different
structural properties. In this paper, we aim to empirically analyze
four different measures of centrality to select seed vertices
for influence mining on four classes of networks: small-World
networks, scale-free networks, small world-scale free networks
and random networks. These networks are generated equivalent
in size to four semantically different real world social networks.
We use two most frequently used diffusion models: Independent
Cascade model and Linear Threshold model for analysis. Our
results show interesting behavior of various centrality measures
for the above said classes of networks.

I. INTRODUCTION

With the recent development of social networks and online
communication channels, communication and sharing of infor-
mation has gained lot of popularity with billions of users for
these communication channels. Online Social networks con-
nect people having relationships, common interests, colleagues
and friends irrespective of physical distances and geographical
constraints with almost negligible communication cost. As
communication in social networks has gained volume, it has
also attracted researchers in studying information diffusion,
i.e. how information spreads in a social network. On the
other hand, popular online social networks including Face-
book, Twitter, Flickr and LinkedIn provide rich support to
researchers, to observer and analyse their network data, which
they, in return; use to gain marketing advantages. For example,
a travelling agency willing to advertise a family holiday trip
to a resort would target a specific group of users in a network
having travelling interests and more than average followers,

or a political campaign runner will look for economists and
journalists to publicize their policies. Viral Marketing and
spread of innovations [1], virus propagation [2], rumors and
everyday news are all being spread through social networks,
either to achieve a desirable objective or just for entertainment.
Its effects are similar to that of word-of-mouth phenomena
well studied in sociology [3]. People tend to have more trust
in word-of-mouth of known contacts rather than advertising
campaigns [4], [5].

Given a network represented by a graph G(V,E) with the
set of vertices V representing people and the set of edges
E representing links among people, if any node v1 ∈ V ,
replicates the action of another node v2 ∈ V , we may assume
that v2 has influence on v1. The frequency of occurrence
of this pattern helps us conclude whether our assumption is
true or not. The causes for influence may vary from node to
node. The influence of a node on other connected nodes can
be due to some external factors like trust [6] or maybe the
action of an influential node which is very popular, or they
may be influenced by seeing the influential nodes performing
that action [7]. When the influential node performs an action,
because of its influence, nodes connected to it will do the same
action i.e. replicate the action. In other words, it means that
information diffusion starts whenever the action is replicated.
A very important task for the maximization of diffusion due
to influence is the identification of influential nodes (Chapter
19 of [8]). By determining influential nodes we can study
the behaviour of a network and how much information is
spread through the nodes and similarly how much time will
it take for the network to get diffused or infected with the
information. The role and structural position of individuals in
a social network play an important part in determining how
influential a person is, in a network. An important goal of
researchers is to identify from a given network, a small set of
such influential people which can, ideally influence the entire
network in minimal time.

One of the most frequently used methods of picking up
this set (called seed) of users to spread information is based



on centrality measures [9]. While there are various types of
centrality, like degree centrality, closeness centrality, between-
ness centrality, Eigen-vector centrality, they are applied to a
network naively, without careful analysis of which of them
will perform best on structurally different classes of networks.

Two well known classes of networks studied extensively
are: the small world networks [10] with low average path
lengths and high clustering coefficients and scale free networks
[11] with degree distribution following power-law. Many real
networks works posses both the properties of small world and
scale free networks thus giving us a hybrid classification, small
world-scale free networks. We also use random networks [12]
for comparative analysis.

This paper tries to establish a relationship among different
centrality based seed selection methods and different classes
of networks in an attempt to analyse these effects in the
case of social networks. We propose that centrality-based
methods behave differently on structurally different types of
networks. In order to prove our postulate, we use two most
fundamental and widely used models to study diffusion and
influence, linear threshold (LT) and independent cascade (IC)
model [13]. The LT model determines how an inactive node
is influenced by its active neighbours, each inactive node
v chooses a minimum influence threshold. If the incoming
influence exceeds this threshold, v becomes active. On the
other hand, IC model defines how active nodes will attempt
to influence an inactive node in their neighbour. Each active
node u attempts to influence all of its inactive neighbours v
only once, independent of past propagation and other active
neighbours of v.

The LT and IC model work simultaneously and calculate
influence of k nodes (k is a percentage of total nodes in the
network to be used as initial seeds) on the network. We study
this model on four different classes of networks, including
small world (SW) [10], scale free (SF) [14], small world-
scale free (HK) [15] and random (RD) networks [12]. We
also compare these artificially generated networks with four
equivalent size real social networks which are a Blog network,
Twitter social network, Epinions who-trust-who network and
co-atuhor network of researchers. The use of real networks
not only allow us to select realistic density for the artificially
generated networks, but also to compare the behavior of LT
and IC models on real networks as well. The results reveal
quite interesting behavior and can be outlined below:
• We study the effects of different seed selection strategies

for different classes of networks and find similarities
based on the degree distribution of these networks.
Networks with power law degree distribution behave
similarly and networks with poisson distribution behave
similarly for our experiments.

• High degree nodes play an important role in influencing
other nodes in the network.

• High density of networks and very high connectivity of
high degree nodes play an important role in reducing the
time required to influence other nodes.

Rest of the paper is organized as follows: in section II

we have summarized the related work in which diffusion in
social networks via influence is studied; section III explains
the diffusion models we used to carry out our experiments and
the different centrality metrics used for seed selection; section
IV provides the details of datasets used for experimentation
and section V describes the experimental setup. In section VI,
results and observations are discussed and finally, we have
given concluding remarks in section VII.

II. RELATED WORK

Valente et al. [16] designed a threshold model for diffusion
in social networks assuming that behaviour of an individual
is either to engage or not to engage in an activity, in which
some of the people are engaged depending on their threshold
value. Concluding that threshold lags occur in this model,
whose magnitude indicates the degree of delay in threshold
activation. Kempe et al. [4] give natural and general model of
influence propagation through word-of-mouth referral. They
propose a decreasing cascade model, based on greedy al-
gorithm, that initially searches for active nodes eventually
spreading a particular behaviour through the entire network.
The algorithm chooses a large no of active sets initially so that
the spreading can commence very swiftly. Kimura and Saito
[17] propose two natural special cases of Independent Cascade
model, which efficiently calculate good estimate of quantity
for influential nodes in large scale IC based social networks for
information diffusion. They propose better models than IC for
extracting influential nodes and experimentally demonstrate
small propagation probabilities through links can give good ap-
proximations for discovering influential node sets. Jackson and
Yariv [18] study a diffusion model on social networks which
are connected through undirected graphs and each node can
either adopt or or decline new changes. The authors randomly
select initial nodes and then diffuse information observing a
threshold point called ”tipping”, a point after which majority
of the population adopt changes. It is based on the theory that
if a substantial amount of population adopts a behaviour then
the behaviour/change spreads to majority of population, or oth-
erwise it collapses. Apolloni et al. [19] used a realistic social
network which is based on synthetic population under realistic
conditions. They presented an interaction model based on the
similarity of agents linked with each other and the duration
of contact of agents. They found that information spreading
depends on the duration of contact and strength of links
between agents. Bakshy et al. [20] examined the interaction
of social influence and social networks while adopting online
content. They applied different models of social contagion
which captures the rate at which a user adopts an asset
following the adoption of one more of their friends. They also
found a slight correlation between number of assets transferred
and strength of tie between two friends. Gomez et al. [21]
developed a scalable algorithm NETINF that finds provably
near-optimal networks, assuming the network is static and
observing the times when it gets infected only. The algorithm
is evaluated on very large datasets of information spreading
between news and blogs sites. Using this algorithm properties



of real networks can be studied. Bonchi [22] provided a
survey on social influence and its propagation in networks.
He discussed many models for influence maximization in
viral marketing, emphasizing that available past propagation’s
details should be used in the models. He also highlighted the
importance of using algorithms that can minimize the number
of scans of propagation log. Bakshy et al. [23] experimented
on Facebook dataset, generalizing that it proves the strength
of weak ties study of Mark Granovetter [24]. Further, in the
context of their study they explain phenomena of diffusion by
these mechanisms (1) A link is shared by an individual and
exposure to that link causes a friend to reshare that link (2) A
web page is visited by friends and that link of the web-page is
shared by them independent of each other (3) A link is shared
by an individual external or within Facebook and a friend visit
that link externally and share it on Facebook. Lewis et al. [25]
study a dataset of Facebook activity of a cohort of college
students(their friendships, tastes in music, movies and books).
Finally suggesting that friends do share some tastes but not
because they influence each other but because this similarity
is the part reason of their becoming and remaining friends in
the first place.

All these different studies target either real networks or
synthetic data without focussing on well known classification
of networks, namely small world, scale free, small world-
scale free and random networks. Our objectives are thus
clearly different from the earlier studies where we attempt
to develop a generic understanding of how the properties such
as average path length, clustering coefficient and power law
degree distribution affects influence mining. Furthermore we
consider five different methods of initial seed selection namely,
random, degree centrality, closeness, betweenness and eigen
to develop a better understanding of the interplay between
structural differences of networks and centrality measures.

III. DIFFUSION MODEL AND SEED SELECTION

Starting with an undirected graph G consisting of nodes
V and edges E, (u, v) represents that nodes u and v have a
direct link with each other. A node u performs certain action
a in t time and becomes active. u cannot become inactive
once it activates. We use independent cascade model to exert
influence from active nodes on their inactive neighbours. Each
active node u has 0.5 probability to attempt to activate each of
its inactive neighbours v in the next time step, regardless of the
past propagation and independent of other active nodes. It may
be that nodes are exerting influence on the same inactive node.
If the attempt goes successful, then the inactive neighbour v
becomes active and will further contribute in activating more
nodes. If the attempt fails, the same active node will never have
another chance of activating the same inactive node. Then,
according to the linear threshold model, an inactive node does
not always get activated on the basis of one successful attempt
of one active neighbour only. Each inactive node chooses an
activation threshold at random (because of lack of awareness
of the influentiability of nodes) and if the sum of all incoming
influence exceeds this threshold, only then can it become

active; the LT model normalizes the influence weightage such
that total weight less than or equal to 1.

In order to initiate the influence process, we choose a set
of k nodes that have performed action a already. We do
this by choosing k nodes called seed, from the data with
highest centrality [26], where we used four different centrality
measures, degree centrality, closeness, betweenness and eigen-
vector along with random selection of seeds for comparative
analysis. The four centrality measures are described below.

Degree centrality is the most simple centrality defined as
the number of connections (degree) of a vertex in a network.
These vertices are good candidates to influence other people as
they have many social contacts in the society. Closeness [27]
is a network level metric which is the inverse sum of distances
of a node to all other nodes in the network. Closeness of a
vertex or an individual in case of social networks, represents
on average, how close or how far it lies from all other nodes
in the network. These nodes are good candidates to spread
information as individuals with low values represent people
that are closely connected to all other nodes in the network.
Betweenness Centrality [28] calculates how often a vertex
lies on the shortest path between any two pair of vertices
in the network. High betweenness centrality for vertices with
a clear difference from others betweenness values suggest
that the network has pockets of densely connected vertices or
communities. Low values of betweenness centrality suggest
that vertices of the entire network are well connected to
each other representing the absence of well defined boundary
structure for communities. Vertices with high betweenness
centrality values are the ones which play the role of bridges
between different communities and thus are able to influence
people from different groups increasing chances to influence
more people. Finally Eigen-vector [29] centrality is a measure
of the importance of a vertex in a network. It is a network
level metric calculated iteratively on vertices and assigns a
relative score based on the idea that connections to high-
scoring vertices contribute more to the score of the vertex
in question than equal connections to low-scoring vertices.
A vertex is considered important if it is connected to other
important vertices implying that a node with high eigen-vector
centrality might not itself have high connections but relies on
its neighbors to influence other vertices.

We use linear threshold (LT) and independent cascade (IC)
[13] for our experiments. These diffusion models require as
input, initial seed nodes which are considered to be influenced
at the start of the experiment. We have used the above four
centrality metrics to determine intial seeds for our experiments.

Algorithm 1 defines the implemented algorithm. In algo-
rithm 1, G is a graph representing a social network, consisting
of V nodes and E edges, where c is some centrality of a node.
First, we initiate seed set S and its influence IS . The while
loop stores a set of nodes with highest centrality in S; this
set is used to start influence spread process. Next, we execute
the influence propagation process using LT and IC diffusion
models. We run the algorithm until no untried nodes are left. In
each iteration, active nodes in S are removed from V ; the inner



Algorithm 1 Influence mining using various seed selection
methods
Require: G : (V,E, c)
S ← NULL
IS ← NULL
while |S| < k do
S ← S ∪ (v|cv = max(c); v ∈ V − S)

end while
while V 6= NULL do
A← NULL
V ← V − S
for all v ∈ V do
N ← u|u ∈ S; (u, v) = 1
θ ← rand(0, |N |)
sum← Σi=|u|rand(0, 1)
if sum ≥ θ then
A← A ∪ v

end if
V = V − v

end for
S ← S ∪A
IS ← IS + |A|

end while
return IS

loop runs for each node v in set of inactive nodes V , where we
choose a random threshold for v and sum up successful trials
from each active neighbour of v in N ; if the sum is greater
than or equal to the threshold θ, then v is appended to the set
of active nodes. At the end of the loop, v is removed from the
inactive set, as it has already had its chance to get activated.
Then in the outer loop, all the recently activated nodes join
S to activate more nodes and the influence is recalculated by
adding up the number of newly activated nodes in A. Finally,
the total influence from S, i.e. IS is returned.

IV. DATA SETS

We have generated different artificial networks; small world
network (SW) using the model of [10], scale free (SF) using
the model of [14], small world-scale free network (HK) using
the model of [15] and random network (RD) using the model
of [12] to represent different types of networks. We have
also used four real networks which are semantically different
from each other and they represent different forms of social
communication and are described below:

Political Blog hyperlinks network between weblogs on US
politics, which was recorded in 2005 by Adamic and Glance
[30]. Twitter is among the most popular social networks
for communication between online users. We have used the
dataset extracted by [31]. Epinions is a who-trust-whom on-
line network at Epinions.com, and the data is available at
(http://snap.stanford.edu/data). For experimentation purposes
we have considered a small subset of the original network.
The Author a co-authorship network is, generated from the
BibTeX bibliography developed from the Computational Ge-

Network Nodes Edges Density
Blog 1222 16714 13.6
Twitter 2492 17658 7.0
Epinions 2000 48720 24.3
Author 3621 9461 2.6

TABLE I
NETWORK STATISTICS FOR THE FOUR DIFFERENT SOCIAL NETWORKS

USED FOR EXPERIMENTATION.

Data Set Real Network RD SW SF HK
Highest Degree of a Node

Blog 351 46 47 211 321
Twitter 237 27 27 253 319
Epinions 1192 77 72 373 560
Author 102 15 16 201 183

Average Path Length
Blog 2.7 2.5 3.2 2.4 2.2
Twitter 3.4 3.2 4.2 2.9 2.8
Epinions 2.2 2.2 3.0 2.2 2.0
Author 5.31 5.07 6.41 3.4 4.0

TABLE II
RD=RANDOM NETWORK, SW=SMALL WORLD, SF=SCALE FREE,

HK=HOLME AND KIM MODEL(SMALL WORLD-SCALE FREE NETWORKS).
TABLE SHOWS DIFFERENT METRICS CALCULATED FOR THE REAL AND

ARTIFICIALLY GENERATED NETWORKS FOR COMPARISON.

ometry Database and made at Pajek datasets (http://vlado.fmf.
uni-lj.si/pub/networks/data/). We treat all these networks as
simple and undirected and only consider the biggest connected
component. Table I shows the number of nodes and edges
and the density (edge-node ratio) of these networks. We have
generated equivalent size networks for each of these real
networks, using the four network generation models referred
above. By using real data we not only select realistic density,
but can also compare these models with real data. The rationale
behind selecting multiple data sets for experimentation is that
since the diffusion models use randomization, it would be
more accurate to not base the analysis on single data set.

V. EXPERIMENTATION

For experimentation and analysis, we have generated five
simulated networks each for small world, scale free, small
world-scale free and random networks equivalent to the 4
different social networks giving us 80 networks in total. We
use the arithmetic mean calculated over the five samples each
to tabulate the results of the experiments. Table I shows
some basic statistics for the four real networks used for
experimentation. Table II shows highest degree node values,
clustering coefficients and average path lengths for the gener-
ated networks in comparison to real networks.

We use linear threshold (LT) and independent cascade (IC)
[13] for our experiments. These diffusion models require as
input, initial seed nodes which are considered to be influenced
at the start of the experiment. We have used four centrality
based methods degree, betweenness, closeness, eigen-vector
and random selection of nodes as initial seed. The LT and IC
model calculates the total influence exerted by the seeds on the
network. We measure two parameters for comparative analysis
of these networks. The percentage of vertices influenced after



Fig. 1. Influenced Nodes: Figure showing graphs for the data sets and their
simulated networks. On y-axis of left column, we have the percentage of
total nodes influenced by diffusion with seed nodes k = 5% of total nodes,
where on y-axis of right column, we have number of total iterations that the
algorithm took to try to spread the influence to whole network. X-axes contain
blocks of data sets: HK=Small world-scale free, RD=Random, SF=Scale free
and SW=Small world networks, and within each block, we have seed selection
methods used: random=Random seed selection method, degree=Degree cen-
trality, closeness=Closeness centrality, betweenness=Betweenness centrality
and eigen=Eigen-vector centrality.

the execution of the algorithm and the number of iterations
required to achieve this percentage. The number of iterations
can be considered as an indicator of the time required to
influence the entire network as they represent how many
iterations it takes to try to influence every node in a network.
The ideal seed selection would be with maximum influence
and minimum iterations for a network.

VI. RESULTS AND DISCUSSION

Figure 1 shows the results of all the four simulated networks
as well as real networks. The first observation from the
graphs for the influence spread is that the behavior of small
world networks and random networks is the same for all the
different seed selection strategies. An important similarity in
both small world networks and random networks is the small
average path length but since very high degree nodes are
missing from these two classes of networks, the algorithm
behaves similarly for all the different seed selection methods.
Furthermore, it is important to note that small world networks

have high clustering coefficient, i.e. presence of triads. Thus,
small world networks should exhibit high influence spread, but
to our surprise, no significant impact of clustering coefficient
was evident during our experiments; rather, high-degree nodes
contributed more in the influence spread.

For the case of real networks, scale free networks (SF) and
small world-scale free networks (HK), betweenness centrality
leads the different metrics in spreading maximum influence
followed closely by degree centrality and then eigen-vector
centrality. Closeness performs well for the Twitter network
whereas for the other three datasets, the closeness and random
selection have only minor differences. Eigen-vector performs
well for small world-scale free and scale free networks, even
better than betweenness centrality for the Epinions network as
an exception, but for other networks its performance is behind
betweenness centrality and degree centrality. It is interesting
to note the behavior of eigen-vector for the four real world
networks. The behavoir is quit variable as it performs poorly
for Twitter network, worse than closeness, performs very close
to betweenness and degree centrality for Epinions and has a
notable difference for Blog and Author networks.

The second observation from the graph in figure 1 is the
high similarity of real networks and the HK model for small
world-scale free networks. This reaffirms that most real world
networks are both small world and scale free in nature. A
slight exception is the Author network which is generally less
influenced using different attack strategies. Although in this
case, its equivalent small world-scale free (HK) and scale free
(SF) networks behave similarly. This is due to the difference in
the highest degree node (see Table II) where Author network
has a highest degree node of only 102 as compared to SF with
201 and HK with 183 as the degree of their highest degree
nodes. This clearly suggests the high impact of these very high
degree nodes in influencing a network.

In terms of number of iterations required to influence the
maximum number of vertices in the network, betweenness
centrality performs well along with degree and eigen-vector
centrality except for the case of small world and random
networks generated equivalent to the Author network. Even
for the real Author network, more iterations are required. This
is due to the low density of the overall network and absence of
high degree vertices in small world and random networks, and
the highest degree vertex in the Author network has not a very
high value. As a result, its takes more iterations in an attempt
to influence the entire network. An interesting observation
about the Epinions networks also proves the above conjecture,
as the highest degree node in the real Epinions network is
with degree 1192, which is more than 50% of the nodes are
connected to a single node. As a result the number of iterations
required to make attempts to influence vertices is very low as
compared to other real and simulated networks. The density
of the network also plays its part as Epinions has a very high
density of 24.3 as both scale free network and small world-
scale free network of same density require minimal number
of iterations when compared to other datasets.

Finally, as expected, the average path length attribute exhib-



ited uniform behaviour in almost all the experiments. In figure
1, the number of iterations on all of the Epinions and Blog
data sets, having low APL remained between 2 and 5. Twitter
data set took 6 iterations, once for RD in random influence
method and 5 iterations, in 4 more occasions. However, on
Author data set with highest APL, the number of iterations
begin from 4 and hike to 8. This is because it requires less
number of steps to traverse from one node to another in the
network. Summarizing our findings below:
• The effects of different seed selection strategies are

nullified if the degree distribution of networks follows
poisson distribution.

• High degree nodes have a high impact in influencing other
nodes. This is evident from the analysis of real networks,
scale free networks and small world-scale free networks.

• High density of a network and high connectivity of
very high degree nodes results in less iterations required,
which in turn means less time is require to influence
nodes in the entire network.

• Number of iterations is proportional to the Average path
length. In low-APL data sets, influence spread requires
less traversing as compared to in high-APL data sets.

VII. CONCLUSION

We have performed an empirical study of social influences
and its effect in the diffusion of information in social networks
using LT and IC model on four complex networks and real
world networks. Our results show that for networks with
degree distribution following poisson distribution, different
seed selection methods have no effect whatsoever on the
performance of the influence algorithm. For the case where
the degree distribution follows power-law, the real networks,
the scale free networks and small world-scale free networks,
betweenness centrality performs well to select initial seed
nodes followed closely by degree centrality. Furthermore high
degree nodes play an important role in maximizing influence
and reducing the time period required to spread the iterations
in a network. These preliminary results are intended to help us
create a better understanding of the performance of different
seed selection methods for different networks. We intend to
use this study to develop new metrics that can be used to
determine better performing seed selection methods. We also
intend to generalize these results by including other social
networks. All the networks used have a limited size and we
plan to include larger datasets to generalize our results.
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